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Finiteness conditions for light-front Hamiltonians

Matthias Burkardt
Department of Physics, New Mexico State University, Las Cruces, New Mexico 88003-0001

~Received 28 April 1997; published 26 November 1997!

In the context of simple models, it is shown that demanding finiteness for physical masses with respect to a
longitudinal cutoff can be used to fix the ambiguity in the renormalization of fermions masses in the Hamil-
tonian light-front formulation. Difficulties that arise in applications of finiteness conditions to discrete light-
cone quantization are discussed.@S0556-2821~98!01302-2#

PACS number~s!: 11.10.Gh
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I. INTRODUCTION

Many advantages of the light-front~LF! formulation for
bound state problems arise from the manifest boost inv
ance in the longitudinal direction@1–5#. The price for this
advantage is that other symmetries, such as parity or r
tional invariance~for rotations around a transverse axis! are
no longer manifest@6,7#. From the technical point of view
the loss of manifest parity and full rotational invariance im
plies that LF Hamiltonians allow for a richer set of counte
terms in the renormalization procedure, i.e. in general
Hamiltonians contain more parameters than the underly
Lagrangian.

Of course, even though parity and full rotational inva
ance are not manifest symmetries in the LF formulation
consistent calculation should still give rise to physical o
servables which are consistent with these symmetries. In
@7# this fact has been used to determine one of these a
tional parameters by imposing parity covariance on the v
tor form factor of mesons. While such a procedure is pra
cal, it is nevertheless desirable to have alternative proced
available for determining these ‘‘additional’’ parameters
the Hamiltonian. In this paper, finiteness conditions are
ploited to develop algorithms for determining seemingly
dependent parameters in LF Hamiltonians.

As a specific example, let us consider a Yukawa mode
111 dimensions:

L5 c̄ ~ i ]”2m2gf!c2
1

2
f~h1l2!f. ~1.1!

In order to simplify the analysis further, we will in the fo
lowing consider the Yukawa model in a planar approxim
tion ~formally this can easily be achieved by introducin
‘‘color’’ degrees of freedom! and by assuming an infinite
number of ‘‘colors.’’ However, while a planar approximatio
will always be implicitly used, explicit color degrees of fre
dom will not be shown in order to keep the notation simp

The main difference between scalar and Dirac fields in
LF formulation is that not all components of the Dirac fie
are dynamical: multiplying the Dirac equation

~ i ]”2m2gf!c50 ~1.2!

by g1 yields a constraint equation~i.e. an ‘‘equation of mo-
tion’’ without a time derivative!
570556-2821/97/57~2!/1136~8!/$15.00
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2i ]2c25~m1gf!g1c1 , ~1.3!

where

c6[
1

2
g7g6c. ~1.4!

For the quantization procedure, it is convenient to elimin
c2 from the classical Lagrangian before imposing quanti
tion conditions, yielding

L5&c1
† i ]1c12

1

2
f~h1l2!f2c1

†
mkin

2

& i ]2

c1

2c1
† S f

gmV

& i ]2

1
gmV

& i ]2

f D c12c1
† f

g2

& i ]2

fc1 .

~1.5!

In anticipation of the results below, we have already int
duced in Eq.~1.5! the so-called kinetic and vertex mass
the fermion~mkin andmV!. Of course, in the canonical La
grangian one hasmkin5mV5m.

The rest of the quantization procedure very much
sembles the procedure for self-interacting scalar fields
particular, we must be careful about generalized tadpo
which might cause additional counterterms in the LF Ham
tonian@8#. In the Yukawa model one usually~i.e. in a cova-
riant formulation! does not think about tadpoles. Howeve
after eliminatingc2 , one is left with a four-point interaction
in the Lagrangian, which does give rise to time-ordered d
grams that resemble tadpole diagrams. In fact, the four-p
interaction gives rise to diagrams where a fermion emit
boson, which may or may not self-interact, and then
absorb the boson at the same LF-time.1 Such interactions
cannot be generated by a LF Hamiltonian, i.e. the LF form
ism generally defines such tadpoles to be zero. An excep
are the so-called self-induced inertias, which arise from n
mal ordering the LF Hamiltonian. These terms, which a
O(g2), are usually kept.

1There are also tadpoles, where the fermions get contracted.
those only give rise to an additional boson mass counterterm,
not to the non-covariant fermion mass counterterm that is inve
gated here.
1136 © 1997 The American Physical Society
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57 1137FINITENESS CONDITIONS FOR LIGHT-FRONT . . .
II. PERTURBATIVE COUNTER-TERM ANALYSIS

At tree level, i.e. at orderg0, the kinetic mass and th
vertex mass have to be the same. In order to see this, le
consider the twoO(g2) Compton scattering diagrams in Fig
1. For simplicity we consider only forward scattering and w
consider only diagrams which are singular.

The amplitude with an on-shell fermion intermediate st
diverges as thep1 momentum of its intermediate fermio
line goes to zero

To5
g2

q12p1

S mV

q1 1
mV

p1 D 2

q22
mkin

2

p1 2
l2

q1

~2.1!

~the subscripto stands for on-shell!. This divergence is can
celed exactly by the amplitude with an instantaneous ferm
line ~the subscripti stands for ‘‘instantaneous’’!

Ti5
g2

q12p1

1

p1 ~2.2!

if and only if mkin5mV5m. Note that this cancellation oc
curs if and only if the mass in the numerator~the ‘‘vertex
mass’’! and the mass in the denominator~the ‘‘kinetic
mass’’! are the same in Eq.~2.1!. This is also the only choice
of parameters that is consistent with parity invariance
Compton scattering atO(g2).

Choosing the vertex mass equal to the kinetic mass is
crucial for a cancellation between the~momentum depen
dent! self-induced inertia~kinetic mass! counterterm@10#

Dmkin
2 5

g2

4p E
0

p1 dk1

k1 ~2.3!

and the divergent piece of theO(g2) self-energy

FIG. 1.O(g2) contributions to the forward Compton amplitud
~a! Intermediate fermion line on mass shell.~b! Instantaneous fer-
mion interaction contribution~denoted by a slashed line!.
us

e

n

r

so

D~2!p25
g2

4p E
0

p1 dk1

p12k1

S mV

p1 1
mV

k1 D 2

p22
mkin

2

k1 2
l2

p12k1

.

~2.4!

This well-known result has recently also been obtained us
so-called ladder relations@11#, by investigating divergence
in the non-perturbative coupled Fock space equations
bound states.

While the self-induced inertia certainly cancels the div
gent part of theO(g2) self-energy, it has been questione
whether it also contains the correct finite part. In fact, in R
@7#, parity invariance for physical observables has been u
to determine the finite piece of the kinetic mass counterte
non-perturbatively.

However, the above analysis shows that the cancella
of divergences may also be used to determine the fi
piece: if the tree level cancellation between instantane
and on-shell amplitudes is spoiled by a wrong choice for
kinetic mass then higher order diagrams will contain a div
gence of integrals over longitudinal momenta as a resul
the incomplete cancellation. The question is—and this w
be the subject of the rest of this paper—whether such
niteness conditions’’ also arise at higher orders in the c
pling constants and whether they can be used to determ
the finite part of the kinetic mass counterterm.

For this purpose, let us consider the one-loop@O(g4)#
corrections to the Compton amplitude. We will first assum
that mV5mkin5m and add corrections tomkin later pertur-
batively. Again we restrict ourselves to planar diagram
Since we are interested only in corrections to thep1→0
singular contributions, it is also sufficient to consider on
loop corrections to the fermion line which propagates b
tween the two vertices. In LF-perturbation theory, we th
have to consider the four diagrams in Fig. 2.

FIG. 2.O(g4) contributions to the forward Compton amplitud
~a! All fermion lines on mass shell.~b! same as~a!, but the loop
replaced by the self-induced inertia.~c! One of the two diagrams
with an instantaneous fermion interaction~denoted by a slashed
line! adjacent to the self-energy insertion.~d! Both fermion propa-
gators adjacent to the loop instantaneous.
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1138 57MATTHIAS BURKARDT
Figures 2~a! and~b! together are finite~for finite p1! and
contribute

Too5

g4S m

q1 1
m

p1D 2

4p~q12p1!D1
2 E

0

p1

dk1F S m

p1 1
m

k1D 2

~p12k1!D2
1

1

k1
G ,

~2.5!

where

D15q22
m2

p1 2
l2

q12p1

D25p22
m2

k1 2
l2

p12k1 ~2.6!

„with p2[q22( l2/q12p1)… are the energy denominato
for the intermediate states. The diagrams with one or
instantaneous lines are finite without counterterms~for finite
p1! and yield, respectively,

Toi5

2g4S m

q1 1
m

p1D
4p~q12p1!p1D1

E
0

p1

dk1

S m

p1 1
m

k1D
~p12k1!D2

Tii 5
g4

~q12p1!p12 E
0

p1

dk1
1

4p~p12k1!D2
. ~2.7!

All three amplitudes diverge like 1/p1 asp1→0. One finds

lim
p1→0

p1Too5
g4

4pq1 F 1

m2 ln
l2

m2 2E
0

1

dx
21x

m2~12x!1l2xG
lim

p1→0

p1Toi5
g4

4pq1 E
0

1

dx
212x

m2~12x!1l2x

lim
p1→0

p1Tii 52
g4

4pq1 E
0

1

dx
x

m2~12x!1l2x
. ~2.8!

The divergence at smallp1 doesnot cancel when one sum
up the three terms.2 In fact, what one finds is

lim
p1→0

p1~Too1Toi1Tii !5
g4

4pm2q1 ln
l2

m2 . ~2.9!

Since there are no diagrams other than the ones listed in
2 which are singular atO(g4), this implies that there is a
problem: TheO(g4) self-energy of a fermion~Fig. 3! is
obtained by integrating theO(g4) forward Compton ampli-
tude overp1 and one obtains a logarithmic divergence. Th
divergence should not be there since the (111)-dimensional
Yukawa model is super-renormalizable. Already in pertur
tion theory, the Yukawa model on the LF with only the se
induced inertias added as counterterms does not lead to
answers.

2An exception is the ‘‘supersymmetric’’ casem25l2.
o

ig.

-

ite

Surprisingly, the resolution to this problem doesnot re-
quire one to add another infinite counterterm. In Ref.@7# a
finite kinetic mass counterterm~in addition to the infinite
self-induced inertias! was introduced and it was found to b
necessary in order to obtain parity invariant form-facto
The effect of aO(g2) kinetic mass counterterm is an add
tional O(g4) term in the forward Compton amplitude@ob-
tained by expanding Eq.~2.1!#:

TDm25

g2S m

q1 1
m

p1D 2

~q12p1!D1
2

Dmkin
2

p1 . ~2.10!

It can easily be verified that the choice

Dmkin
2 5

g2

4p
ln

m2

l2 ~2.11!

leads to

lim
p1→0

p1~Too1Toi1Tii 1TDm2!50 ~2.12!

and hence theO(g4) self-energy of a fermion is finite with
this ~and only this! particular choice for the kinetic mas
counterterm. Note that exactly the same values for theO(g2)
kinetic mass counterterm also lead to parity invariant scat
ing amplitudes.

Note that while the calculations presented above had b
done for a scalar Yukawa theory, very similar results ho
for models with similar interactions, such as pseudosca
Yukawa theory or fermions coupled to the' component of a
vector field.

III. A NON-PERTURBATIVE EXAMPLE

For a non-perturbative example, let us consider the mo
introduced in Ref.@9#.3 Of course, the perturbative resul
from Sec. II prove that for non-perturbative finiteness it w
be necessary to introduce independent vertex and kin

3For more details the reader is referred to this paper.

FIG. 3.O(g4) contributions to the fermion self-energy, which
sensitive to the smallp1 behavior of theO(g2) fermion self-
energy.
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57 1139FINITENESS CONDITIONS FOR LIGHT-FRONT . . .
masses, but it is not obvious whether this will also be su
cient. Furthermore, it is not immediately clear how the arg
ments generalize to 311 dimensions. The model from Re
@10# not only gives an example that the vertex/kinetic ma
renormalization is also sufficient but also gives a 311 di-
mensional example at the same time. This proves that
results from Sec. II, which had been kept simple in order
be easily comprehensible, are rather general and appl
much more general conditions. Even though the model
already been solved in Ref.@9#, what is new here is the
demonstration that demanding finiteness yields the same
lution as the one obtained in Ref.@9# by comparison with the
Schwinger-Dyson equations.

The model describes fermions in 311 space-time dimen
sions coupled to the' components of a massive vector fie
in planar approximation:

L5 c̄ S i ]”2m2
g

ANC

gW'AW'D c2
1

2
tr~AW'hAW'1l2AW'

2 !.

~3.1!

With ‘‘' component’’ we mean here thex and y compo-
nents. Furthermore we will impose a transverse momen
cutoff on the fields and we will consider the model at fixed'
momentum cutoff. With a fixed' momentum cutoff in
place, the model becomes super-renormalizable as far as
gitudinal divergences are concerned.

In the largeNC limit, the model described by the abov
Lagrangian~3.1! can be solved in the rainbow approxim
tion. The non-perturbative Green’s function for a fermion
this model can be written in the form

G~pm!5g1p2G1~2p1p2,pW'
2 !1g2p1G2~2p1p2,pW'

2 !

1k”'G'~2p1p2,pW'
2 !1G0~2p1p2,pW'

2 !, ~3.2!

where each of theGi has a spectral representation

Gi~2p1p2,pW'
2 !5E

0

`

dM2
r i

LF~M2,pW'
2 !

2p1p22M21 i«
. ~3.3!

Note that tr(g2G) cannot contain a term proportional t
(1/p1) *dM2r(M2,p'

2 )/(2p1p22M21 i«) because this
would lead to logarithmic smallp1 divergences, which are
not canceled by the self-induced inertias, when the Gree
function is used to calculate the self-energy self-consiste
~see below!.

From the fermion Green’s function, one computes
self-energy self-consistently via

G215p” 2m2S, ~3.4!

where

S5g1S11g2S21S0 . ~3.5!

For the LF components of the self-energy one finds

S i5g2E
0

`

dM2E
0

p1 dk1

k1 E d2k'

16p3 f i , ~3.6!

where
-
-

s
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e

f 15F k̃2

D~p12k1!
21Gr1~M2,kW'

2 !

f 25
k1r2~M2,kW'

2 !

D~p12k1!

f 052
r0~M2,kW'

2 !

D~p12k1!
~3.7!

and

D5p22
M2

2k1 2
l21~pW'2kW'!2

2~p12k1!

k̃ 25p22
l21~pW'2kW'!2

2~p12k1!
. ~3.8!

Because of the largeNC limit, such a truncation of the LF
Schwinger-Dyson equations is exact. The non-perturba
solution is then obtained by solving Eqs.~3.4! and ~3.6! it-
eratively until self-consistency is achieved.

In order to be able to investigate whether the self-induc
inertias cancel the infinite part of the self-energy one ne
to know the smallp1 behavior ofG and thus the smallp1

behavior ofS.
As an example, let us suppose thatS5cg1/p1, in which

case

G5
1

p” 2m2S
——→
p1→0 c

m212c

g1

p1 , ~3.9!

which diverges forp1→0, while the propagator forc50
remains finite in this limit. The self induced inertias canc
the infinite part of the self-energy in the case where the
mion propagator inside the loop is a free propagator. If o
desires that the same cancellation occurs with the full pro
gator, it is necessary that the self-energy which modifies
propagator remains finite asp1→0.

We shall now investigate the consequences of this fact
the model described by Eq.~3.1!. In particular, we shall fo-
cus on theg1 component ofS, which is the most singular
term asp1→0. Including only the self-induced inertia coun
terterm, one finds@9#

S15g2p2E
0

p1 dk1

p1 E d2k'

8p3
G1~2k1 k̃ 2,kW'

2 !

2
g2

2p1 E
0

`

dM2E d2k'

8p3
r1~M2,kW'

2 !ln
M2

l21kW'
2

.

~3.10!

The first term on the right-hand-side~RHS! of Eq. ~3.10! is
finite as p1→0, but the second term diverges in this lim
like const/p1.4 When one inserts Eq.~3.10! into Eq. ~3.4!,

4This second term is the non-perturbative analog of the lnm2/l2

term~2.11!, which was necessary to render the two-loop self-ene
finite.
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1140 57MATTHIAS BURKARDT
one finds thatG itself diverges asp1→0 @as illustrated by
Eq. ~3.9!#. This in turn leads to a divergence in Eq.~3.10!
when one tries to calculateG in a self-consistent procedure
The only way to avoid this dilemma is to add a kinetic ma
counterterm

Dmkin
2 5g2E

0

`

dM2E d2k'

8p3
r1~M2,kW'

2 !ln
M2

l21kW'
2

~3.11!

which exactly cancels the second term in Eq.~3.10!. It turns
out that the kinetic mass counterterm which we have t
obtained by demanding finiteness of the longitudinal m
mentum integrals agrees exactly with the one obtained
Ref. @9# by comparison with the Schwinger-Dyson solutio
for the same model.

In summary, what we have found is that the two-lo
result generalizes directly to all orders in this no
perturbative example. In fact, as long as one works wit
fixed' momentum cutoff, one can show that the result g
eralizes to an entire class of models with Yukawa~scalar and
pseudo-scalar! interactions as well as models with couplin
to transverse components of vector fields. However, I w
not able to show that the result generalizes to all order
models with couplings to longitudinal components of a ve
tor field ~i.e. gauge theories!. Semi-perturbative consider
ations suggest that the results also apply to dimension
reduced models for QCD@11# as well as' lattice QCD, but
I could not find a general proof~beyond perturbative calcu
lations!.

When discussing the issue of finiteness, it is very imp
tant to discuss the cutoff scheme dependence. So far
have purposely avoided specifying a cutoff procedure
which one always has to do when dealing with divergent~or
potentially divergent! quantities. The reason we did not ha
to specify the cutoff procedure is that the one-loop div
gence is canceled locally~the singularities of the integran
cancel! by the self-induced inertia and higher order dive
gences are also canceled locally by the finite kinetic m
counter terms. However, we still assumed implicitly that t
result for the inner loop was~apart from trivial kinematical
factors! momentum independent—otherwise it would n
have been sufficient to merely add a number~not a function!
as a counterterm.

It is easily possible to introduce cutoffs which have th
property, for example a' momentum cutoff combined with
a boost invariant longitudinal momentum cutoff, such as
invariant mass difference cutoff at each 3-point vertex~and a
cutoff for the instantaneous fermion exchange diagra
which is consistent with cutoffs on iterated 3-point vertice!,
or even more simply just a cutoff on momentum fractions
each vertex.

One of the most popular cutoffs used in non-perturbat
LF-calculations is discrete light-core quantization~DLCQ!
@10#, where all momenta are discretized and thus a cutoff
the longitudinal momenta is provided by the spacing of
grid in momentum space. With such a cutoff procedure
self energy of a fermion does depend on its momentum~be-
yond the trivial 1/p1 dependence!. This point will be elabo-
rated in Sec. V. However, before we discuss numerical
plications in DLCQ, let us first consider finiteness relatio
s

s
-
in

a
-

s
to
-

lly

-
we

-

ss

t

n

s

t

e

n
e
e

-
s

derived by using perturbative relations between Fock sp
components in non-perturbative bound state problems.

IV. FINITENESS CONDITIONS AND LADDER
RELATIONS

In bound state problems it is often possible to relate Fo
space components which are highly off energy shell to low
Fock components using perturbation theory. This fact
been used within a dimensionally reduced model for QCD
Ref. @11# to relate the end-point behavior of Fock space a
plitudes with n11 quanta to Fock space amplitudes with
quanta, using tree level ladder relations, yielding5

cn11~x1 ,x2 , . . . ,xn21,0!}
1

mAxn21

cn~x1 ,x2 , . . . ,xn21!.

~4.1!

Note that Eq.~4.1! shows that wave functions in higher Foc
components do not vanish near the end-point~i.e. for vanish-
ing fermion momenta!, which leads to divergent matrix ele
ments of the kinetic energy as well as the interaction. T
divergence that arises when only the fermion moment
goes to zero is canceled exactly by the self-induced iner
@Eq. ~2.3!# if and only if the vertex massmV and the kinetic
massmkin are the same.

In Ref. @11# it is thus claimed that the bound state equ
tion ~with mV5mkin! is finite. This claim is false: the Hamil-
tonian studied in Ref.@11# is in general not finite. The poin
is that both Eq.~4.1! as well as the cancellation condition
need to be modified when two momenta go to zero simu
neously. The best way to see that without going into t
much detail is to consider the matrix element which conne
states which differ by one boson. Such a matrix elem
involves the inverse of the momenta of both the incom
and outgoing fermion. If only the outgoing momentum go
to zero, then the term with the inverse of the momentum
the incoming fermion can obviously be neglected. Howev
this is not the case if both incoming and outgoing moment
go to zero simultaneously.6 Since the vanishing of both in
coming and outgoing fermion momenta also implies that
momentum of the emitted boson also vanishes, one
therefore conclude that the end-point behavior gets modi
if the momenta of both the fermion and a boson vanish
multaneously.

Furthermore, the cancellation conditions also get modifi
when proper care is taken for the case where several
menta vanish simultaneously. In particular, in order for t
Hamiltonian to give finite results one does in general need
keepmVÞmkin .

The two-loop example considered above can be con
ered a formal proof~by counterexample! for these intuitively
obvious facts.

In Ref. @11#, numerical evidence is offered for the finite
ness claim made in the same paper. Below, in Sec. V, it

5No distinction between vertex and kinetic masses has been m
in Ref. @11#.

6After this paper was submitted, improved ladder relations w
introduced, which seem to resolve this problem@12#.



e

ic

um
a
b

n
e
ct

of
rp

o

-

-

an
th

v
th

am

ec
r-

is

is
es
ki

o
th

t

th

-

-

r

e

e
r
of

b-

t

a

57 1141FINITENESS CONDITIONS FOR LIGHT-FRONT . . .
be demonstrated that the~logarithmic! divergence arising
from the two-loop diagram shows up only for very larg
values of the DLCQ parameterK. This is probably the main
reason why the divergence did not show up in the numer
results presented in Ref.@11#.

V. FINITENESS CONDITIONS IN DLCQ

It is very easy to see that discretization in moment
space leads to a momentum dependent self-mass. Comp
to a continuum calculation, integrals are approximated
sums and the number of points over which the summatio
performed is determined by the total momentum. In this s
tion, we will investigate the implications of this obvious fa
for finiteness conditions.

In order to simplify the discussion, let us consider a cut
which is very similar to the DLCQ cutoff, namely a sha
momentum cutoff~in the continuum! on all momenta that are
smaller than an arbitrary constant«.

The point is that since the cutoff acts both on the bos
and on the fermion line, self-energy corrections to theO(g4)
Compton amplitude are absent forp1,2« and they are sup
pressed forp1 near that value. On the other hand, a~mo-
mentum independent! kinetic mass counterterm would con
tribute all the way down to the cutoff, namelyp15«. For
the self-energy this implies that there is an incomplete c
cellation between terms that would cancel if the cutoff on
inner loop would be sent to zerobeforethe outer loop inte-
gration is performed.

In order to illustrate what consequences this might ha
let us consider a simple mathematical model which has
right qualitative features: let us assume that the sum of
plitudes in Fig. 2 in the presence of a cutoff is given by

p1T5
c

q1 Q~p122«!. ~5.1!

Including a kinetic mass countertermDmkin
2 , the two loop

self-energy is then given by

D~4!q2}E
«

q1 dp1

p1 @cQ~p122«!2Dmkin
2 #. ~5.2!

Despite the fact that the integral over the self-energy pi
starts atp152«, while the integral over the mass counte
term contribution starts atp15«, the unique choice for
Dmkin

2 which yields a finite two loop self-energy as«→0 is
Dmkin

2 5c. And the result of the integral in this case
2c ln 2 ~independent of«!. Had we taken the limit«→0 in
the integrand, then the integrand would identically van
and the integral would be zero. In other words, the finiten
condition would have given us the correct value for the
netic mass counterterm atO(g2), but the wrong result for the
physical mass atO(g4).

In order to demonstrate that this problem does indeed
cur in DLCQ, let us consider a concrete problem, namely
O(g4) self-massDM2[q1d (4)q2 resulting from the rain-
bow diagram~Fig. 3!. Even though we know the correc
kinetic mass counterterm for this case from Eq.~2.11!, let us
pretend here that we do not know it and let us consider
al
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two loop self-energy both as a function of the momentumq1

~in discrete units! and the kinetic mass counterterm. The cou
pling constant is set tog5A4p, and for the masses we
choosel251 andm252. Figure 4 shows 4pq1 times the
self-energy~including the kinetic mass counterterm! of the
fermion as a function ofq1 for different values of the pa-
rameterDmkin

2 . There are several things one can learn from
this calculation.

First of all, Fig. 4 clearly shows that a kinetic mass coun
tertermDmkin

2 ~in addition to the self-induced inertia! is nec-
essary in order to obtain finite results: the two-loop result fo
DM2 obviously diverges when one setsDmkin

2 50.
Secondly, the procedure is not very sensitive since th

divergence is only logarithmic and the coefficient of the di-
vergent piece is not very large. In order to obtain a precis
picture about which value for the kinetic mass paramete
leads to a convergent piece one has to go to values
q1.1000, which is forbiddingly large for a non-perturbative
calculation, but a reasonable estimate can already be o
tained at lower values.

Thirdly, the finiteness condition does give the correc
value for the kinetic mass counterterm. Only fordmkin

2 ' ln 2
~for m252 andl251! one finds no noticeableq1 depen-
dence of the self-energy for largeq1. Even small deviations
lead to a logq1 divergence proportional to that deviation.

FIG. 4. ~a! Two loop self energy of a fermion calculated using
DLCQ ~with anti-periodic boundary conditions for the fermion! as a
function of the momentum of the fermion. The different curves
represent different kinetic mass countertermsDmkin

2 . ~b! Same as
~a! but a smaller interval of they-axis is shown to simplify deter-
mination of the kinetic mass counterterm for which the result is
stable for large momenta. The covariant result is indicated as
dashed line. Note that, whileDmkin

2 5 ln 2 leads to a convergent
result, it does not converge towards the covariant answer.
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Finally, and this is very important, despite the fact that
finiteness condition yields the correct value fordmkin

2 , the
final result of theO(g4) differs from the covariant result: Fo
Dmkin

2 ' ln 2 one finds limq1→` DM2'21.204, while the
correct~covariant! result for the two loop diagram~Fig. 3! is
given byDM2'22.112 for the same masses and couplin
As we discussed above, this is because in DLCQ the mom
tum of a line that enters a sub-loop is not necessarily h
above the cutoff inside that sub-loop. Therefore, the sens
ity to the cutoff never goes away—not even when the ove
momentum is sent to infinity. Another way to look at th
result is to conclude that in DLCQ one cannot introduce j
one kinetic mass counterterm, but instead one needs to in
duce a kinetic mass which depends on the momentum.
mally, this should not come as a surprise, since the bo
invariance~which is normally manifest in LF quantization! is
broken by the DLCQ regulator. However, in a number
examples, such as 111 dimensional QED/QCD and theorie
with only self-interacting scalar fields, momentum depend
counterterms are not necessary and DLCQ workers have
come accustomed to assume momentum independence
counterterms as a starting point. Unfortunately, the Yuka
model that we have considered here is a clear counterex
ple to this simplified picture.

Of course, for a perturbative diagram one can always
culate the proper momentum dependence, but this seem
possible to do analytically in a non-perturbative context.
alternative procedure is the one employed in Refs.@7#, where
a momentum dependent kinetic mass is introduced such
the physical mass of the lightest states is independent o
momentum. The physical mass then replaces the bare kin
mass as a renormalization parameter. In Refs.@7# the new
parameters were determined by imposing parity invaria
on physical amplitudes or by comparison with a covari
calculation. However, it is not obvious how to translate t
finiteness condition for kinetic masses into a condition
the physical masses.

The fact that a simple~i.e. momentum independent! ki-
netic mass counterterm yields incorrect results also me
that the ansatz for the LF Hamiltonian in theories with fe
mions and Yukawa type interactions~this includes QED/
QCD! used by DLCQ workers~see for example Refs.@10,
11#! is insufficient.

There are several obvious patches that one can app
the DLCQ calculations, but they all seem to have one fea
in common: one needs to introduce another cutoff—bey
DLCQ—which has the feature that it gives momentum ind
pendent results. Typical examples are a Pauli-Villars reg
tor @6,13# or a cutoff on the invariant energy transfer. O
course, even with a cutoff that gives momentum independ
results, one still needs to keep the kinetic mass as an ‘‘in
pendent parameter,’’7 which then needs to be determine
using for example parity or finiteness conditions, but at le
one does not have to introduce a kinetic mass which
function of the momentum. It is not clear whether adding

7An exception is Pauli-Villars regularization with sufficientl
many regulator particles@6,13#.
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O(g4) kinetic mass counterterm to correct for the artifac
introduced by the DLCQ cutoff leads to a consistent pro
dure atO(g6) or higher.

VI. SUMMARY

We have investigated the conditions under which lig
front Hamiltonians with fermions interacting via Yukaw
type interactions~including interactions to the transvers
component of a vector field! lead to convergent loop inte
grals at small values of the LF momentump1[p01p3. In
the continuum, it was found that it is both necessary a
sufficient to add a kinetic mass counterterm~in addition to
the self-induced inertias! to the Hamiltonian in order to ob
tain finite results with respect to the smallp1 cutoff for
higher order diagrams. Counterterm functions were not n
essary. The additional parameter~i.e. the kinetic mass coun
terterm! is determined by demanding finiteness for thep1

integrals. Imposing such a finiteness condition makes se
since the smallp1 divergence is an artifact of the LF ap
proach. It turns out that the kinetic mass counterterm t
obtained is identical to the one determined by imposing p
ity invariance for physical observables.

Unfortunately, there are several obstacles before one
apply this ‘‘finiteness condition’’ in practical calculations—
particularly in DLCQ. One obstacle is that the divergenc
that one needs to look for are only logarithmic, which mak
them hard to detect numerically. Furthermore, the situat
in DLCQ is not quite as simple as it is in the continuum
DLCQ breaks manifest boost invariance, and we have in
shown that a simple ansatz, where the kinetic mass coun
term is not a function of the momentum, is inconsistent
DLCQ already in perturbation theory in a supe
renormalizable model. However, it is conceivable that
DLCQ calculation with additional cutoffs~such that momen-
tum independence of the results is achieved! can be based on
Hamiltonians with momentum independent mass coun
terms. These counterterms can then, at least in principle
determined using the finiteness condition that was derive
this paper.

More important from the practical point of view is th
finding that there exist examples where finiteness with
counterterm functions can be achieved. However, in orde
obtain such a result it seemed necessary to keep longitud
and transverse cutoffs separate and to keep the' cutoff fixed
while taking the longitudinal continuum limit. An exampl
for such a regularization is given by the' lattice formulation
for QCD @14#, where the transverse spatial coordinate is d
cretized and the longitudinal (x2) direction is kept continu-
ous. This formulation has the additional advantage t
p1→0 singularities arising from the longitudinal compo
nents of the gauge fields cancel manifestly and therefore
not lead to further divergences.
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