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Effective gravity and OSp„N,4…-invariant matter
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~Received 7 April 1997; revised manuscript received 15 September 1997; published 19 December 1997!

We reexamine the OSp(N,4)-invariant interacting model of massless chiral and gauge superfields, whose
superconformal invariance was instrumental both in proving the all-order no-renormalization of the mass and
chiral self-interaction Lagrangians and in determining the linear superfield renormalization needed. We show
that the renormalization of the gravitational action modifies only the cosmological term, without affecting
higher-order tensors. This could explain why the effect of the cosmological constant is shadowed by the effects
of Newtonian gravity.@S0556-2821~98!04202-7#

PACS number~s!: 04.65.1e
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I. INTRODUCTION

The introduction of locally supersymmetric theories@1#
was motivated by the wish for a unified description enco
passing the theories of elementary particles and gravity.
resulting supergravity is not renormalizable, but its lar
symmetry provides powerful constraints, such as the van
ing of the lepton anomalous magnetic moment, as requ
by the supersymmetry of the theory@2#. The finiteness of the
fermionic ~and therefore also the bosonic! contribution to it,
which can be traced back to an effective chiral symmetry
the gravitino sector@3#, has been checked in@4,3# and, more
recently in @5#, making use of supersymmetry preservi
regularization schemes.

An introduction to the effective action in quantum gravi
can be found in@6#. The quantum corrections to the low
energy limit of a theory coupling gravity to scalar fields ha
been computed@7#. The equivalence principle has been i
voked, in order to reduce the terms with an arbitrary num
of derivatives in the effective theory@8#. This principle also
constrains the spin-1 and spin-0 partners of the graviton
the N52,8 supergravity multiplets@9,10#.

OSp(N,4)-invariant models in the fixed four-dimension
background of anti–de Sitter (AdS4) space occur as bot
ground state solutions of gauged extended supergravity t
ries ~see@11# and references therein! and vacuum configura
tions for superstrings@12#. The OSp(N,4)-invariant generali-
zation of the Wess-Zumino model@13# is the simplest one
We recall that the Wess-Zumino model with softly brok
supersymmetry in de Sitter space plays a role in the Affle
Dine mechanism@14# for baryogenesis, in contrast to th
maximal symmetry of AdS4 space which grants the existen
of global supersymmetry. This mechanism is effective
supersymmetric grand unified theories, as the quantum
rections do not affect the flat directions in the superpoten
owing to the no-renormalization theorem@15#.

Very recently, the one-loop effective potential along a fl
direction in this model has been calculated@16#. In @17# the
one-loop effective action was computed for scalar QED, t
ing into account the large-scale configurations that cha
the topology. Also, the question of the dynamics of a sup
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string propagating in AdS4 space with the OSp(1,4) supe
symmetry group, deserves further study, within a geome
cal framework, especially in connection with the underlyi
algebraic structure of theW-algebra extension of two
dimensional conformal symmetry~see, e.g.,@18–21#!.

The renormalization procedure for OSp(N,4)-invariant
theories breaks the naturality implied by the n
renormalization theorem and so allowsall classically invari-
ant counterterms to appear in the divergent structure of
quantum effective action@22–34#. This breakdown of the
no-renormalization theorem in AdS4 space forces us to intro
duce a linear superfield in the effective action, for the p
pose of renormalization. However, the corresponding mo
fication of the classical potential does not induce t
breaking of supersymmetry invariance@25,11#. The super-
conformal invariance of the model with interacting chir
and real gauge superfields in AdS4 space, following the line
suggested in Ref.@35#, allowed us to prove to all orders in
the perturbative series the nonrenormalization of the mas
the cubic interaction action@34#.

We organize the present work as follows. We begin
Sec. II with recalling the superfield formulation of the AdS4
interacting model of chiral and gauge superfields. The sup
conformal invariance of the massless model allows us
implement an expansion in the curvature effects, in terms
the interaction vertices of the quantum model. In Sec. III
present the renormalization of the gravitational action, ba
on the use of OSp(N,4) superfield techniques, and propo
some interpretation for the shadowing of the effect of t
cosmological constant by the effects of Newtonian grav
We draw our conclusions in Sec. IV.

II. INTERACTING CHIRAL AND REAL GAUGE
SUPERFIELDS

For the purpose of fixing notation, we briefly recall in th
section a superspace approach@35,33,34# to the
OSp(N,4)-invariant theory of a supergravity multiple
coupled to interacting chiral and real gauge supermultipl

In order to choose AdS4 space as a background space
the matter and gauge model, we set the supergravity pre
tentialH to zero and introduce the background only throu
the compensatorf. Its equation of motion
1057 © 1997 The American Physical Society
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1058 57S. BELLUCCI
D̄2f̄5af2 ~2.1!

can be obtained from the action for supergravity with t
cosmological term

S52
3

k2E d4xd4uE211S a
1

k2E d4xd2uf31H.c.D ,

~2.2!

yielding the solution with a regular behavior at infinity

f5
1

12aāx2/4
2

āu2

~12aāx2/4!2
, ~2.3!

with the inverse determinantE215f̄f. Then, by applying
this solution to the construction of invariant actions of t
general and chiral type, we can formulate different sup
symmetric matter models in the given background. We re
the expression of the covariant derivatives in terms of thef
field

¹̄ȧ5f21f̄1/2D̄ ȧ , ¹a5f̄21f1/2Da . ~2.4!

The theory of interacting chiral (h) and real gauge super
fields is described~in the gauge-chiral representation! by the
action @35#

S~h,h̄ ,V!5E d4xd4uE21h̄ j@exp~V!# j
ih

i

1F E d4xd2uf3W21E d4xd2uf3

3S m
1

2
h21l

1

6
h3D1H.c.G , ~2.5!

with Vj
i 5VA(TA) i

j , and where (TA) i
j is a matrix represen

tation of the generators of the gauge group that leaves
action invariant. This model possesses a partial supercon
mal invariance, which has been exploited@33,34#, in order to
treat perturbatively the effects of the background curvatu
when carrying out the renormalization procedure that yie
its quantum effective action. Allf dependence in the free
field functional integral can be removed by carrying ou
superconformal transformation, in accordance with the
nonical weights of the matter and gauge fields and th
sources:

ĥ5fh, Ŵa5f3/2Wa , Ĵ5f2J, ĴV5ff̄JV .
~2.6!

Hence the quantum model can be described in the most n
ral form in terms of the transformed fields, i.e., defining t
effective action in terms of the fields with carets.

The definition ofŴ in terms of the familiar derivatives in
flat background reads

Ŵa5 iD̄ 2DaV. ~2.7!

The covariantization of this expression in the Yang-Mi
chiral representation
r-
ll

is
r-

e,
s

-
ir

tu-

Wa5 i ~¹̄21a!exp~2V!¹aexp~V! ~2.8!

gives Wa in terms of the background covariant derivativ
~2.4!. After the superconformal transformation, the gaug
fixing procedure can be carried out, along the line of the
background theory. The resulting gauge propagator read~in
the Fermi-Feynman gauge, withj51)

^VV&052
1

p2
d4~u2u8!. ~2.9!

It is worthwhile to notice that, as a consequence of superc
formal invariance, the ghost propagators and vertices of
flat space-time theory, along with the usual flat space-timeD
algebra, remain intact in AdS4 space.

Enforcing the boundary conditions needed, in order
preserve supersymmetry for the scalar and spinor prop
tors in AdS4 @32#, and evaluating the free-field functiona
integral, yields the vacuum expectation values@33#

^Tĥ~x8! ĥ̄ ~0!&5
1

4p2
D̂̄2D2d4~u2u8!

1

~x8!2
,

^Tĥ~x8!ĥ~0!&5
1

16p2
~ uau212uau3u8u!. ~2.10!

From the generating functional one can read the vertex c
tributions involving the fieldĥ. It turns out@33,34# that there
are nof ’s at every such vertex~in D54), with the only
exception of a vertex quadratic inĥ, which appears with a
factor f. The conclusion is that, for our purposes, we c
handle the quantum system ofN51 super-Yang-Mills
coupled to matter scalar superfields in AdS4 space in a way
similar to the corresponding theory in a flat background, w
the only difference of including in the Feynman rules t
additional quadratic vertex

1

2
mf1H.c. ~2.11!

The residual explicitf dependence of the latter reflects th
deviation of the theory from a superconformal one, owing
the introduction of a mass term. A remarkable feature of
above rescaling, which effectively removesf from the su-
perconformal invariant part of the superfield action~with the
caveat of possible anomalous contributions@33#!, is that it
takes automatically into consideration the need to resor
some perturbative approach in the effects of the curvatur
the background space, leading us naturally to introduce
above implicit expansion in the compensatorf.

III. THE RENORMALIZATION OF THE GRAVITATIONAL
ACTION

Here we describe our main result in an attempt to expl
the shadowing of the cosmological constant. We build up
our previous work@33,34# and carry out the renormalizatio
of the gravitational action induced by OSp(N,4)-invariant
matter multiplets in curved space. Here great care is nee
as every sign at each step is crucial.
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57 1059EFFECTIVE GRAVITY AND OSp(N,4)-INVARIANT MATTER
We start by discussing the renormalization of the grav
tional action induced by a matter chiral superfield, throu
the presence of the Feynman diagram in Fig. 1. This yie
the following divergent contribution:

am2
1

eE d4xd4uff̄, ~3.1!

with a.0 in any case. One can doubt about the fact
interpreting this diagram as a renormalization of the p
supergravity action

2
3

k2E d4xd4uff̄, ~3.2!

or the cosmological superspace action

a

k2E d4xd2uf31H.c. ~3.3!

There are clear reasons to support this point of view, wh
goes in the direction of considering the above contribution
a renormalization of the second term, i.e., the cosmolog
action. In order to pursue this idea we can translate the re
in components to read

am2aR
2 1

eE d4xA2g. ~3.4!

Here, and throughout this section, we denote with subsc
indicesR,B the renormalized and the bare parameters of
action, respectively.

On the other hand, we know that the final expression
the gravitational actions has to be

S52
1

k2E d4xA2gR~r !1
6

k2E d4xA2gaR
2, ~3.5!

where, let us say,R is restricted to metrics of the anti–d
Sitter type, with arbitrary radiusr . Then it is clear to us tha
the contribution~3.4! can be consistently interpreted as
renormalization of only the cosmological term, i.e., the s
ond term on the right-hand side~RHS! of Eq. ~3.5!. This
interpretation is also compatible with the fact that the ren
malization of the higher order gravitational tensors~i.e., the
contributions of orderaR

4) does not take place. In our opin
ion, this is not a coincidence, rather it means that a

FIG. 1. One-loop renormalization of gravitational actions fro

chiral matter~the ĥ solid lines!: the curly lines denote the compen

satorf and its H.c.f̄.
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vacuum diagram can be seen as a renormalization of o
one parameter in the gravitational action, namely,aR .

So, let us write then

am2
1

eE d4xd4uff̄5am2
1

e
aRE d4xd2uf3, ~3.6!

where we make use of the equation of motion~2.1! for the
chiral compensator superfieldf. Considering this contribu-
tion alone, we would have

aB5aR2am2aR

1

e
k2[ZaaR, ~3.7!

but then it is obvious that this renormalization factorZa
cannot lead to a runningaR , since the abovem and k pa-
rameters do not depend on the renormalization scalem ~the
m parameter that appears here cannot be anything, other
the bare massmB).

In this way, we reach the conclusion that the relevant te
in Za is the two-loop contribution to the vacuum, whic
forces us to introduce gauge interactions. In fact, when
troducing gauge interactions, of all the plethora of diagra
that one can imagine to the orderg2 in the gauge coupling
constant, we believe there are only two that survive, a
performing theD algebra of the covariant derivatives, i.e
the diagrams in Fig. 2. We give, in the following, the com
putation of the first graph~at the top of Fig. 2!, as the other
one~at the bottom of Fig. 2! looks really frightening to com-
pute, and anyhow it cannot change the conclusion of
story. Using integration by parts for the superspace covar
derivatives and discarding a finite remainder given in Fig.
one can identify the divergent parts of the first graph in F
2 and the diagram in Fig. 4.

The diagram in Fig. 4 yields the amplitudeV:

V5m2g2E dDk

~2p!DE dDq

~2p!D

1

k2

1

q2

1

~k2p!2

1

~k1q!2
,

~3.8!

FIG. 2. O(g2) two-loop corrections to the cosmological reno
malization factorZa in ~3.7!; the wavy lines denote the gauge s
perfields.
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1060 57S. BELLUCCI
where we work in dimensionD542e. The first integration
can be carried out, yielding the amplitude

V5m2g2
1

~2p!42e
p22e/2GS e

2DBS 12
e

2
,12

e

2DI,
~3.9!

where

B~12z,12w![E
0

1

dy
1

yz~12y!w
~3.10!

and we define the momentum integral

I[E dDk

~2p!D

1

k2

1

~k2p!2

1

~k2!e/2
. ~3.11!

Also the integralI can be evaluated. Hence, using sta
dard properties of theB function, we get the result

V5m2gR
2 1

~2p!822e
p42e

2

e
G~e!

1

12e

3FGS 12
e

2D G3 1

G~223e/2!S m2

p2 D e

. ~3.12!

Here we introduced the expression of the renormalized ga
coupling constantgR in terms of the renormalization scale

gR5gm2e. ~3.13!

FIG. 3. A finite contribution to the gravitational action pro
duced, when integrating by parts the superspace covariant de
tives in the Feynman diagram at the top of Fig. 2, in order to ob
the graph of Fig. 4.

FIG. 4. O(g2) two-loop Feynman diagram corresponding to t
amplitudeV in Eq. ~3.8!; the two independent momenta~loop vari-
ables! of the internal lines are explicitly indicated, together with t
momenta of the external compensators.
-

ge

Two remarks are in order about this result. First of all, t
leading divergence is of ordere22, which makes it relevant
for the purpose of runningaR . Second, it contains sublead
ing nonlocal divergencies of the form ln(p/m). We will have
to prove that they cancel with similar terms coming from t
other graph in Fig. 2, for this whole thing to make sen
What is important about this other graph, apart from t
cancellation of the nonlocal divergencies, is that the lead
divergence comes with a positive sign~as is the case for the
amplitudeV computed above!. So let us assume that th
whole contribution from Fig. 2 is of the form

bm2gR
2aRS 1

e D 2E d4xd2uf3, ~3.14!

with b.0, plus perhaps 1/e subleading divergencies that a
not relevant, when studying the renormalization group eq
tion for aR to the ordergR

2 . Then, we have that

Za512am2k2
1

e
2bm2k2gR

2 S 1

e D 2

, ~3.15!

daB

dm
505Za

daR

dm
1

dZa

dm
aR , ~3.16!

daR

dm
52

1

Za

dZa

dm
aR

'2
1

12am2k2/e
F22bm2k2gR

dgR

dm S 1

e D 2GaR

1O~gR
3 !

52
1

12am2k2/e
S bm2k2gR

2 1

m

1

e DaR1O~gR
3 !.

~3.17!

In the limit e→0, we have then

daR

dm
5

b

a
gR

2 1

m
aR, ~3.18!

so that one can easily guess the kind of theories in which
effective cosmological constant goes to zero in the infra
as a power ofm. We can then write that, ifgR

25const,

aR5a0S m

m0
D bgR

2 /a

. ~3.19!

The important thing, which we checked repeatedly, is t
the exponent ispositive, though under which circumstance
it could be bigger than 1 it is more obscure.

IV. CONCLUSION

We cannot add much more to the above considerati
apart from the fact that, if the interpretationm2'R in a
gravitational measurement is plausible, then this could
plain why the effect of the cosmological constant is alwa

a-
n
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57 1061EFFECTIVE GRAVITY AND OSp(N,4)-INVARIANT MATTER
shadowed, no matter what the value ofa0 might be, by the
effects of Newtonian gravity.

The calculation of the stress-tensor anomaly in AdS4 su-
persymmetry showed@36# that the choice of the vacuum
around which the model is quantized, does not affect
renormalization of the purely geometrical tensors in the
fective action, nor the trace anomaly induced by matter m
tiplets invariant under the supersymmetry group OSp(N,4)
in curved space. These quantities are independent also
the boundary conditions for the free-field propagators,
proven in Ref.@36#. We remark, in passing, that the confo
mal anomaly, as an integrability condition for the supersy
metric s models corresponding to superstring theories, w
obtained in Refs.@37–41#.

Next, we wish to compare the work of Elizalde and O
intsov ~EO! @42# with our result~3.19! on the running and
the consequent exponential shadowing of the cosmolog
constant. The two results appear to be similar, with ours
particular case, at least at first sight. Notice, however,
our paper is of wider interest in what concerns keepin
global ~anti–de Sitter! supersymmetry of the curved bac
ground space. Indeed our work and@42# may be considered
as complementary, in many respects.

The paper by EO contains a phenomenological analysi
theories that are finite in flat spacetime. A class of such th
ries is considered in@42# interacting with an external gravi
tational field~including a nonminimal term linear in the cu
vature and quadratic in the massless scalar matter field!. Our
calculation applies specifically to the~globally! supersym-
metric background~ground state! solution for supersymmet
ric ~SUSY! grant unified theories~GUTs!, extended super
n

ty
e
f-
l-

m
s

-
s

-

al
a

at
a

of
o-

gravity ~SUGRA!, superconformal invariant theorie
~superstrings!. As in our calculation the~global! supersym-
metry of this ground state solution is maintained, con
quently the contribution of the supersymmetric particles
determined explicitly.

In addition, the role of a nonvanishing mass for the mat
fields is perfectly clear and is included in our analysis~EO
only consider a massless theory!. Finally, in EO a fine-tuning
is needed, in order to avoid in their Eq.~19! the unrealistic
growth of Newton’s constant, and/or to obtain the screen
of the cosmological constant. We obtain such screening
aR directly and without fine-tuning.

We stress that we consider the superconformal invar
theories to be minimally interacting with the external gra
tational background. Our main motivation is to keep the g
bal supersymmetry of the background, which requires re
ring to the minimaln521/3 compensatorf. It was shown
long ago in Ref.@35# ~p. 336, Sec. 5.7! that nonminimaln
implies the spontaneous breakdown ofN51 supersymmetry.

In our paper we have recalled several developments
simplified the procedure in practical calculations for t
renormalization of our class of theories. In particular the
perconformal rescaling is an improvement that can be us
in future applications. In this respect we hope that the d
cussion of the method given in this work will find furthe
use.
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