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We show that static sources coupled to a massless scalar field in Schwarzschild spacetime give rise to
emission and absorption of zero-energy particles due to the presence of Hawking radiation. This is in complete
analogy with the description of the bremsstrahlung by a uniformly accelerated charge from the coaccelerated
observers’ point of view. The response rate of the source is found to coincide with that in Minkowski
spacetime as a function of its proper acceleration. It is interesting that this quantum result appears to reflect the
classical equivalence principle.@S0556-2821~97!50122-6#

PACS number~s!: 04.70.Dy, 04.62.1v

The relation between radiation from accelerated charges
and the equivalence principle has for some time been the
source of much confusion and discussion. A particularly in-
teresting question is how to reconcile the following two facts
~in Minkowski spacetime!: On the one hand, an accelerated
charge is known to radiate when it is seen from the view-
point of inertial observers. On the other hand, according to
the equivalence principle, the same charge is seen by comov-
ing observers as a static charge in a uniform ‘‘gravitational
field,’’ and, hence, is not expected to radiate. In theclassical
context, this question has been answered first by Rohrlich@1#
and further clarified by Boulware@2#, who has shown that
the presence of a horizon for the collection of comoving
observers, who perceive the charge as static, serves to ex-
plain the apparent paradox. This resolution is based on the
fact that the radiation zone~as described by the Minkowski
observers! lies beyond the comoving observers’ horizon and
is thus unobservable by them. In thequantum mechanical
context, the solution to this paradox~which is now cast in
terms of photon emission rates! has been given by the au-
thors@3#, by recalling that, as seen by the comoving observ-
ers, the static charge~which has in fact constant proper ac-
celeration! is immersed in the Fulling-Davies-Unruh~FDU!
thermal bath@4–6# in Rindler spacetime@7#. That is, the
interaction of the static charge with this thermal bath results
in the absorption and stimulated emission of photons with
zero Rindler energy~which are actually nondetectable by the
comoving observers!, and this completely accounts for the
bremsstrahlung due to a uniformly accelerated charge in
quantum electrodynamics as described by inertial observers.
~Here, the Rindler energy means the energy corresponding to
the boost Killing vector field with respect to which Rindler
spacetime is static.!

The purpose of this paper is to note that, in complete
analogy to the result obtained in the case of the static charge
in Rindler spacetime as described before, the analysis of a
static source in a static black-hole spacetime, which interacts

with the Hawking radiation@8#, yields a finite response rate.
In fact we will see that the total response rate isexactlythe
same as that of a uniformly accelerated source in Minkowski
spacetime as a function of the proper acceleration.

It should be noted that our source is a classical test source,
which influences the scalar field,but is not influenced by it.
This point should be emphasized because there is a contro-
versy as to whether or not a uniformly accelerated Unruh-
DeWitt detector@5,9#, which fully interacts with the field,
radiates and, if so, how it radiates@10–15#. Although we are
considering classical sources, accelerated detectors are simi-
lar to them in some respects. We favor the viewpoint that a
classical accelerated source radiates at a constant rate be-
cause a constant classical Minkowski energy flux is present
far away from the source@16#. Nevertheless, it is often as-
serted that the particles emitted by the accelerated classical
source are radiated only when the acceleration is changed.
Although we do not share this viewpoint, it will not be in
conflict with our results if the word ‘‘response rate’’ is re-
placed by ‘‘time-averagedresponse rate.’’ We would also
like to point out that our main result can still be taken as the
fact that the integrated two-point function for a free massless
scalar fieldF(x), *dt^F@x(t)#F@x(0)#&, wherexm(t) is
the static world line in Schwarzschild spacetime andt is the
proper time, coincides with the corresponding quantity in
Rindler spacetime as a function of the acceleration.

We first review the general formalism for computing the
response rate of a classical source in a static spacetime and
the result of Ref.@3# in the context of massless scalar field
@17#. Then we present our result for Schwarzschild space-
time.

Let us consider a globally hyperbolic static spacetime de-
scribed by the metric

ds25 f ~x!dt22hi j ~x!dxidxj .
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We will study a real scalar fieldF that interacts with a
classical sourcej (x) @x5(t,x)# and is described by the ac-
tion

S5E d4xAf h ~ 1
2 ¹mF¹mF1 j F!,

whereh(x)5det hi j (x). Let

uvsl~x!5Av

p
Uvsl~x!exp~2 ivt ! ~1!

with v.0 and their complex conjugates,uvsl(x)* , be solu-
tions tohu50, wheres5(s1 ,•••,sn) is a set of continuous
labels andl is a discrete label for the complete set of modes.
We have assumedv to be continuous because this is the case
in the spacetimes we study, and adopted it as one of the
labels. The factor ofAv/p has been inserted for later con-
venience. Let these solutions be Klein-Gordon orthonormal-
ized:

i E dS nm~uvsl* ¹muv8s8l82¹muvsl* •uv8s8l8!

5d~v2v8!d~s2s8!dll8, ~2!

i E dS nm~uvsl¹muv8s8l82¹muvsl•uv8s8l8!50, ~3!

wheredS is the volume element of a Cauchy surface and
wherenm is the future-pointing unit normal to it. The in-field
F in satisfying the free field equationhF in50 can now be
expanded as

F in~x!5(
l
E dvdns@uvsl~x!avsl

in 1H.c.#.

Let the initial state be the in-vacuum stateu0& in defined by
avsl

in u0& in50 for all v, s, andl.
We will be interested in static sources. However, as we

will see later, we need to introduce oscillation as a regulator
in order to avoid the appearance of intermediate indefinite
results. Therefore we consider at this point a source of the
form

j v0
~x!5J~x!cosv0t,

but eventually we makev0→0. The rate of spontaneous
emission with fixeds and l can now be found to lowest
order in perturbation theory:

Rsp~v0 ;s,l!dns5
v0

2
u J̃ ~v0 ,s,l!u2dns, ~4!

where

J̃ ~v0 ,s,l!5E d3x Ah~x! f ~x! J~x!Uv0sl~x!.

We note that Eq.~4! gives the emission rate per unitcoordi-
nate time. Later we will convert it into the rate per unit
proper time for point sources.

If the source is immersed in a thermal bath of inverse
temperatureb51/kBT, the rates of absorption andinduced
emission are bothRsp(v0 ;s,l)/(expbv021). Summing the
absorption rate and the spontaneous and induced emission
rates, we find the totalresponserate:

R~v0 ;s,l!5
v0

2
coth

bv0

2
u J̃ ~v0 ,s,l!u2.

In the case of interest here, i.e., forv0→0, we have

R~0;s,l!5b21u J̃ ~0,s,l!u2. ~5!

This is a useful intermediate result: The rate of zero-energy
particles with quantum numbers (s,l) emitted and absorbed
by a static scalar source immersed in a thermal bath at the
temperatureb21 is given by Eq.~5!.

Let us now review how the bremsstrahlung rate due to a
uniformly accelerated source in Minkowski spacetime~cov-
ered with inertial observers! is reproduced in Rindler space-
time ~covered with uniformly accelerated observers! by tak-
ing the FDU thermal bath into account. First we present the
conventional result for the emission rate, which is to be com-
pared with the Rindler-spacetime result. We define the Rin-
dler coordinatest and j in terms of the usual Minkowski
coordinates by

t5a21eajsinhat, z5a21eajcoshat,

with which we express our classical source as

j 05qd~j!d~x!d~y!.

This source has constant proper accelerationa. Using the
standard method~see, e.g., Ref.@18#!, we obtain the rate of
spontaneous emission of particles with fixed transverse mo-
mentum (kx ,ky):

Rsp
M~kx ,ky!dkxdky5q2E

2`

1`

dwDk'
S 2

a Usinh
aw

2 U D dkxdky

~2p!2

5
q2

4p3a
@K0~k' /a!#2dkxdky , ~6!

where k'5Akx
21ky

2. ~We refer the reader to Ref.@19# for
formulas involving special functions used in this paper.! The

function Dm(As)52 1
4 N0(mAs), where s5t22z2, is the

symmetrized two-point function of massive scalar field in
two dimensions withs.0.

We can now compare the rate~6! with the rate obtained
by uniformly accelerated observers in Rindler spacetime:

ds25e2aj~dt22dj2!2dx22dy2.

Note that variablet is adopted as time. We first note that
from this perspective the source is immersed in the FDU
thermal bath. This source absorbs particles from the heat
bath, which also gives rise to induced emission. Since the
particle concept depends on the timelike Killing vector that
one uses to define it, the emission of a Minkowski particle
~i.e., one defined with respect to]/]t) can correspond either
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to absorption or to emission of a Rindler particle~i.e., one
defined with respect to]/]t) @20#. However, the rate ofre-
sponse, i.e., emission plus absorption, must be independent
of the description that one uses. Therefore, the rate of spon-
taneous emission given by Eq.~6! should equal the total
response rate of the sourcej 0 computed in Rindler spacetime
with the FDU thermal bath.

There is a technical complication with the verification of
the above statement due to the fact that the spontaneous
emission rate vanishes because the source is now static
whereas the density of states in the thermal bath diverges in
the zero-frequency limit. As a result, we encounter an ex-
pression of the form 03` in the process of computing the
response rate using the particle concept in Rindler spacetime.
For this reason we regularize the calculation by considering

j 5A2 qcosv0t d~j!d~x!d~y! ~7!

and taking the limitv0→0 in the end. The factor ofA2 is
necessary to make the time average of the squared charge
equalq2. The source~7! is then equivalent to the sourcej 0 in
the limit v0→0 because the rate is proportional to the
squared charge at the lowest order.

Now we verify explicitly that thev0→0 limit of the total
response rate of the source~7!, which is obtained from Eq.
~5! with b215a/2p, coincides with the rate~6!. The
positive-frequency modes with respect toi ]/]t are given by

uvkxky
~t,j,x,y!5Av

p
cvk'

~j!
eikxx1 ikyy2 ivt

2p
, ~8!

where

F2
d2

dj2
1k'

2 e2ajGcvk'
~j!5v2cvk'

~j!, ~9!

and wherek'5Akx
21ky

2. Requiring thatcvk'
(j) decrease

for j→1`, we find that

cvk'
~j!}Kiv/a@~k' /a!eaj#.

By the usual method of turning the normalization integral
into a surface term~see, e.g., Ref.@3#!, we find that the
function uvkxky

is normalized according to Eq.~2! if, for

large and negativej,

cvk'
~j!'2

1

v
sin@vj1a~v!#. ~10!

This determinescvk'
(j):

cvk'
~j!5Asinh~pv/a!

pav
Kiv/a@~k' /a!eaj#.

Consequently, we find

c0k'
~j!5a21K0@~k' /a!eaj#. ~11!

We note here thatc0k'
(j)'2j1const for large and

negativej. This can be understood as thev→0 limit of Eq.
~10!. In fact, one can directly determine the normalization

factor ofc0k'
by requiring this behavior without referring to

the solutions with nonzerov. We will use this method for
the Schwarzschild black-hole case.

Using Eq.~8! with Eq. ~11! in Eq. ~5!, one finds that the
total response rate in the thermal bath of temperature
b215a/2p in Rindler spacetimeRR(kx ,ky) is indeed equal
to Rsp

M(kx ,ky) given by Eq.~6!. This result is interpreted as
follows @3,17#: The emission of a usual finite-energy particle
with transverse momentum(kx ,ky) from a uniformly accel-
erated source in Minkowski vacuum as described by inertial
observers corresponds to either theemissionor the absorp-
tion of a zero-energy Rindler particle with the same trans-
verse momentumto or from the FDU thermal bath as de-
scribed by uniformly accelerated observers.This is in
agreement with Unruh and Wald’s inertial interpretation of
the excitation of an accelerated detector@20#, and with the
discussion of this problem in terms of classical radiation
@21#. Although these zero-energy particles are conceptually
well defined, they are not observable by the accelerated ob-
servers@3#. This is compatible with the fact that coacceler-
ated observers with the source do not ascribe any ordinary
radiation to it@1,2#.

Before turning our attention to the Schwarzschild case,
we will compute the integrated response rate given by the
integral over the transverse momentum for later use:

RR,tot5Rsp
M ,tot5E dkxdkyRsp

M~kx ,ky!5
q2

4p2
a. ~12!

An immediate consequence of this result, and the fact that
emission and absorption rates of zero-energy particles are
equal, is thatthe total radiation rate of zero-energy particles
emitted by our uniformly accelerated source is q2a/8p2.

Now, we determine the response rate of a static point
source outside a Schwarzschild black hole described by a
source analogous to Eq.~7! in the limit v0→0. We use the
standard Schwarzschild metric,

ds25 f ~r !dt22 f ~r !21dr22r 2~du21sin2udw2!,

where f (r )5122M /r . The positive-frequency solutions to
the massless scalar field equation in this spacetime can be
written as

uv lm5Av

p

cv l~r !

r
Ylm~u,w!e2 ivt. ~13!

Herecv l(r ) is the solution to the differential equation

F2 f ~r !
d

drS f ~r !
d

dr D1Veff~r !Gcv l~r !5v2cv l~r !,

~14!

where

Veff~r !5~122M /r !@2M /r 31 l ~ l 11!/r 2#.

For given v, l , and m there are two independent and or-
thogonal solutions of Eq.~14!. One is purely incoming from
the past horizonH2 and the other is purely incoming from
past null infinityJ 2.
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In the Unruh vacuum@5#, which corresponds to the physi-
cal black hole formed by gravitational collapse, a thermal
flux of temperatureb2151/8pM comes out fromH2. In the
Hartle-Hawking vacuum@22# there is an additional thermal
flux coming fromJ 2. We concentrate on the Unruh vacuum
in this paper.

The regularized classical source we consider is

j ~x!5
A2q f~r 0!1/2

r 0
2sinu0

cosv0td~r 2r 0!d~u2u0!d~w2w0!.

~15!

This source and the source~7! have the same strength in the
sense that they give the same value when integrated over the
hypersurface of constant time.

Using Eq. ~5! and introducing the correction factor
f (r 0)21/2 to convert the rate percoordinatetime into that per
proper time, we find that the response rate perproper time of
the source~15! with fixed angular momentum in the limit
v0→0 is given by

Rlm5
q2

4pMr 0
2

f ~r 0!1/2uc0l~r 0!u2uYlm~u0 ,w0!u2, ~16!

provided that the functionuv lm in Eq. ~13! is normalized
according to Eq.~2!. Now our task is to find the functionc0l
incoming fromH2 and corresponding to this normalization.
@Strictly speaking, we need to prove thatcv l(r )→c0l(r ) as
v→0.#

It is useful to introduce the dimensionless Wheeler tor-
toise coordinatex5y1 ln(y21), wherey5r /2M . Equation
~14! can then be rewritten as

F2
d2

dx2 1~2M !2Veff~x!Gcv l5~2Mv!2cv l . ~17!

In the limit v→0, the incoming wave from the white-hole
horizon is totally reflected towards the black-hole horizon.
This implies that the Klein-Gordon normalization~2! is
achieved for uv lm with Mv!1 if cv l
'2v21sin@2Mvx1a(v)# for large and negativex. Thus, in
the limit v→0, we must normalize the solutionc0l so that

c0l'22Mx1const ~x,0, uxu@1!. ~18!

Now Eq. ~14!, or equivalently Eq.~17!, can be solved
explicitly for v50. The general solution is@23#

c0l~y!5C1yPl~2y21!1C2yQl~2y21!,

where Pl(z) and Ql(z) are Legendre functions of the first
and second kinds with the branch cut (2`,1# for Ql(z).
Note thatPl(z);zl and Ql(z);z2 l 21 for large z and that
the solution we seek must decrease for largey since the
wave is totally reflected back to the horizon. From these facts
and the condition~18! we find c0l54MyQl(2y21). Sub-
stituting this in Eq.~16!, we have

Rlm5
q2

pM
f ~r 0!1/2@Ql~z0!#2uYlm~u0 ,w0!u2,

where z05r 0 /M21. It is possible to sum overl and m
using the formulas

(
m52 l

l

uYlm~u,w!u25
2l 11

4p

and

(
l 50

`

~2l 11!@Ql~z!#25
1

z221
,

which can be obtained by squaring the formula

(
l 50

`

Pl~ t !Ql~z!5
1

z2t

and integrating from21 to 1 with respect tot. The result is

Rtot5(
l ,m

Rlm5
q2

4p2
a~r 0!, ~19!

where a(r 0)5M f (r 0)21/2/r 0
2 is the proper acceleration of

the static source. Note that this is identical with Eq.~12! as a
function of proper acceleration. This is our main result:The
emission and absorption of zero-energy particles by a static
source outside a Schwarzschild black hole is exactly the
same as if the source were static in the Rindler wedge. In
particular, the total number of zero-energy particles emitted
per proper time by our source is q2a(r 0)/8p2.

We have not rigorously proved the validity of our ap-
proach where we directly work with thev50 modes satis-
fying the normalization condition~18! instead of explicitly
taking thev→0 limit of the modes withvÞ0. However, the
exact agreement of Eqs.~12! and~19! itself and the fact that
we have reproduced with this method precisely the results of
Ref. @17# serve as consistency checks of our approach. We
will present elsewhere@24# a detailed analysis about how the
functionscv l approachc0l in the v→0 limit. Here we will
present another consistency check using a model@25# where
the effective potentialVeff is replaced by a simpler, but simi-
lar potential~for other uses of this technique see@26#!

Veff
~s!~x!5 l ~ l 11!u~x21!/~2Mx!2

and lÞ0. With this replacement, the functioncv l
(s) incoming

from H2 and corresponding tocv l can be found explicitly
for any value ofv, and we have

cv l
~s!~x!5av l~bv l

~1 !ei ṽx1bv l
~2 !e2 i ṽx! ~x,1!,

5av lxhl
~1!~ ṽx! ~x.1!,

whereṽ52Mv, andhl
(1)(x) is a spherical Bessel function

of the third kind. Continuity of the value and the first deriva-
tive at x51 gives

bv l
~6 !5~1/2!e7 i ṽ@~17 i /ṽ !hl

~1!~ ṽ !7 i ~hl
~1!!8~ṽ !#.

The normalization condition leads toav lbv l
(1)5 i /2v up to a

phase factor. Then the mode functions withMv!1 can be
approximated by
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cv l
~s!~x!52M ~12x1 l 21!1O~v2! ~x,1!,

52Ml 21x2 l1O~v2! ~x.1!.

Thus, we see explicitly that thev→0 limit of cv l
(s)(x) is

indeedc0l
(s)(x) satisfying the normalization condition~18!.

The importance of the zero-energy particles is conceptual
rather than experimental. In some sense, they have an epis-
temological resemblance to virtual particles: Although unob-
servable, they play an important role in clarifying the physi-
cal content of some quantum phenomena. It is remarkable
that our main conclusion—A scalar source has the same
integrated response rate whether it is accelerated in
Minkowski spacetime or static in the true gravitational field
of a black hole provided the proper acceleration and under-
lying quantum fields are equivalent—although pertaining to
the quantum realm, is in complete agreement with the clas-
sical equivalence principle. This is a nontrivial result since,
in general, the equivalence principle is valid locally, while
quantum mechanics deals with wave functions which are in-
trinsically global. Clearly, a key ingredient to reach this re-
sult was the Hawking radiation: the response rate of a static
source would vanish in the absence of the Hawking effect,
i.e., in the Boulware vacuum@27#. Since the Hawking effect
is closely related to the absence of singularity of the quantum
state on the future horizon@28,29#, it is clear that the Hawk-

ing effect should play a crucial role in obtaining this equiva-
lence near the horizon. As is well known@23,30#, the rate of
response~19! tends to the corresponding result~12! in
Minkowski spacetime in the limit1 r 0→2M . However, the
fact that they coincide for allr 0 was rather unexpected. It
would be interesting to see if this ‘‘quantum equivalence
principle’’ obtained here for scalar sources and Schwarzs-
child black holes is a special case of a more general phenom-
enon. The vector case for Schwarzschild black holes is cur-
rently under investigation.
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