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Gauge-invariant Higgs boson mass bounds from the physical effective potential
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We study a simplified version of the standard electroweak model and introduce the concept of the physical
gauge-invariant effective potential in terms of matrix elements of the Hamiltonian in physical states. This
procedure allows an unambiguous identification of the symmetry breaking order parameter and the resulting
effective potential as the energy in a constrained state. We explicitly compute the physical effective potential
at one loop order and improve it using the renormalization group. This construction allows us to extract a
reliable, gauge-invariant bound on the scalar mass by unambiguously obtaining the scale at which new physics
should emerge to preclude vacuum instability. Comparison is made with popular gauge-fixing procedures and
an “error” estimate is provided between the Landau gauge-fixed and the gauge-invariant results.
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I. INTRODUCTION AND MOTIVATION tonian in a physical state. There are, however, gauge-
independent quantities thaan be extracted from the effec-
Considerable effort has been invested in understandintive potential. Nielsen identitigd.0] have been used to prove
the Higgs sector of the standard model. Reliable constraintthat thedifferenceof the values of thégauge-fixedl effective
on the Higgs boson mass are important in determining th@otential evaluated at extrema are gauge invariant, as well as
energy scales for collider experiments that probe the eleahe nucleation rate for bubbles in a first order transition when
troweak symmetry breaking sector. Alternately, should thecalculated from the effective potentid1], the gauge invari-
Higgs boson be discovered, its properties will help elucidateance of these quantities was anticipated previoyislg].
high-scale physicésee[1] for an early review. In the stan- However providing a lower bound on the Higgs boson mass
dard model the requirement that the conventional effectiveequires an estimate of values of the expectation value of the
potentialV¢q(¢) have its global minimum at the electroweak scalar order parameter, which isgauge-variantquantity
scale has been used to obtain a relation between a lowewven at the minima of the effective potential. Even in back-
bound on the mass of the Higgs boson and the scale at whidround field calculations in generaliz&} gauges the value
new physics should apped#or recent reviews se€2,3]).  of the field at the extrema of the effective potential is gauge-
That scale is related to the value gf(expectation value of parameter dependefit3].
the Higgs field at which V4 develops a new deeper mini- Earlier attempts to sidestep problems of gauge depen-
mum (which depends on the mass of the Higgs bgs&e- dence have focussed on the formulation of a gauge-invariant
cently Loinaz and Willey{4] have pointed out a difficulty effective action (the Vilkovisky-Dewitt effective action
with this procedure. When the contributions from the gaugd 14,15 and consequently an effective potential. We find the
sector of the electroweak theory are included in the effectivdormalism involved in this approach is rather formidable,
potential, the value o which minimizesV¢ is gauge de-  although the result for a gauge theory reduces to the familiar
pendent The gauge dependence of the effective potentiaLandau gauge effective potential. However, the effective po-
was already recognized by Dolan and Jackiw in their earlytential in covariant gauge@vhich includes Landau gauge
study of effective potentialg5]. Although in some specific lacks an interpretation as a physical energy density away
gauges the contribution of the gauge sector may be a pertufrom extrema, and we are unaware of an energy interpreta-
bative correction to the contributions from the scalar plustion for the Vilkovisky-Dewitt effective action as well. With
heavy (top) fermion-Yukawa sector, the gauge dependenceegard to background field techniques, it has been recently
implies that no error estimate can be made and raises quegeinted out[16] using the pinch technique, that despite its
tions about the reliability of such bounds. The conventionaformal gauge invariance, implementation of the background
Vi, defined in terms of one particle irreducibldPl)  field method requires a gauge-fixing parameter for the fluc-
Green'’s functions at zero momentum is an off-shell quantitytuations. This leads to gauge-parameter dependence of self-
and in a gauge-fixed formulation it is inherently gauge vari-energies and Green’s functiofik7].
ant and therefore not uniquely defined. Using the effective Recently a formulation that provides a gauge-invariant ef-
potential to study stability or metastability implicitly as- fective potential as the expectation value of the Hamiltonian
sumes thaV is associated with the energy (pace-time in physical states has been developed within a different
constank field configurations. In scalar field theories the ef- framework[18]. In this formulation the gauge-invariant ef-
fective potential is proven to be the energy of a constrainedective potential is obtained as the expectation value of the
state[ 6—9], but such proof is lacking in gauge theories. SinceHamiltonian in constrained physical states. These states are
the effective potential as calculated in gauge-fixed formulaannihilated by the generators of the gauge transformations
tions is explicitly gauge dependent, it cannot generally beand are therefore gauge invariant. These gauge-invariant
identified with the expectation value of the physical Hamil- states are constrained to provide an expectation value of a
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gauge-invariant field operator, thus furnishing a gaugeorder parameter. The definition of the effective potential that
invariant order paramet¢f8]. Although there are many in- we use is in terms of the expectation value of the physical
equivalent manners of defining an effective potential thisHamiltonian in physical states constrained to provide a fixed
manner provides a gauge-invariant quantity by constructiomxpectation value of the physical order parameter.

and is identified with the energy of a physi¢abnstrainey The program for the construction of such an effective po-
state. Furthermore this construction leads to the identificatiotential requiredi) the identification of the physicdbauge-
of a gauge-invariant order parameter invariany states of the theoryi) the identification of an

We refer to this as the physical effective potentREP. order parameter that is invariant under tbeal gauge trans-
Although the Hamiltonian becomes nonlocal when written information but transforms nontrivially under the rigid global
terms of gauge invariant operators, unitary time evolutionsymmetry transformation and thus gives information on
and renormalizability are manifest as shown in R&8|. spontaneous symmetry breaking, diid construction of the

In this article we apply the formulation proposed[i8] gauge-invariant effective potential as the expectation value
to solve the problem of the gauge dependence in a slighif the Hamiltonian in constrained physical states. Since the
variant of the model studied i#]. Although this model is a concepts behind the construction are not part of the standard
simplified Abelian version of the standard model, it serves tdore, we highlight below the most relevant aspects of the
demonstrate the utility of the gauge-invariant effective po-formulation, for more details s€d 8|.
tential in providing a gauge-invariant estimate of a vacuum Such a description is best achieved within the canonical
instability scale. formulation, which begins with the identification of canoni-

This article is organized as follows. In Sec. Il we presentcal field variables and constraints. These will determine the
the model to be studied and the relevant aspects of thelassical physical phase space and, at the quantum level, the
gauge-invariant formulation provided [i8] and adapted to physical Hilbert space.
include the fermionic sector. In this section we define the The canonical momenta conjugate to the scalar and vector
physical (gauge-invariant observables including the order fields are given by
parameter that provides an unambiguous signal for symmetry
breaking. In Sec. Il we explicitly construct the one loop [M°=0: II'=A+VA’=—FE 2.3
effective potential as the expectation value of the physical
Hamiltonian in gauge-invariant states constrained to give a f 0 b 0t
space-time constant expectation value of the gauge-invariant m=¢tieA'd, m=¢ —ieA'¢. (2.9
order parameter. We also provide the modified minimal sub-
traction schemeNIS) renormalization of this effective po- The Hamiltonian is therefore
tential. In Sec. IV we compare our results to those obtained L
from the gauge-fixed formulation in genergl auges. - = A > .=
Section Vgis c?evoted to a renormalizgtion grgé%ESG) ﬁn H:f d3x[ 2 T+ 7'a+(Vo—ieAd) (Vo' +ieAdh)
provement of the gauge-invariant effective potential and to
an unambiguous determination of the lower bound on the
Higgs boson mass in this model, providing “error esti-
mates” for the quantities obtained in the gauge-variant for-
mulation. In Sec. VI we present some brief numerical results.  _ _+ T)+iE t.5
Section VIl summarizes our conclusions and suggests pos- ¢ 2"’1 vy
sibles avenues to extend the gauge-invariant construction to

non-Abelian gauge theories. +EY(¢1+WS¢2)} w], (2.5

Il. THE GAUGE INVARIANT DESCRIPTION
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wherea; 8 are the Dirac matrices.

There are two main methods for quantizing gauge theo-
ries, the first one originally due to Dirdd9] (see alsd20])
begins by identifying the first clasgnutually commuting

1 constraints and projects the physical states by requiring that

L=—ZFMF,+ D ¢'D, p— e d—N(p'$)? these are simultaneously annihilated by all first class con-

straints. Physical operators commute with all of the first class

constraints. The second, and most used method, “fixes a

gauge,” converting the set of first class constraints into sec-

A ond class constraint§ion-commuting and introducing the

9,—iey® _ﬂ); Dirac brackets. This is the popular method of dealing with

a 2 the constraints and leads to the usual gauge-fixed path inte-
gral representatiof21] in terms of Faddeev-Popov determi-

b= i(¢1+i¢z)- (2.2 nants and ghosts. _Although this second m_ethod is the most

) popular as it is easily translated into a path integral language,

it has the drawback that the physical quantities are more

Our goal is to define and explicitly evaluate thauge-  difficult to extract, and thougl$-matrix elements are gauge
invariant effective potential, in terms of a gauge-invariant invariant, off-shell quantities generally are not. In order to

The focus of our study is the Abelian Higgs model with
an axial coupling of the gauge fields to fermions. The La-
grangian density is

+y[iD+y(dr+iv ho) 9], (2.2)

D, ¢=(0,p+ieA,d); D=y"
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avoid ambiguities and to define a physical order parameteare invariant under the gauge transformatigt®]. Further-
and effective potentiafan off-shell quantity we choose to more writing the gauge field into transverse and longitudinal

use the first method. components as follows:
In Dirac’'s method of quantizationl9,2Q there are two oL
first class constraints which are A(X)=A[(X)+Aq(X), (2.19
oL VXA (X)=0" V-A(X)=
HOZWZO 2.6 VXAL(X)=0; V-Aq(x)=0, (2.195
it is clear that the “transverse componenﬁ’T(i) is also a
and Gauss’ law gauge-invariant operator. The fields ; ®; ¥ and their ca-
. . . nonical momenta argauge invariantas they commute with
G(x,0)=V-l-p=0, (27 the constraints. The momentum canonicahtoll is written

in terms of “longitudinal” and “transverse” components

~lie(mp— g —i=yly? (2.8 T(x)=Ti, (X) + TI(x
p=|ie(rp—m'¢ SV YY) - H(x) =TI, (x) +I11(x). (2.16

with p being the mattefcomplex scalar and fermionidield ~ Both components are gauge invariant.

charge density. In the physical subspace of gauge-invariant wave func-
Gauss' law can be seen to be a constraint in two waystionals, matrix elements o¥ - I1 can be replaced by matrix

either because it cannot be obtained as a Hamiltonian equalements of the charge densijby since matrix elements of

tion of motion, or because in Dirac’s formalism, it is the Gauss’ law between these states vanish. Therefore in all ma-

secondary(first clas$ constraint obtained by requiring that trix elements between gauge-invariant statesfunctionals

the primary constrain€2.6) remain constant in time. Quan- one can replace

tization is now achieved by imposing the canonical equal- L

time commutation relations I (xX)—p (2.1

[Ho(i,t),AO(i,t)]z —i 5(;_)7); yvith the charge densit_j,a ga}uge-?nvariant operajowritten
in terms of the gauge-invariant fields as
[Ny D]=-1818x-y) (29

- - - - e - -
=lie[D(Y)II(y)— P ()T (y)]-i =T T(y)y ¥ }
along with the usual canonical commutators for the scalar P [ [PY) I )] 2 Wy ¥ (y)
field and its canonical momentum and anticommutators for (2.18

the fermionic fields. This procedure is tantamount to solving the constraints in the
In Dirac’s formulation, the projection onto the gauge in- p 9
physical spac¢20].

variant subspace of the full Hilbert space is achieved by im- Einally in the gauge-invariant subspace the Hamiltonian
posing the first class constraints onto the states. Physical o o comeZ gaug P
erators are those that commute with the first clas

constraints. Sincél%(x,t) andg(x,t) are generators of local 1. . . R .
gauge transformations, operators that commute with the first H= f dgx[ 5 I+ 1T+ (VO —ieArd) - (VT
class constraints are gauge invarigt)].

Following the steps of Ref18] we find that the fields and

. » 1. .
canonical conjugate momenta, +ieA;®") + E(VXAT)2+ pPOTO+ N (DTD)?

d>(>2)=¢(§)ex;{iej d*yA(y)-V,G(y—x) +¥T —ia- ﬁ—i?y%} +ﬁy(q>l+iy5q>2)}«lf]
1 1 L
=5(<1>1+i<1>z), (2.10 +§fd3yf d*xp(X)G(X—y)p(y). (2.19

Clearly the Hamiltonian is gauge invariant, and it manifestly
has the global (1) (chiral) symmetry under which

(213 D)= D) W(X)—e P ERYR), (2.20

(x)= w(i)exp{ -~ ief d*yA(y)-V,G(y—x)

\If()?)zex;{ i € ysf dgy'&(g) _ ﬂ,G(ﬁ—)?)} l//(>_<)), with ¢ a cclns.tarllt regl phasH, transforms with the opposite
2 phase and\; is invariant.
(212 The Hamiltonian written in terms of gauge-invariant field
.. operatorg2.19 is reminiscent of the Coulomb gauge Hamil-
with G(y—x) the Coulomb Green’s function that satisfies tonian, but we emphasize that we have not imposed any
gauge-fixing condition. The formulation is fully gauge in-
V2G(y—x)=8%(y—X) (2.13  variant, written in terms of operators that commute with the
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generators of gauge transformations and states that are in- <Y,X|‘D(>Z)|Y-X> 1

variant under these transformations. The similarity to the —~ v o - = atixa)=x.

Coulomb gauge Hamiltonian is a consequence of the fact (Y. XY 0 V2

that in this Abelian theory, Coulomb gauge displays explic-

itly the physicaldegrees of freedom. In this notationY indexes the states within the set character-
There is a definite advantage in this gauge-invariant forized by Eq.(3.1). The effective potential is defined as the

mulation: the (composite field q)(§) is a candidate for a minimum of the expectation value of the Hamiltonian den-

locally gauge-invariant order parameteThe point to stress Sty over this class of constrained stafés-8], namely,

is the following: this operator imvariant under local gauge

transformations but it transforms as a charged operator under 1 ((Y,x|H|Y,x)

the global gauge transformations generated b@ Veil(X)= q nlln[ W}

= [d®p(X), that is,

(3.9

(3.2

_ S _ . with H being the gauge-invariant Hamiltonian given by Eq.
e' QP (x)e”'Q=g®*P(x). (2.2)  (2.19 andQ the spatial volum§9]. By construction in terms
of gauge-invariant statetor functional$ and the gauge-
‘J;lrpvariant Hamiltonian, this effective potential gauge in-

iant. The minima of this effective potential are obtained
om Vex(x) by further minimizing with respect tg; .

It is convenient to separate the expectation valué @fs

Because the gauge constraints annihilate the physic
states and these constraints are the generators of local gau
transformationg 18,20, these states are invariant under the
local gauge transformations and any operator ihatot in-
variant under these local transformatiangsthave zero ex-
pectation value. Théocal gauge symmetry cannot be spon- 1 ) 1 - -
taneously broken; this result is widely known in lattice gauge O(x)= 5(X1+ ix2)+ 5[ 7(X)+in(x)], (3.3
theory as Elitzur's theorerf23]. However, theglobal sym-
metry generated by the char@e canbe spontaneously bro-
ken and the expectation value of a charged field signals this 01 - -
breakdown. H(x)= F[Hl(x) —illx(x)]. (3.9

From this discussion we clearly see that a trustworthy 2
order parameter must be invariant under the local gauge
transformations, thus commuting with the gauge constraintsthe one-loop correctiofformally of O(#)] to the effective
but must transform nontrivially under the global gauge transPotential is obtained by keeping tHmear and quadratic
formation generated by the charge. The fidldulfills these ~ terms in»; , in the Hamiltonian, however the linear terms
criteria and is the natural candidate for an order parameterWill not contribute to the effective potential because their

At this stage, having recognized the physical states ongéontribution vanishes upon taking the expectation value in
could prefer to pass to a path integral representation of théhe statdY,x). Thus keeping only the quadratic termszjn,
vacuum-in to vacuum-out transition amplitude. This can nowWwe obtain
be done unambiguously by carrying out the usual procedure
in terms of phase space path integrals with the gauge- Q(’U“Z

A
- - = —_— 2 —_ 4
invariant measuré®IlDADO DO DIIDIIT--- . There is Hq 2 IxI*+ 4|X|
no need for “gauge fixing.” In the resulting actioff the

form pg—H), the instantaneous Coulomb interaction can be 1 R . .

rewritten by introducing an auxiliary field, and the integral HE:E f d3x{T12+ (VX A)2+ €| x|?A2+T12+115
over the canonical momenta can be carried out explicitly
leading to a Lagrangian form. The resulting Lagrangian leads
to Feynman rules that are very similar to those in Coulomb
gauge and allow the perturbative calculation of wave func- e? R R R

tion renormalization constants needed below. The gauge- +>\|X|2)}_§|X|Zf dgxf d3yIT,(X)G(x—y)o(y),
invariant effective potential can also be computed in this
path integral representation, but we prefer to provide its ex-
plicit construction from the Hamiltonian as such construction
displays more clearly the identification of the effective po-
tential as the energy of a constrained state.

+HS+HF,

+(V 712+ (V 72) 2+ 72(?+ 3N | x|2) + 73

Hsz (U —ia-V+y|x| g1V}, (3.5

where we have performedragid chiral phase rotation under
which the Hamiltonian is invariant. The transverse compo-
nentsA; describe a field with mags2=e?| y|? and only two
We are now in position to define the gauge-invariant ef-polarizations. The fermionic part is recognized as a free
fective potential. Consider the class of gauge-invariant stategirac fermion with masMg=y|x|. The fermionic Hamil-
[Y.x) characterized by the condition that the expectationonian can be diagonalized in terms of particle and antipar-
value of the gauge-invariant order paramefgfx) in this  ticle creation and annihilation operators of the usual form,
state is nonzero and space-time constant and upon using their anticommutation relation we obtain

Ill. THE EFFECTIVE POTENTIAL
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HP=2 > {07 (K[babrat diatiall =22 (k)
a=1,

(3.6

oF () =VKe+MELIX]T; Melxl=ylxl. B9

Following [ 18] we write the bosonic Hamiltonian—(ﬁ) in

There are four physical degrees of freedom. The modes
with frequencyw+(k) are the two transverse degrees of free-
dom, the mode with frequenayy(k) is identified with the
Higgs mode. In absence of electromagnetic interacti@ns (
=0) the mode with frequencw (k) represents the Gold-
stone mode whereas equilibrium, namely, at the minimum
of the tree level potential, whey| = V— w?/X, it represents
the plasma mode which is identified as the screened Cou-

terms of the spatial Fourier transform of the fields and theilomb interaction, and the transverse and plasma modes all
canonical momenta in terms of which the quadratic part oghare the same mass. A detailed discussion of the dispersion

the Hamiltonian finally becomes

1 . .
Hq=ﬂvcl<|x|>+5§ [HT<k>‘HT<—k>
+ w2(K)Ar(K) - Ap(— k) + T (K)TT;(— k)

) w7 (k)
+ o (K) 71(k) 771(_k)+H2(k)H2(_k)T

+ 72(K) 72(— k)wé(k)] , (3.8

where the frequencies are given in terms of the effective

masses as
w3k =k2+M3[x]; MIxI=e€x|>, (3.9

ME[x]1= w2+ 3\ x|%,
(3.10

wf(k) =K+ MELX];

wi(K)=K2+Mix]; MIx]=p?+\[x% (3.1D

relation of the bosonic excitations has been provided 8).

The quadratic Hamiltonian is now diagonalized in terms
of creation and destruction operators for the quanta of each
harmonic oscillator. The ground state is the vacuum for each
oscillator and is the state of lowest energy compatible with
the constraint3.1). Therefore the one loof(%)] contribu-
tion to the effective potential is obtained from the zero point
energy of the bosonic oscillators and tlmegative contribu-
tion from the “Dirac sea” given by the last term in E(.6).
Therefore accounting for the two polarizations of the trans-
verse components we find

B 1 d%k
Varl ) =VelxD+ 5 | ossT20n(k)

+wp(k) +oy(k)— 40" (K)]. (3.19
The normalized state that satisfies E8}1) and gives the

minimum expectation value of the Hamiltonian, thus deter-
mining effective potential via Eq.3.2) is given by

X0=Dor,@n@xonelxe®lx)e, (319

The last two terms can be brought to a canonical form by a
Bogoliubov transformation. Define the new canonical co0ry g | a tensor product of the harmonic oscillator ground states

dinateQ and conjugate momentuf as

k
):wTIE)

k
(k)= —=<P(k); — Q) (3.12

w7(K)

in terms of which the last term of the HamiltonidB.8)
becomes a canonical quadratic form with thlasma fre-
guency

72(K

w%(K)

(K= 03k — 2

=[k*+ Mgl x11[k*+ M3 x11/K>.

for the two polarizations T, ), the Higgs modeH), the
“plasma’” mode (p), and the fermionic Fock staté) (the
“Dirac sea”). The functional representation for the bosonic
Fock states is simply a Gaussian wave functional. This state
by constructions gauge invariant.

The k integrals in the final form of the gauge-
invariant effective potential3.14) are carried out in dimen-
sional regularization by the replacemenfai®k/(27)3
—Jfd"k/(2m)?" Y gh=d, and 2-d-2 transverse
modesd=4- € (see the appendixeand we obtain the fol-
lowing (unrenormalized expressipone loop effective po-

(3.13 tential:
J
1 MIlx]  Milx] 1 Mlx]( [MTx]] 1
veﬁ<x>=vc|<x>+(47)z{—AeTTx+ P+ 2 (MELx ]~ M2Lx12— M ] |+ TZX(I — —5)

MElx1( [ME[x]] 3
T H 2 }

1
- EMT[x]Mg[xMMT[x]—Mg[xDZ—M‘F‘[x]( m[ .

1
- 5) + Z(M%[x]—ms[xhz( In[ p

(MT[x]+Mg[x]>T ) g)
2

Mﬁ[x]} 2)}

(3.19
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with 1 (MIXD( [MEDx] 1
2 Vefr(X):Vc|(X)+(4ﬂ_)2{ > ( { pE }_5)
Ae—m y+|n[477] (317)
- L ME (| IMEDA] 8y 1,
is the standard1S UV subtraction ind dimensionsx is the 4 n P 2 4( tlxl
renormalization scale, angt is the Euler-Mascheroni con- )
stant. —MZ[)(])Z( i (Mrlxd+ MglxD) }_ §>
9 K2 2
A. MS renormalization 1
The theory is renormalized by coupling, mass and wave - EMT[X]MQ[X](MT[X]—Mg[X])2
function renormalizations:
MZ[x]] 3
e=Zer; Mp=Z\\ri Yb=ZyYr: Mp=Z.2uf, —Mé[ﬂ(ln[FT -t (3.20
(3.19 K 2

w712 . _ 7l . Y
Ab=ZaAr: Pp=Zy"Pr; Vp=ZyVgr. (319 IV. COMPARISON WITH GAUGE-FIXED RESULTS

The gauge-invariant quantization ensures that all the A comparis_on with t_he effective p_otential in c_oyariant
Ward identities associated with the gauge symmetry are nof¢u 9auges is established by adding gauge-fixing and
trivially satisfied. Here we work in th&S renormalization Faddeev-Popov terms to the Lagrangian density(Ed):
scheme and write for the various couplings and wave func-
tion renormalization& = 1+ 6Z, expandingsZ in powers of
the couplings and absorbing only tiMS divergences pro-
portional to A,. There are two equivalent procedures to
renormalize the effective potential.

(1) The terms proportional td\, in Eq. (3.16 are ab-
sorbed in a partial renormalization of couplings arfd This
renormalization, however, does not render finite the scatter-
ing amplitudes. The latter require a further renormalization ] ] ] o ]
by the proper wave-function renormalization constantsSPecial cases of this covariant gauge-fixing procedure in-
which at the level of the effective potential is absorbed in g¢lude the Landau gaugeg<0), 't Hooft R, gauges|25]
renormalization ofy2—Zsx%. The wave-function renor- [u=(e1)o, the tree-level Higgs vacuum expectation value
malizations must be calculated differently from the effective(VEV)], and Fermi gaugesui=0), where we have chosen

potential, since their calculation requires one-loop contribu{h® Symmetry breaking expectation value alongdhedirec-
tions at nonzero momentum. tion for convenience. At this stage we can just quote the

(2) After restricting the Hamiltonian to the gauge- results of Ref[4] adapted to the case treated here of an axial

invariant subspace, one can pass on to the Lagrangian defgctor coupling withN;=1, for arbitrary number of flavors,
sity in terms of gauge-invariant variables, and write it in th® one-loop contribution from the fermion will be multi-
terms of the renormalized couplings, masses and fields pludied by N¢. With ¢=(¢,) the expectation value obtained
the counterterm Lagrangian. The counterterms are then rdd the gauge-fixed path integral, we obtain the one loop ef-
quired to cancel the divergences in the proper 1PI Green’?ctlve potential in theViS scheme after renormalization of
functions. It is at this stage that we use the path integrak’, couplings and wave functiorjg]:

representation discussed previously to compute the wave-

function renormalization constants from the one loop self- — " 1 s 2. Ny 1 HY ¢] HY¢] 3
energies and vertex corrections. Such a calculation, althoughVefl ¢:€;U]= SHIETH et (41)2 2 2
straightforward, involves noncovariant loop integrals which

are performed with the help of the Appendix in reference 3BYe]l[, B el 5| 2GYe]
[24]. "2@n?|" T 6

For the renormalization of the effective potential only sca-

£—>£+£gf+ EFP, (41)

1
(9,A*+ Eued,)?, 4.2

ﬁgf: - 2_%,

Lep=— Cd?c— Eue’ccoy. 4.3

lar wave-function renormalization is needed beyond the can- G¥e] 3] 1Ki[e]
cellation of the terms proportional ta, in Eq. (3.16. A X{In 2 2 + 4 (4)?
lengthy but straightforward calculation of the relevant one ) i
loop diagrams provides the renormalization constants listed Kilel 3] 1Kki[¢]
in Appendix B. X1l 2 2 + 4 (41)2
In terms of the renormalized couplings and expectation ) .
value of the gauge-invariant scalar field, the gauge-invariant K2[el 3] Y¥iel[ Yiel 3
effective potential in theMS renormalization scheme is o R v L

given by[here we drop the subscriptR) in the renormal-
ized quantities to avoid cluttering of notation, but all quanti-

—A
2 2 2 €
ties below are renormalizéd Téeup(uTrhe ){(477)2}’ 4.4
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where
HZ[@]=p?+3N¢?, (4.5
B[ p]=€%¢?, (4.9
Gle]=¢Ee’up, (4.7)

1
Kilel=5[u*+Ne?+2¢e%up]

1
5 V(P +Ne?) [ w2+ N g?+age’p(u—g)],
(4.8

Y p]l=y?¢?. (4.9
H, B, Y, and G denote contributions from Higgs boson
vector boson, fermion, and Faddeev-Popov ghost loops,
spectively.

Although the “effective masses’H[ ¢];B[ ¢];Y[¢] are

formally similar to the Higgs boson, transverse and fermio

effective masses given in Eg8.7), (3.9), (3.10 upon the
replacementp—|x|, we want to emphasize that,, is the

expectation value of a gauge-dependent field in a gaug
fixed state, whereag is a true gauge-invariant order param-
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SO g
_ avef‘f[@lf!u]:| , (414)
10 ¢
.__{'9\7(%&[@;5;%} 02\~/2ﬁ[¢;§;u]} o
p1(&u)= g . 992 .
(4.15

the solutions of Eqs(4.12), (4.14 are obviously the tree
level vacuum expectation valupglo= ¢o= v~ x2/\ but the
solution of Eq.(4.19 is dependent on the gauge-fixing pa-
rametersé,u [4]. However, upon inserting the solutions of
the minima equation consistently up to one loop in the re-
spective expressions for the effective potentials, we find that
the value of the minima for the gauge-fixed and the gauge-
invariant effective potentighre the sameThis is an impor-
tant result: whereas the gauge-invariant effective potential as
'ré:_onstructed has the meaning of an energy of constrained
physical states, no such interpretation is available for the
gauge-fixed result. However at the minimum, we see that the
ngauge-fixed effective potential agrees with the gauge-
invariant result and therefore the values of the extrema pro-
vide gauge-invariant information on the energetics of con-
Strained state$.
The second derivative of the gauge-fixed effective poten-

eter, the expectation value of a gauge-invariant field in di@ at the minimum is seen to be a gauge-dependent quantity.

gauge-invariant state. The UV pole in the gauge-fixed effec
tive potential(4.4) which is not removed by couplings and
wave-function renormalizations has been discussed in det

in [4]. It can be removed by a shift i@ consistently in the

Although the pole mass of the excitations are on-shell quan-
tities and must therefore be gauge invariant, the second de-
ariivative of the effective potential corresponds to the value of
the one-particle Green’s function at zero four momentum

loop expansion and is a consequence of the particular choidgnSfer:

of Ry, gauge-fixing that breaks the global1l) symmetry
explicitly.

Even for the Landau gauge, corresponding to the choice

£=0, leading tok? = u2+ X ¢?; k2 =0 the difference of the

gauge sector contributions to the gauge-fixed and the gauge-

invariant effective potential is clear.

The first physical quantity that we must compare is the
value of both the gauge-invariant and the gauge-fixed effec-
tive potentials at their respective minima. The minima are

obtained from the conditions
&Veff[lXH

x| };

Writing the stationary values ofy|;¢ in a formal loop
expansion a§4]

Nl @;€;U]

P =0.

(4.10

|X|ext:|X|O+|X|1+"'; Pexi=Pot o1t (4.1

we find the following relations that fix the minima to one-

loop order:
FAVS
- —;T[lf(l]} , (4.12
XU o
Iy :_{Wéﬁ[lxl] ‘92Vgﬁ[|X|]} -
Al X T b

(4.13

2 2

&2Veﬁ 2 Po 2)\900
= + 2 —
0"(p2:| B 2)\(P0 16772 6)\ 4|n K2 1
=9
2 2
e (PO 1
4 2, — 2
+9¢e” In 2 +| 2\ +2>\§e
2 2
e ¢
+(£e%)?|In KZO—)\geZ
2 2
Yt @o
—16N;yf| 3 1n p —1”. (4.16

We note that this expression is divergent in the Landau
gauge €=0). Direct calculation in Landau gauge shows
that the divergence is due to the Goldstone boson term in the
effective potential.

V. RG IMPROVEMENT
AND THE HIGGS BOSON MASS BOUND

The vacuum stability bound on the Higgs boson mass
arises from imposing the requirement that the electroweak
vacuum be the global minimum of the effective potential. In
fact, the standard model is thought to be the low-energy ef-

1t has long been known that the value of the gauge-fixed effective
potential at extrema is gauge invarid@g).
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fective theory of some more fundamental high-scale theory. Similar considerations are applicable to the RE& now
Thus it is only consistent to demand that the electroweakvithout the gauge parametéx. The PEP is also independent
vacuum is the absolute minimum up to the scale at which thef changes in renormalization scale. The PEP has been iden-
effects of the “new physics’{those not incorporated into the tified as a matrix element of the physical Hamiltonian in
low-energy effective theolybecome significant. In the con- (physica) states. The Hamiltonian is part of the energy mo-
text of the effective potential we associate this scale with anentum tensor which is a conserved current. Conserved cur-
value of the elementary scalar field and hence insist that theents do not acquire anomalous dimensions and are finite
electroweak minimum is the global minimum of the effective after field-independent subtractiofisormal ordering in the
potential up to that value of the fiellowever, se€27]). For  free field vacuumin terms of the renormalized parameters
the elementary scalar field effective potential, however, thand fields. In dimensional regularization these normal order-
value that the effective potential assumes at some expectarg divergences vanish identically. Alternatively, that the
tion value of the scalar field is explicitly gauge dependentPEP is renormalization group invariant can also be seen in
Thus, the statement that the value of the effective potentiahe same manner as for the elementary field effective poten-
exceeds that of the electroweak minimum up to some stale tial, by returning to the path integral, expressing the PEP as
is also gauge dependent. This gauge dependence in turn ia-sum ofq)“l“fl?) at zero external momentum via the momen-
fects the lower bound on the Higgs boson mass derived frortum expansion of the corresponding effective action. The
that ansatz. multiplicative renormalization factors cancel, and since the

The PEP does not suffer from this gauge ambiguity. Theenormalized effective potential is equal to the bare effective
condition that the electroweak minimum is the global mini- potential it is alsox independent. The analogous RG equa-
mum up to some maximum value of the gauge-invariant ortion may then be written
der parameter provides a gauge-invariant means of defining
the vacuum instability scale and through that a gauge invari- d -
ant lower bound on the Higgs boson mass. K 3 Ver(X 1.9, )

Using the PEP, we demonstrate how to derive the lower
bound on the Higgs boson mass in the toy model, which d d d d -
displays the same gqualitative features as the standard model = "ﬂ"’ﬁé%_ 7#“@_ 7<I>Xa Vert( X, 4,9, )
with respect to vacuum stability. Unlike the conventional
approach using the elementary field effective potential, the =0, (5.3
bound obtained from the PEP formalism will be manifestly
gauge invariant. The extension of the approach to nonwhere
Abelian gauge theories such as the standard model requires

the extension of the PEP formalism to that context, we see d@]
no serious obstacles to such a program. Bg= K
It is known (in the context of the elementary field effec- K
tive potential that the simple perturbative effective potential
is often inadequate for the study of the theory at large field __K @: E K dﬁ
values due to large logarithms which ruin the convergence of Yo ® de 22y de’
the perturbative loop expansi¢B2,1]. The range of validity
of the perturbative expansion can be enhanced, however, kdu 1 k dZ,
through the use of the renormalization group. The invariance Yu= ; dr 2 Z_Mz dr (5.4

of the full (all-orders effective potential under a change in
MS renormalization scale can be written as a first-order difor, writing ® = s®, (where®; is some arbitrary initial scale

ferential equation for example the electroweak scale
d . 3 d ] J d .
Kaveﬁ(ﬁoaﬂa)\ae%vfi")—o' (51) Ka"’ﬁé@_’yﬂﬂa_’)/q)S% Veff(SXi,,lL,g,K):O.

: : (5.9
where ¢ denotes a generic gauge parameter, which always
arises in defining the gauge-fixed elementary field effectiveHereé represents the set of couplingsg, andy,. Using
potential. This equation may be solved using familiar meth-yimensional analysis we can also write
ods in terms of theg and y functions. These in turn may be
calculated in a loop expansion from tMS counterterms of
the theory. Whereas the unimproved effective potential was
reliable only for field values at which

0 0 0 “
KﬁﬂLMaJFSa—S—d}Veﬁ(SXi 4,9,x)=0. (5.6

- . Combining Egs(5.5 and(5.6) gives the RG equation
g2 92(,02

Wln 7<1 (5.2

17 J J
M(?’M—l)@+ﬁg£—(7¢+l)5£+d
the solution to the RG equation will be reliable as long as the
running couplings{generically@z(s)] are small. X Ves(Sxi 14,9, k) =0. (5.7
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It can then be shown that solution of tNt&S RG equation for
the effective potential is

Veir(SXi 01 s 141 46) =[ £(8)]1Veer xi é(s@»w(sw).@

8
where
Ins 1
g(s)—ex;{ jo mdx ) (5.9)
g(s,g;) is the solution to the equation
dg(s) — . Byla(s)]
S——= s)]=—m—,
e TN TC]
9(0)=g;, (5.10
and
_ Ins YM(X)_l
M(S, i) = i ex;{ fo Yo F1 dx (5.11

It is convenient to separate the tree-le¥gk and its one-
loop corrections by writing Eq(5.8) in the form

- 1
Ver(Sxi i 1) =[£(8)1°) S [mP(s) + Am?(xp) 1x?

1
+ Z)\eﬁ(SrXi)Xi‘l}’ (5.12

(5.13

whereAm? and A\ contain the loop corrections M.
The B and vy functions andV; can then be calculated to

Ner( S xi) =N (S)+AN(xi),
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negative at largs. At the leading-log level, if the tree-level
RG-improved effective potential is run with the one-logp
function, at large fields it is well approximated by neglecting
the term quadratic iny and is given by Veisxil
=INO)[xi{(9)]* Very near the value of at which\ (s) turns
negativeV falls below the electroweak minimum. We de-
fine the scales at whichV¢g(S)=Vesi(Sew) to be the vacuum
instability scale,sy,. If the electroweak minimum is to re-
main the global minimum of the effective potential, the
theory must somehow be incomplete and new high-scale
physics must contribute in some important way before the
vacuum instability scale.

To extract a lower bound on the Higgs boson mass, we
choose a vacuum instability scatg, where by definition
Veit(Svi) = Vet(Sew) - In the approximation that> 1, the con-
tribution to Veg(s,) from the m? terms is small, and

Ver(Sv)= 7 Ne(Sw) Xi[£(sv)]*. Further, for s>1, the
value ofs at whichV4(s)=0 is very close to that at which it
equalsVegi(Sew). Thus it is numerically a good approxima-
tion to take[30-32

Vei(S )=t 4 4a
ef(Svi Xi) 4)\eff(SV|)X.[§(SV|)] 0. (5.19

Since(s) is positive, Eq.(5.15 implies

Nei(Svi) =AN(Sy)) + AN(Sy)) =0=N\(Sy;) = —AN(Sy).
(5.1

Thus the constraint that the electroweak minimum be the
absolute minimum of the effective potential up to some high
scale translates to a high-scale boundary conditioi (®).

Run down to the low scale, the result is a value\pbelow
which the electroweak vacuum is unstable. This can in turn
be converted to a lower bound on the Higgs boson pole
mass.

the desired loop order. It has been shown that using the n- Thijs is completely analogous to the procedure with the

loop effective potential and the+ 1 loop B functions sums
up all logs of the form Irs,In?s,....I" s [28,29. The one-
loop MS B functions for our model are given explicitly in
Appendix B. A\ can be extracted directly from E¢3.16
and to one-loop order is

AN(S,xi) = (4;‘;2)(?{'\/'%%](' Mi[z)(i]}_g
+ MﬁiXi](ln{MﬁK[in]}_g +%(M$’[Xi]
_Mé[Xi])z(|n[(MT[Xi]:2Mg[Xi])2}_g)
MM LalMLxi]~Molx )2
RNIERE

In the standard model the top quark term domingdes

elementary field effective potential. In that case, however,
the expression foA\ is explicitly dependent on the gauge
parameters, which results in a gauge dependence in the
Higgs boson mass bourid]. In the current formulationAx

is by construction gauge invariant. The steps all follow
through in exactly the same fashion, but the Higgs boson
mass bound obtained in the end is gauge invariant.

VI. NUMERICAL RESULTS

Here we demonstrate the formalism developed in the pre-
vious section by applying it to obtain numerical values for
\i, assuming values for the other couplings at the elec-
troweak scale and assuming some values{pr Since this is
only an Abelian toy model, we cannot draw conclusions
about the standard model. Instead, we compare the results of
the gauge-invariant formulation with the elementary field ef-
fective potential formulation within this model for several
different sets of parameters.

For illustrative purposes it will suffice to use only one-
loop B functions and the one-loop corrections to the effective
potential, which will sum the leading logs. Furthermore, at

In this toy model the fermion plays the same role. It is thethe leading log level it is consistent to run the couplings in

large negative fermion loop contribution that drive$s)

the tree-level part of the effective potential only and to leave
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sidered are relatively weak. For stronger coupling the gauge
and scalar sectors will be more important &A and the
differences more noticeable. However, in that case a one-
loop calculation will likely not be adequate and will thus be
beyond the scope of our simple one-loop analysis.

VII. CONCLUSIONS

The usual formulation of bounds on the Higgs boson mass
from the RG-improved elementary field effective potential is
afflicted with gauge dependence that renders it unsatisfac-
tory. This gauge dependence is the result of the gauge de-
pendence of the elementary field effective potential itself,
and it suggests that the elementary field effective potential is
not the appropriate tool for the analysis. The error stemming

FIG. 1. Ins,, for the PEP as a function & and\; , for y?  from the gauge variance in calculations in a specific gauge-
=0.5, k=v. fixing scheme cannot be inferred because the results can vary
in a wide range by varying the gauge parameter.

the couplings in the one-loop terms fixed at their initial val- We have presented an alternative approach, using the re-
ues. The additional effort required to reduce thelepen- ~cently introduced PER18], to calculate the Higgs boson
dence of the results and improve numerical accuracy by camass bound in a simplified Abelian model which displays the
culating higher loop effects is not justified for a toy model. same vacuum stability problem as the standard model. We
In Fig. 1 we plot the log of the vacuum instability scale have explicitly provided a gauge-invariant construction of
sy as a function of\; and ei2 for yt2i:0.5 andk=v, as the effective potential in ter_ms of a gauge-invarian_t order_
calculated using the PEP. We have also performed a simildt@rameter that serves as a signal of symmetry breaking. This
calculation using the Landau gauge elementary field effecéffective potential is unambiguously identified with the
tive potential[setting£=0 in Eq.(4.4] and found the results Physical energy of a configuration and therefore provides
to differ only by a few percent. This is shown explicitly in feliable estimates from vacuum stability analysis. We con-
Fig. 2. Here the difference between the kg calculated structed th_ls gauge-invariant effective potential to one loop
using the different effective potentials is plotted, and the dif-order and improved it via RG. o
ference is shown to be very small. Thus, in this model the Compared to the analogous calculation in the Landau
Landau gauge elementary field effective potential treatmer§@uge the numerical results are similar when the gauge cou-
and a PEP treatment give very similar numerical results ap!ings are weak. While this suggests that Landau gauge cal-
one loop level. culations in the standard model may give numerically similar
We note that the similarities of the numerical results be/€Sults to a gauge-invariant treatment, it does not provide
tween the PEP and the Landau gauge-fixed effective poted¥stification for the principle of using the gauge-dependent
tial are not obviousa priori. In a gauge-fixed formulation effective potential to place bounds on gauge-invariant quan-
there isa priori no reason to expect the results in one gaugé!ti€s- o
to be numerically superior to those in another gauge. Although not guaranteed priori, our result on the nu-
The similarities between the numerical results on the scal@'erical similarities between the scales and bound obtained
of new physics and therefore on the bound on the Higgérom PEP arjd the Landau gauge-fixed eff(_actlve potential
boson mass between the gauge-invariant and gauge-fixéyggest that in the case of weak gauge couplings, the Landau

formulation is due to the fact that the gauge couplings congauge effective potential prpvides a qualitatively reliable es-
timate. However, the PEP is necessary to establish the “er-

ror” estimate. In that respect, our results provide a tentative
credibility to bounds based on Landau gauge effective poten-
tial calculations.

An extension of the PEP formalism to non-Abelian gauge
theories would permit a gauge-invariant calculation of the
Higgs boson mass bound in the standard model using the
PEP. Such a gauge-invariant calculation is required to pro-
vide justified error bounds on the Higgs boson mass from
vacuum stability considerations. We hope to provide such an
extension in the near future.
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APPENDIX A: DIMENSIONALLY REGULARIZED
INTEGRALS

Most of the integrals that arise in the calculation of the

loop corrections to the gauge-invariant effective potential are

familiar. The contributions of Eq$3.9—(3.11) generate in-
tegrals of generic form

dd l m4 m2
WT k>+m?= 3072 [ AE‘H”;Z_E} (A1)

The more complicated term involving E¢3.12), however,
requires additional effort to extract th®(e° piece. The
angular integration gives

dd-tk \/(k2+MT)(k2+Mg)
(2m)9t
Z—)d—_f k- \/(k2+MT)(k2+Mg) 2
11(;—)d_M J dud® 21+ u\r+u, (A3)
where Qq=29792(I'[d/2]/T[d]) and r=MZ%/M2

Using Egs.(3.197.1 and (9.111.2 of [33] this can be
written
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d
2

M mQy—2
T(2m 9 I[-1/2]

12

ri+rd- Wr{dzz}r{ -

k4

|

3—d

2 1
1d-2 d+
s et}

whered=4—¢€. The second term is finite fo&—0 and so
e=0 may be take immediately. It may be written as

d-1

2

d
2’

(A4)

4
T —
472 4

{—r(1+r)+(1—r)%arctanh/r}. (A5)

The first term contains a &/ pole arising from the

I'[ —d/2] factor. A Laurent expansion aboset=0 to O(°)

is necessary, which requires tli&(e) terms of the hyper-
geometric function. This is obtained by writing~,[ —1/2,
—2+€l2,(—1+¢€)/2,r] as a series expansion in in
terms of Pochhammer symbols, carrying out the expansion
in € on each term, and resumming the resulting series. To
O(e),

E 1 e —1l+e _F 1 5 1 N &F 1 2+E—1+6
S A A I B A R R L I A A R
—1/2),(—2+ €/2), r"
[(=1+e)/2), | _,n!
[ o € = (=2), ¢ 1+e
f— —_ 2 —_— — — —_ —_— — _—
(A=n*ted o ae( +2) o G N |[(12,0el 2 ||
(A6)
|
Upon carrying through the differentiation the first term of d9- 1k (k2+MT)(k2+Mg)
Eq. (A6) yields an infinite series that can be resummed. The u*¢ Sd 1
second series terminates due to the facteR],,. The final (2m)
result is M4 3 M2
51 (1—1)2 A Foin— |42~ Jr(1+r1)
" 32172 w?

1
E!

e —1+e
oF1 = 5,72+ 3, =(1-r)?—¢4r+(1

—r)2n(1-r)]. (A7)

This is combined with the series expansions of th&inc-

tions and other prefactors, and terms6e®) are collected.
The result is

+(1—r)2 arctanhyr ]+ 4r + (1—r)? In(l—r)]

__(MT_MQ)Z (M —|—M )2 A +§
B 3272 T €2

(M1+Mg)?
- nT +2M Mg

(A8)
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APPENDIX B: MS COUNTERTERMS AND B FUNCTIONS

1. % counterterms

5Z4=(2€%-2y?) B (B1)

@ 1672’
57 2= (4N —3e?+2y?) ﬁAE (B2)

m 167<|’
5Z,=| 10N —6€? 3e4 424y4 A B3
O e T Y |
S5Zp= —2e2 A B4
AT 3 1677'2 ] ( )
57 _&[ A B5
=3 | T6m2) (B5)

111
3e? L[ Ae
5Zy: - T+2y 1—2 . (BG)
2. B functions
mz16W2(20>\2+6e4—8y4—12e2>\+8>\y2),
(B7)
1 (2, B8
36_16772 §e ’ ( )
B =Ly — 5e*+4y? (B9)
Y 1672 2 :
1 2,2
Yo=1g2(—€Fy ) (B10)
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