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In the context of simple models, it is shown that demanding finiteness for physical masses with respect to a
longitudinal cutoff can be used to fix the ambiguity in the renormalization of fermions masses in the Hamil-
tonian light-front formulation. Difficulties that arise in applications of finiteness conditions to discrete light-
cone quantization are discuss¢80556-282(198)01302-2

PACS numbds): 11.10.Gh

I. INTRODUCTION 2i0_y_=(m+gd)y ., (1.3

Many advantages of the light-froiit F) formulation for ~ where
bound state problems arise from the manifest boost invari-
ance in the longitudinal directiofil—5|. The price for this
advantage is that other symmetries, such as parity or rota-
tional invariance(for rotations around a transverse axase
no longer manifesf6,7]. From the technical point of view, For the quantization procedure, it is convenient to eliminate
the loss of manifest parity and full rotational invariance im- ¥ from the classical Lagrangian before imposing quantiza-
plies that LF Hamiltonians allow for a richer set of counter-tion conditions, yielding
terms in the renormalization procedure, i.e. in general LF L
E:gr]r:;tnogr:;?s contain more parameters than the underlying £=V7¢1i0+¢+—§¢(5+?\2)¢—l/f1

Of course, even though parity and full rotational invari-
ance are not manifest symmetries in the LF formulation, a gmy gmy g
consistent calculation should still give rise to physical ob- —lﬂ p——+——¢ .
servables which are consistent with these symmetries. In Ref. V2id. V2id- V2id-

[7] this fact has been used to determine one of these addi- (1.5
tional parameters by imposing parity covariance on the vec-

tor form factor of mesons. While such a procedure is practi/n anticipation of the results below, we have already intro-
cal, it is nevertheless desirable to have alternative procedurééiced in Eq.(1.5 the so-called kinetic and vertex mass of
available for determining these “additional” parameters inthe fermion(m;, andm,,). Of course, in the canonical La-
the Hamiltonian. In this paper, finiteness conditions are exgrangian one hasy;,=my=m.

ploited to develop algorithms for determining seemingly in- The rest of the quantization procedure very much re-
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dependent parameters in LF Hamiltonians. sembles the procedure for self-interacting scalar fields. In
As a specific example, let us consider a Yukawa model irparticular, we must be careful about generalized tadpoles,
1+1 dimensions: which might cause additional counterterms in the LF Hamil-

tonian[8]. In the Yukawa model one usual(ye. in a cova-
— 1 riant formulation does not think about tadpoles. However,
L=y¢(id—m=gd)y— 5 (U +\?) . (1) after eliminatingy_ , one is left with a four-point interaction
in the Lagrangian, which does give rise to time-ordered dia-
In order to simplify the analysis further, we will in the fol- 9rams that resemble tadpole diagrams. In fact, the four-point
lowing consider the Yukawa model in a planar approxima-nteraction gives rise to diagrams where a fermion emits a

tion (formally this can easily be achieved by introducing 20Son, which may or may not self-interact, and then re-
“color” degrees of freedom and by assuming an infinite absorb the boson at the same LF-tim8uch interactions

number of “colors.” However, while a planar approximation ¢&nnot be generated by a LF Hamiltonian, i.e. the LF formal-

will always be implicitly used, explicit color degrees of free- iSm generally defines such tadpoles to be zero. An exception

dom will not be shown in order to keep the notation simple.2'€ the so.—called self-lnduged inertias, which arise frpm nor-
The main difference between scalar and Dirac fields in thén@ zorderlng the LF Hamiltonian. These terms, which are

LF formulation is that not all components of the Dirac field ©(9°), are usually kept.

are dynamical: multiplying the Dirac equation

(ib—m—ge)y=0 (1.2 There are also tadpoles, where the fermions get contracted. But

those only give rise to an additional boson mass counterterm, but

by y* yields a constraint equatidine. an “equation of mo- not to the non-covariant fermion mass counterterm that is investi-
tion” without a time derivative gated here.
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FIG. 2. O(g* contributions to the forward Compton amplitude.
(@ All fermion lines on mass shellb) same aga), but the loop
replaced by the self-induced inerti@) One of the two diagrams

FIG. 1. O(g?) contributions to the forward Compton amplitude. with an instantaneous fermion interacti¢édenoted by a slashed

(a) Intermediate fermion line on mass sheb) Instantaneous fer-
mion interaction contributiofidenoted by a slashed line

Il. PERTURBATIVE COUNTER-TERM ANALYSIS

At tree level, i.e. at ordeg®, the kinetic mass and the
vertex mass have to be the same. In order to see this, let us
consider the twa)(g?) Compton scattering diagrams in Fig.

1. For simplicity we consider only forward scattering and we

consider only diagrams which are singular.

The amplitude with an on-shell fermion intermediate stat
diverges as th@g* momentum of its intermediate fermion

line goes to zero

2.1

(the subscripb stands for on-shell This divergence is can-

line) adjacent to the self-energy insertidd) Both fermion propa-
gators adjacent to the loop instantaneous.

2
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(2.9

®rhis well-known result has recently also been obtained using

so-called ladder relationd 1], by investigating divergences
in the non-perturbative coupled Fock space equations for
bound states.

While the self-induced inertia certainly cancels the diver-
gent part of the®(g?) self-energy, it has been questioned
whether it also contains the correct finite part. In fact, in Ref.
[7], parity invariance for physical observables has been used
to determine the finite piece of the kinetic mass counterterm
non-perturbatively.

celed exactly by the amplitude with an instantaneous fermion However, the above analysis shows that the cancellation

line (the subscript stands for “instantaneous”

g 1

of divergences may also be used to determine the finite
piece: if the tree level cancellation between instantaneous
and on-shell amplitudes is spoiled by a wrong choice for the
kinetic mass then higher order diagrams will contain a diver-
gence of integrals over longitudinal momenta as a result of

if and only if my;,=m,=m. Note that this cancellation oc- the incomplete cancellation. The question is—and this will

curs if and only if the mass in the numeratine “vertex
mass’) and the mass in the denominat@he “kinetic
mass’) are the same in Eq2.1). This is also the only choice

be the subject of the rest of this paper—whether such “fi-
niteness conditions” also arise at higher orders in the cou-
pling constants and whether they can be used to determine

of parameters that is consistent with parity invariance forthe finite part of the kinetic mass counterterm.

Compton scattering aP(g?).

For this purpose, let us consider the one-ld@p(g*)]

Choosing the vertex mass equal to the kinetic mass is alseorrections to the Compton amplitude. We will first assume

crucial for a cancellation between tlienomentum depen-
deny self-induced inertidkinetic masy counterterni 10]

2 +
g pJr dk
R

and the divergent piece of th®(g?) self-energy

(2.3

that my=m;,=m and add corrections to;, later pertur-
batively. Again we restrict ourselves to planar diagrams.
Since we are interested only in corrections to fhie—0
singular contributions, it is also sufficient to consider only
loop corrections to the fermion line which propagates be-
tween the two vertices. In LF-perturbation theory, we thus
have to consider the four diagrams in Fig. 2.
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Figures 2a) and(b) together are finitéfor finite p*) and
contribute

dmen [[memy
4m(q"—p")D7 Jo (p"—=k")Dy Kk
(2.5
where
om? A2
SO T
m? A2
Do=p — i+ kT (2.6

(with p~=q~ —(A?/q" —p™)) are the energy denominators

MATTHIAS BURKARDT

FIG. 3. O(g* contributions to the fermion self-energy, which is
sensitive to the smalp™ behavior of theO(g?) fermion self-
energy.

for the intermediate states. The diagrams with one or two

instantaneous lines are finite without counterteffos finite
p*) and yield, respectively,

5 4 m m m m
_ g q—++p—+ fp*kor p—++k—+
°"4m(qT—pT)p'D; Jo (pT—k¥)D,
g* : 1

+

an(p k0D, 7

f"dk
0

All three amplitudes diverge like i/ asp*—0. One finds

T; :(q+_p+)p+2

4

i p 9 1I A2 Jld 24X
plTop °° 4mq* m2 w2 o P A1) + A2
4o 2+2x
lim p*T -=g—f ol
oo AmaT Jo m*(1—x)+X"x
4 1
lim +T--=——f dX—7————. (2.8
p+_)0p T 4mgT Jo T T m?(1—x)+ A%

The divergence at smali* doesnot cancel when one sums
up the three term&In fact, what one finds is

4 2
lim p+(Too+Toi+Tii) =

p+~>0

Surprisingly, the resolution to this problem doest re-
quire one to add another infinite counterterm. In Réf. a
finite kinetic mass counterterrtin addition to the infinite
self-induced inertigswas introduced and it was found to be
necessary in order to obtain parity invariant form-factors.
The effect of aO(g?) kinetic mass counterterm is an addi-
tional O(g* term in the forward Compton amplitudeb-
tained by expanding Eq2.1)]:

olen]
q"  pt) Amg,
Tam2= (2.10
Am (q*—p*)Df p+
It can easily be verified that the choice
2 2
g m
Amﬁmzﬂln Z (2.11
leads to
lim p+(T00+T0i+Tii+TAm2):0 (212)

pt—o0

and hence th&@(g*) self-energy of a fermion is finite with
this (and only thig particular choice for the kinetic mass
counterterm. Note that exactly the same values fox2tg?)
kinetic mass counterterm also lead to parity invariant scatter-
ing amplitudes.

Note that while the calculations presented above had been
done for a scalar Yukawa theory, very similar results hold

Since there are no diagrams other than the ones listed in Figor models with similar interactions, such as pseudoscalar

2 which are singular ap(g*), this implies that there is a
problem: TheO(g*) self-energy of a fermior(Fig. 3 is
obtained by integrating thé(g*) forward Compton ampli-
tude overp™ and one obtains a logarithmic divergence. This
divergence should not be there since the-@)-dimensional

Yukawa model is super-renormalizable. Already in perturba-

tion theory, the Yukawa model on the LF with only the self-
induced inertias added as counterterms does not lead to fini
answers.

2An exception is the “supersymmetric” casg?= \>.

Yukawa theory or fermions coupled to thecomponent of a
vector field.

Ill. A NON-PERTURBATIVE EXAMPLE

For a non-perturbative example, let us consider the model
introduced in Ref[9].3 Of course, the perturbative results
feom Sec. Il prove that for non-perturbative finiteness it will
be necessary to introduce independent vertex and kinetic

3For more details the reader is referred to this paper.
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masses, but it is not obvious whether this will also be suffi-
cient. Furthermore, it is not immediately clear how the argu-
ments generalize to-81 dimensions. The model from Ref.
[10] not only gives an example that the vertex/kinetic mass
renormalization is also sufficient but also gives @«13di-
mensional example at the same time. This proves that the
results from Sec. Il, which had been kept simple in order to
be easily comprehensible, are rather general and apply to
much more general conditions. Even though the model has

Ak‘7 2 2
W—l p+(M?KT)

f+:

k*p_(M2,k?)

TSN

M2 k2
_ pol L) 37

already been solved in Ref9], what is new here is the

0— — D(p+_k+)

demonstration that demanding finiteness yields the same sgng

lution as the one obtained in R¢@] by comparison with the
Schwinger-Dyson equations.

The model describes fermions int3 space-time dimen-
sions coupled to theé components of a massive vector field
in planar approximation:

. g -
L=yl ib—m—— 1y A
ﬁ e 7

With “ 1 component” we mean here the andy compo-

1 A A 272
Y= 5 (A, DA +)\?A%).
(3.1)

MZ
_T_

N2+ (p, —k,)?
2(p*—k")

D=p

_ _ )\2+(5L_EL)2
K =p ———F—7—

2(pT—k")

(3.8

Because of the largBl: limit, such a truncation of the LF
Schwinger-Dyson equations is exact. The non-perturbative
solution is then obtained by solving Eq8.4) and (3.6) it-
eratively until self-consistency is achieved.

nents. Furthermore we will impose a transverse momentum |n order to be able to investigate whether the self-induced

cutoff on the fields and we will consider the model at fixed
momentum cutoff. With a fixedc momentum cutoff in

inertias cancel the infinite part of the self-energy one needs
to know the smalp™ behavior ofG and thus the smaj™

place, the model becomes super-renormalizable as far as logehavior of3..

gitudinal divergences are concerned.

In the largeN¢ limit, the model described by the above
Lagrangian(3.1) can be solved in the rainbow approxima-
tion. The non-perturbative Green’s function for a fermion in
this model can be written in the form

G(p“)=7"p G.(2p"p ,p?)+y P G_(2p*p,p?)

+k G (2p7p~,p2) +Go(2p7p,p0), (32
where each of th&,; has a spectral representation
LF 2 2
) o 22N * 2 pi (M !pL)
Gi(2p7p .pi)—fodM I p M2+ (3.3

Note that tr(y~G) cannot contain a term proportional to
(1/p") fdM?p(M2,p?)/(2p"p~ —M?+ie) because this
would lead to logarithmic smalp* divergences, which are

not canceled by the self-induced inertias, when the Green’
function is used to calculate the self-energy self-consistently S,

(see below.

As an example, let us suppose tRatcy*/p™, in which
case

c v

m’+2cp*’

1 p'—0

:p—m—E

G (3.9

which diverges forp*—0, while the propagator foc=0
remains finite in this limit. The self induced inertias cancel
the infinite part of the self-energy in the case where the fer-
mion propagator inside the loop is a free propagator. If one
desires that the same cancellation occurs with the full propa-
gator, it is necessary that the self-energy which modifies the
propagator remains finite gs" — 0.

We shall now investigate the consequences of this fact for
the model described by E3.1). In particular, we shall fo-
cus on they® component off, which is the most singular
term asp ™ — 0. Including only the self-induced inertia coun-
terterm, one find$9]

S

From the fermion Green’'s function, one computes the

self-energy self-consistently via

G l=p-m-3, (3.9

where

S=y"3, 4ty 2_+3,. (3.5

For the LF components of the self-energy one finds

ey |
0 0

dk* d2k, ;
k* 1673 1

(3.6

where

+dkt [ d%k ~
20 | P L FT - 2
=g°p fo o f 8W36+(2k k™ ,kD)
2 o de . 2
- g+f szf =0+ (MZK2)In ——.
2p" Jo ™ A2+K?
(3.10

The first term on the right-hand-sidRHS) of Eq. (3.10 is
finite asp™—0, but the second term diverges in this limit
like constp™.* When one inserts Eq3.10 into Eq. (3.4),

“This second term is the non-perturbative analog of therfi?
term(2.11), which was necessary to render the two-loop self-energy
finite.
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one finds thaiG itself diverges ap™ —0 [as illustrated by derived by using perturbative relations between Fock space
Eqg. (3.9]. This in turn leads to a divergence in E&.10 components in non-perturbative bound state problems.
when one tries to calculat8 in a self-consistent procedure.

The only way to avoid this dilemma is to add a kinetic mass IV. FINITENESS CONDITIONS AND LADDER
counterterm RELATIONS
, - d2k, ) 2 In bound state problems it is often possible to relate Fock
AmkinZQZJ C“V'Zf 5P+ (M?.K?)In —_— space components which are highly off energy shell to lower
0 8w A+KE Fock components using perturbation theory. This fact has

(3.1)  peen used within a dimensionally reduced model for QCD in
Ref.[11] to relate the end-point behavior of Fock space am-
litudes with n+1 quanta to Fock space amplitudes with n

guanta, using tree level ladder relations, yielding

which exactly cancels the second term in E210. It turns

out that the kinetic mass counterterm which we have thu
obtained by demanding finiteness of the longitudinal mo-
mentum integrals agrees exactly with the one obtained in

Ref. [9] by comparison with the Schwinger-Dyson solution . . 1(x;,X,, . .. Xp—1,0) % ———— (X1, X2, . . . Xn_1)-
for the same model. My/Xp_1
In summary, what we have found is that the two-loop (4.7)

result generalizes directly to all orders in this non- ) o
perturbative example. In fact, as long as one works with dV0te that Eq(4.1) shows that wave functions in higher Fock
fixed L momentum cutoff, one can show that the result gen£0mponents do not vanish near the end-pgiet for vanish-
eralizes to an entire class of models with Yukasealar and N fermion momenta which leads to divergent matrix ele-
pseudo-scalaiinteractions as well as models with couplings Ments of the kinetic energy as well as the interaction. The
to transverse components of vector fields. However, | wagivergence that arises when only the fermion momentum
not able to show that the result generalizes to all orders t§°€S 10 zero is canceled exactly by the self-induced inertias
models with couplings to longitudinal components of a vec-LEd- (2.3]if and only if the vertex mase, and the kinetic

tor field (i.e. gauge theorig¢s Semi-perturbative consider- MassMyi, are the same.

ations suggest that the results also apply to dimensionall%{ In Ref.[11] it is thus claimed that the bound state equa-
reduced models for QCPL1] as well asL lattice QCD, but  tion (with my,=my;,) is finite. This claim is false: the Hamil-

| could not find a general progbeyond perturbative calcu- tonian studied in Ref.11] is in general not finite. The point
lations. is that both Eq(4.1) as well as the cancellation conditions

When discussing the issue of finiteness, it is very impor€€d to be modified when two momenta go to zero simulta-
tant to discuss the cutoff scheme dependence. So far, waously. The best way to see that without going into too
have purposely avoided specifying a cutoff procedure—mUCh detgll is tq consider the matrix element Whlch connects
which one always has to do when dealing with divergent ~ States Whlch_dlffer by one boson. Such a matrix elem_ent
potentially divergentquantities. The reason we did not have involves the inverse of the momenta of both the incoming
to specify the cutoff procedure is that the one-loop diver-2nd outgoing fermion. If only the outgoing momentum goes
gence is canceled locallithe singularities of the integrand 0 zero, then the term with the inverse of the momentum of
cance) by the self-induced inertia and higher order diver-the incoming fermion can obviously be neglected. However,
gences are also canceled locally by the finite kinetic mas81iS is not the case if both incoming and outgoing momentum
counter terms. However, we still assumed implicitly that thed© to zero simultaneousfySince the vanishing of both in-
result for the inner loop wa&part from trivial kinematical ©0ming and outgoing fermion momenta also implies that the
factory momentum independent—otherwise it would notMomentum of the emitted boson also vanishes, one can
have been sufficient to merely add a numbet a function therefore conclude that the end-point behavior gets modified
as a counterterm. if the momenta of both the fermion and a boson vanish si-

It is easily possible to introduce cutoffs which have this Multaneously. _ . B
property, for example a momentum cutoff combined with Furthermore, the. cancellation conditions also get modified
a boost invariant longitudinal momentum cutoff, such as arf¥hen proper care is taken for the case where several mo-
invariant mass difference cutoff at each 3-point vefaxd a  Menta vanish simultaneously. In particular, in order for the
cutoff for the instantaneous fermion exchange diagramyamlltonlan to give finite results one does in general need to
which is consistent with cutoffs on iterated 3-point vertices KEEPMy# Myin - . _
or even more simply just a cutoff on momentum fractions at 1he two-loop example considered above can be consid-

each vertex. ered a formal proofby counterexamplefor these intuitively
One of the most popular cutoffs used in non-perturbative®bvious facts. _ _ _ -
LF-calculations is discrete light-core quantizatiDLCQ) In Ref. [11], numerical evidence is offered for the finite-

[10], where all momenta are discretized and thus a cutoff ofess claim made in the same paper. Below, in Sec. V, it will
the longitudinal momenta is provided by the spacing of the

grid in momentum space. With such a cutoff procedure the

self energy of a fermion does depend on its momentien SNo distinction between vertex and kinetic masses has been made
yond the trivial 1p" dependence This point will be elabo- in Ref.[11].

rated in Sec. V. However, before we discuss numerical im- ®After this paper was submitted, improved ladder relations were
plications in DLCQ, let us first consider finiteness relationsintroduced, which seem to resolve this problgia].
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be demonstrated that thgogarithmig divergence arising a) b)

from the two-loop diagram shows up only for very large
values of the DLCQ paramet&tr. This is probably the main I
reason why the divergence did not show up in the numerice Am’y;,=0.8

results presented in Refl1]. 1 Amly=1n2 y
s

-0.5
V. FINITENESS CONDITIONS IN DLCQ

AM?

>
EN
=N
L
=
A

2 T

It is very easy to see that discretization in momentum \
space leads to a momentum dependent self-mass. Compat 2 Am? 203
to a continuum calculation, integrals are approximated by ~ ' -1.0
sums and the number of points over which the summation i w
performed is determined by the total momentum. In this sec 4
tion, we will investigate the implications of this obvious fact
for finiteness conditions. 15

In order to simplify the discussion, let us consider a cutoff -5
which is very similar to the DLCQ cutoff, namely a sharp
momentum cutoffin the continuunmon all momenta that are
smaller than an arbitrary constant

The point is that since the cutoff acts both on the bosor
and on the fermion line, self-energy corrections to dhg*) 7 . . -
Compton amplitude are absent fof <2¢ and they are sup- 51002 51002 s 51002 51002 s
pressed fop™ near that value. On the other hand(ro- q q
mentum independenkinetic mass counterterm would con-
tribute all the way down to the cutoff, namefy" =¢. For ) ,
the self-energy this implies that there is an incomplete can- FIG. 4. (& Two loop self energy of a fermion calculated using
cellation between terms that would cancel if the cutoff on the?-CQ (With anti-periodic boundary conditions for the fermjars a
inner loop would be sent to zetweforethe outer loop inte- function of _the morr_]ent_um of the fermion. T?e different curves
gration is performed. represent dlﬁerent kinetic mass cc_nur_wtertermkm. _(b) S_ame as

- . . (a) but a smaller interval of thg-axis is shown to simplify deter-

In order to illustrate what consequences this might havem. : f the kineti tort ; hich th It

let us consider a simple mathematical model which has th Ination of the kinetic mass counterterm for which the result is

; o . Stable for large momenta. The covariant result is indicated as a
”ght qua.“tat.lve fe.atures' let us assume that _the_sum of aMashed line. Note that, whildm2, =In 2 leads to a convergent
plitudes in Fig. 2 in the presence of a cutoff is given by "

result, it does not converge towards the covariant answer.

6 Am’,=0

c
P T=—0(p"—2¢). (5.2
q two loop self-energy both as a function of the momentim
(in discrete unitsand the kinetic mass counterterm. The cou-
pling constant is set tg=\4m, and for the masses we
choosen?=1 andm?=2. Figure 4 shows #q"* times the
self-energy(including the kinetic mass countertermf the
b o A2 fermion as a function ofi* for different values of the pa-
[cO(p™ = 26) = AMign]- (52 rameterAmZ,,. There are several things one can learn from
this calculation.
Despite the fact that the integral over the self-energy piece First of all, Fig. 4 clearly shows that a kinetic mass coun-
starts atp™ =2¢, while the integral over the mass counter- tertermAmZ, . (in addition to the self-induced inenjizs nec-
term contribution starts ap* =g, the unique choice for essary in order to obtain finite results: the two-loop result for
AmZ,, which yields a finite two loop self-energy as-0 is ~ AM? obviously diverges when one seisnZ;,=
AmZ =c. And the result of the integral in this case is Secondly, the procedure is not very sensitive since the
—c In 2 (independent o). Had we taken the limit—0 in divergence is only logarithmic and the coefficient of the di-
the integrand, then the integrand would identically vanishvergent piece is not very large. In order to obtain a precise
and the integral would be zero. In other words, the finitenesgpicture about which value for the kinetic mass parameter
condition would have given us the correct value for the ki-leads to a convergent piece one has to go to values of
netic mass counterterm @{(g?), but the wrong result for the q*>1000, which is forbiddingly large for a non-perturbative
physical mass ab(g?). calculation, but a reasonable estimate can already be ob-
In order to demonstrate that this problem does indeed odained at lower values.
cur in DLCQ, let us consider a concrete problem, namely the Thirdly, the finiteness condition does give the correct
O(g%) self-massAM2=q*s¥q~ resulting from the rain- value for the kinetic mass counterterm. Only &nZ,,~In 2
bow diagram(Fig. 3). Even though we know the correct (for m?=2 and\?=1) one finds no noticeablg® depen-
kinetic mass counterterm for this case from E2j11), letus  dence of the self-energy for largg . Even small deviations
pretend here that we do not know it and let us consider théead to a logy* divergence proportional to that deviation.

Including a kinetic mass counterterfam?, ., the two loop
self-energy is then given by

“ d
AM)qfoch pp+
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Finally, and this is very important, despite the fact that theo(g#) kinetic mass counterterm to correct for the artifacts
finiteness condition yields the correct value @m;,, the introduced by the DLCQ cutoff leads to a consistent proce-
final result of the®(g*) differs from the covariant result: For dure at®(g®) or higher.

Am,~In 2 one finds ling+ .. AM?~—1.204, while the
correct(covarianj result for the two loop diagrar(fFig. 3 is
given byAM?~ —2.112 for the same masses and couplings. VI. SUMMARY

As we discussed above, this is because in DLCQ the momen- h . . h . hich liah
tum of a line that enters a sub-loop is not necessarily high W& have investigated the conditions under which light-

above the cutoff inside that sub-loop. Therefore, the sensitivifont Hamiltonians with fermions interacting via Yukawa

ity to the cutoff never goes away—not even when the overalfyPe interactions(includiqg interactions to the transyerse
momentum is sent to infinity. Another way to look at this COmPonent of a vector figldead to convergento IOOE Inte-
result is to conclude that in DLCQ one cannot introduce jus@rals at small values of the LF momentypr =p°+p°. In

one kinetic mass counterterm, but instead one needs to intrd?€ continuum, it was found that it is both necessary and
duce a kinetic mass which depends on the momentum. FopUfficient to add a kinetic mass countertefim addition to
mally, this should not come as a surprise, since the booép,e sglf-lnduced |ne.rt|asto the Hamiltonian in order to ob-
invariance(which is normally manifest in LF quantizatipis  t@in finite results with respect to the small" cutoff for
broken by the DLCQ regulator. However, in a number ofhigher order dlagrams. Counter_term fun_ctlo_ns were not nec-
examples, such astil dimensional QED/QCD and theories &SSarY: The additional parametgee. the kinetic mass coun-

with only self-interacting scalar fields, momentum dependenierterm is determined by demanding finiteness for e

counterterms are not necessary and DLCQ workers have bgltegrals. Imposing such a finiteness condition makes sense,
'pce the smalp™® divergence is an artifact of the LF ap-

come accustomed to assume momentum independence of al

counterterms as a starting point. Unfortunatelv. the Yukaw roach. It turns out that the kinetic mass counterterm thus
9 point. . Y Obtained is identical to the one determined by imposing par-
model that we have considered here is a clear counterexa

ple to this simplified picture f'[}g, invariance for physical observables.

. . Unfortunately, there are several obstacles before one can

Of course, for a perturbative diagram one can always caly |y this “finiteness condition” in practical calculations—
culate the proper momentum dependence, but this seems ifgaticylarly in DLCQ. One obstacle is that the divergences
possible to do analytically in a non-perturbative context. Anihat one needs to look for are only logarithmic, which makes
alternative procedure is the one employed in Rgfs.where  them hard to detect numerically. Furthermore, the situation
a momentum dependent kinetic mass is introduced such thgt DLCQ is not quite as simple as it is in the continuum.
the physical mass of the lightest states is independent of thBl.CQ breaks manifest boost invariance, and we have in fact
momentum. The physical mass then replaces the bare kinetghown that a simple ansatz, where the kinetic mass counter-
mass as a renormalization parameter. In REf$.the new term isnot a function of the momentum, is inconsistent in
parameters were determined by imposing parity invarianc®LCQ already in perturbation theory in a super-
on physical amplitudes or by comparison with a covarianrenormalizable model. However, it is conceivable that a
calculation. However, it is not obvious how to translate theDLCQ calculation with additional cutoffe&such that momen-
finiteness condition for kinetic masses into a condition fortum independence of the results is achigweh be based on
the physical masses. Hamiltonians with momentum independent mass counter-

The fact that a simpléi.e. momentum independénki- terms. These counterterms can then! at least in princi.ple, _be
netic mass counterterm yields incorrect results also mearfetermined using the finiteness condition that was derived in
that the ansatz for the LF Hamiltonian in theories with fer-thiS paper. . _ o
mions and Yukawa type interactiorighis includes QED/ More important from the practical point of view is the

QCD) used by DLCQ workergsee for example Ref$10 finding that there exist examples where finiteness without
11)) is insufficient ' counterterm functions can be achieved. However, in order to

There are several obvious patches that one can apply 1%btaln such a result it seemed necessary to keep longitudinal

the DLCQ calculations, but they all seem to have one featurgrr]:ijletzr?glfi\rgerstﬁeuljct)ﬁff?tjdeiﬁzrlact:iri?r?utuoni(?i?n%ttb;tr?ﬁezgfnd le
in common: one needs to introduce another cutoff—beyon%r such ar% ulariza?ion isgiven b thLeIattice.formuIatiorFl)
DLCQ—which has the feature that it gives momentum inde-, 9 9 y

pendent results. Typical examples are a Pauli-Villars regulaf-Or QCD[14], where the transverse spatial coordinate is dis-

tor [6,13] or a cutoff on the invariant energy transfer. Of cretized 'and the Iongitudinak() direcFipn is kept continu-
course, even with a cutoff that gives momentum independencflis' Th'.s form.u_latlon. has the add|t|onall ao!vantage that
results, one still needs to keep the kinetic mass as an “inde? —0 singularities arising from the. longitudinal compo-
pendent parameter” which then needs to be determined nents of the gauge f|elds cancel manifestly and therefore do
using for example parity or finiteness conditions, but at leasf'o! lead to further divergences.

one does not have to introduce a kinetic mass which is a

function of the momentum. It is not clear whether adding an
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