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Electromagnetic fields in Schwarzschild and Reissner-Nordstro¨m geometry:
Quantum corrections to the black hole entropy
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Using standard coordinates, the Maxwell equations in Reissner-Nordstro¨m geometry are written in terms of
a couple of scalar fields satisfying Klein-Gordon-like equations. The density of states is derived in the semi-
classical approximation and the first quantum correction to black hole entropy is computed by using the
brick-wall model.@S0556-2821~97!06124-9#
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I. INTRODUCTION

In the last decade, much effort has been made in orde
understand the deep origin of black hole entropy@1–4# first
introduced by Bekenstein@5–7# ~for a recent review see Re
@8#!, but widely embraced only after Hawking’s demonstr
tion of black hole thermal radiation@9–11#. Some possible
interpretations and methods of calculation have been
posed, but, at the moment, none of them seems to be the
answer @2,12–16#. Here we recall the ’t Hooft proposa
@2,17#, in which the black hole entropy is identified with th
entropy of the quantum fields surrounding the black h
itself. Since the density of states approaching the hori
diverges, in order to avoid divergences in the entropy, he
to introduce a cutoff parameter of the order of the Plan
length, which is interpreted as the position of a ‘‘brick wal
~the brick wall model!. He also computed the contribution t
the entropy of a Schwarzschild black hole due to a sc
field using a semiclassical approximation. After this, qua
tum corrections to the Bekenstein-Hawking entropy, due t
scalar field, have been computed by different methods
Schwarzschild @18,19# Reissner-Nordstro¨m @20–23#, and
also for Kerr-Newman@24# black holes~for a recent review
on quantum corrections to black hole entropy see, for
ample, Ref.@19#!.

Also in the case of scalar fields, due to technical diffic
ties, one has to make some suitable approximation. S
authors directly consider the Rindler space, which can
considered as an approximation of the Schwarzschild c
for very large mass. In the Rindler space, the contribution
the entropy due to scalar and also higher spin fields h
been considered in Refs.@25–27#, where in particular it has
been shown that, depending on the method of calcula
used, the contribution of the electromagnetic field is not j
twice the scalar one, but it contains some unexpected ano
lous surface terms.

In the present paper we focus our attention on the elec
magnetic field in Reissner-Nordstro¨m background. We solve
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the Maxwell equations and then compute the contribution
the black hole entropy by using the brick wall model. A
results are valid for the Schwarzschild black hole in t
trivial limit of vanishing charge.

Here we do not expect anomalous terms similar to th
which one has in the Rindler case@25–27#, since, according
to the brick wall method, we consider the system outside
horizon, while the possible anomalous surface terms are
calized on the horizon itself. The analysis of anomalous c
tributions, which require more sophisticated techniques
out of the aim of the present paper.

Maxwell equations in Schwarzschild, Reissne
Nordström, and also Kerr metric are usually solved by usi
Newman-Penrose formalism~see, for example, Ref.@28# and
Ref. @29# for a complete treatment of solutions in such
formalism!, which is not familiar to many readers. For th
reason here we prefer to use a more conventional met
which consists in solving Maxwell equations for the electr
magnetic potential in standard coordinates in a suita
gauge.

The paper is organized as follows. In Sec. II we consi
the Maxwell equations for the electromagnetic potential
the Reissner-Nordstro¨m background and show that they r
duce to a couple of independent scalar fields, which we so
in the semiclassical approximation, following ’t Hooft’
original work @2,17#. In this way we easily derive the ex
pected contribution to the Bekenstein-Hawking entropy
Sec. III.

As usual we use natural units in whichG5\5c5k51.

II. ELECTROMAGNETIC FIELDS IN SCHWARZSCHILD
AND REISSNER-NORDSTRÖM BLACK HOLES

Here we study the electromagnetic waves in the Reiss
Nordström background~the solutions in the Schwarzschil
geometry will be obtained as a limiting case forQ→0!, that
is the nonstatic solutions of the equations

¹ iF
i j 50, i , j 50, . . . ,3, ~1!

in the metricgi j given by
1108 © 1997 The American Physical Society
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ds252S 12
2M

r
1

Q2

r 2 Ddt21S 12
2M

r
1

Q2

r 2 D 21

dr2

1r 2ds2, ~2!

Fi j being the electromagnetic field strength,¹k the covariant
derivative,M and Q the mass and the charge of the bla
hole, respectively, and finallyds2 is the metric on the unit
sphere, which is usually written in polar coordinates$q,w%,
but for our purposes the~complex! stereographic coordinate
are more convenient. Then we write

ds25dq21sin2 qdw25
4

~11z z̄!2
dzd z̄, ~3!

where

z5
sin qeiw

12cosq
, z̄5

sin qe2 iw

12cosq
. ~4!

In such coordinates the nonvanishing components of
metric read

g00[gtt52S 12
2M

r
1

Q2

r 2 D ,

g11[grr 52S 12
2M

r
1

Q2

r 2 D 21

,

g23[gz z̄5
2r 2

~11z z̄!2
5g32[g z̄z . ~5!

In terms of the electromagnetic potentialAk , Eqs. ~1!
become

hAk2¹ j¹kA
j5hAk2¹k¹ jA

j2Rk jA
j50 ~6!

and finally, after some calculations we can put them in
more useful form

LAk5Aj]kG
j12grsG rk

j ]sAj1]k¹ jA
j , ~7!

whereG j5grsG rs
j , h5gi j ¹ i¹ j is the Dalembertian’s opera

tor, while L represents the Dalembert’s operator acting
functions, that is

L5
1

Augu
] iAugugi j ] j . ~8!

From Eq.~7!, after straightforward calculations we get

LA0522S M

r 2 2
Q2

r 3 D ~]0A12]1A0!1]0¹ jA
j , ~9!

LA1522S M

r 2 2
Q2

r 3 D @]1A12~g00!2]0A0#1
2

r 2 S 12
2M

r DA1

1
2g23

r
~]2A31]3A2!1]1¹ jA

j , ~10!
e

e

n

LA252
2 z̄~11z z̄!

r 2 ]3A21
2g11

r
~]1A22]2A1!1]2¹ jA

j ,

~11!

LA352
2z~11z z̄!

r 2 ]3A31
2g11

r
~]1A32]3A1!1]3¹ jA

j .

~12!

In order to select the physical degrees of freedom, now
fix the gaugeA050. In this way Eq.~9! gives the constraint

¹ jA
j22S M

r 2 2
Q2

r 3 DA15
grr

r 2 ] r~r 2Ar !1gz z̄~]zA z̄1] z̄Az!

50, ~13!

while Eqs.~10!–~12! simplify to

LAr52
2

r 2 ] r~rgrr Ar !, ~14!

S L1
2 z̄~11z z̄!

r 2 ] z̄ DAz5
2grr

r
] rAz

2
2

r S 12
3M

r
1

2Q2

r 2 D ]zAr ,

~15!

S L1
2z~11z z̄!

r 2 ]zDA z̄5
2grr

r
] rA z̄

2
2

r S 12
3M

r
1

2Q2

r 2 D ] z̄Ar .

~16!

It has to be noted that for any functionc(t,r ,z, z̄ ) one has

S L1
2 z̄~11z z̄!

r 2 ] z̄ D ]zc5]zLc,

S L1
2 z̄~11z z̄!

r 2 ]zD ] z̄c5] z̄Lc.

This means that the variables can be easily separated by
ting Az5]zc, A z̄56] z̄c ~note that in principle one could
choose two different functionsc, but this is unnecessary
since only the sum enters the other equations!. Now, one can
directly verify that two classes of independent eigenfunctio
A[(At ,Ar ,Az ,A z̄) of Eqs. ~14!–~16!, satisfying the con-
straint, Eq.~13!, can be put in the form

A~1![S 0,0,
1

A2l ~ l 11!v
]zF,

21

A2l ~ l 11!v
] z̄F D ,

~17!
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A~2![S 0,Al ~ l 11!

2v3

F

r 2 ,
grr

A2l ~ l 11!v3
]z] rF,

grr

A2l ~ l 11!v3
] z̄] rF D , ~18!
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rm
al

du

e
si

e

n
ry
rg

ces
l
-

nal
ion
s a

the
n-
whereF(t,r ,z, z̄ )5e2 ivt f (r )Yl
m(z, z̄ ) is a scalar field sat-

isfying the equation

hF5
2grr

r
] rF. ~19!

In the tortoise coordinate

r * 5r 1
r 1

2

r 12r 2
ln~r 2r 1!2

r 2
2

r 12r 2
ln~r 2r 2!,

r 65M6AM22Q2,

the radial part of the field satisfies the ordinary different
equation

S d2

dr* 2 1v22Vl~r * ! D f ~r * !50, Vl~r * !5
l ~ l 11!

r 2 grr ,

~20!

with the normalization property

E u f ~r * !u2dr* 51. ~21!

r 15r h is the radius of the horizon. The above solutions fo
a set of orthonormal eigenfunctions with respect to the sc
product@30,31#

~A~1!,A~2!!5 i E gi j ~Ai*
~1!] tAj

~2!

2] tAi*
~1!Aj

~2!!gz z̄grr dzd z̄dr. ~22!

Note that the more general expression for the scalar pro
has been specialized to our particular case.

III. ONE-LOOP CONTRIBUTION TO THE ENTROPY

The ~leading! one-loop contribution to the entropy of th
black hole due to the electromagnetic field can be ea
computed using the brick wall method@2,17#. The computa-
tion is parallel to the original one given by ’t Hooft. In th
WKB approximation, the energy spectrum is given by

R kl~r * !dr* 5 R kl~r !grr dr52p\n, nPN, ~23!

where

kl~r * !25v22Vl~r * !5E22
l ~ l 11!grr

r 2 5kl~r !2. ~24!

Following ’t Hooft, we consider the field in the regio
r h1«,r ,R and suppose it to satisfy Dirichlet bounda
conditions. Then, the number of eigenstates with ene
smaller thanE read
l

ar

ct

ly

y

n~E!5
1

p (
l

~2l 11!n

5(
l

~2l 11!E
r h1«

R
AE22Vl~r !grr dr

;
1

p E
0

r 2E2/grr 11/4
dlE

r h1«

R AE22
grr

r 2 S l2
1

4Dgrr dr,

~25!

where we have putl5\2( l 11/2)2 and\2( l(2l 11)→*dl.
The extreme of integration in the variablel is due to the fact
that kl(r ) has to be positive. The integration inl can be
performed and so

n~E!;
2

3p E
r h1«

R S E21
grr

4r 2D 3/2

r 2grr
2 dr

5
2

3p E
«

r h r h
4

x2 S 11
x

r h
D 4S E21

x

4r h
3~11x/r h!3D 3/2

dx

1
2

3p E
r h

R2r h
x2S 11

r h

x D 4

3S E21
1

4x2~11r h /x!3D 3/2

dx

;
2r h

6E3

3p«~r h2r 2!2 1
VE3

6p
1••• , ~26!

where in the latter expression only the leading divergen
have been written down~V is the volume of the spherica
box!. The derivative ofn(E) in Eq. ~26! represents the den
sity of states with energyE.

Now for the partition function one easily gets

ln Z52(
n

ln~12e2bEn!5bE
0

` n~E!

ebE21
dE

;
p2V

90b3 1
2p3r h

6

45«b3~r h2r 2!2 1••• , ~27!

which agrees with a similar expression in Ref.@21# and re-
duces to the expression given in Refs.@2, 17# in the the limit
Q→0, that isr h52M , r 250. The first term on the right-
hand side of the latter equation is the usual one proportio
to the volume, while the second is a divergent contribut
due to the presence of the horizon and is interpreted a
quantum contribution to the black hole entropy due to
matter field. Taking into account that we have two indepe
dent scalar fields both satisfying Eq.~19!, we finally get
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SRN52~b]b21!ln Z5
16p3r h

6

45«b3~r h2r 2!2 . ~28!

As already anticipated in the Introduction, the leading te
in the one-loop contribution to the entropy due to the el
tromagnetic field is exactly twice the one due to the sca
field. In our derivation we do not obtain anomalous terms
the kind obtained for the Rindler case in Refs.@25–27#. In
any case, as suggested in Ref.@27#, such terms are nonphys
cal and have to be discharged.

All results of this section have a good limit forQ→0 and
so they are valid also for the Schwarzschild black hole, w
the simple substitutionr h52M , r 250.

At the equilibrium temperatureTH5r h2r 2/4pr h
2 the en-

tropy reads

ST5TH
5

AM22Q2

90«
;

1

45S r h

l D 2

, l 25
4r h

2«

r h2r 2
, ~29!

where the cutoff parameter« has been expressed in terms
the proper distancel .
g
nt
o-
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y
i-
-
r
f

h

IV. CONCLUSION

We have written the Maxwell equations in the Reissn
Nordstöm background in terms of a couple of scalar fiel
satisfying a Klein-Gordon-like equation. As an application
such a nice result, Eq.~19!, we have computed the first quan
tum correction to the black hole entropy due to the elect
magnetic field, by using the semiclassical approximation.
it was expected, the leading term is exactly twice the one
one has for a scalar field.

It is not the aim of the present paper, but of course
would be interesting to go on in the approximation in ord
to analyze the possible existence of anomalous surface
tributions similar to those which one has in the Rindler ca
@25–27#. Such an analysis is easily performed in Rindl
since in this case one knows the exact solutions of sc
field equations, while, for Schwarzshild, the solutions of E
~19! are not known exactly and so one has to find so
useful approximation.
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