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Lattice asymmetry in finite temperature gluodynamics
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The role of the lattice asymmetry parametgrin the phase structure description of @Jand SU3)
gluodynamics at finite temperature in the $y&Z(N) approach has been studied analytically. The properties
of thermodynamic quantities have been investigated near the physical border. The effective action which
includes the first nontrivial order from the spacelike part allows estimates to be made of the phase structure not
only close to the physical border but in the whole area of couplings. We find that thermodynamic quantities
depend or¢ and this dependence may be strong enough, up to discontinuity over this parameter for some of
them.[S0556-282(197)04323-3

PACS numbgs): 11.15.Ha, 11.10.Gh, 11.10.Wx

[. INTRODUCTION We find this fact is one additional justification for the chosen
approach. Since the additional term of E4.2) depends nei-
The purpose of this paper is to clarify the role of thether ona, . nor onkgygnew, ON€ May hope that on an asym-
lattice asymmetry parametée=a,/a, [wherea,(a,) is the  metric lattice the effect of quantum fluctuations will also lead
spatial(temporal spacing in the phase structure description to a finite renormalization of the coupling constant.
of SU(2) and SU3) lattice gluodynamics at finite tempera- Numerous Monte Carlo simulations and analytic calcula-
ture. We will work within the approach SO =Z(N) tions demonstrate that th&(2) gauge model possesses the
where the link variables are the SN)( gauge group center two-phase structurp4,5] whose phases can be classified as
elements: the electric confinement and the confinement of magnetic
_ charges, respectively. Fd>N. one phase more appears in
U ~o :exr<27ﬂqx;,u,) the Z(N) lattice gauge theorief6—9]. These results were
Xp EXu N ' mainly obtained on the symmetric lattider at least on a
(1. lattice with definite asymmetjy However, in many cases
Ox.,=0,1,...N—-1. (for example, in the Hamiltonian limita,—0,§—x), the
studies are carried out on the asymmetric lattice. It is also a
Although this approximation does not include all features ofcommon case for the Monte Carlo experiments to work on
the SUN) gauge theories, it is commonly believed that the|attices with varioust. Therefore, it would be instructive to
Z(N) degrees of freedom are responsible for many importaninvestigate how the picture may change on a lattice with
aspects of the SUW) phase structure. The models with dis- arbitrary asymmetry.
crete gauge groups have many nice features. First, the To provide the proper transition of the Wilson theory
method of duality transformations is well elaborated for sys-
tems with discrete symmetr{{1] and references thergin
although undoubtedly there are some achievements in its o— > , Re Tr(l
elaboration for non-Abelian theoridsee, for exampld,2]). Xmv 17
Second, these models are also known to provide a transpar- (1.3
ent realization of 't Hooft algebra of order and disorder op-
erators. And third, they are easier to handle—which is iMynt5 the continuous field theory in the “naive” limit
portant if we want to get rigorous results.
Moreover, as is known, the effect of quantum fluctuations
near the Z(N) configurations on the symmetric lattice Uy =1+ia,9, A, (1.4
amounts only to a finite renormalization of the coupling con-
stantx,q [3]. The new coupling constamt,,, of the SUN)
gauge theory will be

1
- NUWUHWU+ U

X+v,u o X v

the following conditions should be imposed on the lattice
coupling constants,,,,:

N2-1 1o
Knew™ Kold 4 (1.2 2N apaaras
Kpv= o™ 3 5 15
g,ugV a'uay
*Electronic address: lily@knb.kiev.ua
"Electronic address: petrov@ap3.gluk.apc.org Choosing the lattice to be symmetric in the spatial direc-
*Electronic address: gezin@hrz.uni-bielefeld.de tions, i.e.,a;=a,=az=a,; 9:=0,=03=0,, We reduce
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the number of coupling constants to only two different cou- Il LATTICE Z(N) GLUODYNAMICS AT FINITE
plings for the spacelike and timelike planes TEMPERATURE IN THE LIMITING CASES
2N 1 . .
Kmn= Ko™ 5 Z In the approach SUW{)=Z(N) the Wilson action trans-
9 ¢ forms into the Wegner one
2 3 (1.6
Kon= K=~ &. . . .
g; S=E Kl_wg Re{l—O'X;#O'HM;,,O'HV;MUX;V}-FC.C.
v
(2.7

In the general casg’+ g2, so sometime§* =k /k,, is , _ ,
considered as a proper lattice asymmetry parameter insteatl'C€ the asymmetry exists only between the spatial and
of £ However, in the weak coupling limi* is nearly the temporal directions, it is convenient to split the action into

same a<, as has been shown ja0,11 “electric” and “magnetic” parts:

Co()-C S=55+8H,
gzgv( 1+NM+O(§2) , (17)
3
2N ot SE=k, 2, 2 REL=05 100514000 s 00 ) FC.Coy
{=VKkon,=——, 4C,.=ad +—"4+0(¢72?), n=1 57 0T X
9,9~ ' ’ § (22)

3
H_
S'=k, 2 2 qu._O'X;nO'x+n;mO';+m;n0';;m)+C.C.

nm=1 Xx

a®=-0.27192, o!=05, a2=0.39832, «l=0.

T (o8

The numerical calculations for these relatigag,12 reveal

that £€* is close to¢ at intermediate couplings as well.
Following the heart point of the renormalization group

theory, in the continuum limit thermodynamic gquantities

should be asymmetry independent, since asymmetry is a fea- k. —0, (2.33

ture of the regularizations only. Such a dependence can be

absorbed into thé\ parameter which becomes a function of

&*. The procedure of the corresponding renormalization k,—0, (2.3b

group equations’ construction on an asymmetric lattice has

been carried out ifi10-14. However, this procedure works

in the approximation where the links variables are close to Ky, (2.309

fixed elements of the gauge grogghe “naive” limit is an

example of such an approximatjohe center elements are

also fixed in this approximation. The approximation K. (2.39

SU(N)=Z(N) “enlarges” on the approximation dfl0—14

in a sense. Certainly, in our approach thermodynamic quan- o

tites should also be asymmetry independent in the conln all of the above cases our original system reduces to the

tinuum limit. On the other hand, we should ensure that anyvell-known Ising (Potty model, so the critical values of

model [in particular, SUN)=Z(N)] should be properly these coupling constants can be found easily.

Let us first analyze the limiting cases:

transformed in the “naive” limit into continuous field I_n”the casg2.33 we may naturally disregard the “mag-
theory. In order to provide this requiremert,, «,, are cho-  Netic” part of action. As is kn_own, at finite temperature an
sen in precisely the same way ag[ii0—14. additional symmetry which arises due to periodic boundary

This paper is organized as follows. Section Il deals withconditionsoy ., = o -+ ., leads to the appearance of new
the properties of thermodynamic quantities in the limitinginvariants—the Polyakov |oop@XEH'T“g)lg;’T;o, and does
cases when one of the coupling constants is close to thgot permit us to fix the Hamiltonian gaugs; ,.o=1 along

physical border. In Sec. Ill we suggest an expression for théne whole temporal axis. The common way to fix the gauge
effective action which takes into account the contributions ofi this case is

the spacelike part. This allows us to investigate the model

under consideration not only at the physical border but a bit

far from it as well. In Sec. IV. we study the behavior of the Oxr0=1+ 52[9;— 1]. (2.4
Wilson and 't Hooft loops average values in each of the

coupling areas considered before. Section V contains our

conclusions. The “electric” part of action can be rewritten as
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N,—1 dimensional Ising model. For our original theory it results in
Sf=k,> | 2 Rel- %, 00y 1110 a singularity aty°= yi’NT (the transition of the second order
=0 ’ ’ .
xn For theZ(3) gauge theory we get the Potts model action
with the coupling

+Re(1— Q5050 ) +c.c. (2.5

* * )
x+n0x,1;n

Y(k)=t(k);  yidk)=t(k,), 2.8
By using the simple relation for th&(2) andZ(3) gauge '
theories 1342

0= e e

ex (o+0*)2_ ef(K)

o+o*
1+7(K)( 5 ”, (2.6

We can relate the critical coupling value for our original
o . . theory (the transition of the first ordgto the corresponding
it is easy to sum over all the configuratiénfo,.o} thus  critical constant of the three-dimensional Potts model

obtaining the effective action xo=0.3664:
o R c_ 1IN, =t 29
S= KTZ Re[1-Q;Q~, ++const-c.c., 2.7 Yi= Ve Ye=tKe). 2.9
X,n

In the other limiting casd2.3b the “electric” part of
vk =[v.(k) ]V action may be ignored. Since the partition function is split
into N, equivalent independent contributions, each of which
results from the plaguettes located in three-dimensional lay-
ers (r=const), we obtain the set of three-dimensional Weg-
ner models:

For theZ(2) theory[y.(x,)=thk.; y.(k.,)=thk,] we
get the expression for the Ising model action with the accu
racy up to a constant. The partition function with acti@rv)
is found to be singular ar7<'§= k., Where k.=arth(y,)
=0.2217 is the critical coupling constant of the three- Srecons= Ko 2 REL=05n05snm0 ey T )

X;nm (2.10

‘Expansion of any functiorf(o), where o e Z(N), in a Taylor
series contains only a finite number of terms. E(2) theory even
powers in this expansion are grouped irk¢chdd powers yield sk,
thus y(k) =thx ande’®=e" ™ Forz(3) theory

There is no interaction between the layers, so summing over
o5 ~n May be done independently for every const layer.

It is more convenient to make the calculations on the dual
lattice where the original set of three-dimensional Wegner

oto :[ 1 _ models is transformed into the set of three-dimensional Ising
2 -1/2 (Potty models with spins in the dual sites. New couplings
Then are connected with the old ones by the relations
R er ot+o*
erl7re >/2:[eK/2:a+b 5 - 1—v, _ ~
where y0=1+—%, v.=thk,, 7vy,=thk, for Z(2) theory,
1+ 2e—3K/2 Z(l_e—SKIZ)
a= —, b= - - 2=, ~ _
By analogy forZ(4) theory we have Yo
o (2.11
2 oto* o+o*\2 ] ) )
g or)2=¢ 1 =a+b +tol—— /. These IsingPotty models are identical, and hence they ex-
e hibit the transition at_y',,z v. Simultaneously. Therefore, for
wherea=1, b=shx, c=chxk—1. the original Z(2) gauge theory there is a singularity at

2The first term of the action(2.5) corresponds to the Yo=(1—y)/(1+y.) [for Z(3) at yS=(2— yc)/(1+ vo) 13
partition function of one-dimensional chain of spins along the Before considering the rest of the limiting cas@s39
temporal ~ direction, X, .on -1 o e rr1=eNA ()1 and (2.3d), it is worthy to note that under duality transfor-
+’)/NT(KT)0'OO'NT_1]. Here both Eq.(2.6) and the relation>,, mations the four-dimensional theof®.1) transforms into it-
x(or)jzéjz" have been taken into account. The structuresself, with new couplinggsee Appendix A TheZ(2) group
0,.10,0,0,.1=0,_10,,1 appear in the product when run- couplings transform as
ning overr. In the corresponding product @f(3) theory the fol-
lowing structures appear: o, ,0.0,0,.,=0, 10,,,; and
) 10,0,0:,,=0r_10.0,,,. In this case the relaton 3we considery, and y, independent, temporarily ignoring the
2{UT}((TT)"= éfk is used. Finally, after summing over the spin con- dependence aj,(g,) ona,(a,) through the renormalization group
figurations of first and last sites only the Polyakov loops will sur-relations, i.e., supposing that by varyiag anda,, we can get to
vive in the partition function. any point of the square @vy,<1; 0<y,<1).
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Loy struct the effective action taking into account the “electric”
Yr 142777 or “magnetic” contributions which have been neglected pre-
viously, considering them as perturbations. After defining

(A)EEE{U}Ae‘SE the partition function can be rewritten as

d

o]

Z=(e‘5H>EE<exp( Ko 2 onm+con59> => Zz,

£ r=0
3.1

x

r 3

o
ZrE_l 2

r: n,m=

; <0-|r’1m>Ev

1

‘ where 0,m=Re{0y.nOxinmOxsmnTxmt IS the spacelike
. plaquette variable.
o — — R The zero-order term of the expansi@y=(1)c corre-

| sponds to the case, =0 already considered. It is easy to see
[s that the first-order term

3
_ 8t
ﬁ ’ Z1=K, E 2 <0'nm>E
nm=1 x

FIG. 1. Pointsa-d andb-c are dual symmetric by pairs.

»
|
|
|
|
|
|
——I————io Ye
|

is equal to 0. This can be explained by the following consid-

, 1-v, L 1-v, erations:2,,0,.,=0 and every spir,., ent_erScrnm only
Yoo Yo S 1q Y Yi T Ty, once. On the other hand, structures contairigg.., can be
T 7 constructed out of plaquettes froen S
Yo=thk,, 7y, =thk]. (2.12 N.-1
—Se_ . *
For theZ(3) gauge group we have € E_g 71;[0 (14705705 s 10 CCH
2=, 27 .
Yo Yo 11 v, Ve ¥r =11 v, X(1+ 7 AQx050025 1051t CCH [ (3.2
— r__ !
Yo=tks),  Ve=tky). (2.13 These structures survive after the summation over spins at

g# 7',7'+1 only as one-dimensional chaif@ong7) in the

For this dual representation we may examine again the twi i
ollowing form:

limiting cases §,—0 and y,—0) in precisely the same
way as it has been done for our original theory. Following
Egs.(2.12 and(2.13, these correspond to the limitg,— 1
andy,—1 on the original lattice. We find singularities of the
partition function on the original lattice at

N * *
[1+ 'yTT{Q;(U;(,T’;ﬂQQJrnU;,T’+1;n+ c.c}].
However, none of ther,,, containoy .»., and oy ,+4 1., Si-
multaneously, thereforéo,, g is equal to zero.

The second-order contribution

Z(2) gauge system Z(3) gauge system
Vo1 Yi="%e Yo—1 Ye= e K2 2
_ 2
o AN, Z=5y E 2 (Tame
1_,},1/'\‘7 c Ye 2 pmz1 X
Cc [ —

y—1 Yoo TN Yl Ty ?’i/NT

1+7 in the expansior3.1) consists of plaquettes,,, having the

. . . . same spatial coordinates and positioned at different peints
where vy, . is a function ofk, . in accordance W|th_Eqs. and 7+ A along the temporal axiésee Fig. 2 Correspond-
(2.8) and(2.17) for the Z(2) andZ(3) groups, respectively. ing one-dimensional chains
We may depict all these critical points in the pldne.; v, ]

see Fig. _ Ar
( 9-1 jA=[1+’VT{(TX,T;nU;’T+A;n+C'C'}]

[ll. CONSTRUCTION OF THE EFFECTIVE ACTION and

In order to investigate our model phase structure not only NA .,
in the limiting cases but also at some distance from the sin- Ta=[1+y,7 H{ Q0% 25, 105 x0T C-CH]

gularity points, as well as in order to estimate the phase
structure of the theory under consideration in the whole arealong the plaguettes mentioned above give nonzero contribu-
of couplings(square G y,<1 and O<y,<1), let us con- tions to the partition function
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__ = _73
t Bl Yr 77’

B2=272,

|
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|
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=
3

a;=27"""(N,—1).

W . consists of Ising-type term&i;.  contains both

T Ising-type termgbetween the diagonal neighbors howegver
and four-interaction terms. Using precisely the same method
as in[15] we can replace all spinQy; with “average spins”

FIG. 2. "Ladder” of plaquettesoy, having the same spatial () _(1\ysN -, The partition function which includes
coordinates and positioned at different poimtalong the temporal the first noxn_trivial contribution overy, in addition to the

axs. “electric” part of action has the following form:
yz 3 N,—1
Z=5 2 2 2 onn(mHA)oan(D)(Ta+ Th). 3 , \
nm=1"x A=1 ZIZ eyTQZNmy”[(c1+cz)92+c294]Nd(d—1>+0(«/”)—c(n)N,
(3.3 (o)
Summing overA we get
N=N3N,. (3.5
2
Vo / 1 The first term of the exponential power in E®.5 comes
=— + -+ - . , . )
22=5 ;?m [Cot CaWy T CaWiioml. @4 from the “electric” part of the action; the second one is the

contribution from the “magnetic” part. Appendix B presents
where the calculation of the “Jacobian” of transformatiat(®)N

to new variables—"average spins.” In the area considered

(y,—0), the value ofQ) is close to 0, sd)* contributions

*

W)%;nm: QiQ§+n+Qi+nQ§+n+m+ QiinemQs can be omitted in practice. The sing_ularity Iin_e starting at the
. point a has been calculated numericalsee Fig. 3. Using
+ Q5 mdy, the same technique for the other three cases, we have calcu-
lated and drawn lines starting from the poibtsl, thus split-
A O O TG X O N0 G 3 0 5 0 S AR 0 S ;t:]nlg:i;he‘lplanq Y- Ys] into four areas, shown schematically

and the coefficients have been obtained after lengthy calcu-
lation IV. STUDYING THE WHOLE PHASE PLANE [v,:7.]

We offer some suggestions concerning the phase structure
Co=aoBo+ 4ay B+ 3asB,, in the whole area of coupli_ng constan_ts and try to clarify the
nature of the phases previously obtained. In the ease0
the four-dimensional system transforms into the set of inde-
— endent three-dimensional subsystems witit; as alread
C1=aofrt arfot 3(afot azBy), Ewentioned. The probe sourcémg potential b]etween theym
has been calculated on the dual lattice, see Appendix C
correspond to the magnetic charges placed inside the cubes
of the original lattice.
The contribution from the spacelike cube plaquettes can
~ be associated with the magnetic field flux through the cube
Bo=1+1v;, surface,

Co=agBrt azBotdaifi+2a58;,
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! /
C-k
T
R
Yo
FIG. 5. If the Wilson loopC* in the plan€[t;x] is intersected
FIG. 3. Singularity lines leaving the poirg at differentN, with the planet=t;, then the loop will pierce the plare;y] at
(solid lineg. Lines k .«,=const at differeng (dashed lines two points(monopole—antimonopole

of the four-dimensional dual lattice is intersected with the
(4.1 planet=t;, then the loop will piercésee Fig. $ the plane
[z;y] at two points (monopole-antimonopole The Dirac
1 string which ties them together is in the plaret; (see Fig.
Bk:szmrfmn’ 6) [16]. If the potential between probe sources in each plane
increases linearly witlR (in the region of couplingy,< y5),

and is not equal to zero when the probe source is placed iWe” the Wilson loop average vaﬁ(eE)=HtT:1<exoexR> will

the corresponding dual site. In other words, the probe sourcdecrease exponentially according to the “area law.” The av-
of “electric” charge e, in the site of the dual lattice corre- €rage value of the corresponding 't Hooft logM) must
sponds to the monopolé&magnetic’ chargem,) on the behave in the same way in the regigp> v, :

original lattice.

11 D(,zexp< consiX >, B-n

cube cube

) It is known that if the Wilson loopC* in the plangt;x]

T T
Lo/ < M >originaI: t];'[l <mxov me> = <E>duaI: t];[l <ex0exR> ~@ AR

%

L7

. 4.2

It is obvious that the parameters areg éndvy,) is split into
I four sectors(Fig. 4) with different behavior of the Wilson
— and 't Hooft loops average values.

| v o L v>7 ve<vy (B)~e 't (M)~e @Le
. N I v>y ve>ve (B)~e e (My~eMic
54
|
|
|
|

#
hd
|
|
I
|
I
|

b — N y,<ye 7<yy (E)~e™c (M)y~e e

IV 7T< ‘y(;' y(r> ')’::, <E>~e_}\zc <M>~e_)\,zcr

This picture covers all four types of possible behavior of the

i Yo averages under consideration which were found by G.

e 't Hooft [17] from the commutation relations analysis. It
FIG. 4. Four areas in the plafey,:y,]: |, deconfinement of S€emS impossible to “see” all four phases on a lattice with

electric and magnetic charges; Il, magnetic confinement, electriixed asymmetry k.=consk,) including the symmetric

deconfinement; I, electric confinement, magnetic deconfinement;

IV, electric confinement, magnetic confinement; V, the area we

cannot investigate analytically. “The contributions of all planes are independent.
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L e
/1 < // v
e rn |
t=t;
z
// // ,// ,/’/
PR PR . . B ‘
- - - FIG. 8. Six plaquettes which adjoin the linkv.
lowing form [11,14] [and result from Eq(1.7)]:

FIG. 6. Dirac string is in the plane=t; .

Ks=7=2

i2+a2+0<§—2>),
g

one. Our results are also in good agreement Wit in the M
areas studied on the symmetric lattit@e y,=vy,).
4 1
V. CONCLUSIONS AND DISCUSSION K,=¢& E-f—a?-f— 2—§+O(§‘2)). (5.2

Until now we regarded the couplings,(y,) as indepen-
dent. However, the underlying constamts(g,) depend on At a giveng® we get in the plan¢x, ;] the curve
the lattice spacings through the renormalization group rela-
tions. This dependence may make some areas of the square ( l) 4 N 0)

K K,=| ST«
T o g2 T

(0=vy,=<1, 0=<y,<1) inaccessible. To find the exact bor- )
ders of the accessible area we should construct the renormal-
ization group relations on an asymmetric lattice and SUbStiWhiCh is nearly the same as the “classical” curve
tute g2(g?) int20 ygz( v.). It should be noted that in the Ii2mit k..~ (2N/g?)? in the regiong>1, g?<1 we are interested
(a,,—0), g5=g7=g°<1 [10], where g=Vg9.9,.9; in. Changingé we can get to any point of this curve. As it is
=g°+0(g%), g?=g*+0(g*). So, «,k,=4N%g*>1  shown in Fig. 3, only at very bitl, (N,>100) and smalf?
(shaded region at Fig)7Say, atk,—0; x,—~= as 1§k,  the curve(5.2) may cross the critical curve,=»(y,).
andé— as 14°«, . This makes the accessible parametersyeak dependence of thermodynamic quantities @mound
area narrower. Moreover, At,— oo the pointsa andd move y.= y(a)(y ) was pointed out iff14]. The dependence of
to the point ¢/,=1; y,=0) (see Fig. J. T
If £>1 the relations between,(«,) and ¢ have the fol-

4
—+a

Ztel 62

Kr

S LUNE
Loyl 7

144277

I *

0.44 —

Ve

0.44 Ko

Lo7e Yo
FIG. 9. In the plan€] «,;«,] there is the self-duality line.
FIG. 7. Shaded region correspondsipc,>1. At N,—x the k.=0.44 is the critical coupling value for the four-dimensional
pointsa andd move to the point {.=1; v,=0). Z(2) pure gauge theory.



57 LATTICE ASYMMETRY IN FINITE TEMPERATURE . .. 119

y(f) on N, is getting weaker with increasing, , whichisan  “naive” limit, we chosex, «, in precisely the same way as
indirect confirmation of the weak dependenceéoiClose to  in [10,11,14. So, we suggest that lattice gauge theories need
the critical curvey.= 7(Td)(70) at k,~—Iny/2N, we get a an additional condition which fixes.

condition oné for the curve(5.2) to cross the critical curve: ~ There are reasons to hope that the estimates for tig)SU
£=(1/x,)(4lg%+ a®)=(N,/g?)const. With increasingy, and SU3) gauge groups will be similar to those obtained in
[as well as with decreasirg,(a,)] the phase border cross- (€ current paper, at least within approximations 3 In

ing will be at ever greatet. It increases the expansion reli- f[he future we Wi_II ta!<e the correction_s to our appro_ximati(_)n
ability (5.1) for «(«,) into account. This will allow us to clarify the picture in detail
. Axg).

The parameteé=k./k, is usually chosen arbitrarily for the SU2) and SU3) groups.
(Enamii=2 and ég,c=1). So, if this parameter is not re-
stricted with an additional condition then by changing it we APPENDIX A: DUALITY TRANSFORMATIONS
may reach any point of the curve,«,=const at any small IN FOUR DIMENSIONS

g’, thereby crossing at least one line between phésesd When considering the duality transformation in four-
IV). This confirms that the thermodynamic quantities dependjimensional space-time it should be pointed out that space-

on £ and, moreover, the discontinuity over this parameter igjke plaquettes transform into timelike ones. In other words,
possible for some of them. It is commonly believed that

changing the parametérshould not result in any observable , 1=y,

effects. An attempt to exclude the undesirable dependence of K=" zInthi, or y,=7— ¥ (A1)
thermodynamic quantities ahis in contradiction either with T

renormalization group relationsl0,11,14 or with restric-  and vice versax .= —1/2Inthxk,, .

tions on the coupling constants imposed by EQ5). To This statement becomes clear from the following. Let us
keep the independence of the observed quantitieSiarthe  rewrite the partition function of th&(2) system in the form

zZ=2, exp(E KMDX,W>=E [T che,, (1+0, the,, )=~ > TT > (O thk,,) Gt D2
{o} 1

X, v {og} X,uv {o} X,uv q==%
:e7f2 H (elnth",uv)(qx,p,ﬁl)/zl_[ E (U)Q:e7f2 H (elnth"pv)(qx,uﬁl)/zﬂ 252(Q), (A2)
{a} X.uv links o=%*1 {q} X,uv links
[
where 3
E qx,;/,v:2mod4- (A3)

u=—3uF*tv

* *
|:Ix,,u.V: O3, uOx+ pw;v0x+ v, uTx;v0 ) . . )
The solution of last equation can be found if we associate
everyqy ,, with one of the cube planes and
3

+ 1 * *
Q= 2 qX'L, Ox, v = Sx; pSx+p; A Sx+n;pSxi\ 1
u=—3u*F*tv 2
vEUFPFN, (A4)
—f= NTN(?}E Inchic,,, . where the dual link \_/arif'i_blex;p is_an ele_ment of thQ(Z)
wv group. It becomes intuitively evident, if we consider the

starting case when alf are equal to 1. This dictates that
We introduce a new set of variabldg}—one for each 2 ,x+,0x ., Must be equal to §4s= 2mods- Every link en-
plaquette. This partition function is not equal to zero only ifters the solution twicébecause the plaquettes form a cube
Oy, Satisfies the following condition on the sum over six and Cshanglng the sign of a link to opposite results in chang-
Ox,.» [associated with six plaquettes which adjoin the linking =), _ 3.+« ,Ox,u» only by =4.

x;v (see Fig. §]: Consequently, in the planex,;«,] there is the self-
duality line (see Fig. 9. Balian, Drouffe, and Itzyksof4]
1 3 pointed out the possibility of the critical behavior at
> 772 (O, oo+ 1) = Opmodz k.=0.44 for the fou_r-dlmen5|oqaZ(2)_ pure gauge the_zory
p==3ipn**v on a symmetric lattice supposing this critical point is the
only one.

or By analogy this can be shown for tiZ€3) gauge theory
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Oy ot 05 s I o o
=3 o 3w, T oS T |1yt | e P
{o} X, v 2 {o} X,uv 2
_f ( )(DX,,U-VJ’_D;JJ,V) [(qx"‘”+q;-#v)+l]/3
=e YK ) ———
{7 %iv fadzan | © " 2
* 0'+0'* Q
=e7f2 H (elny(Kﬂ”))[(quMV+qX,,LLV)+l]/3H 2 — 7f2 H (elny(KMV )[qX;LV+qX;Lu)+l]/3H 35 (Q
{q} X.uv links {ceZ(3)} 2 {a} x,uv links
where
I:|X,uv O-X,uo-x-%—,uv x+vuo-;v’
3
(Ox ot 05 ) +1
Q: E M 3 [ ,
p=—3uF*v
26731( 12

—f=N,N3D | ,
v e Kuv
1_673KW,/2
K,)=2—— .
V) = o e

If gy ., iS the same as in E4A4), buts,., is now an element of th&(3) group, ther, ,, is the solution of the equation:
%Ei:—3,,u,¢iv[(qx,,uv+q;,,u,y)+1]:0m0d3'

APPENDIX B: “JACOBIAN” OF TRANSFORMATION TO COLLECTIVE VARIABLES: “AVERAGE SPINS”

The quasiaverage for a dynamical quanfitg,) is defined as

o 3
T de)

The conventional expectation value in statistical mechanics will then be

(f(s))= f (f(s))sds. (B2)

(f(s0)s=

We should replace all spins with “average spins”

s= Nz Sy. (B3)

In this Appendix we compute the “JacobiaréﬁN:E(s_)zTr{S}é(a\l—E)'(“:lsX) of the transformation to the new vari-
abless. For theZ(2) theory we have

I

N N
:f g‘ﬁ —isNg+NL_ J' d¢ —.Ns¢>[e |¢+el¢]N_z (k)f d¢e—|N¢ l+s)e2|¢k_2 (t‘)éN(Prs)
gl T _ _

27 K=o 72T k=0
N!
= _ — , (B4)
{N[(1+ s)/2]}"{N[(1— s)/2]}!
and taking into account thatMi~NInN—N for £ we get
-t _2)+s_| 1-s (B5)
=—=In(1-s =In—=
2 2 1+s

By analogy we proceed with the “Jacobian” for tizg3) theory. For an element of tH&3) group we have
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1B
Z:Zl+|22:§Sl+I7SZY
(B6)
(SllSZ)z{(zvo)y (_111)! (_1!_1)}1
N N
e N T N B e
{S1x Sy} x=1 x=1 —7 (2m)?
= fﬂ mm_(wz)zefinl?ﬁqsz?z)ezwlN[lJre—3i¢1(ei¢2+e—i¢2)]N. (B7)
—m (27)
In view of
n o n
(a+b)"=> a“Jbl(.)
j=0 J
we get
S (N [ dgade T
E=2 (k)f 1 22e—iNd>1(sl—2)—iNsz¢Ze—3ik¢l(ei¢2+e—i¢2)k
k=0 -7 (21)
N N 2-s, _
= 2_8—1 fﬂ %e—m?ﬂsz(ei(@re—i¢2)N(2—?1)/3: 2_5—1 E N 3 5Ng—sl)/3—2m
,71.27T N m NSZ
3 3 m
2-s;
N
_ N 3 N!
= 2—s - = — —— ——— ,
N 3 ! 2— S1_S» {N[(1+ s3]} {N[(2—s1—35)/6]} ' {N[(2— s, +3s,)/6]}!
6 2
(B8)
or
2 2 1-2,-7,3 1-2z;-2,\3 1-2z;+2,Y3 1—2z,+2,\3
L=7(1-zp)Inz(1-27)+ 13 2\/—In 13 2J—+ 13 2J—|. 13 N—. (B9)

APPENDIX C: POTENTIAL BETWEEN TWO PROBE SOURCES

We would like to estimate the connected correlation functiego, . ) for the Ising model with different couplings in each
direction within the spherical model. The crucial point is the following condition:

1 2
e L €y
Then

ct+ie do

1
Z= f —.ex;{ aNf’,—ag 0')2(-#- E; Ln0xOxan |, (C2

& Je—iw 2mi
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where{,,= ki, and the constantis chosen to ensure the correctness of interchanging the integration and summation order.
It means that is a line to the right of alke-singularities.
We can rewrite the partition function as

Z=f%e“’\‘i§x e (W20 A oy ©3
where
3 3 d3¢
-Axfx’:aéir_z §n5§+n:f (Q—E gncosd’n>ei¢(x_xr> - (C4
n=1 n=1 (27T)3

The correlation functioqo,o, . g) can be calculated as the derivative of the generation function over source variables,
(oyOyir) ={000 )=Eii de, NG~ (12 Ay ooy + 10 (C5)
XY x+R 0YR 2&770 0777R = ’
and after shifting integration variables we have
e—ijsfz a3
53 120co8hy (2m)3

Jd d
dfo Jdr

(0xOx+R)= fdae(lm)nxA;—lx’nx’:Aﬁl:f — J' dtefaotlRl(t§1)|R2(t§z)|R3(t§3),
(e 74) 0
(C6)

wherel Rn(tg“n) is the modified Bessel function of ordB,; « is the saddle point which is determined by the condition

d*4 oo
Jao—Eﬁ_lgnco&bn_<Uo>_l' (€

At R,—0 the correlation function will be

3 o
<0'x0'x+R>:eXp{ - \/2( ap— z gn) 2 2 ] ) (C8)
n=1 n=1 ané’n
whereR,=r,/a,.

It is easily seen that the asymmetry dependence evideliféerent behavior of the potential between two probe sources in
different directionsn) does not disappear even in the vicinity of the critical poia§€=,-,3¢,).
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