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Gauge-invariant Higgs boson mass bounds from the physical effective potential

D. Boyanovsky, Will Loinaz, and R. S. Willey
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

~Received 19 May 1997; published 4 December 1997!

We study a simplified version of the standard electroweak model and introduce the concept of the physical
gauge-invariant effective potential in terms of matrix elements of the Hamiltonian in physical states. This
procedure allows an unambiguous identification of the symmetry breaking order parameter and the resulting
effective potential as the energy in a constrained state. We explicitly compute the physical effective potential
at one loop order and improve it using the renormalization group. This construction allows us to extract a
reliable, gauge-invariant bound on the scalar mass by unambiguously obtaining the scale at which new physics
should emerge to preclude vacuum instability. Comparison is made with popular gauge-fixing procedures and
an ‘‘error’’ estimate is provided between the Landau gauge-fixed and the gauge-invariant results.
@S0556-2821~98!05901-3#

PACS number~s!: 11.15.Ex, 12.15.Ji, 14.80.Bn
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I. INTRODUCTION AND MOTIVATION

Considerable effort has been invested in understand
the Higgs sector of the standard model. Reliable constra
on the Higgs boson mass are important in determining
energy scales for collider experiments that probe the e
troweak symmetry breaking sector. Alternately, should
Higgs boson be discovered, its properties will help elucid
high-scale physics~see@1# for an early review!. In the stan-
dard model the requirement that the conventional effec
potentialVeff(w) have its global minimum at the electrowea
scale has been used to obtain a relation between a lo
bound on the mass of the Higgs boson and the scale at w
new physics should appear~for recent reviews see@2,3#!.
That scale is related to the value ofw ~expectation value of
the Higgs field! at which Veff develops a new deeper min
mum ~which depends on the mass of the Higgs boson!. Re-
cently Loinaz and Willey@4# have pointed out a difficulty
with this procedure. When the contributions from the gau
sector of the electroweak theory are included in the effec
potential, the value ofw which minimizesVeff is gauge de-
pendent. The gauge dependence of the effective poten
was already recognized by Dolan and Jackiw in their ea
study of effective potentials@5#. Although in some specific
gauges the contribution of the gauge sector may be a pe
bative correction to the contributions from the scalar p
heavy ~top! fermion-Yukawa sector, the gauge dependen
implies that no error estimate can be made and raises q
tions about the reliability of such bounds. The conventio
Veff , defined in terms of one particle irreducible~1PI!
Green’s functions at zero momentum is an off-shell quant
and in a gauge-fixed formulation it is inherently gauge va
ant and therefore not uniquely defined. Using the effect
potential to study stability or metastability implicitly as
sumes thatVeff is associated with the energy of~space-time
constant! field configurations. In scalar field theories the e
fective potential is proven to be the energy of a constrai
state@6–9#, but such proof is lacking in gauge theories. Sin
the effective potential as calculated in gauge-fixed formu
tions is explicitly gauge dependent, it cannot generally
identified with the expectation value of the physical Ham
570556-2821/97/57~1!/100~12!/$10.00
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tonian in a physical state. There are, however, gau
independent quantities thatcan be extracted from the effec
tive potential. Nielsen identities@10# have been used to prov
that thedifferenceof the values of the~gauge-fixed! effective
potential evaluated at extrema are gauge invariant, as we
the nucleation rate for bubbles in a first order transition wh
calculated from the effective potential@11#, the gauge invari-
ance of these quantities was anticipated previously@12#.
However providing a lower bound on the Higgs boson m
requires an estimate of values of the expectation value of
scalar order parameter, which is agauge-variantquantity
even at the minima of the effective potential. Even in bac
ground field calculations in generalizedRj gauges the value
of the field at the extrema of the effective potential is gau
parameter dependent@13#.

Earlier attempts to sidestep problems of gauge dep
dence have focussed on the formulation of a gauge-invar
effective action ~the Vilkovisky-Dewitt effective action!
@14,15# and consequently an effective potential. We find t
formalism involved in this approach is rather formidab
although the result for a gauge theory reduces to the fam
Landau gauge effective potential. However, the effective
tential in covariant gauges~which includes Landau gauge!
lacks an interpretation as a physical energy density aw
from extrema, and we are unaware of an energy interpr
tion for the Vilkovisky-Dewitt effective action as well. With
regard to background field techniques, it has been rece
pointed out@16# using the pinch technique, that despite
formal gauge invariance, implementation of the backgrou
field method requires a gauge-fixing parameter for the fl
tuations. This leads to gauge-parameter dependence of
energies and Green’s functions@17#.

Recently a formulation that provides a gauge-invariant
fective potential as the expectation value of the Hamilton
in physical states has been developed within a differ
framework @18#. In this formulation the gauge-invariant e
fective potential is obtained as the expectation value of
Hamiltonian in constrained physical states. These states
annihilated by the generators of the gauge transformat
and are therefore gauge invariant. These gauge-invar
states are constrained to provide an expectation value
100 © 1997 The American Physical Society
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57 101GAUGE-INVARIANT HIGGS BOSON MASS BOUNDS . . .
gauge-invariant field operator, thus furnishing a gau
invariant order parameter@18#. Although there are many in
equivalent manners of defining an effective potential t
manner provides a gauge-invariant quantity by construc
and is identified with the energy of a physical~constrained!
state. Furthermore this construction leads to the identifica
of a gauge-invariant order parameter.

We refer to this as the physical effective potential~PEP!.
Although the Hamiltonian becomes nonlocal when written
terms of gauge invariant operators, unitary time evolut
and renormalizability are manifest as shown in Ref.@18#.

In this article we apply the formulation proposed in@18#
to solve the problem of the gauge dependence in a sl
variant of the model studied in@4#. Although this model is a
simplified Abelian version of the standard model, it serves
demonstrate the utility of the gauge-invariant effective p
tential in providing a gauge-invariant estimate of a vacu
instability scale.

This article is organized as follows. In Sec. II we prese
the model to be studied and the relevant aspects of
gauge-invariant formulation provided in@18# and adapted to
include the fermionic sector. In this section we define
physical ~gauge-invariant! observables including the orde
parameter that provides an unambiguous signal for symm
breaking. In Sec. III we explicitly construct the one loo
effective potential as the expectation value of the phys
Hamiltonian in gauge-invariant states constrained to giv
space-time constant expectation value of the gauge-inva
order parameter. We also provide the modified minimal s
traction scheme (MS) renormalization of this effective po
tential. In Sec. IV we compare our results to those obtai
from the gauge-fixed formulation in generalRj,u gauges.
Section V is devoted to a renormalization group~RG! im-
provement of the gauge-invariant effective potential and
an unambiguous determination of the lower bound on
Higgs boson mass in this model, providing ‘‘error es
mates’’ for the quantities obtained in the gauge-variant f
mulation. In Sec. VI we present some brief numerical resu
Section VII summarizes our conclusions and suggests
sibles avenues to extend the gauge-invariant constructio
non-Abelian gauge theories.

II. THE GAUGE INVARIANT DESCRIPTION

The focus of our study is the Abelian Higgs model wi
an axial coupling of the gauge fields to fermions. The L
grangian density is

L52
1

4
FmnFmn1Dmf†Dmf2m2f†f2l~f†f!2

1 c̄ @ iD” 1y~f11 ig5f2!c#, ~2.1!

Dmf5~]mf1 ieAmf!; D” 5gmS ]m2 ieg5
Am

2 D ;

f5
1

&
~f11 if2!. ~2.2!

Our goal is to define and explicitly evaluate thegauge-
invariant effective potential, in terms of a gauge-invaria
-
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order parameter. The definition of the effective potential t
we use is in terms of the expectation value of the phys
Hamiltonian in physical states constrained to provide a fix
expectation value of the physical order parameter.

The program for the construction of such an effective p
tential requires~i! the identification of the physical~gauge-
invariant! states of the theory,~ii ! the identification of an
order parameter that is invariant under thelocal gauge trans-
formation but transforms nontrivially under the rigid glob
symmetry transformation and thus gives information
spontaneous symmetry breaking, and~iii ! construction of the
gauge-invariant effective potential as the expectation va
of the Hamiltonian in constrained physical states. Since
concepts behind the construction are not part of the stan
lore, we highlight below the most relevant aspects of
formulation, for more details see@18#.

Such a description is best achieved within the canon
formulation, which begins with the identification of canon
cal field variables and constraints. These will determine
classical physical phase space and, at the quantum leve
physical Hilbert space.

The canonical momenta conjugate to the scalar and ve
fields are given by

P050; P i5Ȧi1¹ iA052Ei , ~2.3!

p†5ḟ1 ieA0f; p5ḟ†2 ieA0f†. ~2.4!

The Hamiltonian is therefore

H5E d3xH 1

2
PW •PW 1p†p1~¹W f2 ieAW f!•~¹W f†1 ieAW f†!

1
1

2
~¹W 3AW !21mf†f1l~f†f!21A0F¹W •PW 2 ie~pf

2p†f†!1 i
e

2
c†g5cG1c†F2 iaW •S ¹W 2 i

e

2
g5AW D

1by~f11 ig5f2!GcJ , ~2.5!

whereaW ;b are the Dirac matrices.
There are two main methods for quantizing gauge th

ries, the first one originally due to Dirac@19# ~see also@20#!
begins by identifying the first class~mutually commuting!
constraints and projects the physical states by requiring
these are simultaneously annihilated by all first class c
straints. Physical operators commute with all of the first cl
constraints. The second, and most used method, ‘‘fixe
gauge,’’ converting the set of first class constraints into s
ond class constraints~non-commuting! and introducing the
Dirac brackets. This is the popular method of dealing w
the constraints and leads to the usual gauge-fixed path
gral representation@21# in terms of Faddeev-Popov determ
nants and ghosts. Although this second method is the m
popular as it is easily translated into a path integral langua
it has the drawback that the physical quantities are m
difficult to extract, and thoughS-matrix elements are gaug
invariant, off-shell quantities generally are not. In order
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102 57D. BOYANOVSKY, WILL LOINAZ, AND R. S. WILLEY
avoid ambiguities and to define a physical order param
and effective potential~an off-shell quantity! we choose to
use the first method.

In Dirac’s method of quantization@19,20# there are two
first class constraints which are

P05
dL
dA0 50 ~2.6!

and Gauss’ law

G~xW ,t !5¹W •PW 2r50, ~2.7!

r5F ie~pf2p†f†!2 i
e

2
c†g5c G , ~2.8!

with r being the matter~complex scalar and fermionic! field
charge density.

Gauss’ law can be seen to be a constraint in two wa
either because it cannot be obtained as a Hamiltonian e
tion of motion, or because in Dirac’s formalism, it is th
secondary~first class! constraint obtained by requiring tha
the primary constraint~2.6! remain constant in time. Quan
tization is now achieved by imposing the canonical equ
time commutation relations

@P0~xW ,t !,A0~yW ,t !#52 id~xW2yW !;

@P i~xW ,t !,Aj~yW ,t !#52 id i j d~xW2yW ! ~2.9!

along with the usual canonical commutators for the sca
field and its canonical momentum and anticommutators
the fermionic fields.

In Dirac’s formulation, the projection onto the gauge i
variant subspace of the full Hilbert space is achieved by
posing the first class constraints onto the states. Physica
erators are those that commute with the first cl
constraints. SinceP0(xW ,t) andG(xW ,t) are generators of loca
gauge transformations, operators that commute with the
class constraints are gauge invariant@18#.

Following the steps of Ref.@18# we find that the fields and
canonical conjugate momenta,

F~xW !5f~xW !expF ieE d3yAW ~yW !•¹W yG~yW2xW !G
5

1

&
~F11 iF2!, ~2.10!

P~xW !5p~xW !expF2 ieE d3yAW ~yW !•¹W yG~yW2xW !G ,
~2.11!

C~xW !5expF2 i
e

2
g5E d3yAW ~yW !•¹W yG~yW2xW !Gc~xW !,

~2.12!

with G(yW2xW ) the Coulomb Green’s function that satisfies

¹2G~yW2xW !5d3~yW2xW ! ~2.13!
er

s:
a-

l-

r
r

-
p-
s

st

are invariant under the gauge transformations@18#. Further-
more writing the gauge field into transverse and longitudi
components as follows:

AW ~xW !5AW L~xW !1AW T~xW !, ~2.14!

¹W 3AW L~xW !50; ¹W •AW T~xW !50, ~2.15!

it is clear that the ‘‘transverse component’’AW T(xW ) is also a
gauge-invariant operator. The fieldsAW T ; F; C and their ca-
nonical momenta aregauge invariantas they commute with
the constraints. The momentum canonical toAW ; PW is written
in terms of ‘‘longitudinal’’ and ‘‘transverse’’ components

PW ~xW !5PW L~xW !1PW T~xW !. ~2.16!

Both components are gauge invariant.
In the physical subspace of gauge-invariant wave fu

tionals, matrix elements of¹W •PW can be replaced by matrix
elements of the charge densityr, since matrix elements o
Gauss’ law between these states vanish. Therefore in all
trix elements between gauge-invariant states~or functionals!
one can replace

PW L~xW !→r ~2.17!

with the charge density~a gauge-invariant operator! written
in terms of the gauge-invariant fields as

r5F ie@F~yW !P~yW !2F†~yW !P†~yW !#2 i
e

2
C†~yW !g5C~yW !G .

~2.18!

This procedure is tantamount to solving the constraints in
physical space@20#.

Finally in the gauge-invariant subspace the Hamilton
becomes

H5E d3xH 1

2
PW T•PW T1P†P1~¹W F2 ieAW TF!•~¹W F†

1 ieAW TF†!1
1

2
~¹W 3AW T!21m2F†F1l~F†F!2

1C†F2 iaW •S ¹W 2 i
e

2
g5AW TD1by~F11 ig5F2!GCJ

1
1

2 E d3yE d3xr~xW !G~xW2yW !r~y!. ~2.19!

Clearly the Hamiltonian is gauge invariant, and it manifes
has the global U~1! ~chiral! symmetry under which

F~xW !→F~xW !eiw; C~xW !→e2 ig5 ~w/2!C~xW !, ~2.20!

with w a constant real phase,P transforms with the opposite
phase andAW T is invariant.

The Hamiltonian written in terms of gauge-invariant fie
operators~2.19! is reminiscent of the Coulomb gauge Ham
tonian, but we emphasize that we have not imposed
gauge-fixing condition. The formulation is fully gauge in
variant, written in terms of operators that commute with t
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57 103GAUGE-INVARIANT HIGGS BOSON MASS BOUNDS . . .
generators of gauge transformations and states that ar
variant under these transformations. The similarity to
Coulomb gauge Hamiltonian is a consequence of the
that in this Abelian theory, Coulomb gauge displays exp
itly the physicaldegrees of freedom.

There is a definite advantage in this gauge-invariant
mulation: the~composite! field F(xW ) is a candidate for a
locally gauge-invariant order parameter. The point to stress
is the following: this operator isinvariant under local gauge
transformations but it transforms as a charged operator u
the global gauge transformations generated byQ
5*d3xr(xW ), that is,

eiaQF~xW !e2 iaQ5eieaF~xW !. ~2.21!

Because the gauge constraints annihilate the phys
states and these constraints are the generators of local g
transformations@18,20#, these states are invariant under t
local gauge transformations and any operator thatis not in-
variant under these local transformationsmusthave zero ex-
pectation value. Thelocal gauge symmetry cannot be spo
taneously broken; this result is widely known in lattice gau
theory as Elitzur’s theorem@23#. However, theglobal sym-
metry generated by the chargeQ canbe spontaneously bro
ken and the expectation value of a charged field signals
breakdown.

From this discussion we clearly see that a trustwor
order parameter must be invariant under the local ga
transformations, thus commuting with the gauge constrai
but must transform nontrivially under the global gauge tra
formation generated by the charge. The fieldF fulfills these
criteria and is the natural candidate for an order parame

At this stage, having recognized the physical states
could prefer to pass to a path integral representation of
vacuum-in to vacuum-out transition amplitude. This can n
be done unambiguously by carrying out the usual proced
in terms of phase space path integrals with the gau
invariant measureDPW TDAW TDFDF†DPDP†••• . There is
no need for ‘‘gauge fixing.’’ In the resulting action~of the
form pq̇2H!, the instantaneous Coulomb interaction can
rewritten by introducing an auxiliary field, and the integr
over the canonical momenta can be carried out explic
leading to a Lagrangian form. The resulting Lagrangian le
to Feynman rules that are very similar to those in Coulo
gauge and allow the perturbative calculation of wave fu
tion renormalization constants needed below. The gau
invariant effective potential can also be computed in t
path integral representation, but we prefer to provide its
plicit construction from the Hamiltonian as such construct
displays more clearly the identification of the effective p
tential as the energy of a constrained state.

III. THE EFFECTIVE POTENTIAL

We are now in position to define the gauge-invariant
fective potential. Consider the class of gauge-invariant st
uY,x& characterized by the condition that the expectat
value of the gauge-invariant order parameterF(xW ) in this
state is nonzero and space-time constant
in-
e
ct
-

r-

er

al
uge

e

is

y
e
s,
-

r.
e
e

re
e-

e
l
y
s
b
-
e-
s
-

-

-
es
n

^Y,xuF~xW !uY,x&

^Y,xuY,x&
5

1

&
~x11 ix2![x. ~3.1!

In this notationY indexes the states within the set charact
ized by Eq.~3.1!. The effective potential is defined as th
minimum of the expectation value of the Hamiltonian de
sity over this class of constrained states@6–8#, namely,

Veff~x!5
1

V
min

Y
H ^Y,xuHuY,x&

^Y,xuY,x& J , ~3.2!

with H being the gauge-invariant Hamiltonian given by E
~2.19! andV the spatial volume@9#. By construction in terms
of gauge-invariant states~or functionals! and the gauge-
invariant Hamiltonian, this effective potential isgauge in-
variant. The minima of this effective potential are obtaine
from Veff(x) by further minimizing with respect tox1,2.

It is convenient to separate the expectation value ofF as

F~xW !5
1

&
~x11 ix2!1

1

&
@h1~xW !1 ih2~xW !#, ~3.3!

P~xW !5
1

&
@P1~xW !2 iP2~xW !#. ~3.4!

The one-loop correction@formally of O~\!# to the effective
potential is obtained by keeping thelinear and quadratic
terms inh1,2 in the Hamiltonian, however the linear term
will not contribute to the effective potential because th
contribution vanishes upon taking the expectation value
the stateuY,x&. Thus keeping only the quadratic terms inh1,2
we obtain

Hq5VS m2

2
uxu21

l

4
uxu4D1Hq

B1HF,

Hq
B5

1

2 E d3x$PW T
21~¹W 3AW !21e2uxu2AW T

21P1
21P2

2

1~¹W h1!21~¹W h2!21h1
2~m213luxu2!1h2

2~m2

1luxu2!%2
e2

2
uxu2E d3xE d3yP2~xW !G~xW2yW !P2~yW !,

HF5E d3x$C†@2 iaW •¹1yuxub#C%, ~3.5!

where we have performed arigid chiral phase rotation unde
which the Hamiltonian is invariant. The transverse comp
nentsAW T describe a field with massmT

25e2uxu2 and only two
polarizations. The fermionic part is recognized as a f
Dirac fermion with massMF5yuxu. The fermionic Hamil-
tonian can be diagonalized in terms of particle and antip
ticle creation and annihilation operators of the usual for
and upon using their anticommutation relation we obtain
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HF5(
k

(
a51,2

$vF~k!@bk,a
† bk,a1dk,a

† dk,a#%22(
k

vF~k!,

~3.6!

vF~k!5Ak21MF
2@ uxu#; MF@x#5yuxu. ~3.7!

Following @18# we write the bosonic Hamiltonian (Hq
B) in

terms of the spatial Fourier transform of the fields and th
canonical momenta in terms of which the quadratic part
the Hamiltonian finally becomes

Hq5VVcl~ uxu!1
1

2 (
k

H PW T~k!•PW T~2k!

1vT
2~k!AW T~k!•AW T~2k!1P1~k!P1~2k!

1vH
2 ~k!h1~k!h1~2k!1P2~k!P2~2k!

vT
2~k!

k2

1h2~k!h2~2k!vg
2~k!J , ~3.8!

where the frequencies are given in terms of the effec
masses as

vT
2~k!5k21MT

2@x#; MT
2@x#5e2uxu2, ~3.9!

vH
2 ~k!5k21MH

2 @x#; MH
2 @x#5m213luxu2,

~3.10!

vg
2~k!5k21Mg

2@x#; Mg
2@x#5m21luxu2. ~3.11!

The last two terms can be brought to a canonical form b
Bogoliubov transformation. Define the new canonical co
dinateQ and conjugate momentumP as

P2~k!5
k

vT~k!
P~k!; h2~k!5

vT~k!

k
Q~k! ~3.12!

in terms of which the last term of the Hamiltonian~3.8!
becomes a canonical quadratic form with theplasma fre-
quency

vp
2~k!5vg

2~k!
vT

2~k!

k2 5@k21Mg
2@x##@k21MT

2@x##/k2.

~3.13!
ir
f

e

a
-

There are four physical degrees of freedom. The mo
with frequencyvT(k) are the two transverse degrees of fre
dom, the mode with frequencyvH(k) is identified with the
Higgs mode. In absence of electromagnetic interactionse
50) the mode with frequencyvp(k) represents the Gold
stone mode whereasin equilibrium, namely, at the minimum
of the tree level potential, whenuxu5A2m2/l, it represents
the plasma mode which is identified as the screened C
lomb interaction, and the transverse and plasma mode
share the same mass. A detailed discussion of the dispe
relation of the bosonic excitations has been provided in@18#.

The quadratic Hamiltonian is now diagonalized in term
of creation and destruction operators for the quanta of e
harmonic oscillator. The ground state is the vacuum for e
oscillator and is the state of lowest energy compatible w
the constraint~3.1!. Therefore the one loop@O~\!# contribu-
tion to the effective potential is obtained from the zero po
energy of the bosonic oscillators and the~negative! contribu-
tion from the ‘‘Dirac sea’’ given by the last term in Eq.~3.6!.
Therefore accounting for the two polarizations of the tra
verse components we find

Veff~ uxu!5Vcl~ uxu!1
1

2 E d3k

~2p3!
@2vT~k!

1vH~k!1vp~k!24vF~k!#. ~3.14!

The normalized state that satisfies Eq.~3.1! and gives the
minimum expectation value of the Hamiltonian, thus det
mining effective potential via Eq.~3.2! is given by

ux&5ux&T1
^ ux&T2

^ ux&H ^ ux&p^ ux&F , ~3.15!

i.e., a tensor product of the harmonic oscillator ground sta
for the two polarizations (T1,2), the Higgs mode~H!, the
‘‘plasma’’ mode ~p!, and the fermionic Fock state~F! ~the
‘‘Dirac sea’’!. The functional representation for the boson
Fock states is simply a Gaussian wave functional. This s
by constructionis gauge invariant.

The k integrals in the final form of the gauge
invariant effective potential~3.14! are carried out in dimen-
sional regularization by the replacements*d3k/(2p)3

→*dd21k/(2p)d21; gm
m5d, and 2→d22 transverse

modes,d542e ~see the appendixes! and we obtain the fol-
lowing ~unrenormalized expression! one loop effective po-
tential:
Veff~x!5Vcl~x!1
1

~4p!2 H 2DeFMT
4@x#

2
1

MH
4 @x#

4
1

1

4
~MT

2@x#2Mg
2@x#!22MF

4@x#G1
MT

4@x#

2 S lnFMT
2@x#

k2 G2
1

2D
1

MH
4 @x#

4 S lnFMH
2 @x#

k2 G2
3

2D 1
1

4
~MT

2@x#2Mg
2@x#!2S lnF ~MT@x#1Mg@x#!2

k2 G2
3

2D
2

1

2
MT@x#Mg@x#~MT@x#2Mg@x#!22MF

4@x#S lnFMF
2@x#

k2 G2
3

2D J ~3.16!
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with

De5
2

42d
2g1 ln@4p# ~3.17!

is the standardMS UV subtraction ind dimensions,k is the
renormalization scale, andg is the Euler-Mascheroni con
stant.

A. MS renormalization

The theory is renormalized by coupling, mass and wa
function renormalizations:

eb5ZeeR ; lb5ZllR ; yb5ZyyR ; mb
25Zm2mR

2,
~3.18!

Ab
m5ZA

1/2AR ; Fb5ZF
1/2FR ; Cb5ZC

1/2CR . ~3.19!

The gauge-invariant quantization ensures that all
Ward identities associated with the gauge symmetry are
trivially satisfied. Here we work in theMS renormalization
scheme and write for the various couplings and wave fu
tion renormalizationsZ511dZ, expandingdZ in powers of
the couplings and absorbing only theMS divergences pro-
portional to De . There are two equivalent procedures
renormalize the effective potential.

~1! The terms proportional toDe in Eq. ~3.16! are ab-
sorbed in a partial renormalization of couplings andm2. This
renormalization, however, does not render finite the sca
ing amplitudes. The latter require a further renormalizat
by the proper wave-function renormalization constan
which at the level of the effective potential is absorbed in
renormalization ofxb

2→ZFxR
2 . The wave-function renor-

malizations must be calculated differently from the effect
potential, since their calculation requires one-loop contri
tions at nonzero momentum.

~2! After restricting the Hamiltonian to the gauge
invariant subspace, one can pass on to the Lagrangian
sity in terms of gauge-invariant variables, and write it
terms of the renormalized couplings, masses and fields
the counterterm Lagrangian. The counterterms are then
quired to cancel the divergences in the proper 1PI Gree
functions. It is at this stage that we use the path integ
representation discussed previously to compute the w
function renormalization constants from the one loop s
energies and vertex corrections. Such a calculation, altho
straightforward, involves noncovariant loop integrals whi
are performed with the help of the Appendix in referen
@24#.

For the renormalization of the effective potential only sc
lar wave-function renormalization is needed beyond the c
cellation of the terms proportional toDe in Eq. ~3.16!. A
lengthy but straightforward calculation of the relevant o
loop diagrams provides the renormalization constants lis
in Appendix B.

In terms of the renormalized couplings and expectat
value of the gauge-invariant scalar field, the gauge-invar
effective potential in theMS renormalization scheme i
given by @here we drop the subscripts~R! in the renormal-
ized quantities to avoid cluttering of notation, but all quan
ties below are renormalized#
e

e
w

c-

r-
n
,

a

-

en-
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’s
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e-
-
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-
n-

d

n
nt

-

Veff~x!5Vcl~x!1
1

~4p!2 H MT
4@x#

2 S lnFMT
2@x#

k2 G2
1

2D
1

MH
4 @x#

4 S lnFMH
2 @x#

k2 G2
3

2D 1
1

4
~MT

2@x#

2Mg
2@x#!2S lnF ~MT@x#1Mg@x#!2

k2 G2
3

2D
2

1

2
MT@x#Mg@x#~MT@x#2Mg@x#!2

2MF
4@x#S lnFMF

2@x#

k2 G2
3

2D J . ~3.20!

IV. COMPARISON WITH GAUGE-FIXED RESULTS

A comparison with the effective potential in covaria
Rj,u gauges is established by adding gauge-fixing a
Faddeev-Popov terms to the Lagrangian density Eq.~2.1!:

L→L1Lgf1LFP, ~4.1!

Lgf52
1

2j
~]mAm1juef2!2, ~4.2!

LFP52 c̄ ]2c2jue2 c̄ cf1 . ~4.3!

Special cases of this covariant gauge-fixing procedure
clude the Landau gauges (j50), ’t Hooft Rj gauges@25#
@u5^f1&0 , the tree-level Higgs vacuum expectation val
~VEV!#, and Fermi gauges (u50), where we have chose
the symmetry breaking expectation value along thef1 direc-
tion for convenience. At this stage we can just quote
results of Ref.@4# adapted to the case treated here of an a
vector coupling withNf51, for arbitrary number of flavors
the one-loop contribution from the fermion will be mult
plied by Nf . With w5^f1& the expectation value obtaine
in the gauge-fixed path integral, we obtain the one loop
fective potential in theMS scheme after renormalization o
m2, couplings and wave functions@4#:

Ṽeff@w;j;u#5
1

2
m2w21

l

4
w41

1

4

H4@w#

~4p!2 F ln
H2@w#

k2 2
3

2G
1

3

4

B4@w#

~4p!2 F ln
B2@w#

k2 2
5

6G2
2

4

G4@w#

~4p!2

3F ln
G2@w#

k2 2
3

2G1
1

4

k1
4 @w#

~4p!2

3F ln
k1

2 @w#

k2 2
3

2G1
1

4

k2
4 @w#

~4p!2

3F ln
k2

2 @w#

k2 2
3

2G2
Y4@w#

~4p!2 F ln
Y2@w#

k2 2
3

2G
1je2uw~m21lw2!F 2De

~4p!2G , ~4.4!
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where

H2@w#5m213lw2, ~4.5!

B2@w#5e2w2, ~4.6!

G2@w#5je2uw, ~4.7!

k6
2 @w#5

1

2
@m21lw212je2uw#

6
1

2
A~m21lw2!@m21lw214je2w~u2w!#,

~4.8!

Y2@w#5y2w2. ~4.9!

H, B, Y, and G denote contributions from Higgs boso
vector boson, fermion, and Faddeev-Popov ghost loops
spectively.

Although the ‘‘effective masses’’H@w#;B@w#;Y@w# are
formally similar to the Higgs boson, transverse and ferm
effective masses given in Eqs.~3.7!, ~3.9!, ~3.10! upon the
replacementw→uxu, we want to emphasize thatwex is the
expectation value of a gauge-dependent field in a gau
fixed state, whereasx is a true gauge-invariant order param
eter, the expectation value of a gauge-invariant field in
gauge-invariant state. The UV pole in the gauge-fixed eff
tive potential~4.4! which is not removed by couplings an
wave-function renormalizations has been discussed in d
in @4#. It can be removed by a shift inw consistently in the
loop expansion and is a consequence of the particular ch
of Rj,u gauge-fixing that breaks the global U~1! symmetry
explicitly.

Even for the Landau gauge, corresponding to the cho
j50, leading tok1

2 5m21lw2; k2
2 50 the difference of the

gauge sector contributions to the gauge-fixed and the ga
invariant effective potential is clear.

The first physicalquantity that we must compare is th
value of both the gauge-invariant and the gauge-fixed ef
tive potentials at their respective minima. The minima a
obtained from the conditions

F]Veff@ uxu#
]uxu G ;F ]Ṽeff@w;j;u#

]w
G50. ~4.10!

Writing the stationary values ofuxu;w in a formal loop
expansion as@4#

uxuext5uxu01uxu11••• ; wext5w01w11••• ~4.11!

we find the following relations that fix the minima to on
loop order:

05F]Veff
0 @ uxu#
]uxu G

uxu0

, ~4.12!

uxu152F]Veff
1 @ uxu#
]uxu G

uxu0
H F]2Veff

0 @ uxu#
]uxu2 G

uxu0
J 21

,

~4.13!
e-

n

e-

a
-

ail

ice

e

e-

c-
e

05F ]Ṽeff
0 @w;j;u#

]w
G

w0

, ~4.14!

w1~j;u!52F ]Ṽeff
1 @w;j;u#

]w
G

w0

H F ]2Ṽeff
0 @w;j;u#

]w2 G
w0

J 21

~4.15!

the solutions of Eqs.~4.12!, ~4.14! are obviously the tree
level vacuum expectation valuesuxu05w05A2m2/l but the
solution of Eq.~4.15! is dependent on the gauge-fixing p
rametersj,u @4#. However, upon inserting the solutions o
the minima equation consistently up to one loop in the
spective expressions for the effective potentials, we find t
the value of the minima for the gauge-fixed and the gau
invariant effective potentialare the same. This is an impor-
tant result: whereas the gauge-invariant effective potentia
constructed has the meaning of an energy of constra
physical states, no such interpretation is available for
gauge-fixed result. However at the minimum, we see that
gauge-fixed effective potential agrees with the gau
invariant result and therefore the values of the extrema p
vide gauge-invariant information on the energetics of co
strained states.1

The second derivative of the gauge-fixed effective pot
tial at the minimum is seen to be a gauge-dependent quan
Although the pole mass of the excitations are on-shell qu
tities and must therefore be gauge invariant, the second
rivative of the effective potential corresponds to the value
the one-particle Green’s function at zero four moment
transfer:

F]2Veff

]w2 G
w5w0

52lw0
21

w0
2

16p2 H 6l2F4 ln
2lw0

2

k2 21G
19e4 ln

e2w0
2

k2 1F2l21
1

2
lje2

1~je2!2G ln je2w0
2

k2 2lje2

216Nfyt
4F3 ln

yt
2w0

2

k2 21G J . ~4.16!

We note that this expression is divergent in the Land
gauge (j50). Direct calculation in Landau gauge show
that the divergence is due to the Goldstone boson term in
effective potential.

V. RG IMPROVEMENT
AND THE HIGGS BOSON MASS BOUND

The vacuum stability bound on the Higgs boson ma
arises from imposing the requirement that the electrow
vacuum be the global minimum of the effective potential.
fact, the standard model is thought to be the low-energy

1It has long been known that the value of the gauge-fixed effec
potential at extrema is gauge invariant@26#.
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fective theory of some more fundamental high-scale theo
Thus it is only consistent to demand that the electrow
vacuum is the absolute minimum up to the scale at which
effects of the ‘‘new physics’’~those not incorporated into th
low-energy effective theory! become significant. In the con
text of the effective potential we associate this scale wit
value of the elementary scalar field and hence insist that
electroweak minimum is the global minimum of the effecti
potential up to that value of the field~however, see@27#!. For
the elementary scalar field effective potential, however,
value that the effective potential assumes at some expe
tion value of the scalar field is explicitly gauge depende
Thus, the statement that the value of the effective poten
exceeds that of the electroweak minimum up to some scaL
is also gauge dependent. This gauge dependence in tur
fects the lower bound on the Higgs boson mass derived f
that ansatz.

The PEP does not suffer from this gauge ambiguity. T
condition that the electroweak minimum is the global mi
mum up to some maximum value of the gauge-invariant
der parameter provides a gauge-invariant means of defi
the vacuum instability scale and through that a gauge inv
ant lower bound on the Higgs boson mass.

Using the PEP, we demonstrate how to derive the low
bound on the Higgs boson mass in the toy model, wh
displays the same qualitative features as the standard m
with respect to vacuum stability. Unlike the convention
approach using the elementary field effective potential,
bound obtained from the PEP formalism will be manifes
gauge invariant. The extension of the approach to n
Abelian gauge theories such as the standard model req
the extension of the PEP formalism to that context, we
no serious obstacles to such a program.

It is known ~in the context of the elementary field effe
tive potential! that the simple perturbative effective potent
is often inadequate for the study of the theory at large fi
values due to large logarithms which ruin the convergenc
the perturbative loop expansion@22,1#. The range of validity
of the perturbative expansion can be enhanced, howe
through the use of the renormalization group. The invaria
of the full ~all-orders! effective potential under a change
MS renormalization scale can be written as a first-order
ferential equation

k
d

dk
V̂eff~w,m,l,e,yt ,j,k!50, ~5.1!

where j denotes a generic gauge parameter, which alw
arises in defining the gauge-fixed elementary field effec
potential. This equation may be solved using familiar me
ods in terms of theb andg functions. These in turn may b
calculated in a loop expansion from theMS counterterms of
the theory. Whereas the unimproved effective potential w
reliable only for field values at which

ĝ2

16p2 ln
ĝ2w2

k2 !1 ~5.2!

the solution to the RG equation will be reliable as long as
running couplings@genericallyĝ2(s)# are small.
y.
k
e

a
e
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in-
m

e

r-
ng
ri-

r
h
del
l
e

-
res
e

d
of

er,
e

f-

ys
e
-

s

e

Similar considerations are applicable to the PEP~but now
without the gauge parameterj!. The PEP is also independen
of changes in renormalization scale. The PEP has been i
tified as a matrix element of the physical Hamiltonian
~physical! states. The Hamiltonian is part of the energy m
mentum tensor which is a conserved current. Conserved
rents do not acquire anomalous dimensions and are fi
after field-independent subtractions~normal ordering in the
free field vacuum! in terms of the renormalized paramete
and fields. In dimensional regularization these normal ord
ing divergences vanish identically. Alternatively, that t
PEP is renormalization group invariant can also be see
the same manner as for the elementary field effective po
tial, by returning to the path integral, expressing the PEP
a sum ofFnGF

(n) at zero external momentum via the mome
tum expansion of the corresponding effective action. T
multiplicative renormalization factors cancel, and since
renormalized effective potential is equal to the bare effect
potential it is alsok independent. The analogous RG equ
tion may then be written

k
d

dk
Veff~x,m,ĝ,k!

5Fk
]

]k
1b ĝ

]

]ĝ
2gmm

]

]m
2gFx

]

]xGVeff~x,m,ĝ,k!

50, ~5.3!

where

b ĝ5k
dĝ

dk
,

gF52
k

F

dF

dk
5

1

2

k

ZF

dZF

dk
,

gm52
k

m

dm

dk
5

1

2

k

Zm2

dZm2

dk
, ~5.4!

or, writing F5sF i ~whereF i is some arbitrary initial scale
for example the electroweak scale!:

Fk
]

]k
1b ĝ

]

]ĝ
2gmm

]

]m
2gFs

]

]sGVeff~sx i ,m,ĝ,k!50.

~5.5!

Here ĝ represents the set of couplingsl, g, andyt . Using
dimensional analysis we can also write

Fk ]

]k
1m

]

]m
1s

]

]s
2dGVeff~sx i ,m,ĝ,k!50. ~5.6!

Combining Eqs.~5.5! and ~5.6! gives the RG equation

Fm~gm21!
]

]m
1b ĝ

]

]ĝ
2~gF11!s

]

]s
1dG

3Veff~sx i ,m,ĝ,k!50. ~5.7!
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It can then be shown that solution of theMS RG equation for
the effective potential is

Veff~sx i ,ĝi ,m i ,k!5@z~s!#dVeff@x i ,ĝ~s,ĝi !,m~s,m i !,k#,
~5.8!

where

z~s!5expF E
0

ln s 1

gF~x!11
dxG , ~5.9!

ĝ(s,ĝi) is the solution to the equation

s
dĝ~s!

ds
5 b̄g@ ĝ~s!#5

bg@ ĝ~s!#

11gF@ ĝ~s!#
,

ĝ~0!5ĝi , ~5.10!

and

m~s,m i !5m i expF E
0

ln sF gm~x!21

gF~x!11GdxG . ~5.11!

It is convenient to separate the tree-levelVeff and its one-
loop corrections by writing Eq.~5.8! in the form

Veff~sx i ,ĝi ,m i ,k!5@z~s!#dF1

2
@m2~s!1Dm2~x i !#x i

2

1
1

4
leff~s,x i !x i

4G , ~5.12!

leff~s,x i !5l~s!1Dl~x i !, ~5.13!

whereDm2 andDl contain the loop corrections toVeff .
The b andg functions andVeff can then be calculated t

the desired loop order. It has been shown that using th
loop effective potential and then11 loop b functions sums
up all logs of the form lns,ln2 s,...,lnn s @28,29#. The one-
loop MS b functions for our model are given explicitly in
Appendix B. Dl can be extracted directly from Eq.~3.16!
and to one-loop order is

Dl~s,x i !5
4

~4p!2x i
4 H MT

4@x i #

2 S lnFMT
2@x i #

k2 G2
1

2D
1

MH
4 @x i #

4 S lnFMH
2 @x i #

k2 G2
3

2D 1
1

4
~MT

2@x i #

2Mg
2@x i # !2S lnF ~MT@x i #1Mg@x i # !2

k2 G2
3

2D
2

1

2
MT@x i #Mg@x i #~MT@x i #2Mg@x i # !2

2MF
4@x i #S lnFMF

2@x i #

k2 G2
3

2D J . ~5.14!

In the standard model the top quark term dominatesbl .
In this toy model the fermion plays the same role. It is t
large negative fermion loop contribution that drivesl(s)
n-

negative at larges. At the leading-log level, if the tree-leve
RG-improved effective potential is run with the one-loopb
function, at large fields it is well approximated by neglecti
the term quadratic inx and is given by Veff@s,xi#
51

4 l(s)@xiz(s)#4. Very near the value ofs at whichl(s) turns
negative,Veff falls below the electroweak minimum. We de
fine the scales at whichVeff(s)5Veff(sEW) to be the vacuum
instability scale,sVI . If the electroweak minimum is to re
main the global minimum of the effective potential, th
theory must somehow be incomplete and new high-sc
physics must contribute in some important way before
vacuum instability scale.

To extract a lower bound on the Higgs boson mass,
choose a vacuum instability scalesVI where by definition
Veff(sVI)5Veff(sEW). In the approximation thats@1, the con-
tribution to Veff(sVI) from the m2 terms is small, and

Veff(sVI)'
1
4 leff(sVI)x i

4@z(sVI)#4. Further, for s@1, the
value ofs at whichVeff(s)50 is very close to that at which i
equalsVeff(sEW). Thus it is numerically a good approxima
tion to take@30–32#

Veff~sVI ,x i !'
1

4
leff~sVI !x i

4@z~sVI !#
4'0. ~5.15!

Sincez(s) is positive, Eq.~5.15! implies

leff~sVI !5l~sVI !1Dl~sVI !50⇒l~sVI !52Dl~sVI !.

~5.16!

Thus the constraint that the electroweak minimum be
absolute minimum of the effective potential up to some h
scale translates to a high-scale boundary condition onl(s).
Run down to the low scale, the result is a value ofl i below
which the electroweak vacuum is unstable. This can in t
be converted to a lower bound on the Higgs boson p
mass.

This is completely analogous to the procedure with
elementary field effective potential. In that case, howev
the expression forDl is explicitly dependent on the gaug
parameters, which results in a gauge dependence in
Higgs boson mass bound@4#. In the current formulation,Dl
is by construction gauge invariant. The steps all follo
through in exactly the same fashion, but the Higgs bos
mass bound obtained in the end is gauge invariant.

VI. NUMERICAL RESULTS

Here we demonstrate the formalism developed in the p
vious section by applying it to obtain numerical values f
l i , assuming values for the other couplings at the el
troweak scale and assuming some value forsVI . Since this is
only an Abelian toy model, we cannot draw conclusio
about the standard model. Instead, we compare the resu
the gauge-invariant formulation with the elementary field
fective potential formulation within this model for sever
different sets of parameters.

For illustrative purposes it will suffice to use only on
loop b functions and the one-loop corrections to the effect
potential, which will sum the leading logs. Furthermore,
the leading log level it is consistent to run the couplings
the tree-level part of the effective potential only and to lea
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the couplings in the one-loop terms fixed at their initial v
ues. The additional effort required to reduce thek depen-
dence of the results and improve numerical accuracy by
culating higher loop effects is not justified for a toy mode

In Fig. 1 we plot the log of the vacuum instability sca
sVI as a function ofl i and ei

2 for yt,i
2 50.5 andk5v, as

calculated using the PEP. We have also performed a sim
calculation using the Landau gauge elementary field ef
tive potential@settingj50 in Eq.~4.4!# and found the results
to differ only by a few percent. This is shown explicitly i
Fig. 2. Here the difference between the logsVI calculated
using the different effective potentials is plotted, and the d
ference is shown to be very small. Thus, in this model
Landau gauge elementary field effective potential treatm
and a PEP treatment give very similar numerical results
one loop level.

We note that the similarities of the numerical results b
tween the PEP and the Landau gauge-fixed effective po
tial are not obviousa priori. In a gauge-fixed formulation
there isa priori no reason to expect the results in one gau
to be numerically superior to those in another gauge.

The similarities between the numerical results on the sc
of new physics and therefore on the bound on the Hi
boson mass between the gauge-invariant and gauge-
formulation is due to the fact that the gauge couplings c

FIG. 1. lnsVI for the PEP as a function ofei
2 andl i ,min for yt

2

50.5, k5v.

FIG. 2. The difference between logsVI calculated from the PEP
and lnsVI calculated from the Landau gauge elementary field eff
tive potential, as a function ofei

2 andl i ,min , for yt
250.5, k5v.
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ar
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e
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e
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ed
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sidered are relatively weak. For stronger coupling the ga
and scalar sectors will be more important inDl and the
differences more noticeable. However, in that case a o
loop calculation will likely not be adequate and will thus b
beyond the scope of our simple one-loop analysis.

VII. CONCLUSIONS

The usual formulation of bounds on the Higgs boson m
from the RG-improved elementary field effective potential
afflicted with gauge dependence that renders it unsatis
tory. This gauge dependence is the result of the gauge
pendence of the elementary field effective potential its
and it suggests that the elementary field effective potentia
not the appropriate tool for the analysis. The error stemm
from the gauge variance in calculations in a specific gau
fixing scheme cannot be inferred because the results can
in a wide range by varying the gauge parameter.

We have presented an alternative approach, using the
cently introduced PEP@18#, to calculate the Higgs boso
mass bound in a simplified Abelian model which displays
same vacuum stability problem as the standard model.
have explicitly provided a gauge-invariant construction
the effective potential in terms of a gauge-invariant ord
parameter that serves as a signal of symmetry breaking.
effective potential is unambiguously identified with th
physical energy of a configuration and therefore provid
reliable estimates from vacuum stability analysis. We co
structed this gauge-invariant effective potential to one lo
order and improved it via RG.

Compared to the analogous calculation in the Land
gauge the numerical results are similar when the gauge
plings are weak. While this suggests that Landau gauge
culations in the standard model may give numerically sim
results to a gauge-invariant treatment, it does not prov
justification for the principle of using the gauge-depend
effective potential to place bounds on gauge-invariant qu
tities.

Although not guaranteeda priori, our result on the nu-
merical similarities between the scales and bound obtai
from PEP and the Landau gauge-fixed effective poten
suggest that in the case of weak gauge couplings, the Lan
gauge effective potential provides a qualitatively reliable
timate. However, the PEP is necessary to establish the
ror’’ estimate. In that respect, our results provide a tentat
credibility to bounds based on Landau gauge effective po
tial calculations.

An extension of the PEP formalism to non-Abelian gau
theories would permit a gauge-invariant calculation of t
Higgs boson mass bound in the standard model using
PEP. Such a gauge-invariant calculation is required to p
vide justified error bounds on the Higgs boson mass fr
vacuum stability considerations. We hope to provide such
extension in the near future.
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APPENDIX A: DIMENSIONALLY REGULARIZED
INTEGRALS

Most of the integrals that arise in the calculation of t
loop corrections to the gauge-invariant effective potential
familiar. The contributions of Eqs.~3.9!–~3.11! generate in-
tegrals of generic form

meE dd21k

~2p!d21 Ak21m25
m4

32p2 F2De1 ln
m2

m2 2
3

2G . ~A1!

The more complicated term involving Eq.~3.12!, however,
requires additional effort to extract theO(e0) piece. The
angular integration gives

meE dd21k

~2p!d21 A~k21MT
2!~k21Mg

2!

k2

5
meVd22

~2p!d21 E
0

`

dkkd22A~k21MT
2!~k21Mg

2!

k2 ~A2!

5
1

2

meVd22

~2p!d21 MT
dE

0

`

duu~d24!/2A11uAr 1u, ~A3!

where Vd52dpd/2 (G@d/2#/G@d#) and r 5 MG
2 /MT

2.
Using Eqs. ~3.197.1! and ~9.111.2! of @33# this can be
written
of
h

e

MT
d meVd22

~2p!d21G@21/2# H GF2
d

2GGFd21

2 G 2F1F2
1

2
,

2
d

2
,
32d

2
,r G1r ~d21!/2GFd22

2 GGF2
d21

2 G
3 2F1F2

1

2
,
d22

2
,
d11

2
,r G J , ~A4!

whered542e. The second term is finite fore→0 and so
e50 may be take immediately. It may be written as

MT
4

4p2

1

4
$2Ar ~11r !1~12r !2arctanhAr %. ~A5!

The first term contains a 1/e pole arising from the
G@2d/2# factor. A Laurent expansion aboute50 toO(e0)
is necessary, which requires theO~e! terms of the hyper-
geometric function. This is obtained by writing2F1@21/2 ,
221 e/2 , (211e)/2 ,r # as a series expansion inr in
terms of Pochhammer symbols, carrying out the expans
in e on each term, and resumming the resulting series.
O~e!,
2F1F2
1

2
,221

e

2
,
211e

2
,r G52F1F2

1

2
,22,2

1

2
,r G1e

]

]e 2F1F2
1

2
,221

e

2
,
211e

2
,r G

e50

5~12r !21 (
n50

`

e
]

]e F ~21/2!n~221 e/2!n

@~211e!/2!n
G

e50

r n

n!

5~12r !21e (
n50

`
r n

n! F ]

]e S 221
e

2D G
e50

2e (
n50

`
r n

n! F ~22!n

~21/2!n

]

]e S 211e

2 D
n
G

e50

.

~A6!
Upon carrying through the differentiation the first term
Eq. ~A6! yields an infinite series that can be resummed. T
second series terminates due to the factor (22)n . The final
result is

2F1F2
1

2
,221

e

2
,
211e

2
,r G5~12r !22e@4r 1~1

2r !2ln~12r !#. ~A7!

This is combined with the series expansions of theg func-
tions and other prefactors, and terms toO(e0) are collected.
The result is
e meE dd21k

~2p!d21 A~k21MT
2!~k21Mg

2!

k2

5
MT

4

32p2 H ~12r !2S De1
3

2
2 ln

MT
2

m2 D 12@2Ar ~11r !

1~12r !2 arctanhAr #14r 1~12r !2 ln~12r !J
52

~MT2Mg!2

32p2 H ~MT1Mg!2S De1
3

2

2 ln
~MT1Mg!2

m2 D12MTMgJ . ~A8!
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APPENDIX B: MS COUNTERTERMS AND b FUNCTIONS

1. MS counterterms

dZF5~2e222y2!F De

16p2G , ~B1!

dZm25~4l23e212y2!F De

16p2G , ~B2!

dZl5S 10l26e213
e4

l
14y224

y4

l D F De

16p2G , ~B3!

dZA52
2e2

3 F De

16p2G , ~B4!

dZe5
e2

3 F De

16p2G , ~B5!
ry

ys
dZy5S 2
3e2

4
12y2D F De

16p2G . ~B6!

2. b functions

bl5
1

16p2 ~20l216e428y4212e2l18ly2!,

~B7!

be5
1

16p2 S 2

3
e3D , ~B8!

by5
1

16p2 yS 2
3

2
e214y2D , ~B9!

gF5
1

16p2 ~2e21y2!. ~B10!
.
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