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Global view of kinks in 111 gravity
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Following Finkelstein and Misner, kinks are nontrivial field configurations of a field theory, and different
kink numbers correspond to different disconnected components of the space of allowed field configurations for
a given topology of the base manifold. In a theory of gravity, nonvanishing kink numbers are associated with
a twisted causal structure. In two dimensions this means, more specifically, that the light cone tilts around
~nontrivially! when going along a noncontractible non-self-intersecting loop on spacetime. One purpose of this
paper is to construct the maximal extensions of kink spacetimes using Penrose diagrams. This will yield
surprising insights into their geometry but also allow us to give generalizations of some well-known examples
such as the bare kink and the Misner torus. However, even for an arbitrary 2D metric with a Killing field we
can construct continuous one-parameter families of inequivalent kinks. This result has already interesting
implications in the flat or de Sitter case, but it applies, e.g., also to generalized dilaton gravity solutions.
Finally, several coordinate systems for these newly obtained kinks are discussed.@S0556-2821~97!05624-5#

PACS number~s!: 04.60.Kz, 02.40.Ky, 04.20.Gz
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I. INTRODUCTION

About 40 years ago, Finkelstein and Misner conside
integer-valued quantities that are conserved during time e
lution as they are protected by a topological index@1#. These
quantities, which may be used to characterize a field confi
ration of an appropriate field theory, were named ‘‘kinks
thereafter@2#. The idea of kinks is simple and by now sta
dard: Suppose you are dealing with a field theory where
fields take values in a spaceV of nontrivial topology~such
as, e.g., in as model; in gravity this nontriviality results
from the required signature of the metric!. Now consider the
mapF from a t5const hypersurfaceS into V given by the
initial values of the field~s!. If S has nontrivial topology
~possibly due to boundary conditions imposed on the fie
on an originally trivial space!, it may well happen that there
is more than one homotopy class inH(S,V). In this case the
initial data, respectivelyF, single out some elementh
PH(S,V). As time evolution is a smooth deformation o
the mapF, it will not move F out of its original homotopy
classh. Thus, h is a conserved quantity and forhÞ0 ~0
denoting the trivial homotopy class defined by the const
map! the field configuration is said to have a kink~charac-
terized byh).

In 311 gravity on a spacetimeS3R with S being a
3-sphere, one hasH(S,V)5p3(V)5Z, the group of all in-
tegers@1,3#. The situation is unchanged ifS5R3 and one
requires spacetime to be~appropriately! Minkowskian
asymptotically. Such spacetimes are characterized by a
numberkPZ therefore. In subsequent works then it has be
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†Email address: tstrobl@physik.rwth-aachen.de
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shown that all spacetimes withkÞ0 have a ‘‘twisting light-
cone structure’’ and gravitational kinks were in part view
as ‘‘black holes without curvature singularities’’~cf., e.g.,
@4–6#!. This connection of homotopical considerations w
those concerning the causal structure becomes most tran
ent for ~111!-dimensional spacetimes, which, as often, m
serve as a suitable laboratory to improve one’s understan
of the role of kinks in gravitational theories@7#. Here detg
[g00g112g01

2 Þ0 separatesR3 ~the space of real symmetri
matrices! into three regions characterized by the signatu
(11), (22), and (12), respectively. The latter of thes
regions isV. With S5S1 one obtainsH(S,V)5p1(V)
5Z, so that there again is a winding numberk characterizing
kinks ~cf. Fig. 1 of @8# for a nice illustration!. On the other
hand, given an explicit kink metric, such as, e.g., the ‘‘ba
kink’’ 2 ! @7,9#,

g52 cos 2xdt222 sin 2xdtdx1cos 2xdx2,

it is easily verified that the light-cone turns upside downk
times when going fromx50 to x5kp along a (t5const)
line S @cf. Fig. 1~a!#. Each such half-turn of the light con
clearly defines a noncontractible loop inV, which may serve
as generator ofp1(V).1

In the literature 111 kink metrics have often been writte
down in explicit coordinates only@6–8#. Their kink nature is
then usually shown by studying the behavior of the lig

1Here we always considered spacetimesM of the formM5S
3R with S5S3,R3,S1, or R1, all of which are parallelizable. In the
case of a more general, not parallelizable spacetime manifoldM
the metric is a section of a nontrivial bundle and the above hom
topical considerations have to be modified accordingly.
1034 © 1997 The American Physical Society
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57 1035GLOBAL VIEW OF KINKS IN 111 GRAVITY
FIG. 1. The kink metric~2! and its conformal derivates@such as, e.g., Eq.~9!#: ~a! shows the light-cone structure and the null extrem
in the originalx,t coordinates. In a Penrose diagram of the corresponding coordinate patch@~b!, ~c!# they play the role of polar coordinates
x being the angle andt some radial coordinate which goes→1` near the origin~for the extended Penrose diagram cf. Fig. 2!. The 2-kink
manifold ~b! is obtained from~a!, respectively,~c!, by applying the identificationx;x12p, thereby mapping, e.g., the null extrem
5 onto 1.
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cone as sketched briefly in the example above. Con
quently, one rarely finds any global analysis of the result
spacetimes~the papers of@10# being a positive exception
where the kink number of the boundary components o
311 spacetimeM is shown to be directly related to th
Euler characteristic ofM). In the present paper we want t
fill this gap at least partially. Moreover, our analysis w
lead to a systematic way of constructing new kink spa
times. In particular it will enable us to construct, e.g., a on
parameter family of distinct kinks of given kink number fo
any given 111 metric with a local Killing symmetry. Kinks
with S5R instead ofS5S1 may also be obtained, provide
only that the metric allows for appropriate asymptotic
gions~say, asymptotically flat or de Sitter!; however, in these
cases the kink number will turn out not to be an intrins
property of the spacetime but rather a feature of the cho
coordinates.

While there is no problem in just writing down kink me
rics @cf. e.g., Eq.~2!#, the more interesting cases are certain
those where the metric fulfills some extra conditions. As
example, many flat or de Sitter kink metrics~also in 311
dimensions! have been studied@6–8,11#. At first sight, how-
ever, these solutions seem to be in conflict with a we
established approach: Any maximally extended multi
connected spacetime should occur as a factor space o
simply connecteduniversal coveringsolution, but neither
from Minkowski space nor from the universal covering of
Sitter space could kink solutions be obtained in this w
@12,13#. This apparent paradox is resolved by noting that
even when requiring simple connectedness — there is
unique maximal~analytic! extension of a manifold~such a
warning has, e.g., already been expressed in footnote 1
@14#!: Take, for instance, Minkowski space, cut out a poi
and construct the universal covering of this punctured pla
which now winds around the removed point infinitely ofte
in new layers@cf. e.g., Fig. 5~d!#. Clearly, this solution is no
longer geodesically complete at the removed point but n
ertheless maximally extended, since adding the point ag
would yield a conical singularity. Identifying different layer
of this manifold, maximally extended (kÞ2)-kinks can be
obtained; only the corresponding 2-kink is extendible, sin
insertion of the point restores Minkowski space.
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Certainly, these latter kink solutions~and in fact all flat
kinks or kinks of constant curvature! are never geodesically
complete. On the other hand, there are plenty of comp
kinks.2 In the case that they have a Killing symmetry,
complete classification has been provided in@13#. In Sec. II
we will show by the example of the bare kink how searchi
rigorously for maximal extensions and applying the fact
ization method of@13# allows us not only to shed some ligh
on the geometry of these kinks but even to derive a wh
bunch of related new ones. The same concepts — when
plied to ‘‘incomplete universal coverings’’ such as the o
mentioned above — will also yield more interesting e
amples of incomplete kinks. This is demonstrated for the
case in Sec. III and generalized to arbitrary metrics with
Killing field in Sec. IV. In Sec. IV~as well as at the end o
Sec. II and in Appendix A! we will also provide explicit
coordinate representations for the newly obtained kink m
rics.

Much of the interest in spacetimes with nontrivial kin
number centers around such spacetimes which are loc
solutions to the field equations of some gravity model, i.e.
some appropriate gravity action. Since, e.g., all solutions
generalized dilaton gravity models have a Killing field@16–
18#, the scheme of the present paper allows for the const
tion of kink spacetimes for any of these models. But a
conversely, for any given metric with a~local! Killing sym-
metry and hence also for all the kink metrics it gives rise
~cf. Secs. II and IV!, there is some gravity action for whic
the metric solves the corresponding field equations@18#. Let
us thus briefly recollect some results about those metr
Here it is advisable to use a nonconformal gauge for
metric, in contrast to what is useful on other occasions s

2A simple example is obtained from a metric of the form~1! with
one triple zero of h(r ) and h(r );r n<2 for r→6` @e.g.,
h(r )5r 2arctanr#. As shown in@13,15# the maximal extensions o
this metric are geodesically complete kinks of arbitrary kink nu
ber. If h(r );r n.2, these kinks are no longer geodesically comple
but nevertheless inextendible, since the curvature diverges a
incomplete boundaries then~e.g., the solutionsG4 and R2 in
@13,15#!.
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1036 57THOMAS KLÖSCH AND THOMAS STROBL
as in string theory, where the action is invariant under
scalings of the metric by a conformal factor:3 Any two-
dimensional~2D! metric with a~local! Killing field may be
represented locally in the generalized Eddington-Finkels
~EF! form

g52drdv1h~r !dv2 ~1!

for some functionh ~cf., e.g.,@15#!. The Killing field in these
coordinates is clearly]v , its length squared equalsh, and the
curvature scalar isR5h9. For a given metric the functionh
in Eq. ~1! is generically unique up to an equivalence relati
h(r );b2h(r /b1a), a,b5const. Only for Minkowski and
de Sitter space is this not quite true, because they have m
than one Killing field ~in fact three!. For instance,
Minkowski space can be described byhMink(r )5ar1b,
where different choices ofhMink(r ) may correspond to quali
tatively different Killing fields]v: hMink(r )5b implies that
]v generates translations~timelike, null, or spacelike, accord
ing to sgnb), whereas forhMink linear inr (aÞ0) the vector
field ]v generates boosts.4 Likewise,~anti–!de Sitter space o
curvatureR is described byhde S(r )5(R/2)(r 1a)21b, and
again there are three qualitatively different Killing fields]v
according to sgnb ~cf., e.g.,@13,15#!.

3The use ofnonconformalgauges proves to be especially powe
ful in the presence of a Killing field. As such, gauges closely rela
to Eq. ~1! below have been used with success in the literat
@16,19,20#. In particular we use this opportunity to gratefully a
knowledge here the influence of W. Kummer on our work. Bringi
to our attention the success of nonconformal gauge conditions
2D gravity model @20# was essential for our interest in two
dimensional gravity theories, culminating finally in a series of p
pers on this subject.

4In this respect the latter EF coordinates, e.g.,g52drdv1rdv2,
resemble the Rindler coordinates@21# g5x2dt22dx2 @substituter
5x2/4, v52(t2 lnx)#, where also] t generates boosts. However, th
EF coordinates cover a considerably larger portion of Minkow
space@cf. Fig. 8~b!#.

FIG. 2. A maximal extension of the bare kink, to be infinite
extended. The shading corresponds to the curvature ranging
24<R<4, the thinR5const lines being at the same time Killin
trajectories for the field] t . The coordinate patch~2! ~with the iden-
tification x;x12p) is shown, and also the patch covered by E
coordinates~1! with h(r )5cos2r. The universal covering would be
obtained, if at every solid circle~indicating points at an infinite
distance! the manifold were continued into a new overlapping lay
as sketched in Fig. 1~c!.
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If the metricg is analytic, furthermore, then the functio
h is characteristic for the whole spacetime and there i
unique, analytic, simply connected extension where
boundary~to be defined properly! is either complete or a
curvature singularity~called ‘‘global’’ in @13#; without such
a requirement the extension is not unique, as mentioned
fore!. An exposition of simple rules of how to obtain th
extension and its Penrose diagram from a given functioh
may be found in@15#. The multiply connected global solu
tions can be obtained by factoring these universal coveri
by discrete symmetry groups or, equivalently, by cutting o
some region of the universal covering and gluing approp
ately @13#. Whereas the first approach is favorable for a co
cise classification, the second one is more straightforw
and shall be employed here.

II. BARE KINK, ITS PENROSE DIAGRAM,
AND GENERALIZATIONS

An in some sense prototypical example of a kink metric
the ‘‘bare kink’’ @7,9#

g52 cos 2xdt222 sin 2xdtdx1 cos 2xdx2. ~2!

Its null extremals are calculated easily to

dt

dx
52tanS x6

p

4 D , ~3!

and it is thus clear that the light cone tilts with increasingx
@cf. Fig. 1~a!#. In order to obtain a Penrose diagram it
advisable to interpretx and t as polar coordinates,

x̃5e2t cosx, t̃ 5e2t sin x, ~4!

which brings Eq.~2! immediately into conformally flat form:

g5
d t̃ 22d x̃2

t̃ 21 x̃2
. ~5!

Note that when applying Eq.~4! and thus also in the Penros
diagram Fig.~1~b! we have tacitly assumed that the identi
cation x;x12p is made. If this is not desired, then the
will occur overlapping layers as displayed in Fig. 1~c!. Ob-
viously any kink numberk can be obtained from this man
fold by imposing the identificationx;x1kp. While for
even kink numbers this amounts to identifying overlappi
layers in Fig. 1~c!, odd kink numbers involve a point reflec
tion ~inverting space and time!.

This patch is, however, still incomplete. The central po
t51` is at an infinite affine distance, but the null infinitie
at t→2` are incomplete. A maximal extension can be o
tained using Eddington-Finkelstein coordinates and follo
ing the recipe of@15#,5 or, as is even simpler in the prese

d
e

a

-

i

5Substitutingx5r 1p/2, t5 lnucosr2sinru2v into Eq. ~2!, g is
easily brought into the form~1! with h(r )5cos2r. This means,
according to@15#, that the building block~as defined there! is infi-
nite, periodic, with nondegenerate horizons, and the maximal ex
sion ~if identifying overlapping layers! is the chessboardlike ar
rangement of Fig. 2.
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57 1037GLOBAL VIEW OF KINKS IN 111 GRAVITY
FIG. 3. Some further maximal extensions of the bare kink.~a! yields a torus with two holes, whereas~b! shows two equivalent
constructions of a torus with one hole. It is also possible to obtain a globally cylindrical extension of the original kink, by repea
construction of the universal covering; i.e., at any complete point except for the very first one the manifold has to be extended into
overlapping layers~c!.
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context, by applying the transformationx̃6 t̃ 5tan(x̂6 t̂ ),
which yields6

g5
d t̂22dx̂2

sin2 t̂1sin2x̂
. ~6!

The scalar curvature for this metric,

R54
cos2t̂2cos2x̂

221cos2t̂1cos2x̂
, ~7!

ranges betweenR524 at t̂5np ~white regions in Fig. 2!
and R54 at x̂5np ~dark shaded regions!. At t̂ ,x̂5np the
metric becomes singular, and these points~solid circles in
Fig. 2, where the Killing trajectories meet! are at an infinite
distance. Thus to obtain the universal covering the over
ping sectors after surrounding those points shouldnot be
identified @cf. Fig. 1~c!#. Disregarding this multilayered
structure~after all, the 2-kink is single-layered!, Eq. ~6! pro-
vides a global chart for the bare kink.

What can be learned from this representation, taking i
account the method of@13#? First, even when starting from
cylindrical kink, the maximal extension need not be a cyl
der. Already the manifold displayed in Fig. 2 provides
counterexample, but many more may be found: For insta
gluing together opposite faces of the diamond-shaped c
dinate patch yields a torus with two holes, Fig. 3~a!, and
likewise Fig. 3~b! yields a torus with one hole. On the oth
hand, proper topological cylinders will always be foun
among the covering solutions: Just start from the origi
punctured diamond but then proceed in the same way a
constructing the universal covering; i.e., whenever surrou
ing a complete point~solid circle! start with a new overlap-
ping layer@Fig. 3~c!#. Topologically, this infinitely branching
extension cannot be distinguished from a cylinder, thou
admittedly, the causal structure near the exterior ‘‘frazzle
boundary will be rather involved. And many more cylindr
cal kinks can be obtained in a similar manner: Start fromany
noncontractible closed ribbon likeA or C in Fig. 4 (A giving
rise to the kink described previously!, respectively any open
ribbon covering~part of! the manifold likeD with its short
edges identified. Whenever the overall number of tilts of
light cone when going along the ribbon does not vanish,

6A similar form of the metric has also been found in@22#.
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is a kink manifold~cf. the Introduction! and proceeding as
before a maximal cylindrical extension may be construct
It is straightforward to give an explicit atlas for these ma
folds, using EF coordinates~1! for straight segments and
e.g., Eq.~2! for the bent ones.

Second and perhaps even more surprising, a continu
family of locally equivalent but globally different kinks ca
be obtained. Note that~in the spirit of@13#! already the origi-
nal k-kink ~2! is obtained by identifying overlapping secto
of the universal covering~i.e., gluingx;x1kp). However,
since the bare kink has a Killing symmetry@] t in coordinates
~2!#, one may apply a Killing transformation prior to th
gluing. This amounts to an identification (x,t);(x1kp,
t1pka) in Eq. ~2!; i.e., in Fig. 1~a! a vertical shift of length
kpa is applied before gluing. Alternatively, one could a
well substitutet→t1ax into Eq. ~2!, while sticking to the
original identification (x,t);(x1kp,t). The metric for
these ‘‘not-so-bare’’ kinks can then be written as

g52 cos 2xdt222~ sin 2x1a cos 2x!dtdx

1@~12a2!cos 2x22a sin 2x#dx2. ~8!

For a proof that these solutions are not isometric for differ
a and for a geometrical characterization of this parameter
@13#. Of course, the same construction applies also to
more elaborate kinks discussed before~such as those ob
tained fromC, D of Fig. 4!, introducing a continuous param

FIG. 4. Further manifolds derived from the bare kink. Where
A andC are 2-kinks~cylindrical, if extended suitably!, D with the
short edges identified depicts a 4-kink. Identifying the oppos
faces of stripB yields an incomplete ‘‘Taub-NUT’’ torus resem
bling in this respect the Misner torus, which is obtained fromA by
gluing the inner to the outer boundary. Similar incomplete tori m
be constructed fromC andD ~again identifying inside and outside!.
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FIG. 5. Flat 2-kink of topologyR3R: ~a! shows the light-cone structure in the originalx,t coordinates,~b! an ‘‘embedding’’~allowing
for overlapping layers! of this patch into Minkowski space, and~c! the corresponding Penrose diagram. Its maximal extension, howe
contains infinitely many asymptotic regions~d! and thus subsets of arbitrary kink number. Note that~d! represents an incomplete bu
inextendible simply connected flat manifold different from Minkowski space.
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where each generator ofp1(M) acquires a parameter.

According to @13# the above constructions@i.e., gluing
isometric sectors of the universal covering, thereby introd
ing a continuous parameter for each generator ofp1(M)#
exhaust the complete manifolds obtained from the bare k
metric. However, there are further incomplete yet inexte
ible manifolds: One such example is the Misner torus~see
the following paragraph! which could only be extended
when abandoning the Hausdorff property. But also the c
structions of Sec. IV can be applied@leading to Eq.~12! with
h(r )5cos2r#, in which case smoothness prohibits a furth
extension of the resulting kinks.

Finally, we shortly touch the case of another manifo
which can be derived from the bare kink metric: the Misn
torus @9,23#. It is obtained by also wrapping up periodical
the coordinatet in Eq. ~2!, t;t1v ~besidesx;x12p), or
equivalently from the annulusA shown in Fig. 4 by identi-
fying the inner and outer boundary along the Killing traje
tories~thin lines!. This metric, although well behaved ever
where on a compact manifold, is incomplete near the Killi
horizons~dashed lines!, the singularity being of the Taub
Newman-Unti-Tamburino-~NUT-! type @23,24#. Given the
extended bare-kink manifold, however, many more tori
that type can be obtained. For instance, gluing opposite fa
of the stripB yields another torus with similar pathologic
completeness properties.7 Explicit coordinates for the torusB
are easily obtained from the EF coordinatesg52drdv
1 cos 2rdv2 by identifying r;r 12p as well asv;v1v.
But even more exotic specimens may be constructed,
starting fromC or D and gluing again the two boundarie
And certainly the parametera from Eq. ~8! can be intro-
duced also here; together withv this yields the two param
eters for the two generators ofp1(torus)5Z2.

7The tori obtained fromA andB are indeed inequivalent: Wherea
in B there are complete null extremals~the ones running alongsid
of the displayed strip!, this is not the case in Misner’s exampleA.
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III. FLAT KINKS

Adding a simple conformal factor to the metric~2! yields
quite a different example. The resulting metric

g5e22t~2 cos 2xdt222 sin 2xdtdx1 cos 2xdx2! ~9!

has the same tilting-light-cone structure as Eq.~2! and is thus
also a kink metric. Calculating the curvature of this met
shows, however, that it is actually flat:R[0.

Again the transformation~4! clarifies the situation@as be-
fore we choose the 2-kink version of Eq.~9!, i.e., identify
x;x12p#: This time it leads to

g5d t̃ 22d x̃2, ~10!

and so this is nothing but flat Minkowski space in pol
coordinates, the origin being removed. In contrast to Eq.~2!
the metric~9! is incomplete at the origin; it has a hole whic
can ~and thus should! be filled by inserting a point, leaving
ordinary Minkowski space without any kink. In retrospe
thus Eq.~9! is a rather blunt construction of a kink. In fac

FIG. 6. ~a! Minkowski kink with nontrivial holonomy. This
space can be obtained by removing a wedge from flat Minkow
space and gluing together the corresponding boundary lines
boost. As a result of this construction, two extremals which
parallel on one side of the origin are mutually boosted on the o
side ~cf. bold lines!. Thus the holonomy is nontrivial~surrounding
the origin yields a boosted frame!, and at the origin there would
occur a conical singularity.~b! Another Minkowski kink; it has
trivial holonomy but the distance of parallels passing the h
changes~for a possible maximal extension cf. Fig. 12!.
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57 1039GLOBAL VIEW OF KINKS IN 111 GRAVITY
FIG. 7. The cutting procedure~11! for n51
~2-kink!. The patch~a! carries polar coordinates
The radii are mapped onto the correspondi
lines in the diagram~b!, where the EF metric~1!
lives. The pullback of this metric is the desire
kink metric. It is well defined everywhere in~a!
except for the small shaded disk indicated the
While the transformation as such is discontinuo
at x50, 2p, . . . , this does not matter for the
resulting metric, since everything isv indepen-
dent.
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any nice no-kink manifold gives rise to many such kin
simply by cutting holes into it: Since the light cone til
upsidedown twice when surrounding the hole, this is a
kink solution. Taking covering spaces arbitrary even ki
numbers can be obtained~odd kink numbers may occur, i
there is a point-reflection symmetry!. Of course, these (k
Þ2)-kinks are no longer extendible, because at the inse
point there would occur a conical singularity~branch point!
and the extension could not be smooth. Introducing po
coordinates~4! it is straightforward to write down explici
charts for these kinks~identifying x;x1kp again!. Never-
theless, this construction seems rather artificial.

Note that in a similar manner ‘‘kinks’’ of topologyR
3R may be obtained. This refers to coordinatesx,t where
the light cone tilts a couple of times when going from o
asymptotic region,x→2`, to the other,x→` @cf. Fig. 5~a!
for kink number 2#. However, in 2D the maximal extensio
of such a kink usually has an infinite series of poten
asymptotic regions@cf. Fig. 5~d!# and certainly one could a
well choose coordinates which wrap around the origin m
often before settling down in an asymptotic region. Th
(R3R)-kinks of arbitrary kink number can be obtained~in
contrast to the conclusion of@8#!. On the other hand, this
kink number merely characterizes the coordinates, not
~extended! spacetime itself, which is always of the form o
Fig. 5~d! ~or a cylindrical kink of sufficiently large kink
number!;8 for these reasons we dismiss this topic and ret
to cylindrical kinks again.

It has been pointed out already that there are no geod
cally complete flat kinks. The kinks~9!, on the other hand
are at least inextendible~due to the conical singularity! ex-
cept for thek52 case, which in some sense reveals th
construction~cutting a hole!. However, in the presence of
Killing field — and in the case of Minkowski space there a
three independent Killing fields — we can do more than j
cutting out points or regions. This will allow us to constru
continuous families of inequivalent flat kinks, which are i
extendible even in thek52 case. Moreover, the procedu
allows for a straightforward generalization to any met
with a Killing field, as will be shown in Sec. IV.

Start from Minkowski space, but instead of only remo

8This is a 2D artifact, however: In higher dimensions t
asymptotic region is usually topologically sufficiently nontrivial
allow for ‘‘genuine’’ kink numberswithin this region~if connected!
or within its connected components, respectively.
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ing the origin cut out a whole wedge@cf. Fig. 6~a!#. By
means of a Lorentz boost the two edges of the wedge ca
mapped onto one another, and we use this boost to glue
remaining patch together~note that also the tangents at the
edges must be mapped with the tangential map of this boo!.
Clearly such a space is everywhere flat~except at the origin,
which is considered not to belong to the manifold! but it has
nontrivial holonomy. For instance, two timelike extrema
which are parallel ‘‘before’’ passing the origin at differen
sides will be mutually boosted afterwards@bold lines in Fig.
6~a!#. Also, because of the nontrivial holonomy, the orig
can no longer be inserted@as was possible for the trivia
Minkowski 2-kink ~9!#, since there would occur a conica
singularity. Thus a continuous one-parameter family of
kinks is obtained, labeled by their holonomy~i.e., boost-
parameter or angle of the removed wedge!. Changing the
sign of the boost parameter corresponds toinsertinga wedge
or, equivalently, to removing a ‘‘timelike’’ wedge. O
course, taking covering solutions~with an additional factor-
ing by a point reflection for oddk) arbitrary kink numbersk
can be obtained, and for a givenk they are again character
ized by the additional boost parameter.

Because of the nontrivial holonomy around the orig
there is certainly no global chart on the punctured pla
whereg takes the standard Minkowski formg52dudv @or
Eq. ~10!#. But there is not even a~globally smooth! confor-
mal chart in this case. This may be seen as follows: A me
in conformal gauge is flat, iff the conformal factor equals
product of two functions of the light-cone coordinatesu and
v: g5 f 1(u) f 2(v)dudv. But any such metric can be ex
tended smoothly into the origin and is flat there. This co
tradicts the assumption of a nontrivial holonomy~which nec-
essarily entails a conical singularity at the origin!. Still, a
smooth conformal coordinate system may be found on a
inder which only misses an arbitrarily small square arou
the puncture. This chart will be provided in Appendix A; c
Eq. ~A1!. We remark here only that in the limit of shrinkin
the square to the origin, the conformal factor given in A
pendix A becomes distributional~nonsmooth even outsid
the origin!.

In the above example we have chosen the boosts cent
at the origin as Killing symmetry. However, Minkowsk
space also exhibits translation symmetries. An analog
construction can be applied in this case, too, with the follo
ing geometrical interpretation: Cut out a whole slit~in direc-
tion of the chosen translation!, remove the strip on one sid
of the slit, and glue together the resulting faces@cf. Fig.
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FIG. 8. Relationship between the kinks~12! and Fig. 6~a!: The EF coordinates~a! with hMink(r )}r cover half of Minkowski space~b!.
Instead of removing a strip bounded by null lines, one can remove a wedge~c!. On a cylindrical region outside the dashed ellipse t
manifold coincides with the Fig. 6~a! ‘‘boost’’ kink ~d!.
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6~b!#. This manifold has now trivial holonomy, but the me
ric distance of two generic parallels passing the h
changes. Thus the manifold is so badly distorted that it c
not be completed to ordinary Minkowski space, either. A
for this case smooth conformal coordinates on a cylindr
region can be given, Eq.~A6!, but even analytic coordinate
may be constructed, as will be demonstrated in the follow
section. However, in contrast to the former example t
space can still be smoothly extended further, leaving beh
only branch points. This is shown in detail in Appendix
cf. Fig. 12.

IV. KINKS FROM ARBITRARY METRICS
AND EXPLICIT COORDINATES

In the previous section several examples of flat kinks h
been constructed. Clearly, since any 2D metric is loca
conformally flat, some of these methods will be applica
also to nonflat metrics: For instance, to obtain a 2n-kink
from an arbitrary metric choose locally a conformal gau
change to polar coordinates~4!, and identify x;x12pn,
leading to Eq.~9! with another conformal factor. Again
however, only the resultingkÞ2-kinks ~i.e., nÞ1) will be
inextendible. The more elaborate constructions of Fig. 6,
the other hand, may be transferred only if the metric in qu
tion has a Killing symmetry.~Note that this is, e.g., the cas
for practically all 2D vacuum gravity models; cf.@18#!. Us-
ing, for instance, local EF coordinates~1!, the construction
of Fig. 6~b! can be applied literally, with (r ,v) taking the
role of (x,t), since the Killing field]v generates vertica
translations then.

Remarkably, it is even possible to obtain an explici
analytic chart for such a kink~again at the cost of enlargin
the hole slightly!. Let (r ,v) denote the original (EF) coordi
nates, (x,t) the new kink coordinates, and, without loss
generality, let the ‘‘hole’’ be centered at the origin,r ,v50.
Then the desired transformation is

r 5t cosnx, v5t sin nx2l x, nPN, ~11!

with, e.g., 0<x,2p. If the term to the right in the expres
sion forv were absent, this would merely be the formula f
polar coordinates. The extra term accomplishes the ‘‘c
ting’’ by producing a shift of lengthl 52pl in the v direc-
tion at each full turnaround of the ‘‘angle’’ variablex. This
is illustrated in Fig. 7 forl .0, n51.

In the left diagram, Fig. 7~a!, x,t are polar coordinates~to
be interpreted as cylinder coordinates for the kink spaceti
finally!. The radiix5const are mapped in a one-to-one fas
e
n-

l

g
s
d

e
y
e

,

n
s-

r
t-

e,
-

ion onto the rays in the right diagram, Fig. 7~b!, wherer ,v
are Cartesian coordinates~carrying the EF metric!. Of course
this transformation breaks down near the origin, as is see
the intersecting rays in Fig. 7~b!. If the corresponding region
~eccentric shaded disk! is excluded from Fig. 7~a!, e.g., by
the stronger restrictiont.ul u/n ~broken circle!, then we are
left with an ‘‘annulus’’ on which Eq.~11! is a local diffeo-
morphism.~The jump fromx52p to x50 does not raise
any problems, since by itsv homogeneity the EF metricg
remains smooth.!

Inserting Eq.~11! into the EF metric~1! leads to the de-
sired kink metric. Since the expressions are rather ugly,
will only write them down in terms of a zweibein. Note tha
via g52e1e2 the metric ~1! can be obtained from
e15dv,e25dr1 1

2 h(r )dv. Transforming this zweibein into
the newx,t coordinates yields

e15sin nxdt1@nt cosnx2l #dx,

e25d@ t cosnx#1
h~ t cosnx!

2
e1, nPN. ~12!

As the expression~12! is 2p periodic inx, g52e1e2 pro-

FIG. 9. Reissner-Nordstro¨m kink.
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FIG. 10. Minkowski kink, with nontrivial holonomy.~a! shows once more the manifold Fig. 6~a!. Instead of this cutting procedure it ma
as well be described by an explicit~nonanalytic! conformal chart, Eq.~A1!, provided the puncture is enlarged to a small square. Thi
illustrated in ~b!, where the shading indicates the conformal factor~dark corresponding to a larger factor!. ~c! depicts some coordinate
systems used in the text.
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vides a metric on a cylindrical spacetime. The nondeg
eracy ofg is guaranteed~only! for valuest.ul u/n,9 since

e2`e15~nt2l cosnx!dt`dx. ~13!

It is a 2n-kink metric, i.e., moving along any circlet
5const.ul u/n, the light cone makes 2n half-turns orn full
turns. This is evident by construction, but may be verifi
also explicitly: Obviouslyem

15(sinnx, nt cosnx2l ) winds
around the origin (0,0)n times when going along a
t5const loop. Because of its linear independence, Eq.~13!,
em

2 is doomed to follow this tilting movement. This con
cludes the proof, since the null directions are determin
precisely bye6.

As already pointed out, the functionh in Eq. ~12! is com-
pletely arbitrary and can be chosen to satisfy the equatio
motion ~EOM! of any desired gravity model@18#. For in-
stance, ifh is taken to be the function of de Sitter gravit
e.g.,h(r )5212r 2, then we arrive exactly at the de Sitte
kinks of @11#. These solutions are perfectly smooth eve
where~in contrast to those of@7#! but still nontrivial~i.e., not
extendible to the global de Sitter space!.10

Another instructive example is obtained when taki
h(r )}r . As discussed in the Introduction this yields fl
space, but with the Killing field]v describing boosts. Thus
when insertingh(r )}r into Eq. ~12! one would expect to
recover the kinks of Fig. 6~a!. This is only partially true,
however: Substituting, e.g.,r 52UV/2, v52ln(V/2) into the
metric g52drdv1rdv2 yields g52dUdV with V.0.
Thus, the above EF coordinates underlying Fig. 8~a! cover
only half of Minkowski space, namely, the dark shaded
gion of Fig. 8~b!. Subsequently, one can certainly replace
removed strip by a wedge~of the same ‘‘boost width’’! as

9If preferred, one can of course reparametrize thet coordinate,
e.g.,t→ul u/n1et, so as to obtain a metric defined for all~coordi-
nate! values oft.

10Our present approach allows us to correct a small mistak
@11#: At that time it was believed that the spacetime described
Eq. ~12! @with h(r )5212r 2# contains closed timelike curves. It i
obvious from the present analysis that this is not the case. Quit
the contrary, for a cylindrical solution~12! there isnot a single
closed loop with a definite sign ofds2. As a consequence there is n
foliation of the cylinder into spacelike leavesS;S1 ~a Hamiltonian
formulation, however, may still be defined, as demonstrated
@11,25#!.
-

d

of

-

-
e

shown in Fig. 8~c!. This patch coincides with the one of Fig
6~a!, displayed for comparison in Fig. 8~d! again, only on an
annular~i.e., cylindrical! region remote from the origin~e.g.,
outside the dashed ellipse!. This also shows once more that
not maximally extended kink can have quite different exte
sions@note that the patch, Fig. 8~c!, has to be extended fur
ther, as shown in Appendix B, Fig. 12#.

How exhaustive is the construction scheme descri
above? First of all, it has to be pointed out that we have o
shown the simplest examples. In generalanycylindrical lim-
ited covering11 of the original spacetime or, worse, any fa
tor space thereof with a nonzero number of tilts of the lig
cone may be addressed as kink~remember, e.g., the manifol
D of Fig. 4!. It is certainly tempting to assume that the max
mally extended universal covering of any such kink is
branched covering of the unique ‘‘global’’ universal cove
ing ~as constructed in@15#!, although we could not prove thi
assertion. Any inextendible kink solution could then be o
tained as a factor space from the respective branched co
ing and a classification would amount to specifying the p
sition of the branch points~up to symmetry transformations
of course! and finding the conjugacy classes of freely a
properly discontinuously acting symmetry subgroups for t
manifold @12,13#. For globally cylindrical kinks, further-
more, only the subgroups isomorphic toZ are relevant. How-
ever, even if this approach is feasible, it will sometimes o
scure geometric features: Note that generically the prese
of a branch point breaks the Killing symmetry@unless the
Killing vector vanishes at that point, as is the case in F
6~a!#. Consequently, when describing the kink of Fig. 6~b! as
a factor space of its maximally extended universal cover
~cf. Appendix B!, the continuous parameter ‘‘translatio
width’’ does not emerge from a Killing symmetry during th
factorization, but it is already encoded in the spacing of
branch points in the universal covering.

We conclude this section with two further constructio
which have not been made explicit so far. First, if there
symmetries not generated by a Killing field, then further d
crete parameters may be introduced. This is, e.g., the cas
the Reissner-Nordstro¨m solution, which is an infinite peri-
odic repetition of one patch: One could make a long verti

in
y

on

n

11In contrast to the familiar~unlimited! covering manifolds, a lim-
ited covering may have~ideal! boundaries which do not correspon
to boundaries of the underlying base manifold. Especially, any o
subset of a manifold is a limited covering.
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FIG. 11. A similar construction can be applied to the ‘‘translational’’ Minkowski kink of Fig. 6~b!, leading to Eq.~A6!.
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slit through a number of patches, then remove a few patc
on one side, and glue together again; cf. Fig. 9. The resul
kink is thus characterized by a Killing parameterand the
patch number. Certainly, also this kink can be extended
similar manner as the one of Fig. 6~b!; cf. Appendix B. Sec-
ond, let us note that such surgery is obviously not restric
to cylindrical solutions~i.e., one hole only!, but within any
solution one can cut any number of holes, each giving ris
a kink numberk, a continuous parameter for the gluing~if
there is a Killing symmetry!, further ones for the relative
position of the respective new hole, and perhaps some
crete parameters. And applying more advanced gluing te
niques~such as making slits between branch points and s
ing the overlapping layers crosswise! it is even possible to
obtain surfaces of higher genus.12

V. CONCLUSION

For any given 2D metric we have constructed kink spa
times ~inextendible if kÞ2). In the presence of a Killing
symmetry~thus covering, e.g., all generalized dilaton grav
solutions!, furthermore, there occurred actually a continuo
one-parameter family of solutions for each kink numb
which were inextendible even fork52. A geometrical inter-
pretation of this parameter has been provided in terms
holonomy, respectively parallel displacement. Although
complete classification of the maximal extensions of th
kinks proves to be elusive~due to ambiguities in the exten
sion process!, the characteristic parameters have be
pointed out. For cylindrical regions, furthermore, a confo
mal but nonanalytic as well as an analytic coordinate sys
is given. As a by-product we have also found generalizati
of the bare kink and the Misner torus.
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APPENDIX A: CONFORMAL CHARTS FOR FLAT KINKS

In this appendix we provide conformal coordinate cha
for the kink manifolds of Figs. 6~a! and 6~b!. Let us start

12This is also well known from complex analysis, where, e.g.,
Riemann surface of the functionA(z2a)(z2b)(z2c)(z2d) is a
torus with four branch points.
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with the kink, Fig. 6~a! ~cf. Fig. 10!. As already proved in
Sec. III, it is impossible to give a smooth conformal chart f
the entire manifold. This problem can be circumvented, ho
ever, if we enlarge the puncture to a square: Letf (x) be a
smooth function which vanishes forx,21 and equals 1 for
x.11. Then the metric

g5e2v f ~2u! f ~v !dudv ~A1!

is flat outside the square21,u,v,1 @cf. Fig. 10~b!#, where
the shading indicates the conformal factor#. Still, the ho-
lonomy is nontrivial, as is easily calculated, and it depen
on the parameterv in the exponent:13 Let

F~x!:5Ex

e2v f ~z!dz. ~A2!

Clearly F(x)5x for x,21, F(x)5xe2v1const forx.1,
and for simplicity we assume thatf is fine-tuned such as to
make const vanish. Note that the metric~A1! is already in
Minkowski form g5dudv throughout the dark shaded pa
of Figs. 10~b! and 10~c!. There are two possibilities to trans
form Eq. ~A1! into Minkowski form also on the right-hand
sector: IntroducingU(u):52F(2u) instead ofu does this
job for the upper right half,v.1, and likewise replacingv
by V(v):5F(v) works for the lower right half,u,21 @cf.
Fig. 10~c!#. However, on the right-hand sector itself the tw
overlapping coordinate systems (U,v) and (u,V) disagree
by a boost,

S U
v D5S e2v 0

0 evD S u
VD , ~A3!

which proves the assertion.
In order to get the square cut out as small as poss

~preferably pointlike!, the interval wheref ascends must be
made narrower. Thus, in the limiting case, one could
scribe the entire solution — allowing for a distributional co
formal factor — as

g5e2vu~2u!u~v !dudv, ~A4!

whereu(x) denotes the Heaviside step function. The conf
mal factor then takes one constant value in the right-h
~respectively, any other! sector and another value ever

e 13However, even without calculation it is obvious that the confo
mal factor mimics the cutting procedure by giving less met
‘‘weight’’ to the right-hand sector.
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FIG. 12. Possible maximal ex
tension of the ‘‘translation’’
kinks.
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where else. A short exposition of distributional metrics a
their usefulness may be found in@26#.

For the Minkowski kink with trivial holonomy@Fig. 6~b!
or Fig. 11~a!# an analogous chart can be found. The abo
reasoning would suggest to imitate the cutting by suita
‘‘diluting’’ the metric on the strip in question. However
since the metric should remain nondegenerate, it seems w
to turn the tables andinsert a strip of the same widthv on
the opposite side (x,0 in this example!. This can be
achieved by putting

g5@11v f ~2x! f 8~ t !#2dt22dx2, ~A5!

with f as before: Whereas on the right-hand side,x.1, Eq.
~A5! is in Minkowski form, g5dt22dx2, on the left-hand
side,x,21, this form can only be attained when substitu
ing t by T(t):5t1v f (t). But then crossing the strip21
,t,1 clearly increases the coordinateT by v against the
right-hand coordinatet, as desired. A conformal chart is ob
tained when splitting this vertical shift into two similar shif
of the null coordinatesu,v5t7x ~the horizontal compo-
nents canceling, but the vertical ones adding up!:

g5@11v f ~u! f 8~v !1v f ~2v ! f 8~u!#dudv. ~A6!

This is illustrated in Fig. 11~b!. Again, introducingU(u):
5u1v f (u) on the lower left half,v,21, andV(v):5v
2v f (2v) on the upper left half,u.1, allows us to extend
the Minkowski metric from the right-hand side into the le
hand sector; cf. Fig. 11~c!. On the overlap the two coordinat
systems are related by

S U
v D5S u1v

V1v D , ~A7!
s.
d

e
y

ser

-

i.e., by a shift of lengthv into the t direction. @If the two
terms in Eq.~A6! were given different~positive! weightsv1,
v2, with v1v25v2, then the corresponding translation d
rection would be boosted; sufficiently far from the origi
however, the resulting kink manifolds are still isometric#
Also here the limit of the shrinking interval can be taken, b
this time it will involve a d distribution,
f 8(x)→u8(x)5d(x). While this does not pose any problem
for Eq. ~A6!, the metric~A5! looks rather undefined then, a
it contains a termd(t)2.

APPENDIX B: EXTENSION OF THE ‘‘TRANSLATION’’
KINK

Here we want to show how the flat kink of Fig. 6~b!,
respectively Fig. 11~a! can be extended further. A simila
procedure may be applied to all kinks obtained in Sec. IV.
these examples a strip has been removed, leaving an inc
plete edge@bold line in Fig. 12~a!#. However, one can simply
extend the manifold beyond the edge into a new layer: T
perhaps easiest way to look at this is to keep the previou
removed strip attached to the rest, Fig. 12~b!, and to sew
together its faces, too. The result is then one cylinder F
12~c!, half of which is the original 2-kink solution, the othe
half having no kink.~In this example there are closed tim
like curves in the latter half cylinder; they would not occur
we had chosen a spacelike translation.! The identified end
points of the previously incomplete edge constitute a bra
point which should be removed. Certainly, to obtain the u
versal covering one has now first to unwrap this cylind
~thus introducing infinitely many copies of the branch poin!
and subsequently also to unwrap the manifold around th
branch points into new overlapping layers~thereby once
again multiplying the number of branch points!.
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