PHYSICAL REVIEW D VOLUME 57, NUMBER 2 15 JANUARY 1998

Global view of kinks in 1+1 gravity
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Following Finkelstein and Misner, kinks are nontrivial field configurations of a field theory, and different
kink numbers correspond to different disconnected components of the space of allowed field configurations for
a given topology of the base manifold. In a theory of gravity, nonvanishing kink numbers are associated with
a twisted causal structure. In two dimensions this means, more specifically, that the light cone tilts around
(nontrivially) when going along a noncontractible non-self-intersecting loop on spacetime. One purpose of this
paper is to construct the maximal extensions of kink spacetimes using Penrose diagrams. This will yield
surprising insights into their geometry but also allow us to give generalizations of some well-known examples
such as the bare kink and the Misner torus. However, even for an arbitrary 2D metric with a Killing field we
can construct continuous one-parameter families of inequivalent kinks. This result has already interesting
implications in the flat or de Sitter case, but it applies, e.g., also to generalized dilaton gravity solutions.
Finally, several coordinate systems for these newly obtained kinks are disc[868686-282(97)05624-5

PACS numbeps): 04.60.Kz, 02.40.Ky, 04.20.Gz

I. INTRODUCTION shown that all spacetimes witt#=0 have a “twisting light-
cone structure” and gravitational kinks were in part viewed
About 40 years ago, Finkelstein and Misner considereds “black holes without curvature singularitieg¢f., e.g.,
integer-valued quantities that are conserved during time evd4—6]). This connection of homotopical considerations with
lution as they are protected by a topological inflek These those concerning the causal structure becomes most transpar-
quantities, which may be used to characterize a field configuent for (1+1)-dimensional spacetimes, which, as often, may
ration of an appropriate field theory, were named “kinks” S€rve as a suitable laboratory to improve one’s understanding
thereafterf2]. The idea of kinks is simple and by now stan- of the role of kinks in gravitational theorid§]. Here detg
dard: Suppose you are dealing with a field theory where th&Jodd11~ Jo1# 0 separatest® (the space of real symmetric
fields take values in a spa€® of nontrivial topology(such matrice$ into three regions characterized by the signatures
as, e.g., in ar model; in gravity this nontriviality results (). (— =), and (- —), respectively. The latter of these
from the required signature of the mejridlow consider the ~€9ions isQ. With = =S" one obtainsH(X,0)=m,(Q)
map® from at=const hypersurfacd into Q given by the =_Z, SO that_ there again is a vymd_mg nurr_llixemharactenzmg
initial values of the fielés). If S has nontrivial topology kinks (cf. Fig. 1 of [8] for a nice illustration. On the other

(possibly due to boundary conditions imposed on the fieldd2nd: given an explicit kink metric, such as, e.g., the “bare
on an originally trivial space it may well happen that there <InK” 2) [7.9],

is more than one homotopy classHi{>.,{}). In this case the

initial data, respectively®, single out some elemert g=— cos dt’—2 sin Xdtdx+cos Xdx,
eH(Z,Q). As time evolution is a smooth deformation of

the map®, it will not move ® out of its original homotopy it is easily verified that the light-cone turns upside dokvn
classh. Thus, h is a conserved quantity and fé&x#0 (0  times when going fronx=0 to x=ks along a (= const)
denoting the trivial homotopy class defined by the constanline 3 [cf. Fig. 1(@)]. Each such half-turn of the light cone
map the field configuration is said to have a kigharac- clearly defines a noncontractible loop{n which may serve
terized byh). as generator ofr;(Q).!

In 3+1 gravity on a spacetim& XR with 3 being a In the literature &1 kink metrics have often been written
3-sphere, one had(3,Q) = 73(Q) =7, the group of all in-  down in explicit coordinates only6—8]. Their kink nature is
tegers[1,3]. The situation is unchanged ¥=R® and one then usually shown by studying the behavior of the light
requires spacetime to bdappropriately Minkowskian
asymptotically. Such spacetimes are characterized by a kink———
numberk e Z therefore. In subsequent works then it has been Here we always considered spacetintes of the form M=3

X R with 3 =53 R3,S!, or R?, all of which are parallelizable. In the

case of a more general, not parallelizable spacetime manif¢ld
*Email address: kloesch@tph.tuwien.ac.at the metric is a section of a nontrivial bundle and the above homo-
TEmail address: tstrobl@physik.rwth-aachen.de topical considerations have to be modified accordingly.
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FIG. 1. The kink metriq2) and its conformal derivatdsuch as, e.g., Eq9)]: (a) shows the light-cone structure and the null extremals
in the originalx,t coordinates. In a Penrose diagram of the corresponding coordinate[ (i@tdie)] they play the role of polar coordinates,
x being the angle antsome radial coordinate which goes+ < near the originfor the extended Penrose diagram cf. Fig.The 2-kink
manifold (b) is obtained from(a), respectively,(c), by applying the identificatiox~x+ 2, thereby mapping, e.g., the null extremal
5onto 1.

cone as sketched briefly in the example above. Conse- Certainly, these latter kink solutiori&nd in fact all flat
quently, one rarely finds any global analysis of the resultinginks or kinks of constant curvaturare never geodesically
spacetimegthe papers of10] being a positive exception, complete. On the other hand, there are plenty of complete
where the kink number of the boundary components of &inks? In the case that they have a Kiling symmetry, a
3+1 spacetimeM is shown to be directly related to the complete classification has been providedi8]. In Sec. Il
Euler characteristic afM). In the present paper we want to we will show by the example of the bare kink how searching
fill this gap at least partially. Moreover, our analysis will rigorously for maximal extensions and applying the factor-
lead to a systematic way of constructing new kink spaceization method of 13] allows us not only to shed some light
times. In particular it will enable us to construct, e.g., a one-on the geometry of these kinks but even to derive a whole
parameter family of distinct kinks of given kink number for bunch of related new ones. The same concepts — when ap-
any given 1+1 metric with a local Killing symmetry. Kinks plied to “incomplete universal coverings” such as the one
with 3 =R instead ofs =S! may also be obtained, provided mentioned above — will also yield more interesting ex-
only that the metric allows for appropriate asymptotic re-amples of incomplete kinks. This is demonstrated for the flat
gions(say, asymptotically flat or de Sitbehowever, inthese case in Sec. lll and generalized to arbitrary metrics with a
cases the kink number will turn out not to be an intrinsicKilling field in Sec. IV. In Sec. IV(as well as at the end of
property of the spacetime but rather a feature of the chose8ec. Il and in Appendix Awe will also provide explicit
coordinates. coordinate representations for the newly obtained kink met-
While there is no problem in just writing down kink met- rics.
rics[cf. e.g., Eq(2)], the more interesting cases are certainly Much of the interest in spacetimes with nontrivial kink
those where the metric fulfills some extra conditions. As amumber centers around such spacetimes which are locally
example, many flat or de Sitter kink metri¢also in 3+1  solutions to the field equations of some gravity model, i.e., of
dimensiong have been studield—8,11. At first sight, how- some appropriate gravity action. Since, e.g., all solutions of
ever, these solutions seem to be in conflict with a well-generalized dilaton gravity models have a Killing fi¢icb—
established approach: Any maximally extended multiply18], the scheme of the present paper allows for the construc-
connected spacetime should occur as a factor space of thien of kink spacetimes for any of these models. But also
simply connecteduniversal coveringsolution, but neither conversely, for any given metric with @ocal) Killing sym-
from Minkowski space nor from the universal covering of de metry and hence also for all the kink metrics it gives rise to
Sitter space could kink solutions be obtained in this way(cf. Secs. Il and 1V, there is some gravity action for which
[12,13. This apparent paradox is resolved by noting that —the metric solves the corresponding field equatidr. Let
even when requiring simple connectedness — there is nas thus briefly recollect some results about those metrics.
unique maximal(analytio extension of a manifoldsuch a Here it is advisable to use a nonconformal gauge for the
warning has, e.g., already been expressed in footnote 15 ofietric, in contrast to what is useful on other occasions such
[14]): Take, for instance, Minkowski space, cut out a point,
and construct the universal covering of this punctured plane,
which now winds around the removed point infinitely often 2A simple example is obtained from a metric of the fofih with
in new layergcf. e.g., Fig. %d)]. Clearly, this solution is no one triple zero ofh(r) and h(r)~r"<? for r—=*« [e.g.,
longer geodesically complete at the removed point but nevia(r)=r —arctan]. As shown in[13,15 the maximal extensions of
ertheless maximally extended, since adding the point agaithis metric are geodesically complete kinks of arbitrary kink num-
would yield a conical singularity. Identifying different layers ber. Ifh(r)~r">2, these kinks are no longer geodesically complete
of this manifold, maximally extendedk¢ 2)-kinks can be but nevertheless inextendible, since the curvature diverges at the
obtained; only the corresponding 2-kink is extendible, sincéncomplete boundaries thefe.g., the solutionsG4 and R2 in
insertion of the point restores Minkowski space. [13,15).
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strip covered by EF-coordinates If the metricg is analytic, furthermore, then the function
h is characteristic for the whole spacetime and there is a
unigue, analytic, simply connected extension where the
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MM@MNM@%@ a requirement the extension is not unigue, as mentioned be-

§ fore). An exposition of simple rules of how to obtain this

\\\\\
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extension and its Penrose diagram from a given fundtion
may be found if15]. The multiply connected global solu-
tions can be obtained by factoring these universal coverings
, ) . o by discrete symmetry groups or, equivalently, by cutting out
FIG. 2. A maX|me_tI extension of the bare kink, to be mfmntely some region of the universal covering and gluing appropri-
extended. The shading corresponds to the curvature ranging 0V§'ie|y[13]. Whereas the first approach is favorable for a con-

t_r:eisjgs’ :th:;'?iiacogzzl'gssr;i:i ata?;(eﬁ)smti ttlhn;ei d‘;’:'_ng cise classification, the second one is more straightforward
J t b and shall be employed here.

tification x~x+2) is shown, and also the patch covered by EF
coordinateg1) with h(r) =cos2. The universal covering would be
obtained, if at every solid circléindicating points at an infinite IIl. BARE KINK, ITS PENROSE DIAGRAM,
distance the manifold were continued into a new overlapping layer AND GENERALIZATIONS

as sketched in Fig.(6). An in some sense prototypical example of a kink metric is

: . L ) the “bare kink” [7,9]
as in string theory, where the action is invariant under re-

scalings of the metric by a conformal factbrAny two- g=— cos Xdt?—2 sin Xdtdx+ cos Xdx°. 2
dimensional(2D) metric with a(local) Killing field may be .
represented locally in the generalized Eddington-Finkelsteifts null extremals are calculated easily to

(EP form dt_ K
&— ta X_Z,

and it is thus clear that the light cone tilts with increasing
for some functiorh (cf., e.g.[15]). The Killing field in these [cf. Fig. 1(@]. In order to obtain a Penrose diagram it is
coordinates is clearly, , its length squared equdis and the  advisable to interpret andt as polar coordinates,
curvature scalar i®=h". For a given metric the functioh _ _
in Eq. (1) is generically unique up to an equivalence relation x=e 'cosx, t=e'sinx, 4
h(r)~b?h(r/b+a), a,b=const. Only for Minkowski and ) . ) ) )
de Sitter space is this not quite true, because they have moy¢hich brings Eq(2) immediately into conformally flat form:
than one Kiling field (in fact three. For instance,
Minkowski space can be described W™ (r)=ar+b,
where different choices df*"™(r) may correspond to quali-
tatively different Killing fieldsg,: hM"k(r)=b implies that
J, generates translatiorismelike, null, or spacelike, accord- Note that when applying E@4) and thus also in the Penrose
ing to sgnb), whereas fohM™ linear inr (a#0) the vector  diagram Fig.(1(b) we have tacitly assumed that the identifi-
field 9, generates boosfd.ikewise, (anti-)de Sitter space of cation x~x+ 2 is made. If this is not desired, then there
curvatureR is described byr® Sr)=(R/2)(r+a)2+b, and  will occur overlapping layers as displayed in Figcil Ob-
again there are three qualitatively different Killing fields  viously any kink numbek can be obtained from this mani-
according to sgm (cf., e.g.,[13,15)). fold by imposing the identificatiorx~x+ k. While for
even kink numbers this amounts to identifying overlapping
layers in Fig. 1c), odd kink numbers involve a point reflec-
3The use ofnonconformalgauges proves to be especially power- tion (inverting space and time
ful in the presence of a Killing field. As such, gauges closely related  This patch is, however, still incomplete. The central point
to Eg. (1) below have been used with success in the literaturd =+ is at an infinite affine distance, but the null infinities
[16,19,2Q. In particular we use this opportunity to gratefully ac- att— —c are incomplete. A maximal extension can be ob-
knowledge here the influence of W. Kummer on our work. Bringingtained using Eddington-Finkelstein coordinates and follow-
to our attention the success of nonconformal gauge conditions in Bg the recipe of15],° or, as is even simpler in the present
2D gravity model[20] was essential for our interest in two-
dimensional gravity theories, culminating finally in a series of pa-
pers on this subject. SSubstitutingx=r + /2, t=In|cog —sinr|—v into Eq. (2), g is
“In this respect the latter EF coordinates, eggz,2drdv +rdv?, easily brought into the form(1) with h(r)=cos2. This means,
resemble the Rindler coordinati®l] g=x?dt?>— dx? [substituter according td15], that the building blocKas defined thejds infi-
=x%14,v= 2(t—Inx)], where alsaj, generates boosts. However, the nite, periodic, with nondegenerate horizons, and the maximal exten-
EF coordinates cover a considerably larger portion of Minkowskision (if identifying overlapping layernsis the chessboardlike ar-
spaceg/cf. Fig. 8b)]. rangement of Fig. 2.

\\\\\
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g=2drdv+h(r)dv? (1)

_dt?-dx?
e

®
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FIG. 3. Some further maximal extensions of the bare kif@.yields a torus with two holes, wheredb) shows two equivalent
constructions of a torus with one hole. It is also possible to obtain a globally cylindrical extension of the original kink, by repeating the
construction of the universal covering; i.e., at any complete point except for the very first one the manifold has to be extended into different
overlapping layergc).

context, by applying the transformaticn=T =tan(x=1), is a kink manifold(cf. the Introduction and proceeding as

which yield$ before a maximal cylindrical extension may be constructed.
It is straightforward to give an explicit atlas for these mani-
di2— d52 folds, using EF coordinategl) for straight segments and,
9= ————5~. (6) e.0., Eq.(2) for the bent ones.
SinPt + sinfx Second and perhaps even more surprising, a continuous
) ] family of locally equivalent but globally different kinks can
The scalar curvature for this metric, be obtained. Note thin the spirit of[13]) already the origi-
. . nal k-kink (2) is obtained by identifying overlapping sectors
R—14 COS2 — CcosX @ of the universal covering.e., gluingx~x+k). However,
—2+cosX +cosX’ since the bare kink has a Killing symmefry; in coordinates

(2)], one may apply a Killing transformation prior to the
gluing. This amounts to an identificatiorx,f) ~ (x+ kar,
t+aka) in Eq.(2); i.e., in Fig. Xa) a vertical shift of length
kma is applied before gluing. Alternatively, one could as
well substitutet—t+ ax into Eq. (2), while sticking to the
original identification g,t)~(x+km,t). The metric for
Pthese “not-so-bare” kinks can then be written as

ranges betweeR=—4 att=nz (white regions in Fig. 2
andR=4 atx=n (dark shaded regiofsAt t,x=n the
metric becomes singular, and these poifgslid circles in
Fig. 2, where the Killing trajectories meedre at an infinite
distance. Thus to obtain the universal covering the overla]
ping sectors after surrounding those points shaubd be
identified [cf. Fig. 1(c)]. Disregarding this multilayered

structure(after all, the 2-kink is single-layere@dEq. (6) pro- g=— cos Xdt?—2( sin &+« cos X)dtdx
vides a global chart for the bare kink. ) _ 5
What can be learned from this representation, taking into +[(1—a®)cos X—2a sin X]dx". ®

account the method ¢1.3]? First, even when starting from a
cylindrical kink, the maximal extension need not be a cylin-
der. Already the manifold displayed in Fig. 2 provides a
counterexample, but many more may be found: For instanc
gluing together opposite faces of the diamond-shaped coo
dinate patch yields a torus with two holes, Figa)3 and
likewise Fig. 3b) yields a torus with one hole. On the other
hand, proper topological cylinders will always be found
among the covering solutions: Just start from the original &
punctured diamond but then proceed in the same way as i %>
constructing the universal covering; i.e., whenever surround- &
ing a complete poin{solid circle start with a new overlap-
ping layer[Fig. 3(c)]. Topologically, this infinitely branching
extension cannot be distinguished from a cylinder, though, <
admittedly, the causal structure near the exterior “frazzled” =
boundary will be rather involved. And many more cylindri-
cal kinks can be obtained in a similar manner: Start faomg
noncontractible closed ribbon like or C in Fig. 4 (A giving A B c D

r?se to the kir_1k described prEViouwye_SpECtiV?Iy _any open FIG. 4. Further manifolds derived from the bare kink. Whereas
ribbon covering(part o the manifold likeD with its short 5 anqc are 2-kinks(cylindrical, if extended suitably D with the
edges identified. Whenever the overall number of tilts of thesport edges identified depicts a 4-kink. Identifying the opposite
light cone when going along the ribbon does not vanish, thigaces of stripB yields an incomplete “Taub-NUT” torus resem-
bling in this respect the Misner torus, which is obtained frarby
gluing the inner to the outer boundary. Similar incomplete tori may
8A similar form of the metric has also been found[2¢]. be constructed fron® andD (again identifying inside and outside

For a proof that these solutions are not isometric for different
and for a geometrical characterization of this parameter cf.
13]. Of course, the same construction applies also to the
more elaborate kinks discussed befgseich as those ob-
tained fromC, D of Fig. 4), introducing a continuous param-




1038 THOMAS KLOSCH AND THOMAS STROBL 57

Wx

(@) ‘ asymptotic region 0
as. region 1 as. region 2
as. region 3 w as. region 4
t LT
10 :
maan
EEERRSY| X
®)
@) g

(©)

FIG. 5. Flat 2-kink of topologyR X R: (a) shows the light-cone structure in the originat coordinates(b) an “embedding” (allowing
for overlapping layensof this patch into Minkowski space, and) the corresponding Penrose diagram. Its maximal extension, however,
contains infinitely many asymptotic regiorid) and thus subsets of arbitrary kink number. Note tfthtrepresents an incomplete but
inextendible simply connected flat manifold different from Minkowski space.

eter also there, and furthermore to noncylindrical extensions, . FLAT KINKS

Wh,i;:i:r?j(i::gg?on[elrg]totLZflétj)\;l\)/eai%l#;fri(?tigséé:eg[jing _Adding a simple conformal factor t'o the mgtl(iZ) yields
. : X X v 9 quite a different example. The resulting metric

isometric sectors of the universal covering, thereby introduc-

ing a continuous parameter for each generatorrgfA)] g=e ?(— cos Xdt*— 2 sin xdtdx+ cos Xdx®) (9)
exhaust the complete manifolds obtained from the bare kink

metric. However, there are further incomplete yet inextendhas the same tilting-light-cone structure as &yand is thus
ible manifolds: One such examp|e is the Misnher to('SBe also a kink metric. CalCUlating the curvature of this metric
the following paragraphwhich could only be extended Shows, however, thatitis actually fl&®=0.

when abandoning the Hausdorff property. But also the con- Again the transformatiofd) clarifies the situatioias be-
structions of Sec. IV can be applig@ading to Eq(12) with ~ fore we choose the 2-kink version of E€), i.e., identify
h(r)=cos2], in which case smoothness prohibits a further*™X*27]: This time it leads to

extension of the resulting kinks.

Finally, we shortly touch the case of another manifold
which can be derived from the bare kink metric: the Misnerand so this is nothing but flat Minkowski space in polar
torus[9,23. It is obtained by also wrapping up periodically ¢, ginates, the origin being removed. In contrast to Ej.
the Fo?rd't'i‘atfe In th- 2, tTutA+a;1 (bes[de§§~>;+b27()jl, 0{_ the metric(9) is incomplete at the origin; it has a hole which
equivaiently irom the annuius shown in Fig. 4 Dy 1dentl-  can (and thus shouldbe filled by inserting a point, leavin
fying the inner and outer boundary along the Killing trajec- ordinary Minkowski space witﬁ/out any ?(ink? In retrospegct

tories(thin lines. This metric, although well behaved every- thus Eq.(9) is a rather blunt construction of a kink. In fact,
where on a compact manifold, is incomplete near the Killing

horizons(dashed lines the singularity being of the Taub- u v £t
Newman-Unti-TamburingNUT-) type [23,24]. Given the
extended bare-kink manifold, however, many more tori of
that type can be obtained. For instance, gluing opposite face
of the stripB yields another torus with similar pathological
completeness propertiéExplicit coordinates for the torud

are easily obtained from the EF coordinatgs-2drdv

+ cos 2dv? by identifyingr~r+ 2 as well asv~v + w. (a) ®)

But even more exotic specimens may be constructed, e.g.,

starting fromC or D and gluing again the two boundaries.  FIG. 6. (&) Minkowski kink with nontrivial holonomy. This
And certainly the parametex from Eg. (8) can be intro- space can be obtained by removing a wedge from flat Minkowski

duced also here; together with this yields the two param- space and gluing together the corresponding boundary lines by a
eters for the tWO,generators af (torus)= 72 boost. As a result of this construction, two extremals which are
1 — /s .

parallel on one side of the origin are mutually boosted on the other

side (cf. bold lines. Thus the holonomy is nontrivigsurrounding

the origin yields a boosted frameand at the origin there would
"The tori obtained fronA andB are indeed inequivalent: Whereas occur a conical singularity(b) Another Minkowski kink; it has

in B there are complete null extremdthe ones running alongside trivial holonomy but the distance of parallels passing the hole

of the displayed strip this is not the case in Misner's exampie changegfor a possible maximal extension cf. Fig.)12

g=dt?—dx? (10

! I W W I identify
| identify >
—\ . X
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n/2

FIG. 7. The cutting proceduréll) for n=1
(2-kink). The patch(a) carries polar coordinates.
The radii are mapped onto the corresponding
lines in the diagrantb), where the EF metri¢l)
lives. The pullback of this metric is the desired
kink metric. It is well defined everywhere i@
except for the small shaded disk indicated there.
While the transformation as such is discontinuous

atx=0, 2w, ... , this does not matter for the
resulting metric, since everything is indepen-
dent.

(@) ®)

any nice no-kink manifold gives rise to many such kinks ing the origin cut out a whole wedglef. Fig. 6a)]. By
simply by cutting holes into it: Since the light cone tilts means of a Lorentz boost the two edges of the wedge can be
upsidedown twice when surrounding the hole, this is a 2mapped onto one another, and we use this boost to glue the
kink solution. Taking covering spaces arbitrary even kinkremaining patch togethénote that also the tangents at these
numbers can be obtaindddd kink numbers may occur, if edges must be mapped with the tangential map of this hoost
there is a point-reflection symmejryOf course, thesek(  Clearly such a space is everywhere fiatcept at the origin,
#2)-kinks are no longer extendible, because at the insertedhich is considered not to belong to the manifdbait it has
point there would occur a conical singularifyranch point  nontrivial holonomy. For instance, two timelike extremals
and the extension could not be smooth. Introducing polawhich are parallel “before” passing the origin at different
coordinates(4) it is straightforward to write down explicit sides will be mutually boosted afterwarfisold lines in Fig.
charts for these kink§dentifying x~x+k again. Never-  6(a)]. Also, because of the nontrivial holonomy, the origin
theless, this construction seems rather artificial. can no longer be inserteldds was possible for the ftrivial

Note that in a similar manner “kinks” of topolog\® = Minkowski 2-kink (9)], since there would occur a conical

X R may be obtained. This refers to coordinaies where  singularity. Thus a continuous one-parameter family of 2-
the light cone tilts a couple of times when going from onekinks is obtained, labeled by their holonontie., boost-
asymptotic regionx— —o, to the otherx— [cf. Fig. 5@  parameter or angle of the removed wedg@éhanging the
for kink number 2. However, in 2D the maximal extension sign of the boost parameter correspondmgertinga wedge
of such a kink usually has an infinite series of potentialor, equivalently, to removing a “timelike” wedge. Of
asymptotic regiongcf. Fig. 5d)] and certainly one could as course, taking covering solutiorf&ith an additional factor-
well choose coordinates which wrap around the origin moréng by a point reflection for od#) arbitrary kink numberg
often before settling down in an asymptotic region. Thuscan be obtained, and for a givérnthey are again character-
(RXR)-kinks of arbitrary kink number can be obtainédd ized by the additional boost parameter.
contrast to the conclusion ¢8]). On the other hand, this Because of the nontrivial holonomy around the origin,
kink number merely characterizes the coordinates, not théhere is certainly no global chart on the punctured plane
(extendedl spacetime itself, which is always of the form of whereg takes the standard Minkowski forg—=2dudv [or
Fig. 5d) (or a cylindrical kink of sufficiently large kink Eg. (10)]. But there is not even globally smooth confor-
numbet;® for these reasons we dismiss this topic and returrmal chart in this case. This may be seen as follows: A metric
to cylindrical kinks again. in conformal gauge is flat, iff the conformal factor equals a
It has been pointed out already that there are no geodegproduct of two functions of the light-cone coordinateand
cally complete flat kinks. The kink&), on the other hand, v: g=f;(u)f,(v)dudv. But any such metric can be ex-
are at least inextendibl@ue to the conical singularityex-  tended smoothly into the origin and is flat there. This con-
cept for thek=2 case, which in some sense reveals theittradicts the assumption of a nontrivial holonoyhich nec-
construction(cutting a hole. However, in the presence of a essarily entails a conical singularity at the origistill, a
Killing field — and in the case of Minkowski space there are smooth conformal coordinate system may be found on a cyl-
three independent Killing fields — we can do more than justinder which only misses an arbitrarily small square around
cutting out points or regions. This will allow us to construct the puncture. This chart will be provided in Appendix A; cf.
continuous families of inequivalent flat kinks, which are in- Eq. (A1). We remark here only that in the limit of shrinking
extendible even in th&=2 case. Moreover, the procedure the square to the origin, the conformal factor given in Ap-
allows for a straightforward generalization to any metricpendix A becomes distributionghonsmooth even outside
with a Killing field, as will be shown in Sec. IV. the origin.

Start from Minkowski space, but instead of only remov-  In the above example we have chosen the boosts centered
at the origin as Killing symmetry. However, Minkowski
space also exhibits translation symmetries. An analogous

8This is a 2D artifact, however: In higher dimensions the construction can be applied in this case, too, with the follow-
asymptotic region is usually topologically sufficiently nontrivial to ing geometrical interpretation: Cut out a whole $lit direc-
allow for “genuine” kink numberswithin this region(if connected  tion of the chosen translatipnremove the strip on one side
or within its connected components, respectively. of the slit, and glue together the resulting fades Fig.
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FIG. 8. Relationship between the kink2) and Fig. §a): The EF coordinate&) with hM"™(r)ocr cover half of Minkowski spacéb).
Instead of removing a strip bounded by null lines, one can remove a weglgén a cylindrical region outside the dashed ellipse this
manifold coincides with the Fig.(8) “boost” kink (d).

6(b)]. This manifold has now trivial holonomy, but the met- ion onto the rays in the right diagram, Figby, wherer,v

ric distance of two generic parallels passing the holeare Cartesian coordinatésarrying the EF metric Of course
changes. Thus the manifold is so badly distorted that it canthis transformation breaks down near the origin, as is seen by
not be completed to ordinary Minkowski space, either. Alsothe intersecting rays in Fig.(@). If the corresponding region
for this case smooth conformal coordinates on a cylindricaleccentric shaded disks excluded from Fig. @&), e.g., by
region can be given, EqA6), but even analytic coordinates the stronger restriction>|/|/n (broken circle, then we are
may be constructed, as will be demonstrated in the followindeft with an “annulus” on which Eq.(11) is a local diffeo-
section. However, in contrast to the former example thismorphism.(The jump fromx=2# to x=0 does not raise
space can still be smoothly extended further, leaving behindny problems, since by its homogeneity the EF metrig

only branch points. This is shown in detail in Appendix B; remains smooth.

cf. Fig. 12. Inserting Eqg.(11) into the EF metrig1) leads to the de-
sired kink metric. Since the expressions are rather ugly, we
IV. KINKS FROM ARBITRARY METRICS will only write them down in terms of a zweibein. Note that
AND EXPLICIT COORDINATES via g=2e*e” the metric (1) can be obtained from

et =dv,e” =dr+ih(r)dv. Transforming this zweibein into

In the previous section several examples of flat kinks havene newx,t coordinates yields
been constructed. Clearly, since any 2D metric is locally
conformally flat, some of these methods will be applicable ) ‘
also to nonflat metrics: For instance, to obtain mkink e’ =sin nxdt+[nt cosnx—/Jdx,
from an arbitrary metric choose locally a conformal gauge,
change to polar coordinatdd), and identify x~x+2n, h(t
leading to Eqg.(9) with another conformal factor. Again, e =dt Cosnx]+we+,
however, only the resulting# 2-kinks (i.e., n# 1) will be 2
inextendible. The more elaborate constructions of Fig. 6, on
the other hand, may be transferred only if the metric in qQUeSH ¢ the expressiofil2) is 27 periodic inx, g=2e*e" pro-
tion has a Killing symmetry(Note that this is, e.g., the case ’
for practically all 2D vacuum gravity models; df18]). Us-
ing, for instance, local EF coordinaté€¥), the construction p
of Fig. 6(b) can be applied literally, withr(v) taking the
role of (x,t), since the Killing fieldd, generates vertical
translations then.

Remarkably, it is even possible to obtain an explicitly
analytic chart for such a kinkagain at the cost of enlarging
the hole slightly. Let (r,v) denote the original (EF) coordi-
nates, k,t) the new kink coordinates, and, without loss of
generality, let the “hole” be centered at the originy =0.
Then the desired transformation is

neN. (12

identify

r=t cosnx, v=tsinnx—/x, nel, (11

with, e.g., 0=x<2. If the term to the right in the expres-

sion forv were absent, this would merely be the formula for

polar coordinates. The extra term accomplishes the “cut-

ting” by producing a shift of length =27/ in thev direc-

tion at each full turnaround of the “angle” variable This

is illustrated in Fig. 7 for/>0, n=1. /
In the left diagram, Fig. (&), x,t are polar coordinate@o i

be interpreted as cylinder coordinates for the kink spacetime,

finally). The radiix=const are mapped in a one-to-one fash- FIG. 9. Reissner-Nordstno kink.
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boost

g = dudV

(@) (c)

FIG. 10. Minkowski kink, with nontrivial holonomya) shows once more the manifold Figah Instead of this cutting procedure it may
as well be described by an expli¢itonanalyti¢ conformal chart, Eq(A1), provided the puncture is enlarged to a small square. This is
illustrated in(b), where the shading indicates the conformal facttark corresponding to a larger factofc) depicts some coordinate
systems used in the text.

vides a metric on a cylindrical spacetime. The nondegenshown in Fig. &c). This patch coincides with the one of Fig.
eracy ofg is guaranteedonly) for valuest>|/|/n.° since 6(a), displayed for comparison in Fig(@® again, only on an
annular(i.e., cylindrica) region remote from the origite.g.,
e /\e"=(nt—/cosnx)dt/\dx. (13)  outside the dashed ellips&his also shows once more that a
_ ) o ) ) not maximally extended kink can have quite different exten-
It is a 2n-kink metric, i.e., moving along any circlé  gigns[note that the patch, Fig(®, has to be extended fur-
=const>|/|/n, the light cone makesr2half-turns orn full ther, as shown in Appendix B, Fig. 12
turns. Th.is. is evidgnt by const_ruction, but may be.verified How exhaustive is the construction scheme described
also explicitly: ObV'OUSWEZ =(sinnx, ntcosnx—/) winds  apove? First of all, it has to be pointed out that we have only
around the origin (0,0)n times when going along a shown the simplest examples. In generay cylindrical lim-
t=const loop. Because of its linear independence,(E8),  ited covering™ of the original spacetime or, worse, any fac-
e, is doomed to follow this tilting movement. This con- tor space thereof with a nonzero number of tilts of the light
cludes the proof, since the null directions are determinedone may be addressed as kinkmember, e.g., the manifold
precisely bye™. D of Fig. 4). Itis certainly tempting to assume that the maxi-
As already pointed out, the functidnin Eq. (12) is com-  mally extended universal covering of any such kink is a
pletely arbitrary and can be chosen to satisfy the equation dfranched covering of the unique “global” universal cover-
motion (EOM) of any desired gravity modd[18]. For in-  ing (as constructed ifil5]), although we could not prove this
stance, ifh is taken to be the function of de Sitter gravity, assertion. Any inextendible kink solution could then be ob-
e.g.,h(r)=—1—r2, then we arrive exactly at the de Sitter- tained as a factor space from the respective branched cover-
kinks of [11]. These solutions are perfectly smooth every-ing and a classification would amount to specifying the po-
where(in contrast to those df7]) but still nontrivial(i.e., not  sition of the branch pointéup to symmetry transformations,
extendible to the global de Sitter spacg of course and finding the conjugacy classes of freely and
Another instructive example is obtained when takingproperly discontinuously acting symmetry subgroups for this
h(r)«<r. As discussed in the Introduction this yields flat manifold [12,13. For globally cylindrical kinks, further-
space, but with the Killing field, describing boosts. Thus, more, only the subgroups isomorphicAare relevant. How-
when insertingh(r)ecr into Eq. (12) one would expect to ever, even if this approach is feasible, it will sometimes ob-
recover the kinks of Fig. @. This is only partially true, scure geometric features: Note that generically the presence
however: Substituting, e.g.=—UV/2,v=2In(V/2) intothe  of a branch point breaks the Killing symmetfynless the
metric g=2drdv+rdv? yields g=2dUdV with V>0. Killing vector vanishes at that point, as is the case in Fig.
Thus, the above EF coordinates underlying Fig) &over  6(a)]. Consequently, when describing the kink of Fi¢h)eas
only half of Minkowski space, namely, the dark shaded re-a factor space of its maximally extended universal covering
gion of Fig. 8b). Subsequently, one can certainly replace the(cf. Appendix B, the continuous parameter “translation
removed strip by a wedgéf the same “boost widthy as  width” does not emerge from a Killing symmetry during the
factorization, but it is already encoded in the spacing of the
branch points in the universal covering.

°If preferred, one can of course reparametrize thepordinate, We conclude this section with two further constructions
e.g.,.t—|/|/n+é€', so as to obtain a metric defined for &bordi-  which have not been made explicit so far. First, if there are
nate values oft. symmetries not generated by a Killing field, then further dis-

00ur present approach allows us to correct a small mistake itrete parameters may be introduced. This is, e.g., the case for
[11]: At that time it was believed that the spacetime described bythe Reissner-Nordstno solution, which is an infinite peri-
Eq. (12) [with h(r) = —1-r?] contains closed timelike curves. Itis odic repetition of one patch: One could make a long vertical
obvious from the present analysis that this is not the case. Quite on
the contrary, for a cylindrical solutioil2) there isnot a single
closed loop with a definite sign ofs?. As a consequence thereisno  !in contrast to the familiatunlimited) covering manifolds, a lim-
foliation of the cylinder into spacelike leav&s~S! (a Hamiltonian  ited covering may havédeal boundaries which do not correspond
formulation, however, may still be defined, as demonstrated irto boundaries of the underlying base manifold. Especially, any open
[11,29). subset of a manifold is a limited covering.



1042 THOMAS KLOSCH AND THOMAS STROBL 57

Wt

i identify

)

translation
X
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FIG. 11. A similar construction can be applied to the “translational” Minkowski kink of Figp) 6leading to Eq(A6).

slit through a number of patches, then remove a few patchesith the kink, Fig. &a) (cf. Fig. 10. As already proved in

on one side, and glue together again; cf. Fig. 9. The resultingec. lll, it is impossible to give a smooth conformal chart for

kink is thus characterized by a Killing paramei@nd the the entire manifold. This problem can be circumvented, how-

patch number. Certainly, also this kink can be extended in &ver, if we enlarge the puncture to a square: L(et) be a

similar manner as the one of Fig(t§; cf. Appendix B. Sec- smooth function which vanishes far< —1 and equals 1 for

ond, let us note that such surgery is obviously not restrictect> + 1. Then the metric

to cylindrical solutions(i.e., one hole only but within any

solution one can cut any number of holes, each giving rise to g=e "W dudy (A1)

a kink numberk, a continuous parameter for the gluifif

there is a Killing symmetry further ones for the relative is flat outside the square 1<u,v<<1 [cf. Fig. 1Qb)], where

position of the respective new hole, and perhaps some dighe shading indicates the conformal fadtostill, the ho-

crete parameters. And applying more advanced gluing tecHonomy is nontrivial, as is easily calculated, and it depends

niques(such as making slits between branch points and sewen the parametes® in the exponent? Let

ing the overlapping layers crosswijsi¢ is even possible to
; . «

obtain surfaces of higher gentfs. F(x):zJ e of@gy (A2)

V. CONCLUSION

. . . Clearly F(x)=x for x<—1, F(x)=xe “+const forx>1,
For any given 2D metric we have constructed kink space- N D
. . . . ., and for simplicity we assume thétis fine-tuned such as to
times (inextendible ifk#2). In the presence of a Killing

. ; : ... make const vanish. Note that the mettkl) is already in
symmetry(thus covering, e.g., all generalized dilaton gravity , ,. , a
: . Minkowski form g=dudv throughout the dark shaded part
solutiong, furthermore, there occurred actually a continuous

i . : X of Figs. 1@b) and 1@c). There are two possibilities to trans-
one parame_ter fam|lly of solutions for each kmk pumber,form Eqg. (A1) into Minkowski form also on the right-hand
which were inextendible even fée=2. A geometrical inter-

pretation of this parameter has been provided in terms o?oeth]%rr: :QérOduc;??TJ(r:Jt);\zlf_ i(l_ l;_)n(ljnﬁ(eeaqszfur:cizz':]hls
holonomy, respectively parallel displacement. Although upper rg b= IKewl placing

complete classification of the maximal extensions of thes®Y ¥(¢):=F(v) works for the lower right halfu< -1 [cf.

kinks proves to be elusivedue to ambiguities in the exten- '9. Il(Xc)J. Howe\égr, ton thet ngfg-hand Zecto\rlltsdglf the two
sion process the characteristic parameters have bee verlapping coordinate systemtl ) and (u,V) disagree

pointed out. For cylindrical regions, furthermore, a confor- y a boost,
mal but nonanalytic as well as an analytic coordinate system

is given. As a by-product we have also found generalizations (U _ ( e 0 ) “) (A3)
of the bare kink and the Misner torus. v 0 ev/\V/)’
ACKNOWLEDGMENTS which proves the assertion.

. . In order to get the square cut out as small as possible
FO:QS \;vSrrkﬁrngL?r?en der’pSv?;tseedns"rclhzzlritcﬁgnthlfogléitl:'ﬁn(preferably pointlike, the interval wherd ascends must be
(FWP), Project No P?L0221—PHY TS is arateful also o thgmade narrower. Thus, in the limiting case, one could de-
), FTOJ&C o nY. 1.>. 1S gratelu’ . -~ scribe the entire solution — allowing for a distributional con-
Erwin Schralinger Institute, Vienna, for an invitation which
. 4 X . formal factor — as
led to fruitful discussions also on the topic of the present
paper. g=e /Wi dudy, (Ad)
APPENDIX A: CONFORMAL CHARTS FOR FLAT KINKS . .
whered(x) denotes the Heaviside step function. The confor-
In this appendix we provide conformal coordinate chartsmal factor then takes one constant value in the right-hand

for the kink manifolds of Figs. @ and Gb). Let us start (respectively, any othgrsector and another value every-

2This is also well known from complex analysis, where, e.g., the *However, even without calculation it is obvious that the confor-
Riemann surface of the functiof(z—a)(z—b)(z—c)(z—d) is a mal factor mimics the cutting procedure by giving less metric
torus with four branch points. “weight” to the right-hand sector.
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where else. A short exposition of distributional metrics andi.e., by a shift of lengthw into thet direction.[If the two
their usefulness may be found [i26]. terms in Eq.(A6) were given differentpositivel weightsw,
For the Minkowski kink with trivial holonomyFig. &b) w5, With w;w,=w?, then the corresponding translation di-
or Fig. 11@] an analogous chart can be found. The aboveection would be boosted; sufficiently far from the origin,
reasoning would suggest to imitate the cutting by suitablyhowever, the resulting kink manifolds are still isometric.
“diluting” the metric on the strip in question. However, Also here the limit of the shrinking interval can be taken, but
since the metric should remain nondegenerate, it seems wisélis time it~ will involve a & distribution,
to turn the tables anihserta strip of the same widtw on  f'(X)— 6’ (x) = &(x). While this does not pose any problems
the opposite side x<O0 in this examplg This can be for EQ.(A6), the metr|2c(A5) looks rather undefined then, as
achieved by putting it contains a terms(t)<.

g=[1+of(—x)f'(t)]2dt2—dx?, (A5) APPENDIX B: EXTENSION OF THE “TRANSLATION”
KINK

with f as before: Whereas on the right-hand siie,1, Eq.
(A5) is in Minkowski form, g=dt?—dx?, on the left-hand
side,x<—1, this form can only be attained when substitut-
ing t by T(t):=t+ wf(t). But then crossing the strip-1
<t<1 clearly increases the coordinafeby v against the
right-hand coordinaté, as desired. A conformal chart is ob-
tained when splitting this vertical shift into two similar shifts
of the null coordinatesu,v=t¥x (the horizontal compo-
nents canceling, but the vertical ones adding up

Here we want to show how the flat kink of Fig(l3,
respectively Fig. 1(a) can be extended further. A similar
procedure may be applied to all kinks obtained in Sec. IV. In
these examples a strip has been removed, leaving an incom-
plete edgégbold line in Fig. 12Za)]. However, one can simply
extend the manifold beyond the edge into a new layer: The
perhaps easiest way to look at this is to keep the previously
removed strip attached to the rest, Fig.(ld2 and to sew
together its faces, too. The result is then one cylinder Fig.

g=[1+ of(U)f' (v)+wf(—0v)f'(u)]dudv. (AB) 12(c), half of which is the original 2-kink solution, the other
half having no kink.(In this example there are closed time-
This is illustrated in Fig. 1(). Again, introducingU (u): like curves in the latter half cylinder; they would not occur if
=u+wf(u) on the lower left halfv<—1, andV(v):=v we had chosen a spacelike translatiohhe identified end
—wf(—v) on the upper left halfu>1, allows us to extend points of the previously incomplete edge constitute a branch
the Minkowski metric from the right-hand side into the left- point which should be removed. Certainly, to obtain the uni-
hand sector; cf. Fig. 1&). On the overlap the two coordinate versal covering one has now first to unwrap this cylinder

systems are related by (thus introducing infinitely many copies of the branch ppint
and subsequently also to unwrap the manifold around those
(U)_(Wrw) (A7) branch points into new overlapping layefthereby once
v/ \V+o) again multiplying the number of branch points
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