PHYSICAL REVIEW D VOLUME 57, NUMBER 2 15 JANUARY 1998

Yukawa coupling in three dimensions
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We consider several renormalizable, scale free models in three space-time dimensions which involve scalar
and spinor fields. The Yukawa couplings are bilinear in both the spinor and scalar fields and the potential is of
sixth order in the scalar field. In a model with a single scalar field and a complex fermion field in three
Euclidean dimensions, the couplings in the theory are both asymptotically free. This property is not retained in
(2+1)-dimensional Minkowski space, as we illustrate by considering a renormalizable scale-free supersym-
metric model. This is on account of the different properties of the Dirac matrices in Euclidean and Minkowski
space. We also examine a model in{2)-dimensional Minkowski space in which two species of fermions,
associated with the two unitarily inequivalent representations of tk@ Dirac matrices, couple in two
different ways to two distinct scalar fields. There are two types of Yukawa couplings in this model, and either
one or the other of them can be asymptotically f(leat not both simultaneously[ S0556-282(98)04402-§

PACS numbgs): 11.10.Kk, 11.30.Rd, 12.60.Jv

[. INTRODUCTION group functions with relative ease; this technique is contin-
gent upon using dimensional regularization. Fourth, if one
Self-interacting scalar models are the simplest of all relauses dimensional regularization in a three dimensional model
tivistic quantum theories to analyze. There are but three inthat initially is free of dimensionful parameters, then one is
stances in which the self-interaction involves a dimensionnot forced by consideration of radiatively induced diver-
less coupling A (and is consequently perturbatively gences to introduce couplings involving massive parameters
renormalizable \ ¢* in four dimensionsi ¢° in six dimen-  (such as masses for the scalar and spinor fields and quartic
sions, and\ ¢°® in three dimensions. The renormalization scalar couplings We now consider the various models.
group functions for these models have been determined be-
yond one-loop order using dimensional regularizatjdf
see Refs[2—4] respectively. In this paper we consider not Il. YUKAWA MODEL
just sixth order scalar couplings in three dimensions, but ap-
pend to them Yukawa couplings which are bilinear in both
the scalar and spinor fields. This interaction is renormaliz-
able in three dimensions.
We compute the renormalization group functions associ-
ated with these couplings to first order in the scalar self- S:f d3
coupling and second order in the Yukawa coupling in a va-
riety of models. First, a simple model in which there is a
single scalar field$ and a two-component Dirac fermion
field ¢ is considered in Euclidean space and we find it to be ; ; ) i i
asymptotically free. Next a supersymmetric model in, [N three dimensions, the couplingsandg are dimension-
Minkowski space is examined and, on account of the propless' When dimensional regul_arlzatlbl] is used, only these
erties of Dirac matrices in this space, the model no longef°UPlings and the wave functionsand ¢ need to be renor-
possesses asymptotic freedom. Finally, a model containing‘_il'zed' In computing the renorm.ahzatlon group functions,
two species of two-component Dirac Fermions and two typed 1S necessary to evaluate the divergent parts of the two-
of scalars, coupled in a symmetric way that employs twaPoint functions(#¢), and (), the four-point function
distinct scalar self-couplings and two Yukawa couplings, is{(# ¢ @), and the six-point functionp ¢ ddd ).
analyzed. It turns out that it is possible to arrange for one of As was mentioned in the Introduction, using dimensional
the Yukawa couplings to be asymptotically free. regularization with this model means that tadpole and one-
Dimensional regularizatiofl] is employed to compute loop diagrams do not contribute to the renormalization group
Feynman integrals for several reasons. First of all, massledanctions. Consequently, to orderandg?, we only consider
tadpoles vanish when using this technique, eliminating ahe diagrams in Fig. 1, using the Feynman rules of Fig. 2. In
number of Feynman graphs. Second, divergences in an odiable |, we list the number of distinct diagrams associated
number of dimensions occur only beyond one-loop orderwith each of the graphs in Fig. 1, the associated combinatoric
Third, minimal subtractiofi5] is an efficient renormalization factors, and the pole part of the diagrdin 3— e dimen-
scheme which permits one to compute the renormalizatiosions.
The divergences computed in Table | do not contribute to
vertices that occur in one-loop diagrams to the order which
*Email address: tmleafs@apmaths.uwo.ca we are considering.

Initially, let us consider the model defined by the three-
dimensional Euclidean action

1 A v 1
X —z¢p2¢—a¢6— p(p+390) ). (D)

The conventions used are given in the Appendix.
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TABLE I. Two-loop poles in the Euclidean model.

\/ N4 Graph Number of diagrams Combinatoric factor Pole part

() (b) © ) @ a 1 1 92p2/96m2e
b 1 1/2 9°p//19272%€
c 1 1 —g%32m%e
d 1 1/2 —g%64m%e
e 4 1 —g%/16m%e
f 2 1/2 —g%/967%e
g 2 1 —g%/48m%e
h 10 1/6 B\2/96m2€
[ 15 1 —15\g?/327%¢
; . . j 90 1 — 45g*/872€
) M (m) (n) (©) K 180 1 — 45g%/8m2e
| 6 1 —A\g?/16m2e

FIG. 1. Feynman diagrams for the Euclidean, supersymmetric,
and two-component models.

Analogous calculations are easily performed in the super@nd 1g) using the appropriate Feynman rules given in Fig. 2.
symmetric version of the model of E¢L). The Minkowski ~ The results are given in Table II.

space superfield action for this model(issing notation ex- We have also provided the results of computing the su-
plained in the Appendix perfield diagrams of Figs.(f) and X0). We note that we

could have examined the renormalization of the couphng

_ TN P N, by computing the divergent part of the six-point diagrams
S_I d°xd“6| ;D P+ E‘D (2 rather than the four-point diagrams in Fig. 1; supersymmetry
ensures that the results of this approach would yield an iden-
which in component form becomes tical renormalization of.

A third model will now be considered. This will be done
in Minkowski space and will incorporate two complex two-
component spinor fieldg, and, which form the upper and
lower components of a four component spinor figldas
well as a pair of real scalar fields andB. The 2x2 Dirac
matricesy, in three dimensions, which are discussed in the
Appendix, are unitarily inequivalent to the matricesy?
wherey is a Majorana two-component spinor in this theory; (which of course satisfy the same Dirac algebthe Dirac
A andF are both real scalar fields. The equation of motionmatrices we will use in this model are given by
for the auxiliary fieldF may be used to reexpress Eg) in

F(AOA+i 929, P+ F?)

S= f d3x

+%(12A2¢//2+4A3F) : )

the form . ( ¥ 0
= a=0,1,2. 5
s‘fd3 L (AOA+ g0 Py + S A2y )\ZAG o ) ©
= x| 5 ( W9 Yp) + A — =

(4  We define two additional anticommuting Dirac matrices

which is closely related to the action of E(). 0 —il 0 1
We determine the lowest order radiative corrections to the r,= ( and FSZ( . (6)

coupling\ by computing the divergent parts of the integrals il 0 Lo

corresponding to the diagrams in Figgc)l 1(d), 1(e), 1(f),
The action which we will consider is initially expressed in

o, the form
....................... 1/p? —ifp
R - i TABLE Il. Two-loop poles in the supersymmetric model.
------- -2 —10i3? , —
Graph Number of diagrams Combinatoric factor Pole part
g i c 1 1/2 —iN%/64m%e
d 1 1/2 —iN%64m2%e
—iD?5(6, — 8,)/p* e 4 1 —iN%/1672%€
N f 2 1/2 —in3/9672%€
B g 2 1/2 —iN%/96m2%e
n 6 1/2 —3iN%/3272%€
FIG. 2. Feynman rules in the Euclidean and supersymmetriey 4 1/6 —iN2/487%€

models.
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a b _l'(;ub/ 2 ' )\ -0 ’

"""""""""""""" P o'=——, N =(150+\)/4. (12b

i - i —i§ 4

/b

.a b

£ e e . By exploiting the symmetries of Eg&l2), we can determine
~a{pa  po © Derer how G and o are renormalized to a given order in perturba-
e d tion theory from results which give hog and\ are renor-

B malized. To do this directly we rewrite E¢7) in the form
/\ il pei(a)ab

i j S:fd3

FIG. 3. Feynman rules for the two-component model.

S= f d®x

2
~3OTPO— bt} 3, ko0 D) (Upt)

1 2
— 51 2, L @Tp @) 2T (13

a=1

P g P
—2(AP*A+BP’B) — ypy+ 5 r(A*~B?)
where we have reverted to using the two-component spinors

G YT syAB— a(A6+BG)— 4:72| (AZB4+A4BZ)} ¥; and have defined
' o ®T=(A,B), (133
()
: — : k.=(G,9), (13b
wherep=id and = 'T,. There are two discrete symme-
tries present in this Lagrangian, 150+ \
a= (—1 ) ' (13C)
A—B, B——A, y¢—Tgy (8a) 4
and and
A—B, B—A, y—T . (8b) pa=(01,03). (130

These symmetries exclude couplings of the foﬁjx(A2 The transformations of Eq¢l1) and(12) become

+B?), YyAB, YTsy(A’+B?), YT YAB, L Y(A’ 1

+B?), A°B=AB®, A’B3, A?B*—A%B?, andA®—B®. They J— —(p1+p2) i, (143
do not excludeyT ,I'siy(A%+ B2), but this interaction is not v2

perturbatively generated by radiative corrections induced by

the action of Eq(7). i
If in Eq. (7) we were to seG=g and o =\/5, then the (I)—>‘/z(pl+p2)q), (149
action would become
and
S=f d°| — ¢* PPp— byt gy ( PP +(9*)?P )y P Y (15)
A under which the action of Eq13) is invariant. The Feynman
- %(4’* ¢)3} (9)  rules associated with the action in E43) are given in Fig.
3.
where ¢=(A+iB)/vZ andP. =(1+Ts)/2. The symmetry In Ta_ble I we pr(_)vide.the results of computing the rel-
of Eq. (8@ now becomes continuous: evant diagrams in Fig. 1 in the context of the action of Eq.
(13). We have verified that these results can be obtained by
p—elep, Y—e 12y (10)  using the action of Eq(7) directly, and also that the model
) . of Eq. (9) yields results that coincide with those following
asP.e 's?=p 702 from Egs.(7) and(13) in the limit g=G, o=\/5.
The interaction terms of Eq(7) are invariant under the  We are now in a position to use these results to determine
transformations the renormalization group functions associated with these

models to lowest order.
A=(A'+B")/v2, B=(A'-B')/V2,

IIl. RENORMALIZATION GROUP FUNCTIONS

1+iT
— (i / r_ 5
Y=(ils) 2y’ = V3 v 1D The pole parts of the diagrams in Fig. 1 as tabulated in
Tables I-I1ll serve to fix the relationship between the renor-
provided that we simultaneously redefine the couplings séhalized and bare couplings, and hence the renormalization
that group functions, in the three models which we have consid-

ered[1-5]. In other words, we can determine the functions
g'=G, G'=g, (129 a® anda? in the equations
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TABLE lll. Two-loop poles in the two-component model.

Graph Number of diagrams Combinatoric factor Pole part
a 1 1
8/7T2 (K1+K2)]lp2
b 1 1/2 )
M(Kﬁ k3)1p
c 1 1 —i 5
16_7726(Kl_Kle)(P1®P1)+(1<—>2)
d 1 1/2 —j . )
32_772€(K1_K1K2)(P1®P1)+(1‘—>2)
e 4 1 —i 5 5
T672¢ (K1 K1Kk2)(p1®p1) +(12)
h 10 1/6 i , ,
Taa072¢ (186178410, +1605)(p1®p1® 1) +(12)
! 15 : 15 2 4 2 1 2
m(fl"f"Efsz_EZle)(P1®Pl®1)+(1<—>2)
j 45 2 —45 ) 5
ﬁ(Kl K1K5)(p1®p1® D) +(1-2)
k 45 4 45, ]
_47726("1"‘K1"2)(P1®P1®1)+(1‘—>2)
Y N A
a,(\r,9R) é’a Jda
No=p* | Apt 2 (163 Ne=Xr—2pa}+2pXg — +p0r—-, (203
vt INR JgR
o ad(\gr.OR) gad . oaf
ge=n° 9?*2; — (16D Ok=0r—pai+2pNg — +pGr—-, (20
INR ¢9QR
where, for concreteness, we are using the model of(Bg. sg that
Similarly, the wave-function renormalizations are given by
N ) Zxaax ga) 213
& po—=—2ay+ 9
cy(AR,9R) d 1 d
Z,=1+, ___:;_ji (173 # g
v=1
% g 2)\ ag 78t 21b
- = _a JE—— JE—
and Mo +9 g (21b)
“ ¢(\g,OR) In determininga) to lowest order, one must keep in mind
Z,=1+ > V—V (17  that a diagram involving a self-energy on an external propa-
v=1 € gator (so that the diagram is one particle reducjibas its
) divergence shared between the external wave function and
Altering the mass scalg so that the coupling constant characterizing the vertex. This has the
effect of reducing the contribution of the pole parts of the
w'=p(l+p) (p=0) (18 diagrams in Figs. (f), 1(g), and 1) to the appropriate cou-

leads to expressions farg andgg that contain contributions
linear in e which can be eliminated by setting

Nr=MAgr(1—2ep) (199

Jr=0r(1-€p). (19D
If we now write \g and gg in terms of Az and gr and
identify N andgg (the renormalized couplings at scalé)
with terms independent of poles # we find that

pling constant renormalizations by a factoridh each of the
models we are examining.
Using Table I, we find that, for the Euclidean model of

Eqg. (D),

1 (5\% \g® 45
AN_ T _ Y T4
a'l 77_2 96 2 4 g, (223
3
g
9_— _ = _
aj 8.2 (22b)

while, for the supersymmetric model of Eq) and(3),
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3
N2

=482 @3

as can be seen from Table Il. Finally, for the two component

model of Eqs(7) and(13), Table Il gives the result

g

agzlaﬂz(sgz—zez), (249
G

a‘f=ﬁ(362— 29, (24b)

1 (5 5
a} (—)\2+—0'2+ 16)\g2+)\GZ+150G2—36CQ4),

T167%\6° 2
(249
ag=—2 302+£a)\+)\62+15062+24g4—9664
1 16n° 3 '
(249

The results of Eq(24) are consistent with the symmetries of

Eq. (12).
Together, Eq(21) and the functions; in Egs.(22)—(24)

1163
2 2
go 2
2_ = =
g & T n @A or g=0 (29
1+ 52 n ,LL_O

where A is some renormalization invariant scale age g
when u= puy. Consequentially, the theory is asymptotically
free, a property shared by non-Abelian gauge theory in four
dimensions[6], ¢* theory in six dimensiong3] and ¢*
theory in four dimensions when the coupling is of the
“wrong” sign [7]. In the latter two cases, the models are
unacceptable as they are energetically unstable.

Since Eqs(25) are homogeneous ik, g% and In@/A)~*
we one can solve explicitly for the renormalization group
(RG) flow in the \-g plane and thus obtain a full solution to
the scaling behavior of both couplings at lowest order. In
order to do this, we multiply Eq25b) by g and then divide
by Eqg. (253 to obtain the ordinary differential equation
(ODE)

dg 1 g*
AN 2| 5A? 45

- 2_ " A4
28 M50

(29

show that the rate of change of any coupling to lowest ordefrhen, by upon setting®=\z, it is straightforward to solve

is given by twice the correspondiray ; viz. for the Euclid-

ean model
N 15)‘2x2454 -
Pon = w2\ ag M3 (259
g —g°
Ron™ an? (250
for the supersymmetric model
N 5\° o6
and for the two-component model
99 g 2 2
Fon™ 8,239 —2G7), (279
A 3G%-2¢? 27b

N 1(5, 5, ) ) 5
Mﬁ:ﬁ 6)\ +§0' +16Ng°+ NG+ 150G
—360g4), (270
Jdo

1 2 1 2 2 4 4
= 52| 307+ 3OA NG+ 150G + 249"~ 96G* |.

S 3
(270

We are now in a position to discuss the properties of these

couplings.
First of all, by Eq.(25b), we see that

for z(\). Unlessg=0, the general solutions are

~g%(g) TPk

2)\§m_ for some k#0

(303

KZ_

_Z+(g

and

9°=\z., (30b)
wherez.. =(x/77/2—-1)/90. Notice that the generic solu-
tion (309 appears to admit more than one phasex 0,
then \ varies smoothly withg and approaches zero in the
ultraviolet limit. However, ifk<0, then\ can branch outside
of the perturbative regime when the denominator of Eq.
(309 is sufficiently small. Whether this occurs will depend
on the particular choice of renormalization conditions.

For the supersymmetric model, E@6) implies that

NG _ 127%5
I ) “In(Alp)”
Mo

A=

(31
—_—— 2
1 12 2)\0 In

This model is not asymptotically free, in accordance with the
general result of Ref8].

Finally, we consider the renormalization group equations
for the two-component model in EqR7). By Egs.(27a and
(27b) we see that

dG® 3G*-2¢°G®
d92 - 394_29262 .

(32

This is a homogeneous equation; upon set@ig z ¢ it can
be solved easily to give either

2
=G 47
In(A/uw)

(333
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G=0 and g’= t2n” 36
o —0 A TN, T 5)In(A ) (363
=0 d G%= L2n” 360
G 9=0 and G =GN oA’ o
or
, G2%(u) 6Ng+5
= . 360
g g G(u) BN +5 (369

FIG. 4. Leading order flows for the Yukawa couplings in the In addition there are generic solutions similar to the curves
two-component model of Eq7). (The arrows represent the direc- depicted in Fig. 4 in which eitheg or G is asymptotically
tion of increasing energy scale. free depending on whether the fracti®?/g? is larger or

smaller than its critical value in E4360).
[i.e. we have the Yukawa couplings of E§)] or

96G60<|g2—G2|. (33b) IV. DISCUSSION

We have considered a number of Yukawa couplings in

Referring to Fig. 4, the graph of E¢33), we see that the three dimensions as well as the associated radiatively in-
Yukawa sector has three distinct phasesG # g, then both  duced six-point scalar couplings. The lowest order contribu-
couplings increase with scale according to E833 with  tions to the renormalization group functions for the cou-
their equality preserved by the renormalization group flow. Ifplings constants in these models have been computed,
g# G, then Eq.(33b) holds, and the smaller of the two cou- complementing the work of Ref8], where a global SUY)
plings becomes asymptotically free while the larger evolveslavor symmetry is imposed on the interactions.
outside of the perturbative region with increasing momentum QOne curious feature of these results is that the Yukawa
scale, in such a way that the combinatiGt+g* always coupling is asymptotically free in the model defined in Eu-
increases withu. To see this we seg?=r cosd and G  clidean space by Eq1), while the supersymmetric model in
=r sin#in Eq. (32) to obtain Minkowski spacgwith metricg,,,=(++ —)] whose action
is given in Eqs(2) and(3) is not. This apparent discrepancy
is a consequence of the different properties of the Dirac ma-
trices y? in the two models. In Euclidean space the kinetic
term Py in Eq. (1) is Hermitian providedy? is identified

Another dominant feature of Fig. 4 occurs in the infraredwith some unitary equivalent representation of the Pauli spin
region where the Yukawa couplings approach zero along thehatricess? (or — o), in which casep?=p?. In the super-
asymptoteg= G. In fact, we have completed several numeri- symmetric (Minkowski) model of Egs.(2) and (3), the ki-
cal solutions to the full four-parameter renormalization groupnetic term for the spinor field is Hermitian provided is
flow of Egs.(27); all solutions indicate that coupling con- represented, for example, by EGA6), so thatp?= —p?.
figuration G=g, A=50 [which leads to the chirally sym- This point of distinction is sufficient to alter the ultraviolet
metric model of Eqs(9) and(10)] is asymptotically realized pehavior of the models, as the integrals associated with Figs.
in the infrared domain. 1(c)-1(g) each contain spinor propagators. If, for instance,

In the special case when the Yukawa couplig§®ndG*  we were to compute the Feynman integrals associated with
are weak, then, in the ultraviolet limit, the six-point cou- diagrams 1a)—1(l) in the Minkowski space version of model
plings tend to branch outside of the perturbative region par¢1), then it is an easy exercise to show that E@&a and

5dr

r deo

sin 6+ cos 0
sin @ cos 6

3—5sin6 cos@
sin 6—cos 6

. (39

allel to one of the two UV-stable lines=o or o=0. (25b) become
We can slightly alter the model of E¢) so that there are
Ng=1 fermions coupling with strengtly to A>~B?, and N 1 [5\? , 45,
Ng=1 distinct fermions coupling with strength to AB. In Fon~ 72\ a8 +TAGT- 50 (373
this case the renormalization group equations of E2ga
and (27b) are replaced by g g
M=, (37b
G ou 4

M_:iz[(4NG+5)GZ_2Ngg2] (353
ouw 247 clearly demonstrating that in Minkowski space the Yukawa
coupling is not asymptotically free.

The two component model of Eq7) has the peculiar
feature that unlesg=G, one of the couplings becomes
small while the other grows as the renormalization group
Again we find that there are special solutions in which thescale increases. This differs from the analogous situation in
couplings flow in the following straight lines away from the four dimensions where none of the couplings involving sca-

origin as the energy scale increases: lars and spinors is ever asymptotically free. We are pursuing

a9 9
o~ 2am2l (Ng 5)g°~2NgG?].  (35b)
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an analysis of this model along the lines of Rgf] to see whereD?=3D*D_,=—3D_,D®. We also have
how it behaves in Euclidean space. > N

The stability of these models is clearly a problem of in- 9% p\= 8" (A4)

terest; computation of t'he effectlye potential to tW.O.'IOOD O™ These conventions are all consistent with replacing a vec-
der could shed some light on this problem. Stability wouldtor V.2 by

be maintained if the renormalization group improved effec-

tive potential is positive definite. V. A=(v®.AV, (A5)

ACKNOWLEDGMENTS whereV, is the usual vector in 21 dimensions and
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APPENDIX: CONVENTIONS With these conventions

In this app_endix the nptation and conv_entions that we (19,220, (7%).F=— (7). F"
have been using are outlined. In the Euclidean model, we @ ' @ @
work in Euclidean space with= —id, and the Dirac gamma g
matrices are identified with the Pauli spin matrices so that b . .

— a a — a

Y29P=62P+i€2P%)C. This ensures that the kinetic terg (P PONPH () MY\ FP=—20708,F . (AT)

=" . Feynman integrals are computed using
f d"k (k)2 1
(2m)" (K+m?)P " (4m)"?
I'(n/2+a)I'(b—a—n/2)
I'(n/2)T'(b)

(mZ)n/2+a—b

(A1)

In the supersymmetric model, the convention$iif] are
used. This means that an extra factor Of 4ppears in Eq.
(A1), as the metric is given byg,,=(++ —). Indices are

raised and lowered by the use of an antisymmetric tensor

Cep, SO that
l//a: Caﬂwﬁ ’ lr//a: lpBCBa

where C,,=—C*=(? ;). Consequently, ifs,”=(5 9,
thens® ;= — 8,P. A rank-two spinolV .4 is identified with a
vector[viz. Eq. (A5)] providedV ,z=Vg, or, equivalently,
V,%=0. Spinorial derivatives are defined b, ,60°}=
{—ip,.,0"}=6,° and the covariant derivativeD ,=d,
+i6P9,, satisfies

(A2)

(D??=0

D?8(0)]-0=1

f dsxf dZa[DZf(m]g(a):fd3xfd29f<e>[02g<e>]
(A3)

The wave equation foy, is now consistent withy, be-
ing real. The kinetic termy*(i9,”) yr3= () ,* ¥/ is Her-
mitian.

In the two-component modélL3), some useful identities
for the matricesp,, in Eq. (13d) are

45pa®pa®l)[bcaaad=6(Pa)bc(Pa)aadaa
+12pa)valPa)cadaa
+12(pa)bva(Pa)aadea
+12pa)calPa)aadba
+3(pa)aalPa)aadoe
and
45(p,® P ®Dppbaag=9(Pa)bb(Pa)babaa
+9(pu)bb(Pa)aadba
+18(pa)balPa)badba
+9(pa)balPa)aadbh -

No summation is implied in these latter equations; square
parentheses$- - -] indicate symmetrization of all enclosed
indices, while repeated Roman indicandb indicate sym-
metrization over specific indicegvhich are thus rendered
indistinguishablg The coefficient 45 is shown on the left
hand sides to elucidate the 45 distinguishable permutations
of the indices ofp,®p,®1 given that bothp, and1 are
already symmetric.
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