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Electromagnetic fields in Schwarzschild and Reissner-Nordstm geometry:
Quantum corrections to the black hole entropy
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Using standard coordinates, the Maxwell equations in Reissner-Nardggometry are written in terms of
a couple of scalar fields satisfying Klein-Gordon-like equations. The density of states is derived in the semi-
classical approximation and the first quantum correction to black hole entropy is computed by using the
brick-wall model.[S0556-282(197)06124-9

PACS numbdss): 04.70.Dy, 04.62+v, 11.10.Wx

[. INTRODUCTION the Maxwell equations and then compute the contribution to
the black hole entropy by using the brick wall model. All
In the last decade, much effort has been made in order teesults are valid for the Schwarzschild black hole in the

understand the deep origin of black hole entrgpy-4] first  trivial limit of vanishing charge.
introduced by Bekensteiis—7] (for a recent review see Ref. ~ Here we do not expect anomalous terms similar to those
[8]), but widely embraced only after Hawking’s demonstra-Which one has in the Rindler caf25-27, since, according
tion of black hole thermal radiatiofp—11]. Some possible o the brick wall method, we consider the system outside the
interpretations and methods of calculation have been prd?0rizon, while the possible anomalous surface terms are lo-
posed, but, at the moment, none of them seems to be the trG&/1zed on the horizon itself. The analysis of anomalous con-
answer[2,12—16. Here we recall the 't Hooft proposal tributions, V\_/hlch require more sophisticated techniques, is
[2,17], in which the black hole entropy is identified with the out of the aim of the present paper.

entropy of the quantum fields surrounding the black hol Maxwell ~equations in Schwarzschild, Reissner-
. by, q . 9 . eNordstr"(m, and also Kerr metric are usually solved by using
itself. Since the density of states approaching the horiz

ony .
. . o . ewman-Penrose formalisfaee, for example, Refi28] and
diverges, in order to avoid divergences in the entropy, he haﬁef. [29] for a complete treatment of sc?lutions in such a

to introduce a cutoff parameter of the order of the PI"’"']Ckformalisn‘b, which is not familiar to many readers. For this

length, which is interpreted as the position of a “brick wall” yoa50n here we prefer to use a more conventional method,

(the brick wall model. He also computed the contribution to \hich consists in solving Maxwell equations for the electro-

the entropy of a Schwarzschild black hole due to a scalamagnetic potential in standard coordinates in a suitable

field using a semiclassical approximation. After this, quan-gauge.

tum corrections to the Bekenstein-Hawking entropy, due to a The paper is organized as follows. In Sec. Il we consider

scalar field, have been computed by different methods fothe Maxwell equations for the electromagnetic potential in

Schwarzschild[18,19 Reissner-Nordstra [20-23, and the Reissner-Nordstno background and show that they re-

also for Kerr-Newmarj24] black holes(for a recent review duce to a couple of independent scalar fields, which we solve

on quantum corrections to black hole entropy see, for exin the semiclassical approximation, following 't Hooft's

ample, Ref[19]). original work [2,17]. In this way we easily derive the ex-
Also in the case of scalar fields, due to technical difficul-pected contribution to the Bekenstein-Hawking entropy in

ties, one has to make some suitable approximation. Somsec. Ill.

authors directly consider the Rindler space, which can be As usual we use natural units in whi@=#A=c=k=1.

considered as an approximation of the Schwarzschild case

for very large mass. In the Rindler space, the contribution to

the entropy due to scalar and also higher spin fields havd: ELECTROMAGNETIC FIELDS IN SCHWARZSCHILD

been considered in Ref®25—27, where in particular it has AND REISSNER-NORDSTROM BLACK HOLES

been shown that, depending on the method of calculation Here we study the electromagnetic waves in the Reissner-
used, the contribution of the electromagnetic field is not jusiyordstran background(the solutions in the Schwarzschild
twice the scalar one, but it contains some unexpected anomgeometry will be obtained as a limiting case r0), that

lous surface terms. _ is the nonstatic solutions of the equations
In the present paper we focus our attention on the electro-

magnetic field in Reissner-Nordstmobackground. We solve o
¢ g V.Fi=0, i,j=0,...,3, 1)

*Electronic address: cognola@science.unitn.it in the metricg;; given by
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2M  Q? 2M  Q*\ 7! 22(1+22) 2gt

_ 2 2 g i

ds’=— ( 1=+ z|dt+|1-——+ 7| dr LAy= — ——7——d3Azt ——(91A2= 02A1) + 32V |A,
+r2do?, @ (D

F'I being the electromagnetic field strength, the covariant 22(1+z7) 291t J.

derivative,M and Q the mass and the charge of the black LAs=~ —— 2z dsAst ——(91A3= d3A1) + IzV;A'.
hole, respectively, and finallgo? is the metric on the unit (12)

sphere, which is usually written in polar coordinafelse},

but for our purposes thomplex stereographic coordinates |, order to select the physical degrees of freedom, now we

are more convenient. Then we write

4
do?=d9?+sir? ddp’=——d

zdz, (3
(1+z22)?
where
_sin de'e — sin Je i .
=1 coso’ % 1-cosv’ @)

In such coordinates the nonvanishing components of the

metric read
2M  Q?
Go0=01= 1_T+ ;
2M QZ -1
911=0rr 1—T+r—2 ;
L L———— ®
923=0;; (1_'_27)2 032=0;;.

In terms of the electromagnetic potentid), Egs. (1)
become

fix the gaugeA,=0. In this way Eq.9) gives the constraint

) M QZ grr o
VjAJ - 2( 2o r_3) A1=r—2a,(r2A,) + 9% %9, A7+ d7A,)
=0, (13
while Egs.(10)—(12) simplify to
2 rr
LAr=—r—26,(rg A, (14
2z(1+z2) 29"
( L+ 2z Z)AZ: TarAz
2 3M  2Q?
|\t ] A
(19
22(1+22) 29"
( r2 z) ?TarAz_
2 3M  2Q?
P i s o LY
(16)

and finally, after some calculations we can put them in the

more useful form

LA=A;a I+ 29" T 96A + 3, VAL, )

wherel''=g"*T'l, O=g"V,V; is the Dalembertian’s opera-

It has to be noted that for any functioﬁ(t,r,z,z_) one has

22(1422)
Lt =0z | dp=0.L v,

tor, while L represents the Dalembert’'s operator acting on

functions, that is

1 -
L=——=d\[glg"4. ®)
Vgl J
From Eq.(7), after straightforward calculations we get
Q? i
LAOZ -2 F_ r_3 (50A1—31A0)+30VJ—A', (9)
2 002 2 2M
LA1==2| 7~ 13 |[d1A1— (9 ‘) doPolt 2| 1— ——|A1
g23 ]
+ T(ﬂ2A3+ (93A2)+(91VjA], (10

( 2z_(1+z7)>
L+ ——7——0;| dy=a7t .

This means that the variables can be easily separated by put-
ting A,=d,, A7= = d7 (note that in principle one could
choose two different functiong, but this is unnecessary,
since only the sum enters the other equatioN®w, one can
directly verify that two classes of independent eigenfunctions
A=(A; A A, A7) of Egs. (14—(16), satisfying the con-
straint, Eq.(13), can be put in the form

1 -1
D= 9 — 5=
A (O’O’\/2|(|+1)w&2 ’\/2|(|+1)waz ’
17
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A®=|0,1/ Id+1) g 3,09, D g 359, D (18
VTN 208 I R0+ O 200+ ) e C )]
|
where®(t,r,z, z)=e " '“'f(r)YM(z,z) is a scalar field sat- 1 s
isfying the equation v(B)=— : (21+1)n
29" R
Oe=——a®. (19 => (2|+1)f VEZ=V,(r)g,,dr
| rte
In the tortoise coordinate 1 (r2e2/g" +1/a R g” 1
~—f d)\f E2——2()\——)g,,dr,
3— r2_ ™ Jo rhte r 4
*: —_— —_— —
r*=r+ r+_Lln(r ry) r+—r,|n(r ro), (25
r-=M=yM°-Q% where we have put=7#2(1 + 1/2)? and#23,(21 +1)— fdX.

The extreme of integration in the variablés due to the fact

the radial part of the field satisfies the ordinary dlfferentlalthat k(r) has to be positive. The integration Jn can be

equation performed and so
2 5 I(I+1)
ar2te “Vi(r) Jf(r)=0, V\(r*)=—2—g", o (R g |32
V(E)~ 5= E?+ | r2ghdr
(20) 37 fe 4r2 Orr
with the normalization property 2 frh rﬁ . X\ 4 o X 3/2d
BEL A RN B L TE vl B
f If(r*)|2dr* =1. (21) "
2 R=rp 2 M 4
. . . . + =— X1+ —
r . =ry is the radius of the horizon. The above solutions form 3w Ji, X
a set of orthonormal eigenfunctions with respect to the scalar 2o
product[30,3]] 2
X +—
E 4x°(1+rp/x)°3 dx
D Ay =i ij (1) 5 A(2)
(A® A= [ g Ao aiE VES

~ + e, (26)
— 3mwe(r,—r_)> 6w
— oA VAP g7, dzd dr. (22 h

Note that the more general expression for the scalar produgthere in the latter expression only the leading divergences

has been specialized to our particular case. have been written dowkV is the volume of the spherical
box). The derivative ofv(E) in Eq. (26) represents the den-
[ll. ONE-LOOP CONTRIBUTION TO THE ENTROPY sity of states with energi.

) o Now for the partition function one easily gets
The (leading one-loop contribution to the entropy of the

black hole due to the electromagnetic field can be easily (E)
computed using the brick wall meth¢d,17]. The computa- nz=-> In(1—e FEn= fm v dE
tion is parallel to the original one given by 't Hooft. In the Ey ( V=8 o eff-1

WKB approximation, the energy spectrum is given by

w2V 270 @7
~ 3 + 3 > + EERI
§k|(r*)dr*= ﬁg k(r)g,dr=2x#fn, nel, (23 90B° 4% (rp—r-)
where which agrees with a similar expression in Rgf1] and re-

duces to the expression given in Rgf, 17] in the the limit
Q—0, that isr,=2M, r _=0. The first term on the right-
hand side of the latter equation is the usual one proportional
to the volume, while the second is a divergent contribution
Following 't Hooft, we consider the field in the region due to the presence of the horizon and is interpreted as a
r+e<r<R and suppose it to satisfy Dirichlet boundary quantum contribution to the black hole entropy due to the
conditions. Then, the number of eigenstates with energynatter field. Taking into account that we have two indepen-
smaller tharE read dent scalar fields both satisfying EG.9), we finally get

[(1+1)g"

ki(r*)?=w?=V,(r*)=E2- 2 =k(r)% (29
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16m°%r IV. CONCLUSION
=—(Bo—DInZ=——>—" (28 , o .
S~ (Bop=Lin 45 B7(rp—r_) (28) We have written the Maxwell equations in the Reissner-

Nordstan background in terms of a couple of scalar fields

As already anticipated in the Introduction, the leading termsatisfying a Klein-Gordon-like equation. As an application of
in the one-loop contribution to the entropy due to the elecsuch a nice result, E419), we have computed the first quan-
tromagnetic field is exactly twice the one due to the scalatum correction to the black hole entropy due to the electro-
field. In our derivation we do not obtain anomalous terms ofmagnetic field, by using the semiclassical approximation. As
the kind obtained for the Rindler case in Ref85—27. In it was expected, the leading term is exactly twice the one that
any case, as suggested in R&f7], such terms are nonphysi- one has for a scalar field.
cal and have to be discharged_ It is not the aim of the present paper, but of course it
All results of this section have a good limit f@—0 and  Would be interesting to go on in the approximation in order
so they are valid also for the Schwarzschild black hole, withto analyze the possible existence of anomalous surface con-
the simple substitution,=2M, r _=0. tributions similar to those.which one has in the R_indlgr case
At the equilibrium temperatur&,=r,—r_/4mr? the en-  [25-27. Such an analysis is easily performed in Rindler,
tropy reads since in this case one knows the exact solutions of scalar
field equations, while, for Schwarzshild, the solutions of Eq.
(19) are not known exactly and so one has to find some

WMZ-Q7 12 Arfe og  Useful approximation.
ST o0 asl1) 0 o @
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