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Yukawa coupling in three dimensions

F. A. Dilkes, D. G. C. McKeon,* and K. Nguyen
Department of Applied Mathematics, University of Western Ontario, London, Ontario, Canada N6A 5B7

~Received 22 May 1997; published 19 December 1997!

We consider several renormalizable, scale free models in three space-time dimensions which involve scalar
and spinor fields. The Yukawa couplings are bilinear in both the spinor and scalar fields and the potential is of
sixth order in the scalar field. In a model with a single scalar field and a complex fermion field in three
Euclidean dimensions, the couplings in the theory are both asymptotically free. This property is not retained in
(211)-dimensional Minkowski space, as we illustrate by considering a renormalizable scale-free supersym-
metric model. This is on account of the different properties of the Dirac matrices in Euclidean and Minkowski
space. We also examine a model in (211)-dimensional Minkowski space in which two species of fermions,
associated with the two unitarily inequivalent representations of the 232 Dirac matrices, couple in two
different ways to two distinct scalar fields. There are two types of Yukawa couplings in this model, and either
one or the other of them can be asymptotically free~but not both simultaneously!. @S0556-2821~98!04402-6#

PACS number~s!: 11.10.Kk, 11.30.Rd, 12.60.Jv
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I. INTRODUCTION

Self-interacting scalar models are the simplest of all re
tivistic quantum theories to analyze. There are but three
stances in which the self-interaction involves a dimensi
less coupling l ~and is consequently perturbative
renormalizable!: lf4 in four dimensions,lf3 in six dimen-
sions, andlf6 in three dimensions. The renormalizatio
group functions for these models have been determined
yond one-loop order using dimensional regularization@1#;
see Refs.@2–4# respectively. In this paper we consider n
just sixth order scalar couplings in three dimensions, but
pend to them Yukawa couplings which are bilinear in bo
the scalar and spinor fields. This interaction is renorma
able in three dimensions.

We compute the renormalization group functions asso
ated with these couplings to first order in the scalar s
coupling and second order in the Yukawa coupling in a
riety of models. First, a simple model in which there is
single scalar fieldf and a two-component Dirac fermio
field c is considered in Euclidean space and we find it to
asymptotically free. Next a supersymmetric model
Minkowski space is examined and, on account of the pr
erties of Dirac matrices in this space, the model no lon
possesses asymptotic freedom. Finally, a model contai
two species of two-component Dirac Fermions and two ty
of scalars, coupled in a symmetric way that employs t
distinct scalar self-couplings and two Yukawa couplings
analyzed. It turns out that it is possible to arrange for one
the Yukawa couplings to be asymptotically free.

Dimensional regularization@1# is employed to compute
Feynman integrals for several reasons. First of all, mass
tadpoles vanish when using this technique, eliminating
number of Feynman graphs. Second, divergences in an
number of dimensions occur only beyond one-loop ord
Third, minimal subtraction@5# is an efficient renormalization
scheme which permits one to compute the renormaliza
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group functions with relative ease; this technique is con
gent upon using dimensional regularization. Fourth, if o
uses dimensional regularization in a three dimensional mo
that initially is free of dimensionful parameters, then one
not forced by consideration of radiatively induced dive
gences to introduce couplings involving massive parame
~such as masses for the scalar and spinor fields and qu
scalar couplings!. We now consider the various models.

II. YUKAWA MODEL

Initially, let us consider the model defined by the thre
dimensional Euclidean action

S5E d3xF2 1
2 fp2f2

l

6!
f62 c̄ ~p” 1 1

2 gf2!c G . ~1!

The conventions used are given in the Appendix.
In three dimensions, the couplingsl andg are dimension-

less. When dimensional regularization@1# is used, only these
couplings and the wave functionsc andf need to be renor-
malized. In computing the renormalization group function
it is necessary to evaluate the divergent parts of the t
point functions ^ff&, and ^cc̄&, the four-point function
^cc̄ff&, and the six-point functionŝffffff&.

As was mentioned in the Introduction, using dimension
regularization with this model means that tadpole and o
loop diagrams do not contribute to the renormalization gro
functions. Consequently, to orderl andg2, we only consider
the diagrams in Fig. 1, using the Feynman rules of Fig. 2
Table I, we list the number of distinct diagrams associa
with each of the graphs in Fig. 1, the associated combinat
factors, and the pole part of the diagram~in 32e dimen-
sions!.

The divergences computed in Table I do not contribute
vertices that occur in one-loop diagrams to the order wh
we are considering.
1159 © 1997 The American Physical Society
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Analogous calculations are easily performed in the sup
symmetric version of the model of Eq.~1!. The Minkowski
space superfield action for this model is~using notation ex-
plained in the Appendix!

S5E d3xd2uS 1
2 FD2F1

l

4!
F4D ~2!

which in component form becomes

S5E d3xF 1
2 ~AhA1 ica]a

bcb1F2!

1
l

4!
~12A2c214A3F !G , ~3!

wherec is a Majorana two-component spinor in this theo
A andF are both real scalar fields. The equation of moti
for the auxiliary fieldF may be used to reexpress Eq.~3! in
the form

S5E d3xF1

2
~AhA1 ica]a

bcb!1
l

2
A2c22

l2

72
A6G

~4!

which is closely related to the action of Eq.~1!.
We determine the lowest order radiative corrections to

couplingl by computing the divergent parts of the integra
corresponding to the diagrams in Figs. 1~c!, 1~d!, 1~e!, 1~f!,

FIG. 1. Feynman diagrams for the Euclidean, supersymme
and two-component models.

FIG. 2. Feynman rules in the Euclidean and supersymme
models.
r-

;

e

and 1~g! using the appropriate Feynman rules given in Fig.
The results are given in Table II.

We have also provided the results of computing the
perfield diagrams of Figs. 1~n! and 1~o!. We note that we
could have examined the renormalization of the couplingl
by computing the divergent part of the six-point diagram
rather than the four-point diagrams in Fig. 1; supersymme
ensures that the results of this approach would yield an id
tical renormalization ofl.

A third model will now be considered. This will be don
in Minkowski space and will incorporate two complex two
component spinor fieldsc1 andc2 which form the upper and
lower components of a four component spinor fieldc, as
well as a pair of real scalar fieldsA andB. The 232 Dirac
matricesga in three dimensions, which are discussed in t
Appendix, are unitarily inequivalent to the matrices2ga

~which of course satisfy the same Dirac algebra!; the Dirac
matrices we will use in this model are given by

Ga5S ga 0

0 2gaD ~a50,1,2!. ~5!

We define two additional anticommuting Dirac matrices

G45S 0 2 i 1

i 1 0 D and G55S 0 1

1 0D . ~6!

The action which we will consider is initially expressed
the form

c,

ic

TABLE I. Two-loop poles in the Euclidean model.

Graph Number of diagrams Combinatoric factor Pole part

a 1 1 g2p2/96p2e
b 1 1/2 g2p//192p2e
c 1 1 2g3/32p2e
d 1 1/2 2g3/64p2e
e 4 1 2g3/16p2e
f 2 1/2 2g3/96p2e
g 2 1 2g3/48p2e
h 10 1/6 5l2/96p2e
i 15 1 215lg2/32p2e
j 90 1 245g4/8p2e
k 180 1 245g4/8p2e
l 6 1 2lg2/16p2e

TABLE II. Two-loop poles in the supersymmetric model.

Graph Number of diagrams Combinatoric factor Pole part

c 1 1/2 2 il3/64p2e
d 1 1/2 2 il3/64p2e
e 4 1 2 il3/16p2e
f 2 1/2 2 il3/96p2e
g 2 1/2 2 il3/96p2e
n 6 1/2 23il3/32p2e
o 4 1/6 2 il2/48p2e
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57 1161YUKAWA COUPLING IN THREE DIMENSIONS
S5E d3xF2 1
2 ~Ap2A1Bp2B!2 c̄p” c1

g

2
c̄c~A22B2!

2 iGc̄G5cAB2
l

6!
~A61B6!2

s

4!2!
~A2B41A4B2!G

~7!

wherep5 i ] and c̄5c1G0 . There are two discrete symme
tries present in this Lagrangian,

A→B, B→2A, c→G5c ~8a!

and

A→B, B→A, c→G4c. ~8b!

These symmetries exclude couplings of the formc̄c(A2

1B2), c̄cAB, c̄G5c(A26B2), c̄G4cAB, c̄G4c(A2

6B2), A5B6AB5, A3B3, A2B42A4B2, andA62B6. They
do not excludec̄G4G5c(A21B2), but this interaction is not
perturbatively generated by radiative corrections induced
the action of Eq.~7!.

If in Eq. ~7! we were to setG5g and s5l/5, then the
action would become

S5E d3xF2f* p2f2 c̄p” c1gc̄ ~f2P11~f* !2P2!c

2
l

90
~f* f!3G ~9!

wheref5(A1 iB)/& and P65(16G5)/2. The symmetry
of Eq. ~8a! now becomes continuous:

f→eiuf, c→e2 iuG5/2c ~10!

asP6e2 iuG5/25P6e7 iu/2.
The interaction terms of Eq.~7! are invariant under the

transformations

A5~A81B8!/&, B5~A82B8!/&,

c5~ iG5!1/2c85
11 iG5

&
c8, ~11!

provided that we simultaneously redefine the couplings
that

g85G, G85g, ~12a!

FIG. 3. Feynman rules for the two-component model.
y

o

s85
l2s

4
, l85~15s1l!/4. ~12b!

By exploiting the symmetries of Eqs.~12!, we can determine
how G ands are renormalized to a given order in perturb
tion theory from results which give howg andl are renor-
malized. To do this directly we rewrite Eq.~7! in the form

S5E d3xF2 1
2 FTp2F2 c̄ i p” c i1

1
2 (

a51

2

ka~FTraF!~ c̄rac!

2
1

6! (
a51

2

za~FTraF!2FTFG ~13!

where we have reverted to using the two-component spin
c i and have defined

FT5~A,B!, ~13a!

ka5~G,g!, ~13b!

za5S 15s1l

4
,l D , ~13c!

and

ra5~s1 ,s3!. ~13d!

The transformations of Eqs.~11! and ~12! become

c→
1

&
~r11r2!c, ~14a!

F→
1

&
~r11r2!F, ~14b!

and

k1↔k2 z1↔z2 , ~15!

under which the action of Eq.~13! is invariant. The Feynman
rules associated with the action in Eq.~13! are given in Fig.
3.

In Table III we provide the results of computing the re
evant diagrams in Fig. 1 in the context of the action of E
~13!. We have verified that these results can be obtained
using the action of Eq.~7! directly, and also that the mode
of Eq. ~9! yields results that coincide with those followin
from Eqs.~7! and ~13! in the limit g5G, s5l/5.

We are now in a position to use these results to determ
the renormalization group functions associated with th
models to lowest order.

III. RENORMALIZATION GROUP FUNCTIONS

The pole parts of the diagrams in Fig. 1 as tabulated
Tables I–III serve to fix the relationship between the ren
malized and bare couplings, and hence the renormaliza
group functions, in the three models which we have cons
ered@1–5#. In other words, we can determine the functio
an

l andan
g in the equations
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TABLE III. Two-loop poles in the two-component model.

Graph Number of diagrams Combinatoric factor Pole part

a 1 1 2i

48p2e
~k1

21k2
2!1p2

b 1 1/2 2i

96p2e
~k1

21k2
2!1p”

c 1 1 2 i

16p2e
~k1

32k1k2
2!~r1^ r1!1~1↔2!

d 1 1/2 2i

32p2e
~k1

32k1k2
2!~r1^ r1!1~1↔2!

e 4 1 2 i

16p2e
~k1

32k1k2
2!~r1^ r1!1~1↔2!

h 10 1/6 i

1440p2e
~76z1

228z1z2116z2
2!~r1^ r1^ 1!1~1↔2!

i 15 1 15i

16p2e
~z1k1

21
4

15z2k2
22

1
15z1k2

2!~r1^ r1^ 1!1~1↔2!

j 45 2 245i

4p2e
~k1

42k1
2k2

2!~r1^ r1^ 1!1~1↔2!

k 45 4 245i

4p2e
~k1

41k1
2k2

2!~r1^ r1^ 1!1~1↔2!
` l

y

l l

d
pa-

and
the

he
-

of
lB5m2eFlR1 (
n51

an~lR ,gR!

en G ~16a!

gB5meFgR1 (
n51

` an
g~lR ,gR!

en G ~16b!

where, for concreteness, we are using the model of Eq.~1!.
Similarly, the wave-function renormalizations are given b

Zf511 (
n51

` cn
f~lR ,gR!

en ~17a!

and

Zc511 (
n51

` cn
c~lR ,gR!

en . ~17b!

Altering the mass scalem so that

m85m~11r! ~r'0! ~18!

leads to expressions forlB andgB that contain contributions
linear in e which can be eliminated by setting

l̃R5lR~122er! ~19a!

g̃R5gR~12er!. ~19b!

If we now write lB and gB in terms of l̃R and g̃R and
identify lR8 andgR8 ~the renormalized couplings at scalem8!
with terms independent of poles ine, we find that
lR85 l̃R22ra1
l12rl̃R

]a1

] l̃R

1r g̃R

]a1

] g̃R

, ~20a!

gR85 g̃R2ra1
g12rl̃R

]a1
g

] l̃R

1r g̃R

]a1
g

] g̃R

, ~20b!

so that

m
]l

]m
522a1

l12l
]a1

l

]l
1g

]a1
l

]g
, ~21a!

m
]g

]m
52a1

g12l
]a1

g

]l
1g

]a1
g

]g
. ~21b!

In determininga1
l to lowest order, one must keep in min

that a diagram involving a self-energy on an external pro
gator ~so that the diagram is one particle reducible! has its
divergence shared between the external wave function
the coupling constant characterizing the vertex. This has
effect of reducing the contribution of the pole parts of t
diagrams in Figs. 1~f!, 1~g!, and 1~l! to the appropriate cou
pling constant renormalizations by a factor of1

2 in each of the
models we are examining.

Using Table I, we find that, for the Euclidean model
Eq. ~1!,

a1
l5

1

p2 S 5l2

96
2

lg2

2
2

45

4
g4D , ~22a!

a1
g52

g3

8p2 , ~22b!

while, for the supersymmetric model of Eqs.~2! and ~3!,
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57 1163YUKAWA COUPLING IN THREE DIMENSIONS
a1
l5

5l3

48p2 , ~23!

as can be seen from Table II. Finally, for the two compon
model of Eqs.~7! and ~13!, Table III gives the result

a1
g5

g

16p2 ~3g222G2!, ~24a!

a1
G5

G

16p2 ~3G222g2!, ~24b!

a1
l5

1

16p2 S 5

6
l21

5

2
s2116lg21lG2115sG22360g4D ,

~24c!

a1
s5

1

16p2 S 3s21
1

3
sl1lG2115sG2124g4296G4D .

~24d!

The results of Eq.~24! are consistent with the symmetries
Eq. ~12!.

Together, Eq.~21! and the functionsa1 in Eqs.~22!–~24!
show that the rate of change of any coupling to lowest or
is given by twice the correspondinga1 ; viz. for the Euclid-
ean model

m
]l

]m
5

1

p2 S 5l2

48
2lg22

45

2
g4D ~25a!

m
]g

]m
5

2g3

4p2 ~25b!

for the supersymmetric model

m
]l

]m
5

5l3

24p2 ~26!

and for the two-component model

m
]g

]m
5

g

8p2 ~3g222G2!, ~27a!

m
]G

]m
5

G

8p2 ~3G222g2!, ~27b!

m
]l

]m
5

1

8p2 S 5

6
l21

5

2
s2116lg21lG2115sG2

2360g4D , ~27c!

m
]s

]m
5

1

8p2 S 3s21
1

3
sl1lG2115sG2124g4296G4D .

~27d!

We are now in a position to discuss the properties of th
couplings.

First of all, by Eq.~25b!, we see that
t

r

e

g25
g0

2

11
g0

2

2p2 lnS m

m0
D [

2p2

ln m/L
or g50 ~28!

whereL is some renormalization invariant scale andg5g0
whenm5m0 . Consequentially, the theory is asymptotica
free, a property shared by non-Abelian gauge theory in f
dimensions@6#, f3 theory in six dimensions@3# and f4

theory in four dimensions when the coupling is of th
‘‘wrong’’ sign @7#. In the latter two cases, the models a
unacceptable as they are energetically unstable.

Since Eqs.~25! are homogeneous inl, g2 and ln(m/L)21

we one can solve explicitly for the renormalization gro
~RG! flow in thel-g plane and thus obtain a full solution t
the scaling behavior of both couplings at lowest order.
order to do this, we multiply Eq.~25b! by g and then divide
by Eq. ~25a! to obtain the ordinary differential equatio
~ODE!

dg2

dl
52

1

2 F g4

5l2

48
2lg22

45

2
g4G . ~29!

Then, by upon settingg25lz, it is straightforward to solve
for z(l). Unlessg50, the general solutions are

l5
g2@~g2!A77/22k#

z1~g2!A77/22kz2

for some kÞ0 ~30a!

and

g25lz6 , ~30b!

wherez65(6A77/221)/90. Notice that the generic solu
tion ~30a! appears to admit more than one phase; ifk.0,
then l varies smoothly withg and approaches zero in th
ultraviolet limit. However, ifk,0, thenl can branch outside
of the perturbative regime when the denominator of E
~30a! is sufficiently small. Whether this occurs will depen
on the particular choice of renormalization conditions.

For the supersymmetric model, Eq.~26! implies that

l5
l0

2

12
5

12p2 l0
2 lnS m

m0
D [

12p2/5

ln~L/m!
. ~31!

This model is not asymptotically free, in accordance with t
general result of Ref.@8#.

Finally, we consider the renormalization group equatio
for the two-component model in Eqs.~27!. By Eqs.~27a! and
~27b! we see that

dG2

dg2 5
3G422g2G2

3g422g2G2 . ~32!

This is a homogeneous equation; upon settingG25zg2 it can
be solved easily to give either

g25G25
4p2

ln~L/m!
~33a!
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@i.e. we have the Yukawa couplings of Eq.~9!# or

g6G6}ug22G2u. ~33b!

Referring to Fig. 4, the graph of Eq.~33!, we see that the
Yukawa sector has three distinct phases. IfG5g, then both
couplings increase with scale according to Eq.~33a! with
their equality preserved by the renormalization group flow
gÞG, then Eq.~33b! holds, and the smaller of the two cou
plings becomes asymptotically free while the larger evol
outside of the perturbative region with increasing moment
scale, in such a way that the combinationG41g4 always
increases withm. To see this we setg25r cosu and G2

5r sinu in Eq. ~32! to obtain

5

r

dr

du
5F325 sin u cosu

sin u2cosu GFsin u1cosu

sin u cosu G . ~34!

Another dominant feature of Fig. 4 occurs in the infrar
region where the Yukawa couplings approach zero along
asymptoteg5G. In fact, we have completed several nume
cal solutions to the full four-parameter renormalization gro
flow of Eqs. ~27!; all solutions indicate that coupling con
figuration G5g, l55s @which leads to the chirally sym
metric model of Eqs.~9! and~10!# is asymptotically realized
in the infrared domain.

In the special case when the Yukawa couplingsg2 andG2

are weak, then, in the ultraviolet limit, the six-point co
plings tend to branch outside of the perturbative region p
allel to one of the two UV-stable linesl5s or s50.

We can slightly alter the model of Eq.~7! so that there are
Ng>1 fermions coupling with strengthg to A22B2, and
NG>1 distinct fermions coupling with strengthG to AB. In
this case the renormalization group equations of Eqs.~27a!
and ~27b! are replaced by

m
]G

]m
5

G

24p2 @~4NG15!G222Ngg2# ~35a!

m
]g

]m
5

g

24p2 @~4Ng15!g222NGG2#. ~35b!

Again we find that there are special solutions in which
couplings flow in the following straight lines away from th
origin as the energy scale increases:

FIG. 4. Leading order flows for the Yukawa couplings in t
two-component model of Eq.~7!. ~The arrows represent the direc
tion of increasing energy scale.!
f

s

e

p

r-

e

G50 and g25
12p2

~4Ng15!ln~L/m!
, ~36a!

g50 and G25
12p2

~4NG15!ln~L/m!
, ~36b!

or

G2~m!

g2~m!
5

6NG15

6Ng15
. ~36c!

In addition there are generic solutions similar to the curv
depicted in Fig. 4 in which eitherg or G is asymptotically
free depending on whether the fractionG2/g2 is larger or
smaller than its critical value in Eq.~36c!.

IV. DISCUSSION

We have considered a number of Yukawa couplings
three dimensions as well as the associated radiatively
duced six-point scalar couplings. The lowest order contri
tions to the renormalization group functions for the co
plings constants in these models have been compu
complementing the work of Ref.@8#, where a global SU(N)
flavor symmetry is imposed on the interactions.

One curious feature of these results is that the Yuka
coupling is asymptotically free in the model defined in E
clidean space by Eq.~1!, while the supersymmetric model i
Minkowski space@with metricgmn5(112)] whose action
is given in Eqs.~2! and~3! is not. This apparent discrepanc
is a consequence of the different properties of the Dirac m
trices ga in the two models. In Euclidean space the kine
term c̄p” c in Eq. ~1! is Hermitian providedga is identified
with some unitary equivalent representation of the Pauli s
matricessa ~or 2sa), in which casep” 25p2. In the super-
symmetric~Minkowski! model of Eqs.~2! and ~3!, the ki-
netic term for the spinor field is Hermitian providedga is
represented, for example, by Eq.~A6!, so that p” 252p2.
This point of distinction is sufficient to alter the ultraviole
behavior of the models, as the integrals associated with F
1~c!–1~g! each contain spinor propagators. If, for instanc
we were to compute the Feynman integrals associated
diagrams 1~a!–1~l! in the Minkowski space version of mode
~1!, then it is an easy exercise to show that Eqs.~25a! and
~25b! become

m
]l

]m
5

1

p2 S 5l2

48
1lg22

45

2
g4D ~37a!

m
]g

]m
5

g3

4p2 , ~37b!

clearly demonstrating that in Minkowski space the Yuka
coupling is not asymptotically free.

The two component model of Eq.~7! has the peculiar
feature that unlessg5G, one of the couplings become
small while the other grows as the renormalization gro
scale increases. This differs from the analogous situatio
four dimensions where none of the couplings involving s
lars and spinors is ever asymptotically free. We are pursu
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57 1165YUKAWA COUPLING IN THREE DIMENSIONS
an analysis of this model along the lines of Ref.@9# to see
how it behaves in Euclidean space.

The stability of these models is clearly a problem of
terest; computation of the effective potential to two-loop
der could shed some light on this problem. Stability wou
be maintained if the renormalization group improved effe
tive potential is positive definite.
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APPENDIX: CONVENTIONS

In this appendix the notation and conventions that
have been using are outlined. In the Euclidean model,
work in Euclidean space withp52 i ], and the Dirac gamma
matrices are identified with the Pauli spin matrices so t
gagb5dab1 i eabcgc. This ensures that the kinetic termc̄
5c1. Feynman integrals are computed using

E dnk

~2p!n

~k2!a

~k21m2!b 5
1

~4p!n/2 ~m2!n/21a2b

3
G~n/21a!G~b2a2n/2!

G~n/2!G~b!
.

~A1!

In the supersymmetric model, the conventions of@10# are
used. This means that an extra factor of (i ) appears in Eq.
~A1!, as the metric is given bygmn5(112). Indices are
raised and lowered by the use of an antisymmetric ten
Cab , so that

ca5Cabcb , ca5cbCba ~A2!

where Cab52Cab5( i 0
0 2 i). Consequently, ifda

b5(0 1
1 0),

thenda
b52da

b. A rank-two spinorVab is identified with a
vector @viz. Eq. ~A5!# providedVab5Vba or, equivalently,
Va

a50. Spinorial derivatives are defined by$]a ,ub%5
$2 ipa ,ub%5da

b and the covariant derivativeDa5]a
1 iub]ab satisfies

~D2!25h

D2d~u!uu5051

E d3xE d2u@D2f ~u!#g~u!5E d3xE d2u f ~u!@D2g~u!#

~A3!
-

-

.

e
e

t

or

whereD25 1
2 DaDa52 1

2 DaDa. We also have

]al]bl5db
ah. ~A4!

These conventions are all consistent with replacing a v
tor Va

b by

Va
b5~ga!a

bVa ~A5!

whereVa is the usual vector in 211 dimensions and

~ga!a
b5F S i 0

0 2 i D ,S 0 i

i 0D ,S 0 i

2 i 0D G . ~A6!

With these conventions

~ga!a
a50, ~ga!a

b52~ga!a
b*

and

~ga!a
l~gb!l

b1~gb!a
l~ga!l

b522gabda
b . ~A7!

The wave equation forca is now consistent withca be-
ing real. The kinetic termca( i ]a

b)cb5ca(p” )a
bcb is Her-

mitian.
In the two-component model~13!, some useful identities

for the matricesra in Eq. ~13d! are

45~ra ^ ra ^ 1!@bcaaaa#56~ra!bc~ra!aadaa

112~ra!ba~ra!cadaa

112~ra!ba~ra!aadca

112~ra!ca~ra!aadba

13~ra!aa~ra!aadbc

and

45~ra ^ ra ^ 1!@bbbaaa#59~ra!bb~ra!badaa

19~ra!bb~ra!aadba

118~ra!ba~ra!badba

19~ra!ba~ra!aadbb .

No summation is implied in these latter equations; squ
parentheses@•••# indicate symmetrization of all enclose
indices, while repeated Roman indicesa andb indicate sym-
metrization over specific indices~which are thus rendered
indistinguishable!. The coefficient 45 is shown on the le
hand sides to elucidate the 45 distinguishable permutat
of the indices ofra ^ ra ^ 1 given that bothra and 1 are
already symmetric.
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