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Lattice asymmetry in finite temperature gluodynamics

L. A. Averchenkova,* K. V. Petrov,† V. K. Petrov, and G. M. Zinovjev‡

Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, Kiev 143, Ukraine
~Received 13 January 1997; published 4 December 1997!

The role of the lattice asymmetry parameterj in the phase structure description of SU~2! and SU~3!
gluodynamics at finite temperature in the SU(N).Z(N) approach has been studied analytically. The properties
of thermodynamic quantities have been investigated near the physical border. The effective action which
includes the first nontrivial order from the spacelike part allows estimates to be made of the phase structure not
only close to the physical border but in the whole area of couplings. We find that thermodynamic quantities
depend onj and this dependence may be strong enough, up to discontinuity over this parameter for some of
them.@S0556-2821~97!04323-3#

PACS number~s!: 11.15.Ha, 11.10.Gh, 11.10.Wx
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I. INTRODUCTION

The purpose of this paper is to clarify the role of t
lattice asymmetry parameterj[as /at @whereas(at) is the
spatial~temporal! spacing# in the phase structure descriptio
of SU~2! and SU~3! lattice gluodynamics at finite tempera
ture. We will work within the approach SU(N).Z(N)
where the link variables are the SU(N) gauge group cente
elements:

Ux;m.sx;m5expS 2p iqx;m

N D ,
~1.1!

qx;m50,1, . . . ,N21.

Although this approximation does not include all features
the SU(N) gauge theories, it is commonly believed that t
Z(N) degrees of freedom are responsible for many impor
aspects of the SU(N) phase structure. The models with di
crete gauge groups have many nice features. First,
method of duality transformations is well elaborated for s
tems with discrete symmetry~@1# and references therein!,
although undoubtedly there are some achievements in
elaboration for non-Abelian theories~see, for example,@2#!.
Second, these models are also known to provide a trans
ent realization of ’t Hooft algebra of order and disorder o
erators. And third, they are easier to handle—which is
portant if we want to get rigorous results.

Moreover, as is known, the effect of quantum fluctuatio
near the Z(N) configurations on the symmetric lattic
amounts only to a finite renormalization of the coupling co
stantkold @3#. The new coupling constantknew of the SU(N)
gauge theory will be

knew5kold2
N221

4
. ~1.2!

*Electronic address: lily@knb.kiev.ua
†Electronic address: petrov@ap3.gluk.apc.org
‡Electronic address: gezin@hrz.uni-bielefeld.de
570556-2821/97/57~1!/112~11!/$10.00
f

nt

he
-

its

ar-
-
-

s

-

We find this fact is one additional justification for the chos
approach. Since the additional term of Eq.~1.2! depends nei-
ther onas,t nor onkold,new, one may hope that on an asym
metric lattice the effect of quantum fluctuations will also le
to a finite renormalization of the coupling constant.

Numerous Monte Carlo simulations and analytic calcu
tions demonstrate that theZ(2) gauge model possesses t
two-phase structure@4,5# whose phases can be classified
the electric confinement and the confinement of magn
charges, respectively. ForN.Nc one phase more appears
the Z(N) lattice gauge theories@6–9#. These results were
mainly obtained on the symmetric lattice~or at least on a
lattice with definite asymmetry!. However, in many case
~for example, in the Hamiltonian limit:at→0,j→`), the
studies are carried out on the asymmetric lattice. It is als
common case for the Monte Carlo experiments to work
lattices with variousj. Therefore, it would be instructive to
investigate how the picture may change on a lattice w
arbitrary asymmetry.

To provide the proper transition of the Wilson theory

S5 (
x;mn

kmnRe TrS 12
1

N
Ux;mUx1m;nUx1n;m

1 Ux;n
1 D

~1.3!

into the continuous field theory in the ‘‘naive’’ limit

Ux;m.11 iamgmAx;m , ~1.4!

the following conditions should be imposed on the latti
coupling constantskmn :

kmn5
2N

gmgn

a0a1a2a3

am
2 an

2
. ~1.5!

Choosing the lattice to be symmetric in the spatial dire
tions, i.e.,a15a25a35as ; g15g25g35gs , we reduce
112 © 1997 The American Physical Society
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57 113LATTICE ASYMMETRY IN FINITE TEMPERATURE . . .
the number of coupling constants to only two different co
plings for the spacelike and timelike planes

kmn5ks5
2N

gs
2

1

j
,

k0n5kt5
2N

gt
2

j. ~1.6!

In the general casegs
2Þgt

2 , so sometimesj![Akt/ks is
considered as a proper lattice asymmetry parameter ins
of j. However, in the weak coupling limitj! is nearly the
same asj, as has been shown in@10,11#:

j5j!H 11N
Cs~j!2Ct~j!

z
1O~z22!J , ~1.7!

z5Akskt5
2N

gsgt
, 4Cs,t5as,t

0 1
as,t

1

j
1O~j22! ,

at
0520.27192 , at

150.5 , as
050.39832 , as

150.

The numerical calculations for these relations@11,12# reveal
that j! is close toj at intermediate couplings as well.

Following the heart point of the renormalization grou
theory, in the continuum limit thermodynamic quantiti
should be asymmetry independent, since asymmetry is a
ture of the regularizations only. Such a dependence can
absorbed into theL parameter which becomes a function
j!. The procedure of the corresponding renormalizat
group equations’ construction on an asymmetric lattice
been carried out in@10–14#. However, this procedure work
in the approximation where the links variables are close
fixed elements of the gauge group~the ‘‘naive’’ limit is an
example of such an approximation!. The center elements ar
also fixed in this approximation. The approximatio
SU(N).Z(N) ‘‘enlarges’’ on the approximation of@10–14#
in a sense. Certainly, in our approach thermodynamic qu
tities should also be asymmetry independent in the c
tinuum limit. On the other hand, we should ensure that a
model @in particular, SU(N).Z(N)# should be properly
transformed in the ‘‘naive’’ limit into continuous field
theory. In order to provide this requirement,kt , ks are cho-
sen in precisely the same way as in@10–14#.

This paper is organized as follows. Section II deals w
the properties of thermodynamic quantities in the limiti
cases when one of the coupling constants is close to
physical border. In Sec. III we suggest an expression for
effective action which takes into account the contributions
the spacelike part. This allows us to investigate the mo
under consideration not only at the physical border but a
far from it as well. In Sec. IV. we study the behavior of th
Wilson and ’t Hooft loops average values in each of t
coupling areas considered before. Section V contains
conclusions.
-
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II. LATTICE Z„N… GLUODYNAMICS AT FINITE
TEMPERATURE IN THE LIMITING CASES

In the approach SU(N).Z(N) the Wilson action trans-
forms into the Wegner one

S5(
mn

kmn(
x

Re$12sx;msx1m;nsx1n;m
! sx;n

! %1c.c.

~2.1!

Since the asymmetry exists only between the spatial
temporal directions, it is convenient to split the action in
‘‘electric’’ and ‘‘magnetic’’ parts:

S5SE1SH,

SE5kt (
n51

3

(
xW ,t

Re~12sxW ,t;0sxW ,t10;nsxW1n,t;0
!

sxW ,t;n
!

!1c.c.,

~2.2!

SH5ks (
n,m51

3

(
x

Re~12sx;nsx1n;msx1m;n
! sx;m

! !1c.c.

Let us first analyze the limiting cases:

ks→0, ~2.3a!

kt→0, ~2.3b!

ks→`, ~2.3c!

kt→`. ~2.3d!

In all of the above cases our original system reduces to
well-known Ising ~Potts! model, so the critical values o
these coupling constants can be found easily.

In the case~2.3a! we may naturally disregard the ‘‘mag
netic’’ part of action. As is known, at finite temperature a
additional symmetry which arises due to periodic bound
conditionssxW ,t;m5sxW ,t1Nt ;m leads to the appearance of ne

invariants—the Polyakov loopsVxW[)t50
Nt21

sxW ,t;0, and does
not permit us to fix the Hamiltonian gaugesxW ,t;051 along
the whole temporal axis. The common way to fix the gau
in this case is

sxW ,t;0511dt
0@VxW21#. ~2.4!

The ‘‘electric’’ part of action can be rewritten as
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114 57AVERCHENKOVA, PETROV, PETROV, AND ZINOVJEV
SE5kt(
xW ,n

F (
t50

Nt21

Re~12sxW ,t;nsxW ,t11;n
!

!

1Re~12VxWsxW ,0;nVxW1n
!

sxW ,1;n
!

!G1c.c. ~2.5!

By using the simple relation for theZ(2) andZ(3) gauge
theories1

ek ~s1s!!/25ef ~k!F11g~k!S s1s!

2 D G , ~2.6!

it is easy to sum over all the configurations2 $sx;n% thus
obtaining the effective action

S̃5 k̃ t(
xW ,n

Re$12VxWVxW1n
!

%1const1c.c., ~2.7!

g̃ t~ k̃ t!5@gt~kt!#
Nt.

For the Z(2) theory @gt(kt)5thkt ; g̃ t( k̃ t)5thk̃ t# we
get the expression for the Ising model action with the ac
racy up to a constant. The partition function with action~2.7!
is found to be singular atk̃ t

c5kc , where kc5arth(gc)
50.2217 is the critical coupling constant of the thre

1Expansion of any functionf (s), wheresPZ(N), in a Taylor
series contains only a finite number of terms. ForZ(2) theory even
powers in this expansion are grouped in chk, odd powers yield shk,
thusg(k)5thk andef (k)5eln chk. For Z(3) theory

s1s!

2
5H 1

21/2
.

Then

ek ~s1s!!/25H ek

e2k/25a1b
s1s!

2
,

where

a5
112e23k/2

3e2k
, b5

2~12e23k/2!

3e2k
.

By analogy forZ(4) theory we have

ek ~s1s!!/25H ek

1

e2k

5a1b
s1s!

2
1cSs1s!

2 D2

,

wherea51, b5shk, c5chk21.
2The first term of the action ~2.5! corresponds to the

partition function of one-dimensional chain of spins along t
temporal direction, ($st%,tÞ0,Nt21)t50

Nt21ektstst115eNt f (kt)@1
1gNt(kt)s0sNt21]. Here both Eq.~2.6! and the relation($st%

3(st)
j5d j

2k have been taken into account. The structu
st21ststst115st21st11 appear in the product when run
ning overt. In the corresponding product ofZ(3) theory the fol-
lowing structures appear: st21st

!stst11
! 5st21st11

! and
st21

! ststst11
! 5st21

! st
!st11

! . In this case the relation
($st%(st)

j5d j
3k is used. Finally, after summing over the spin co

figurations of first and last sites only the Polyakov loops will s
vive in the partition function.
-

-

dimensional Ising model. For our original theory it results
a singularity atgt

c5gc
1/Nt ~the transition of the second order!.

For theZ(3) gauge theory we get the Potts model acti
with the coupling

g̃ t~ k̃ t!5t~ k̃ t!; gt~kt!5t~kt!,
~2.8!

t~x!52
12e23x/2

112e23x/2
.

We can relate the critical coupling value for our origin
theory ~the transition of the first order! to the corresponding
critical constant of the three-dimensional Potts mo
kc50.3664:

gt
c5gc

1/Nt , gc5t~kc!. ~2.9!

In the other limiting case~2.3b! the ‘‘electric’’ part of
action may be ignored. Since the partition function is sp
into Nt equivalent independent contributions, each of wh
results from the plaquettes located in three-dimensional
ers (t5const), we obtain the set of three-dimensional We
ner models:

St5const5ks (
xW ;nm

Re~12sxW ;nsxW1n;msxW1m;n
!

sxW ;m
!

!.

~2.10!

There is no interaction between the layers, so summing o
sxW ,t;n may be done independently for everyt5const layer.
It is more convenient to make the calculations on the d
lattice where the original set of three-dimensional Weg
models is transformed into the set of three-dimensional Is
~Potts! models with spins in the dual sites. New couplin
are connected with the old ones by the relations

g̃ s5
12gs

11gs
, gs5thks , g̃ s5thk̃ s for Z~2! theory,

g̃ s5
22gs

11gs
, gs5t~ks!, g̃ s5t~ k̃ s! for Z~3!.

~2.11!

These Ising~Potts! models are identical, and hence they e
hibit the transition atg̃ s5gc simultaneously. Therefore, fo
the original Z(2) gauge theory there is a singularity
gs

c 5(12gc)/(11gc) @for Z(3) at gs
c 5(22gc)/(11gc)#.

3

Before considering the rest of the limiting cases~2.3c!
and ~2.3d!, it is worthy to note that under duality transfo
mations the four-dimensional theory~2.1! transforms into it-
self, with new couplings~see Appendix A!. TheZ(2) group
couplings transform as

s

-

3We considergs and gt independent, temporarily ignoring th
dependence ofgs(gt) on as(at) through the renormalization grou
relations, i.e., supposing that by varyingas andat , we can get to
any point of the square (0<gt<1; 0<gs<1).
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gs→gs8[
12gt

11gt
, gt→gt8[

12gs

11gs
,

gs5thks , gs85thks8 . ~2.12!

For theZ(3) gauge group we have

gs→gs8[
22gt

11gt
, gt→gt8[

22gs

11gs
,

gs5t~ks!, gs85t~ks8 !. ~2.13!

For this dual representation we may examine again the
limiting cases (gs8→0 and gt8→0) in precisely the same
way as it has been done for our original theory. Followi
Eqs.~2.12! and~2.13!, these correspond to the limitsgs→1
andgt→1 on the original lattice. We find singularities of th
partition function on the original lattice at

Z(2) gauge system Z(3) gauge system

gs→1 gt
c5gc gs→1 gt

c5gc

gt→1 gs
c5

12gc
1/Nt

11gc
1/Nt

gt→1 gs
c5

22gc
1/Nt

11gc
1/Nt

where gs,t is a function ofks,t in accordance with Eqs
~2.8! and~2.11! for the Z(2) andZ(3) groups, respectively
We may depict all these critical points in the plane@gt ;gs#
~see Fig. 1!.

III. CONSTRUCTION OF THE EFFECTIVE ACTION

In order to investigate our model phase structure not o
in the limiting cases but also at some distance from the
gularity points, as well as in order to estimate the ph
structure of the theory under consideration in the whole a
of couplings~square 0<gt<1 and 0<gs<1), let us con-

FIG. 1. Pointsa-d andb-c are dual symmetric by pairs.
o

ly
-
e
a

struct the effective action taking into account the ‘‘electric
or ‘‘magnetic’’ contributions which have been neglected p
viously, considering them as perturbations. After defini
^A&E[($s%Ae2SE the partition function can be rewritten a

Z5^e2SH&E[K expS ks (
x;nm

snm1constD L
E

5(
r 50

`

Zr ,

~3.1!

Zr[
ks

r

r ! (
n,m51

3

(
x

^snm
r &E ,

where snm[Re$sx;nsx1n;msx1m;n
! sx;m

! % is the spacelike
plaquette variable.

The zero-order term of the expansionZ05^1&E corre-
sponds to the caseks50 already considered. It is easy to s
that the first-order term

Z1[ks (
n,m51

3

(
x

^snm&E

is equal to 0. This can be explained by the following cons
erations:($s%sx;n50 and every spinsx;n enterssnm only
once. On the other hand, structures containingsxW ,t8;n can be
constructed out of plaquettes frome2SE

e2SE5)
xW ,n

F )
t50

Nt21

~11gt$sxW ,t;nsxW ,t11;n
!

1c.c.%!

3~11gt$VxWsxW ,0;nVxW1n
!

sxW ,1;n
!

1c.c.%!G . ~3.2!

These structures survive after the summation over spin
tÞt8,t811 only as one-dimensional chains~alongt) in the
following form:

@11gt
Nt$VxW s xW ,t8;nVxW1n

!
sxW ,t811;n

!
1c.c.%#.

However, none of thesnm containsxW ,t8;n andsxW ,t811;n si-
multaneously, therefore,^snm&E is equal to zero.

The second-order contribution

Z2[
ks

2

2! (
n,m51

3

(
x

^snm
2 &E

in the expansion~3.1! consists of plaquettessnm having the
same spatial coordinates and positioned at different point
andt1D along the temporal axis~see Fig. 2!. Correspond-
ing one-dimensional chains

JD[@11gt
D$sxW ,t;nsxW ,t1D;n

!
1c.c.%#

and

JD8 [@11gt
Nt2D

$VxWsxW ,t;nVxW1n
!

sxW ,t1D;n
!

1c.c.%#

along the plaquettes mentioned above give nonzero contr
tions to the partition function
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Z25
gs

2

2 (
n,m51

3

(
x

(
D51

Nt21

snm~t1D!snm~t!~JD1JD8 !.

~3.3!

Summing overD we get

Z25
gs

2

2 (
xW ,n,m

@c01c1WxW ;nm
8 1c2WxW ;nm

9 #, ~3.4!

where

WxW ;nm
8 5VxWVxW1n

!
1VxW1nVxW1n1m

!
1VxW1n1mVxW1m

!

1VxW1mVxW
! ,

WxW ;nm
9 5VxWVxW1n1m

!
1VxW1nVxW1m

!
1VxWVxW1n

!
VxW1n1mVxW1m

! ,

and the coefficients have been obtained after lengthy ca
lation

c05a0b014a1b113a2b2 ,

c15a0b11a1b013~a1b21a2b1!,

c25a0b21a2b014a1b112a2b2 ,

b0511 g̃ t
4 ,

FIG. 2. ‘‘Ladder’’ of plaquettessnm having the same spatia
coordinates and positioned at different pointst along the temporal
axis.
u-

b152 g̃ t2 g̃ t
3 ,

b252g̃ t
2 ,

a052
gt

4Nt2gt
4

gt
421

,

a152gt
Nt

gt
2Nt2gt

2

gt
221

,

a252gt
2Nt~Nt21!.

WxW ;nm
8 consists of Ising-type terms;WxW ;nm

9 contains both
Ising-type terms~between the diagonal neighbors howeve!
and four-interaction terms. Using precisely the same met
as in@15# we can replace all spinsVxW with ‘‘average spins’’
V5(1/N)(x51

N VxW . The partition function which includes
the first nontrivial contribution overgs in addition to the
‘‘electric’’ part of action has the following form:

Z5(
$V%

eg̃ tV2Nd1gs
2 [ ~c11c2!V21c2V4]Nd~d21!1O~gs

3
!2L~V!N,

N5Ns
3Nt . ~3.5!

The first term of the exponential power in Eq.~3.5! comes
from the ‘‘electric’’ part of the action; the second one is th
contribution from the ‘‘magnetic’’ part. Appendix B presen
the calculation of the ‘‘Jacobian’’ of transformationeL(V)N

to new variables—‘‘average spins.’’ In the area conside
(gs→0), the value ofV is close to 0, soV4 contributions
can be omitted in practice. The singularity line starting at
point a has been calculated numerically~see Fig. 3!. Using
the same technique for the other three cases, we have c
lated and drawn lines starting from the pointsb-d, thus split-
ting the plane@gt ;gs# into four areas, shown schematical
in Fig. 4.

IV. STUDYING THE WHOLE PHASE PLANE †gt ; gs‡

We offer some suggestions concerning the phase struc
in the whole area of coupling constants and try to clarify t
nature of the phases previously obtained. In the casekt.0
the four-dimensional system transforms into the set of in
pendent three-dimensional subsystems witht5t j as already
mentioned. The probe sources~the potential between them
has been calculated on the dual lattice, see Appendix!
correspond to the magnetic charges placed inside the c
of the original lattice.

The contribution from the spacelike cube plaquettes
be associated with the magnetic field flux through the cu
surface,



d
r

-

he

ne

v-

he
G.
It
ith

tr
n

w

57 117LATTICE ASYMMETRY IN FINITE TEMPERATURE . . .
)
cube

hs5expS const3(
cube

BW •nW D ,

~4.1!

Bk5
1

2
ekmnFmn ,

and is not equal to zero when the probe source is place
the corresponding dual site. In other words, the probe sou
of ‘‘electric’’ charge ex in the site of the dual lattice corre
sponds to the monopole~‘‘magnetic’’ charge mx) on the
original lattice.

FIG. 4. Four areas in the plane@gt ;gs#: I, deconfinement of
electric and magnetic charges; II, magnetic confinement, elec
deconfinement; III, electric confinement, magnetic deconfineme
IV, electric confinement, magnetic confinement; V, the area
cannot investigate analytically.

FIG. 3. Singularity lines leaving the pointa at different Nt

~solid lines!. Linesktks5const at differentg ~dashed lines!.
in
ce

It is known that if the Wilson loopC! in the plane@ t;x#
of the four-dimensional dual lattice is intersected with t
planet5t j , then the loop will pierce~see Fig. 5! the plane
@z;y# at two points ~monopole-antimonopole!. The Dirac
string which ties them together is in the planet5t j ~see Fig.
6! @16#. If the potential between probe sources in each pla
increases linearly withR ~in the region of couplinggt,gt

c),
then the Wilson loop average value4 ^E&5) t51

T ^ex0
exR

& will
decrease exponentially according to the ‘‘area law.’’ The a
erage value of the corresponding ’t Hooft loop^M & must
behave in the same way in the regiongs.gs

c :

^M &original5)
t51

T

^mx0
,mxR

&5^E&dual5)
t51

T

^ex0
exR

&;e2lTR.

~4.2!

It is obvious that the parameters area (gt andgs) is split into
four sectors~Fig. 4! with different behavior of the Wilson
and ’t Hooft loops average values.

I gt.gt
c gs,gs

c ^E&;e2aLC ^M &;e2a8LC8

II gt.gt
c gs.gs

c ^E&;e2aLC ^M &;e2l8SC8

III gt,gt
c gs,gs

c ^E&;e2lSC ^M &;e2a8LC8

IV gt,gt
c gs.gs

c ^E&;e2lSC ^M &;e2l8SC8

This picture covers all four types of possible behavior of t
averages under consideration which were found by
’t Hooft @17# from the commutation relations analysis.
seems impossible to ‘‘see’’ all four phases on a lattice w
fixed asymmetry (kt5constks) including the symmetric

4The contributions of all planes are independent.

ic
t;
e

FIG. 5. If the Wilson loopC! in the plane@ t;x# is intersected
with the planet5t j , then the loop will pierce the plane@z;y# at
two points~monopole–antimonopole!.
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one. Our results are also in good agreement with@16# in the
areas studied on the symmetric lattice~line gt5gs).

V. CONCLUSIONS AND DISCUSSION

Until now we regarded the couplingsgs(gt) as indepen-
dent. However, the underlying constantsgs(gt) depend on
the lattice spacings through the renormalization group r
tions. This dependence may make some areas of the sq
(0<gs<1, 0<gt<1) inaccessible. To find the exact bo
ders of the accessible area we should construct the renor
ization group relations on an asymmetric lattice and sub
tute gs

2(gt
2) into gs(gt). It should be noted that in the limi

(as,t→0), gs
2.gt

2.g2!1 @10#, where g[Agtgs,gs
2

.g21O(g4), gt
2.g21O(g4). So, ktks54N2/g4@1

~shaded region at Fig. 7!. Say, atks→0; kt→` as 1/g4ks

andj→` as 1/g2ks . This makes the accessible paramet
area narrower. Moreover, atNt→` the pointsa andd move
to the point (gt51; gs50) ~see Fig. 7!.

If j.1 the relations betweenks(kt) andj have the fol-

FIG. 6. Dirac string is in the planet5t j .

FIG. 7. Shaded region corresponds toktks@1. At Nt→` the
pointsa andd move to the point (gt51; gs50).
-
are

al-
i-

s

lowing form @11,14# @and result from Eq.~1.7!#:

ks5
1

j S 4

g2
1as

01O~j22!D ,

kt5jS 4

g2
1at

01
1

2j
1O~j22!D . ~5.1!

At a giveng2 we get in the plane@kt ;ks# the curve

S kt2
1

2D ks.S 4

g2
1at

0D S 4

g2
1as

0 D , ~5.2!

which is nearly the same as the ‘‘classical’’ curv
ktks.(2N/g2)2 in the regionj.1, g2,1 we are interested
in. Changingj we can get to any point of this curve. As it i
shown in Fig. 3, only at very bigNt (Nt@100) and smallg2

the curve~5.2! may cross the critical curvegt5gt
(a)(gs).

Weak dependence of thermodynamic quantities onj around
gt5gt

(a)(gs) was pointed out in@14#. The dependence o

FIG. 8. Six plaquettes which adjoin the linkx;n.

FIG. 9. In the plane@kt ;ks# there is the self-duality line.
kc50.44 is the critical coupling value for the four-dimension
Z(2) pure gauge theory.
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gt
(a) on Nt is getting weaker with increasinggs , which is an

indirect confirmation of the weak dependence onj. Close to
the critical curvegt5gt

(d)(gs) at ks.2 lngc/2Nt we get a
condition onj for the curve~5.2! to cross the critical curve
j.(1/ks)(4/g21as

0).(Nt /g2)const. With increasingNt

@as well as with decreasingas(at)# the phase border cross
ing will be at ever greaterj. It increases the expansion rel
ability ~5.1! for kt(ks).

The parameterj.Akt /ks is usually chosen arbitrarily
(jHamilt5` and jEucl51). So, if this parameter is not re
stricted with an additional condition then by changing it w
may reach any point of the curvekskt5const at any smal
g2, thereby crossing at least one line between phases~II and
IV !. This confirms that the thermodynamic quantities depe
on j and, moreover, the discontinuity over this paramete
possible for some of them. It is commonly believed th
changing the parameterj should not result in any observab
effects. An attempt to exclude the undesirable dependenc
thermodynamic quantities onj is in contradiction either with
renormalization group relations@10,11,14# or with restric-
tions on the coupling constants imposed by Eq.~1.5!. To
keep the independence of the observed quantities onj in the
i
ix
nk
d
s
t

of

‘‘naive’’ limit, we chosekt ,ks in precisely the same way a
in @10,11,14#. So, we suggest that lattice gauge theories n
an additional condition which fixesj.

There are reasons to hope that the estimates for the S~2!
and SU~3! gauge groups will be similar to those obtained
the current paper, at least within approximations of@3#. In
the future we will take the corrections to our approximati
into account. This will allow us to clarify the picture in deta
for the SU~2! and SU~3! groups.

APPENDIX A: DUALITY TRANSFORMATIONS
IN FOUR DIMENSIONS

When considering the duality transformation in fou
dimensional space-time it should be pointed out that spa
like plaquettes transform into timelike ones. In other wor

ks852
1

2
ln thkt or gs85

12gt

11gt
~A1!

and vice versa,kt8521/2ln thks .
This statement becomes clear from the following. Let

rewrite the partition function of theZ(2) system in the form
Z5(
$s%

expS (
x,mn

kmnhx,mnD 5(
$s%

)
x,mn

chkmn~11hx,mnthkmn!5e2 f(
$s%

)
x,mn

(
q561

~hx,mnthkmn!~qx,mn11!/2

5e2 f(
$q%

)
x,mn

~eln thkmn!~qx,mn11!/2)
links

(
s561

~s!Q5e2 f(
$q%

)
x,mn

~eln thkmn!~qx,mn11!/2)
links

2d2~Q!, ~A2!
ate

e
t

e
ng-

at

he
where

hx,mn5sx;msx1m;nsx1n;m
! sx;n

! ,

Q5 (
m523,mÞ6n

3
qx,mn11

2
,

2 f 5NtNs
3(

mn
ln chkmn .

We introduce a new set of variables$q%—one for each
plaquette. This partition function is not equal to zero only
qx,mn satisfies the following condition on the sum over s
qx,mn @associated with six plaquettes which adjoin the li
x;n ~see Fig. 8!#:

1

2 (
m523;mÞ6n

3

~qx,mn11!50mod2

or
f

(
m523;mÞ6n

3

qx,mn52mod4. ~A3!

The solution of last equation can be found if we associ
everyqx,mn with one of the cube planes and

qx,mn5sx;rsx1r;lsx1l;r
! sx;l

! ,

nÞmÞrÞl, ~A4!

where the dual link variablesx;r is an element of theZ(2)
group. It becomes intuitively evident, if we consider th
starting case when alls are equal to 1. This dictates tha
(mÞ6nqx,mn must be equal to 6mod452mod4. Every link en-
ters the solution twice~because the plaquettes form a cub!
and changing the sign of a link to opposite results in cha
ing (m523;mÞ6n

3 qx,mn only by 64.
Consequently, in the plane@kt ;ks# there is the self-

duality line ~see Fig. 9!. Balian, Drouffe, and Itzykson@4#
pointed out the possibility of the critical behavior
kc50.44 for the four-dimensionalZ(2) pure gauge theory
on a symmetric lattice supposing this critical point is t
only one.

By analogy this can be shown for theZ(3) gauge theory
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Z5(
$s%

expF (
x,mn

kmnS hx,mn1hx,mn
!

2 D G5e2 f(
$s%

)
x,mn

F11g~kmn!S hx,mn1hx,mn
!

2 D G
5e2 f(

$s%
)
x,mn

(
$qPZ~3!%

Fg~kmn!S hx,mn1hx,mn
!

2 D G [ ~qx,mn1qx,mn
!

!11]/3

5e2 f(
$q%

)
x,mn

~elng~kmn!! [ ~qx,mn1qx,mn
!

!11]/3)
links

(
$sPZ~3!%

S s1s!

2 D Q

5e2 f(
$q%

)
x,mn

~elng~kmn!! [ ~qx,mn1qx,mn
!

!11]/3)
links

3d3~Q!,

where

hx,mn5sx;msx1m;nsx1n;m
! sx;n

! ,

Q5 (
m523,mÞ6n

3
~qx,mn1qx,mn

! !11

3
,

2 f 5NtNs
3(

mn
ln

112e23kmn/2

3e2kmn
,

g~kmn!52
12e23kmn/2

112e23kmn/2
.

If qx,mn is the same as in Eq.~A4!, but sx;r is now an element of theZ(3) group, thenqx,mn is the solution of the equation
1
3 (m523,mÞ6n

3 @(qx,mn1qx,mn
! )11#50mod3.

APPENDIX B: ‘‘JACOBIAN’’ OF TRANSFORMATION TO COLLECTIVE VARIABLES: ‘‘AVERAGE SPINS’’

The quasiaverage for a dynamical quantityf (sx) is defined as

^ f ~sx!& s̄5

K f ~sx!dS s̄N2 (
x51

N

sxD L
K dS s̄N2 (

x51

N

sxD L . ~B1!

The conventional expectation value in statistical mechanics will then be

^ f ~sx!&5E ^ f ~sx!& s̄d s̄. ~B2!

We should replace all spins with ‘‘average spins’’

s̄5
1

N(
x51

N

sx . ~B3!

In this Appendix we compute the ‘‘Jacobian’’eLN5J( s̄ )5Tr$s%d( s̄N2(x51
N sx) of the transformation to the new var

ables s̄ . For theZ(2) theory we have

J5E
2p

p df

2p
e2 i s̄ Nf1NL5E

2p

p df

2p
e2 iN s̄f@e2 if1eif#N5 (

k50

N S N

k D E
2p

p df

2p
e2 iNf~11 s̄ !e2ifk5 (

k50

N S N

k D d2k
N~11 s̄ !

5
N!

$N@~11 s̄ !/2#%! $N@~12 s̄ !/2#%!
, ~B4!

and taking into account that lnN!;NlnN2N for L we get

L52
1

2
ln~12 s̄2!1

s̄

2
ln

12 s̄

11 s̄
. ~B5!

By analogy we proceed with the ‘‘Jacobian’’ for theZ(3) theory. For an element of theZ(3) group we have
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z5z11 iz25
1

2
s11 i

A3

2
s2 ,

~B6!

~s1 ,s2!5$~2,0!; ~21,1!; ~21,21!%,

J5 (
$s1x ,s2x%

dS N s̄12 (
x51

N

s1xD dS N s̄22 (
x51

N

s2xD 5E
2p

p df1df2

~2p!2
e2 iN~ s̄1f11 s̄2f2!1NL

5E
2p

p df1df2

~2p!2
e2 iN~f1 s̄11f2 s̄2!e2if1N@11e23if1~eif21e2 if2!#N. ~B7!

In view of

~a1b!n5(
j 50

n

an2 jbj S n

j D
we get

J5 (
k50

N S N

k D E
2p

p df1df2

~2p!2
e2 iNf1~ s̄122!2 iN s̄2f2e23ikf1~eif21e2 if2!k

5S N

N
22 s̄1

3
D E

2p

p df2

2p
e2 iN s̄2f2~eif21e2 if2!N~22 s̄1!/35S N

N
22 s̄1

3
D (

m S N
22 s̄1

3

m
D d

N s̄2

N~22 s̄1!/322m

5S N

N
22 s̄1

3
D S N

22 s̄1

3

NS 22 s̄1

6
2

s̄2

2
D D 5

N!

$N@~11 s̄1!/3#% ! $N @~22 s̄123 s̄2!/6#% ! $N @~22 s̄113 s̄2!/6#%!
,

~B8!

or

L5
2

3
~12 z̄1!ln

2

3
~12 z̄1!1

12 z̄12 z̄2A3

3
ln

12 z̄12 z̄2A3

3
1

12 z̄11 z̄2A3

3
ln

12 z̄11 z̄2A3

3
. ~B9!

APPENDIX C: POTENTIAL BETWEEN TWO PROBE SOURCES

We would like to estimate the connected correlation function^sxsx1R& for the Ising model with different couplings in eac
direction within the spherical model. The crucial point is the following condition:

1

Ns
3(x

sx
251. ~C1!

Then

Z5(
$s%

E
c2 i`

c1 i` da

2p i
expS aNs

32a(
x

sx
21

1

2(x,n
znsxsx1nD , ~C2!
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wherezn5kmk , and the constantc is chosen to ensure the correctness of interchanging the integration and summation
It means thatc is a line to the right of alla-singularities.

We can rewrite the partition function as

Z5E da

2p i
eaNs

3

(
sx

e2~1/2!sxAx2x8sx8, ~C3!

where

Ax2x85adx
x82 (

n51

3

zndx
x1n5E S a2 (

n51

3

zncosfnD eif~x2x8!
d3f

~2p!3
. ~C4!

The correlation function̂sxsx1R& can be calculated as the derivative of the generation function over source variables

^sxsx1R&5^s0sR&5
1

Z
]

]h0

]

]hR
E da(

$s%
eaNs

3
2~1/2!sxAx2x8sx81hxsx, ~C5!

and after shifting integration variables we have

^sxsx1R&5
]

]q0

]

]qR
E dae~1/4!hxAx2x8

21
hx85AR

215E e2 ifW RW

a02(n51
3 zncosfn

d3f

~2p!3
5E

0

`

dte2a0tI R1
~ tz1!I R2

~ tz2!I R3
~ tz3!,

~C6!

whereI Rn
(tzn) is the modified Bessel function of orderRn ; a0 is the saddle point which is determined by the condition

E d3f

a02(n51
3 zncosfn

5^s0
2&51. ~C7!

At Rn→` the correlation function will be

^sxsx1R&.expH 2A2S a02 (
n51

3

znD (
n51

3
r n

an
2zn

J , ~C8!

whereRn5r n /an .
It is easily seen that the asymmetry dependence evidence~different behavior of the potential between two probe source

different directionsn) does not disappear even in the vicinity of the critical point (a0
c5(n51

3zn).
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