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Do static sources outside a Schwarzschild black hole radiate?
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We show that static sources coupled to a massless scalar field in Schwarzschild spacetime give rise to
emission and absorption of zero-energy particles due to the presence of Hawking radiation. This is in complete
analogy with the description of the bremsstrahlung by a uniformly accelerated charge from the coaccelerated
observers’ point of view. The response rate of the source is found to coincide with that in Minkowski
spacetime as a function of its proper acceleration. It is interesting that this quantum result appears to reflect the
classical equivalence principlg50556-282(97)50122-9

PACS numbd(s): 04.70.Dy, 04.62+v

The relation between radiation from accelerated chargewith the Hawking radiation8], yields a finite response rate.
and the equivalence principle has for some time been thin fact we will see that the total response ratexactlythe
source of much confusion and discussion. A particularly in-same as that of a uniformly accelerated source in Minkowski
teresting question is how to reconcile the following two factsspacetime as a function of the proper acceleration.

(in Minkowski spacetimg On the one hand, an accelerated It should be noted that our source is a classical test source,
charge is known to radiate when it is seen from the view-which influences the scalar fieldut is not influenced by.it
point of inertial observers. On the other hand, according tdrhis point should be emphasized because there is a contro-
the equivalence principle, the same charge is seen by comoversy as to whether or not a uniformly accelerated Unruh-
ing observers as a static charge in a uniform “gravitationalDeWitt detector[5,9], which fully interacts with the field
field,” and, hence, is not expected to radiate. In ¢tfessical  radiates and, if so, how it radiatgs0—15. Although we are
context this question has been answered first by Rohflidh  considering classical sources, accelerated detectors are simi-
and further clarified by Boulwarg2], who has shown that |ar to them in some respects. We favor the viewpoint that a
the presence of a horizon for the collection of comovingclassical accelerated source radiates at a constant rate be-
observers, who perceive the charge as static, serves t0 exayse a constant classical Minkowski energy flux is present
plain the apparent paradox. This resolution is based on thg,: away from the sourcL6]. Nevertheless, it is often as-
fact that the radiation zong@s described by the Minkowski  sete that the particles emitted by the accelerated classical
pbserver}slles beyond the comoving observers hO”ZO’? andsource are radiated only when the acceleration is changed.
'(;Sort:g; ?ﬁggﬁ;‘éiﬁliob{hitshegéagomiat??ngﬁcgjg'?ﬁl Although we do not share this viewpoint, it will not be in

P conflict with our results if the word “response rate” is re-

terms of photon emission rajebas been given by the au- laced by ‘time-averagedesponse rate.” We would also
thors[3], by recalling that, as seen by the comoving observP y 9 P :

ers, the static chargevhich has in fact constant proper ac- :c'ke t?] p0|rr]1t out that odur main _resfult can S]:“" beftaken as Ithe
celeration is immersed in the Fulling-Davies-UnruDU) act that the integrated two-point function for a free massless

thermal bath[4—6] in Rindler spacetimd7]. That is, the Scalar fieldd(x), [dr(P[x(7)]P[x(0)]), wherex*(r) is

interaction of the static charge with this thermal bath result$he static world line in Schwarzschild spacetime arid the

in the absorption and stimulated emission of photons witiProper time, coincides with the corresponding quantity in

zero Rindler energywhich are actually nondetectable by the Rindler spacetime as a function of the acceleration.

comoving observejs and this completely accounts for the ~ We first review the general formalism for computing the

bremsstrahlung due to a uniformly accelerated charge inesponse rate of a classical source in a static spacetime and

guantum electrodynamics as described by inertial observerthe result of Ref[3] in the context of massless scalar field

(Here, the Rindler energy means the energy corresponding {d7]. Then we present our result for Schwarzschild space-

the boost Killing vector field with respect to which Rindler time.

spacetime is statig. Let us consider a globally hyperbolic static spacetime de-
The purpose of this paper is to note that, in completescribed by the metric

analogy to the result obtained in the case of the static charge

in Rindler spacetime as described before, the analysis of a o

static source in a static black-hole spacetime, which interacts ds®=f(x)dt>— hi;(x)dx'dx..
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We will study a real scalar fieldb that interacts with a If the source is immersed in a thermal bath of inverse
classical sourcg(x) [x=(t,x)] and is described by the ac- temperature3=1/kgT, the rates of absorption aridduced
tion emission are botfRswq;s,\)/(expBwy—1). Summing the
absorption rate and the spontaneous and induced emission
S_J d“x\ﬂ (AVEDY &+ D) rates, we find the totaksponseate:
= L " ,
. o Bwo ~ 2
whereh(x)=deth;;(x). Let R(wo;s )= —-coth—=[J(wo,sM)|*.
N s In the case of interest here, i.e., fop—0, we have
U (X) \[T Uua (X ~iot) M )
R(0;s,M)=8"1J(0s\)|2 (5)

with >0 and their complex conjugatas,,. (xX)*, be solu-

tions tolJu=0, wheres=(s,,- - -,sp) is a set of continuous  This is a useful intermediate result: The rate of zero-energy
labels andh is a discrete label for the complete set of modes particles with quantum numbers,§) emitted and absorbed
We have assumed to be continuous because this is the casepy a static scalar source immersed in a thermal bath at the
in the spacetimes we study, and adopted it as one of themperature3~! is given by Eq.(5).

labels. The factor ofjw/7 has been inserted for later con-  Let us now review how the bremsstrahlung rate due to a
venience. Let these solutions be Klein-Gordon orthonormaluniformly accelerated source in Minkowski spacetitnev-

ized: ered with inertial observerss reproduced in Rindler space-
time (covered with uniformly accelerated obserydoy tak-
i A N UV U o =V U U s ing the FDU thermal bath into account. FlrsF we present the
f 2 (U Vullorsn T wsh 1) conventional result for the emission rate, which is to be com-
= S(w— ") (5= ) Byrr, @ pared with the Rindler-spacetime result. We define the Rin-

dler coordinatesr and ¢ in terms of the usual Minkowski
coordinates by

If 02 N*(UuaVullorsnr = Villog Uursn) =0, () t=a le?sinhar, z=a e*costhar,

wheredZ is the volume element of a Cauchy surface andwith which we express our classical source as

wheren* is the future-pointing unit normal to it. The in-field

®" satisfying the free field equationi®™=0 can now be j0=098(&€)8(x)8(y).

expanded as

This source has constant proper acceleratiorsing the
standard metho(see, e.g., Ref.18]), we obtain the rate of
spontaneous emission of particles with fixed transverse mo-
mentum K, ,K,):

dN(x)= EA: J dwd"q u e (x)a", +H.c].

Let the initial state be the in-vacuum std®;, defined by

a",|0),=0 for all ®, s, and\. M Y 2| aw||dkdk,
S\?Ve will be interested in static sources. However, as we Replkky)dkdky =g f_m dWA"L(E smh7 (2m)?
will see later, we need to introduce oscillation as a regulator
in order to avoid the appearance of intermediate indefinite q?
results. Therefore we consider at this point a source of the = ——[Ko(k. /a)]*dkdk,, (6)
form 4ma
J g (X) = J(x) cOROQL, wherek, = \kZ+ kyZ. (We refer the reader to Ref19] for

formulas involving special functions used in this pap&he
but eventually we makevw,—0. The rate of spontaneous function An(Vo)=—iNo(myo), where o=t?>—7?, is the
emission with fixeds and A can now be found to lowest symmetrized two-point function of massive scalar field in
order in perturbation theory: two dimensions witho>0.
We can now compare the rat6) with the rate obtained

RefwoiSA)d"s= %Ij(wo,sm)lzd“a @ by uniformly accelerated observers in Rindler spacetime:
ds?=e?¢(dr?—d&?) —dx2—dy>.
where
Note that variabler is adopted as time. We first note that
~ 3 from this perspective the source is immersed in the FDU
J(“’O’S’M:f d°x Vh(x)f(x) J)U g0 (X)- thermal bath. This source absorbs particles from the heat
bath, which also gives rise to induced emission. Since the
We note that Eq(4) gives the emission rate per ugibordi-  particle concept depends on the timelike Killing vector that

nate time. Later we will convert it into the rate per unit one uses to define it, the emission of a Minkowski particle
proper time for point sources. (i.e., one defined with respect 8d4t) can correspond either



RAPID COMMUNICATIONS

56 DO STATIC SOURCES OUTSIDE A SCHWARZSCHID.. . . R6073

to absorption or to emission of a Rindler parti¢lee., one  factor of thok, by requiring this behavior without referring to

defined with respect té/d7) [20]. However, the rate ofe-  the solutions with nonzer@. We will use this method for
sponsei.e., emission plus absorptiormust be independent the Schwarzschild black-hole case.
of the description that one uses. Therefore, the rate of spon- Using Eq.(8) with Eq. (11) in Eq. (5), one finds that the
taneous emission given by E¢6) should equal the total total responserate in the thermal bath of temperature
response rate of the sourggcomputed in Rindler spacetime  3=1— /24 in Rindler spacetim&R(k, k) is indeed equal
with the FDU thermal bath. _ - to RY(Ky.k,) given by Eq.(6). This result is interpreted as
There is a technical complication with the verification of ¢510ws [3,17]: The emission of a usual finite-energy particle
the_ at_)ove stateme_nt due to the fact that the.spontaneo%th transverse momentufi, ,k,) from a uniformly accel-
emission rate vanishes because the source is now stalitated source in Minkowski vacuum as described by inertial
whereas the density _of'states in the thermal bath diverges ighservers corresponds to either theissionor the absorp-
the zero-frequency limit. As a result, we encounter an eXyjon of a zero-energy Rindler particle with the same trans-
pression of the form 8« in the process of computing the \erse momenturto or from the FDU thermal bath as de-
response rate using the partlcle concept in Rindler Spa?cet',mgcribed by uniformly accelerated observerShis is in
For this reason we regularize the calculation by Cons'de””%greement with Unruh and Wald’s inertial interpretation of
o the excitation of an accelerated detedi®®], and with the
J_‘/E geosmeT 8(£) () A(y) @) discussion of this problem in terms of classical radiation
and taking the limitwy— O in the end. The factor of2 is [21]. Although these zero-energy particles are conceptually

necessary to make the time average of the squared charﬁ@" defg]ec_ih:_hey are not %?Ser\,’?lblﬁ b%’ thehaccelerate:d ob-
equalg?. The sourcé?) is then equivalent to the sourggin er\éeri[ |. This IS ﬁorr?patl € W'Ej the fact t_bat coacc%l_er-
the limit wy—0 because the rate is proportional to the3€d OPSErvers with the source do not ascribe any ordinary

squared charge at the lowest order. radiation to |t[_1,2]. . .

Now we verify explicitly that thewy— 0 limit of the total Before turning our attention to the Schwarzsphlld case,
response rate of the sour€®, which is obtained from Eq. we will compute the integrated response rate glven. by the
(5) with B '=a/2m, coincides with the rate(6). The integral over the transverse momentum for later use:

positive-frequency modes with respect tdd+ are given by 9

C eiror RO R [ dkdkRYK, k)= a. (12
uwkxky( T,f,x,y): \/; wka(é)T’ (8)

An immediate consequence of this result, and the fact that
where emission and absorption rates of zero-energy particles are

equal, is thathe total radiation rate of zero-energy particles

5 emitted by our uniformly accelerated source fatpm?.

wka(g):w ‘ﬂwki(g)' ©) Now, we determine the response rate of a static point
source outside a Schwarzschild black hole described by a

and wherek, = ‘/kx2+ kyi_ Requiring thaty,, (&) decrease Source analogous to E(]Z) in t_he limit wy— 0. We use the
for £&— -+, we find that * standard Schwarzschild metric,

Yok, (6)Kiual (ky 12)e*].

2
- d—+k2 g2at
a2

ds?=f(r)dt?—f(r) *dr?—r?(d6?+sirf6d¢?),

wheref(r)=1-2M/r. The positive-frequency solutions to
the massless scalar field equation in this spacetime can be
written as

By the usual method of turning the normalization integral
into a surface tern(see, e.g., Ref[3]), we find that the
function Uakk, is normalized according to Ed?2) if, for

large and negative, ® Yo (r) .
Uom=\ -~ Yim( 0. @)e ™" (13

1 r
Yok (£)~— —sifwé+a(w)]. (10)

Here ¢, (r) is the solution to the differential equation
This determineswka(g):

d(. d ,
_f(r)a f(r)a FVer(1) | (1) =0, (1),

sin /a)
Yk, (€)= \/:(T%Km,am la)e*]. (149

. where
Consequently, we find

Ver(r)=(1—2M/r)[2M/r3+1(1+1)/r?].
Yok, (£)=a~ *Ko[ (k, /a)e?]. (1) a1 = ! (0]
For givenw, |, andm there are two independent and or-

We note here thatg (£§)~—¢&+const for large and  thogonal solutions of Eq14). One is purely incoming from
negativeé. This can be understood as the-0 limit of Eq.  the past horizorH ™ and the other is purely incoming from

(10). In fact, one can directly determine the normalizationpast null infinity 7 ~.
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In the Unruh vacuuni5], which corresponds to the physi- where zy=r,/M —1. It is possible to sum ovel and m
cal black hole formed by gravitational collapse, a thermalusing the formulas
flux of temperaturgd 1= 1/87M comes out fronH . In the

Hartle-Hawking vacuunj22] there is an additional thermal l

2l+1

2_
flux coming fromJ7 ~. We concentrate on the Unruh vacuum m:2—| [Yim(60,9)]*= -
in this paper.
The regularized classical source we consider is and
2af(r.)1?2 i 1
j(x)= Mcos&;ot&(r—ro)éw— 60) (¢ — @q). > (2l +1)[Q|(Z)]2:ZZ_1,
rosindg =0

(19 which can be obtained by squaring the formula
This source and the sour¢@) have the same strength in the w
sense that they give the same value when integrated over the E P(H)Q(2)=
hypersurface of constant time. =0

Using Eqg. (5) and introducing the correction factor ) _ ) )
f(ro) "2 to convert the rate peroordinatetime into that per and integrating from-1 to 1 with respect to. The result is
propertime, we find that the response rate pespertime of ’
the source(15) with fixed angular momentum in the limit R -5 R =q—a ; 19
o0 15 given by ot % m=——alro), (19)

1
z—t

2 i , , where a(ro)=Mf(ry) “¥2r2 is the proper acceleration of

:477Mr2f(r0) 101 (ro)|“|Yim(60,90)[%,  (16)  the static source. Note that this is identical with Etp) as a

0 function of proper acceleration. This is our main resule
emission and absorption of zero-energy particles by a static
source outside a Schwarzschild black hole is exactly the
same as if the source were static in the Rindler wedge. In
particular, the total number of zero-energy particles emitted
per proper time by our source is’g(r)/82.

We have not rigorously proved the validity of our ap-
proach where we directly work with the=0 modes satis-
fying the normalization conditiori18) instead of explicitly
taking thew— 0 limit of the modes withw# 0. However, the

le

provided that the functionu,,, in Eq. (13) is normalized
according to Eq(2). Now our task is to find the functiotf,
incoming fromH™ and corresponding to this normalization.
[Strictly speaking, we need to prove thaf (r)— g (r) as
w—0.]

It is useful to introduce the dimensionless Wheeler tor-
toise coordinatex=y+In(y—1), wherey=r/2M. Equation
(14) can then be rewritten as

42 exact agreement of Eq€l2) and(19) itself and the fact that
ST (2M)Ve(X) | 1= (2Mw)2y,,.  (17)  We have reproduced with this method precisely the results of
X Ref.[17] serve as consistency checks of our approach. We

o ] ] ) will present elsewherf24] a detailed analysis about how the
In the limit «— 0, the incoming wave from the white-hole functions,, approachyy, in the w—0 limit. Here we will

horizon is totally reflected towards the black-hole horizon.resent another consistency check using a miziglwhere
This implies that the Klein-Gordon normalizatiof?) is  the effective potentiaV/y is replaced by a simpler, but simi-

achieved  for u,m Wwith  Mo<1 if 4,  |ar potential(for other uses of this technique SE&6])

~—w si2Mwx+ a(w)] for large and negative. Thus, in

the limit «— 0, we must normalize the solutiafy, so that V(e??(x)=l(l +1)6(x—1)/(2Mx)?
Po~—2Mx+const (x<0, |[x[>1). (18)  andl+0. With this replacement, the functioffy incoming

) from H™ and corresponding tg,, can be found explicitly
Now Eq. (14), or equivalently Eq.(17), can be solved for any value ofw, and we have
explicitly for o=0. The general solution 23]

WS 00 =, (B 6 Bl e ) (x<1),
Poi(y)=CryPi(2y—1)+CoyQ(2y—1), ~
=a,xhiP(wx) (x>1),
where P|(z) and Q,(z) are Legendre functions of the first
and second kinds with the branch cut¢,1] for Q|(2).  wherew=2Mw, andh{?(x) is a spherical Bessel function

Note thatP)(z)~Z' and Q,(z)~z"'"* for largez and that o the third kind. Continuity of the value and the first deriva-
the solution we seek must decrease for laygsince the {jye atx=1 gives

wave is totally reflected back to the horizon. From these facts ~

and the condition(18) we find g =4MyQ,(2y—1). Sub- Bf)z(l/Z)eIiw[(lIi/;)hf”(;):i(hfl))’(’g))].
stituting this in Eq.(16), we have

The normalization condition leads &, 8.’ =i/2w up to a
phase factor. Then the mode functions witho<<1 can be

approximated by

2
R|m::—Mf(ro)llz[Q|(Zo)]2|Y|m( 60,90)%,
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P()=2M(1—x+1"H+0(w?) (x<1), ing effect should play a crucial role in obtaining this equiva-
lence near the horizon. As is well knoW3,30, the rate of
=2MI X'+ 0(w?) (x>1). response(19) tends to the corresponding result2) in

Minkowski spacetime in the Iirrﬁtr0—>2M. However, the

Thus, we see explicitly that the—0 limit of y$)(x) is  fact that they coincide for alt, was rather unexpected. It
indeedy{}(x) satisfying the normalization conditiof18). would be interesting to see if this “quantum equivalence

The importance of the zero-energy particles is conceptugbrinciple” obtained here for scalar sources and Schwarzs-
rather than experimental. In some sense, they have an epighild black holes is a special case of a more general phenom-
temological resemblance to virtual particles: Although unob-enon. The vector case for Schwarzschild black holes is cur-
servable, they play an important role in clarifying the physi-yantly under investigation.
cal content of some quantum phenomena. It is remarkable
that our main conclusionA- scalar source has the same  We thank Bob Wald and Bernard Kay for useful discus-
integrated response rate whether it is accelerated insions. We also thank Chris Fewster for helpful comments on
Minkowski spacetime or static in the true gravitational field the zero-energy limit of one-dimensional scattering theory
of a black hole provided the proper acceleration and under-and Mike Ryan for useful comments on the manuscript. The
lying quantum fields are equivaleslthough pertaining to work of A.H. was supported in part by Schweizerischer Na-
the guantum realm, is in complete agreement with the clastionalfonds and the Tomalla Foundation. G.M. would like to
sical equivalence principle. This is a nontrivial result since,acknowledge partial support from the Conselho Nacional de
in general, the equivalence principle is valid locally, while Desenvolvimento Cierftco e Tecnolgico. D.S. would like
guantum mechanics deals with wave functions which are into acknowledge partial support from DGAPA-UNAM
trinsically global. Clearly, a key ingredient to reach this re-Project No. IN 105496.
sult was the Hawking radiation: the response rate of a static
source would vanish in the absence of the Hawking effect;
i.e., in the Boulware vacuuf27]. Since the Hawking effect  We have verified that our result agrees with the standard results
is closely related to the absence of singularity of the quantunn Refs.[23,3( in the limitsr —2M andr— . The computations
state on the future horizd28,29, it is clear that the Hawk- necessary for this comparison will be presented elsewf2ie
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