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Effective gravity and OSp(N,4)-invariant matter
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We reexamine the OSpN(4)-invariant interacting model of massless chiral and gauge superfields, whose
superconformal invariance was instrumental both in proving the all-order no-renormalization of the mass and
chiral self-interaction Lagrangians and in determining the linear superfield renormalization needed. We show
that the renormalization of the gravitational action modifies only the cosmological term, without affecting
higher-order tensors. This could explain why the effect of the cosmological constant is shadowed by the effects
of Newtonian gravity[S0556-282(98)04202-7

PACS numbdys): 04.65+e

. INTRODUCTION string propagating in AdSspace with the OSp(1,4) super-
symmetry group, deserves further study, within a geometri-
The introduction of locally supersymmetric theorigd  cal framework, especially in connection with the underlying
was motivated by the wish for a unified description encom-g|gebraic structure of thaN-algebra extension of two-
passing the theories of elementary particles and gravity. Thgimensional conformal symmetfgee, e.g.[18—21)).
resulting supergravity is not renormalizable, but its large The renormalization procedure for O®hé)-invariant
symmetry provides powerful constraints, such as the vanishhegries breaks the naturality implied by the no-
ing of the lepton anomalous magnetic moment, as requiregbnormalization theorem and so allowa# classically invari-
by the supersymmetry of the thedi3]. The finiteness of the  ant counterterms to appear in the divergent structure of the
fermionic (and therefore also the bosohmontribution to it,  quantum effective actiofi22—34. This breakdown of the
which can be traced back to an effective chiral symmetry imgo.-renormalization theorem in AdSpace forces us to intro-
the gravitino sectof3], has been checked [#,3] and, more  qyce a linear superfield in the effective action, for the pur-
recently in[5], making use of supersymmetry preservingpose of renormalization. However, the corresponding modi-
regularization schemes. fication of the classical potential does not induce the
An introduction to the effective action in quantum gravity breaking of supersymmetry invarianf25,11). The super-
can be found in6]. The quantum corrections to the low- conformal invariance of the model with interacting chiral
energy limit of a theory coupling gravity to scalar fields have gnd real gauge superfields in AdSpace, following the line
been computedl7]. The equivalence principle has been in- gyggested in Ref35], allowed us to prove to all orders in
voked, in order to reduce the terms with an arbitrary numbeghe perturbative series the nonrenormalization of the mass or
of derivatives in the effective theofy]. This principle also  the cubic interaction actiof84].
constrains the spin—ll and spin-O partners of the graviton in e organize the present work as follows. We begin in
the N=2,8 supergravity multiplet§9,10]. _ ~Sec. Il with recalling the superfield formulation of the AdS
OSp(N,4)-invariant models in the fixed four-dimensional jnteracting model of chiral and gauge superfields. The super-
background of anti—de Sitter (Adp space occur as both conformal invariance of the massless model allows us to
ground state solutions of gauged extended supergravity thegnplement an expansion in the curvature effects, in terms of
ries (see[11] and references thergiand vacuum configura-  the interaction vertices of the quantum model. In Sec. IIl we
tions for superstringkl2]. The OSpN 4)-invariant generali-  present the renormalization of the gravitational action, based
zation of the Wess-Zumino modgl3] is the simplest one. on the use of OS,4) superfield techniques, and propose
We recall that the Wess-Zumino model with softly brokensome interpretation for the shadowing of the effect of the

supersymmetry in de Sitter space plays a role in the Affleckcosmological constant by the effects of Newtonian gravity.
Dine mechanisn{14] for baryogenesis, in contrast to the \we draw our conclusions in Sec. IV.

maximal symmetry of Adgspace which grants the existence

of global supersymmetry. This mechanism is effective for

supersymmetric grand unified theories, as the quantum cor- Il INTERACTING CHIRAL AND REAL GAUGE
rections do not affect the flat directions in the superpotential, SUPERFIELDS

owing to the no-renormalization theordr5].

Very recently, the one-loop effective potential along a flat  For the purpose of fixing notation, we briefly recall in this
direction in this model has been calculafdd]. In [17] the  section a superspace approacf85,33,34 to the
one-loop effective action was computed for scalar QED, takOSp(N,4)-invariant theory of a supergravity multiplet
ing into account the large-scale configurations that changeoupled to interacting chiral and real gauge supermultiplets.
the topology. Also, the question of the dynamics of a super- In order to choose AdSspace as a background space for

the matter and gauge model, we set the supergravity prepo-
tentialH to zero and introduce the background only through
*Email address: bellucci@Inf.infn.it the compensatog. Its equation of motion
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D2¢= ag? (2.1) W,=i(VZ+a)exp(— V)V expV) (2.9

can be obtained from the action for supergravity with thegives W,, in terms of the background covariant derivatives

cosmological term (2.4). After the superconformal transformation, the gauge-
fixing procedure can be carried out, along the line of the flat
background theory. The resulting gauge propagator réads

' the Fermi-Feynman gauge, with=1)

(2.2

3 1
s=——2f d*xd*9E~*+ a—zj d*xd?0¢°+H.c.
K K

1
yielding the solution with a regular behavior at infinity (VW)o=- 354(0_ o). 2.9

_ 1 at? 23 It is worthwhile to notice that, as a consequence of supercon-
1— aax?/a (1— a5<2/4)2' ' formal invariance, the ghost prppagators and vertices of the
flat space-time theory, along with the usual flat space-fime
. . . —1_ . algebra, remain intact in AdSspace.
with the inverse determinartt ¢. Then, by applying Enforcing the boundary conditions needed, in order to

this solution to the construction of invariant actions of the .

general and chiral type, we can formulate different super-prGS(.erVe supersymmetry for the scalar and_ spinor propaga-

symmetric matter models in the given background. We recaI}OrS N Ad.S [32], and evaluating th_e free-field functional
integral, yields the vacuum expectation val(ig8]

the expression of the covariant derivatives in terms of#he
field

A - 1 -
(Tn(x")7(0))=-—,D?D?6"(6-6')
4

V.=¢ "D, V.=¢ '¢¥D,. (2.4 (x')?

The theory of interacting chiral{) and real gauge super-

fields is describedin the gauge-chiral representatjdsy the (Tn(x")n(0))= S(lal®+2[al?0"0).  (2.10
action[35] 167
o o o From the generating functional one can read the vertex con-
S(??JLV):J d*xd*0E " n;[exp(V) ] 7' tributions involving the fieldy. It turns out[33,34) that there
are no¢’s at every such vertexin D=4), with the only
" J' d4xd20¢3W2+f dixd20 exception of a vertex .qua_dratlc i, which appears with a
factor ¢. The conclusion is that, for our purposes, we can
handle the quantum system dfi=1 super-Yang-Mills
> mlnzﬂ\} 7| +H.cl, (2.5 cpupled to matter scalar.superfield.s in Adpace in a way
2 6 similar to the corresponding theory in a flat background, with

_ A , . ) the only difference of including in the Feynman rules the
with V]:V (TA)'J- , and where '(A)']- is a matrix represen- additional quadratic vertex

tation of the generators of the gauge group that leaves this
action invariant. This model possesses a partial superconfor-
mal invariance, which has been exploi{&3,34), in order to
treat perturbatively the effects of the background curvature,
when carrying out the renormalization procedure that yieldsThe residual expliciip dependence of the latter reflects the
its quantum effective action. Alp dependence in the free- deviation of the theory from a superconformal one, owing to
field functional integral can be removed by carrying out athe introduction of a mass term. A remarkable feature of the
superconformal transformation, in accordance with the caabove rescaling, which effectively removesfrom the su-
nonical weights of the matter and gauge fields and theiperconformal invariant part of the superfield actiaith the

%m¢>+ H.c. (2.11

sources: caveat of possible anomalous contributigB8]), is that it
) ) R ) L takes automatically into consideration the need to resort to
n=¢n, W,=¢3W,, JI=¢2, Jy=9¢dly. some perturbative approach in the effects of the curvature of

(2.6)  the background space, leading us naturally to introduce the
) _ above implicit expansion in the compensaifr
Hence the quantum model can be described in the most natu-

ral form in terms of the transformed fields, i.e., defining the,, 1, ReNORMALIZATION OF THE GRAVITATIONAL
effective action in terms of the fields with carets.

- ACTION
The definition ofW in terms of the familiar derivatives in cro
flat background reads Here we describe our main result in an attempt to explain
the shadowing of the cosmological constant. We build upon
W, = iD_ZDaV. 2.7 our previous worK33,34] and carry out the renormalization

of the gravitational action induced by O%pd@)-invariant
The covariantization of this expression in the Yang-Mills matter multiplets in curved space. Here great care is needed,
chiral representation as every sign at each step is crucial.
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FIG. 1. One-loop renormalization of gravitational actions from
chiral matter(the 7 solid lines: the curly lines denote the compen-
sator¢ and its H.c.¢.

We start by discussing the renormalization of the gravita-
tional action induced by a matter chiral superfield, through
the presence of the Feynman diagram in Fig. 1. This yields
the following divergent contribution:

FIG. 2. O(g?) two-loop corrections to the cosmological renor-

1 — malization factorZ, in (3.7); the wavy lines denote the gauge su-
amz;f d*xd*0¢ ¢, (3.0  perfields.

with a>0 in any case. One can doubt about the fact ofvacuum diagram can be seen as a renormalization of only
interpreting this diagram as a renormalization of the puredne parameter in the gravitational action, namedy,

supergravity action So, let us write then
3 d*xd*0dd. 3.2 amzif d4xd46¢¢7=amzla f d*xd?60¢4°, (3.6
K2 X d)d)! ( . ) € € R 1 .
or the cosmological superspace action where we make use of the equation of moti@il) for the

chiral compensator superfielfl. Considering this contribu-
a tion alone, we would have
—Zf d*xd?6¢°+H.c. (3.3
K

ag=ar—amPar—k’=Z,ag, (3.7
There are clear reasons to support this point of view, which €
goes in the direction of considering the above contribution as
a renormalization of the second term, i.e., the cosmologicdput then it is obvious that this renormalization factoy
action. In order to pursue this idea we can translate the resuf@nnot lead to a runningg, since the aboven and « pa-
in components to read rameters do not depend on the renormalization sga(the
m parameter that appears here cannot be anything, other than
1 the bare masmg).
amzaézf d*x \/__9 (3.4 In this way, we reach the conclusion that the relevant term
in Z, is the two-loop contribution to the vacuum, which
Here, and throughout this section, we denote with subscripiorces us to introduce gauge interactions. In fact, when in-
indicesR,B the renormalized and the bare parameters of théroducing gauge interactions, of all the plethora of diagrams

action, respectively. that one can imagine to the ordgf in the gauge coupling
On the other hand, we know that the final expression foi€onstant, we believe there are only two that survive, after
the gravitational actions has to be performing theD algebra of the covariant derivatives, i.e.,

the diagrams in Fig. 2. We give, in the following, the com-
1 6 putation of the first grapkat the top of Fig. 2 as the other
S=— —zf d“x\/—_gR(r)Jr—zf d*x\—ga?, (3.5  one(at the bottom of Fig. Rlooks really frightening to com-
K K pute, and anyhow it cannot change the conclusion of this
. . . . story. Using integration by parts for the superspace covariant
where, let us sayR is restricted to metrics of the anti-de e jyatives and discarding a finite remainder given in Fig. 3,

Sitter type, with arbitrary radius. Then it is clear to us that o ~gn identify the divergent parts of the first graph in Fig.
the contribution(3.4) can be consistently interpreted as a, and the diagram in Fig. 4.

renormalization of only the cosmological term, i.e., the sec-
ond term on the right-hand sidkRHS) of Eq. (3.5. This
interpretation is also compatible with the fact that the renor- 4Pk ®q 11 1 1
malization of the higher order gravitational tensérs., the V= ngzf f a +t ,
contributions of ordew,) does not take place. In our opin- (2mPJ) (2m)P k? g% (k—p)? (k+Q)?
ion, this is not a coincidence, rather it means that any (3.9

The diagram in Fig. 4 yields the amplitudé
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Two remarks are in order about this result. First of all, the
leading divergence is of order 2, which makes it relevant
for the purpose of runningr. Second, it contains sublead-
ing nonlocal divergencies of the form ). We will have
to prove that they cancel with similar terms coming from the
other graph in Fig. 2, for this whole thing to make sense.
What is important about this other graph, apart from the
cancellation of the nonlocal divergencies, is that the leading
divergence comes with a positive si¢as is the case for the

FIG. 3. A finite contribution to the gravitational action pro- amplitude V computed above So let us assume that the
duced, when integrating by parts the superspace covariant deriv@snole contribution from Fig. 2 is of the form
tives in the Feynman diagram at the top of Fig. 2, in order to obtain

the graph of Fig. 4.

1 2
bm2g§aR( —) f d*xd?6¢°, (3.19
where we work in dimensioD =4— €. The first integration €

can be carried out, yielding the amplitude with b>0, plus perhaps &/subleading divergencies that are

not relevant, when studying the renormalization group equa-

V=mPg? 14 er/zr(g B( 1 g’l_ g)z tion for ag to the orderg. Then, we have that
(2m)" ¢
3.9 1 1\2
3.9 Zazl_amszz_bmszng E) , (3.19
where
daB daR dZa
1 1 a9 e gy g @R (3.16
B(l—z,l—w)zf dy—— (3.10 ol ol "
o Ty(1-y)"
da'R l dZa
and we define the momentum integral m: "~ Z. maR
2
EJ’ dPk i 1 1 (3.1 _ _meszgR%(l) ar
(2m)P K2 (k—p)? (K32 ' 1-amfk?le du €
3
Also the integralZ can be evaluated. Hence, using stan- +O(gr)
dard properties of th®& function, we get the result 1 11
- - rnZ 282 +O( 3)
1 2 1 1_am2K2/6 b “ gRlu € R 9%
— m2n2 4—e_
V=m gR(zw)wa e T (3.17)
e\ 13 1 u?\ € In the limit e—0, we have then
x| T 1——) | — (3.12
2 F(2_36/2) p2 daR b 5 1
mzagR;a’R, (31&

Here we introduced the expression of the renormalized gauge

coupling constangr in terms of the renormalization scale g4 that one can easily guess the kind of theories in which the

effective cosmological constant goes to zero in the infrared

Gr=9u “. (313 a5 a power ofu. We can then write that, i§2=const,
bgzla
o R
ar=agl — . (3.19
R 0( Mo)

The important thing, which we checked repeatedly, is that
the exponent ipositive though under which circumstances
it could be bigger than 1 it is more obscure.

IV. CONCLUSION

FIG. 4. O(g?) two-loop Feynman diagram corresponding to the ~ We cannot add much more to the above considerations
amplitudeV in Eq. (3.9); the two independent momentiaop vari-  apart from the fact that, if the interpretatige~R in a
ables of the internal lines are explicitly indicated, together with the gravitational measurement is plausible, then this could ex-
momenta of the external compensators. plain why the effect of the cosmological constant is always
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shadowed, no matter what the valueaf might be, by the
effects of Newtonian gravity. (superstrings As in our calculation théglobal) supersym-
The calculation of the stress-tensor anomaly in Ad8-  metry of this ground state solution is maintained, conse-
persymmetry showed36] that the choice of the vacuum, quently the contribution of the supersymmetric particles is
around which the model is quantized, does not affect theletermined explicitly.
renormalization of the purely geometrical tensors in the ef- In addition, the role of a nonvanishing mass for the matter
fective action, nor the trace anomaly induced by matter mulfields is perfectly clear and is included in our analyd®
tiplets invariant under the supersymmetry group Q§gj  only consider a massless thepriginally, in EO a fine-tuning
in curved space. These quantities are independent also frois needed, in order to avoid in their E(L9) the unrealistic
the boundary conditions for the free-field propagators, agrowth of Newton’s constant, and/or to obtain the screening
proven in Ref[36]. We remark, in passing, that the confor- of the cosmological constant. We obtain such screening for
mal anomaly, as an integrability condition for the supersym-ay directly and without fine-tuning.
metric o models corresponding to superstring theories, was We stress that we consider the superconformal invariant
obtained in Refs[37-41. theories to be minimally interacting with the external gravi-
Next, we wish to compare the work of Elizalde and Od- tational background. Our main motivation is to keep the glo-
intsov (EO) [42] with our result(3.19 on the running and bal supersymmetry of the background, which requires refer-
the consequent exponential shadowing of the cosmologicalng to the minimaln= —1/3 compensatog. It was shown
constant. The two results appear to be similar, with ours as Bng ago in Ref[35] (p. 336, Sec. 5)7that nonminimaln
particular case, at least at first sight. Notice, however, thaimplies the spontaneous breakdowrM\bf 1 supersymmetry.
our paper is of wider interest in what concerns keeping a In our paper we have recalled several developments that
global (anti—de Sitter supersymmetry of the curved back- simplified the procedure in practical calculations for the
ground space. Indeed our work ait2] may be considered renormalization of our class of theories. In particular the su-
as complementary, in many respects. perconformal rescaling is an improvement that can be useful
The paper by EO contains a phenomenological analysis dh future applications. In this respect we hope that the dis-
theories that are finite in flat spacetime. A class of such theosussion of the method given in this work will find further
ries is considered if42] interacting with an external gravi- use.
tational field(including a nonminimal term linear in the cur-

gravity (SUGRA), superconformal invariant theories

vature and quadratic in the massless scalar matte).fielar

calculation applies specifically to thiglobally) supersym-
metric backgroundground statpsolution for supersymmet-
ric (SUSY) grant unified theoriesGUTSs), extended super-
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