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General solution for self-gravitating spherical null dust
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We find the general solution of equations of motion for self-gravitating spherical null dust as a perturbative
series in powers of the outgoing matter energy-momentum tensor, with the lowest order term being the Vaidya
solution for the ingoing matter. This is done by representing the null-dust model as a 2D dilaton gravity theory,
and by using a symmetry of a pure 2D dilaton gravity to fix the gauge. Quantization of this solution would
provide an effective metric which includes the back-reaction for a more realistic black hole evaporation model
than the evaporation models studied previously.
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Two-dimensional (2D) dilaton gravity theories have could be found more easily. Actidi3) describes the dynam-
turned out to be very useful toy models of black hole forma-ics of spherically symmetric self-gravitating null dust
tion and evaporatioil]. They are also relevant for four- (SSND). For purely ingoing matter, the solution of the equa-

dimensional4D) black holes, since a spherically symmetric tions of motion is given by the Vaidya metrjé]
scalar field collapse can be described by a 2D dilaton gravity
model
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whereG is the Newton constant and the 4D line elemesj

is related to the 2D line elemedts by ] )
An analytic model of black hole evaporation based on the

ds;=ds’+e 2%d02. (2)  quantization of the Vaidya solution has been studiefi7in

and a qualitative agreement with the numerical resul{8pf
has been found. However, in order to fully take into account
the back reaction in the analytic approach, one needs the

ment. Quantization of Eq1) would provide us with a semi- most general solution for which the outgoing matter is also

classical metric which would include the back reaction.present[g’?]' , .

However, the progress is hindered by the absence of explicit N order to find the general solution of the SSND model,
solutions of the classical equations of motion. In the case of/€ rewrite the actiort3) as

2D black holes described by the Callan-Giddings-Harvey-

Strominger(CGHS model[2], the analog of Eq(1) is ex- o 1 x5
actly solvable, and by quantizing the solution, one can obtain 2 XN—9
an effective semiclassical metric up to any finite order in

matter loopg3-5]. Since the matter in the CGHS model is wherep=e 2®=r2, —g-wzrgw, andV=2/r. We do this in

2Dd9fc_)nfqrmallnyCOIipled, this motivates us to consider ayrger 1o establish the connection with a generic 2D dilaton
modification of Eq.(1), gravity model, which can be represented by the action of the

R is a 2D scalar curvature associated with a 2D meyJic,
Vv, is the corresponding covariant derivativiejs the dilaton
field, f is the scalar field, and(} is a two-sphere line ele-

~ 1 -
Ro+V(d) =5 (V,.f )

1 form (6). For example, the CGHS model is given b
S=3 J d>xy—g|e 2P[R+2(V,®)2+2e%*] =4)\2, where\ is a 2D cosmological constant. The equa-
tions of motion are given by
G 2
—5 (V.12 3 1
V,uvvqb_ E g/.LVV: _T,uvv (7)
so thatf will obey a free-field equation of motion in the
conformal gauge, and consequently the general solution 4V
R+@=O, Of=0, (8)
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In the conformal gaugd's e“’dx"dx~ one obtains 07 ,+R= (V¢)4 [THoTEV GV ¢
__lyew 9 2
Ped-$= =g Ver, ® VDT, TV b1+ (5 o T,V 6770,
Pod=20.pi.d=—(2.1 ) (10 (19
so thatj’s are not free fields any more. The form of E¢9)
P d—20_pi_d=—(d_1 )2 (11  and our remark aboyt, suggest that we look for a free field
of the form
1dv =i
940-p="5 54" (12 J= e 20
whereX is to be determined from Eq§19). This gives
and 7, d_f=0. We want to solve the syste®)—(12) in T, . T
analogy to the CGHS case, where a gapged can be cho- d4+d_X=— DL (a ¢) 5|04 d_ . (21
+

sen. This is possible sinée d_p=0 is a consequence of the
equations of motion. In the SSND cagés not a free field, Equation(21) is valid for any potentiaV/, and can be solved
so that we have to find an appropriate modification. We willzg

use as the starting point the free-field currents for fthed

case{11] X=Xo+]1 6-¢ +2J dx~ T 22
=Xo+log - X s (22
. d¢
lef 2E13(0)’ (13 whereX, is a free-field solution.
In the SSND cas@=r?, x*=v, x_=u, and we choose
- Xo=0, which fixes the gauge. It is convenient to use a gen-
j2=1og(V¢)?, (14)  eralized form of the Vaidya metricl0]
where E=(V¢)?—J(¢), dJ/dp=V, andE is a constant ds’=—e*’F du®+2e’drdo, (23

of motion. j’s satisfy which can be related to the conformal form of the metric via

. ~ ds?’=—C(u,v)dudv andC=e?"/r. Then the gauge choice
Uj;=0, 0j,+R=0. (15  j=0is equivalent to

By going into the conformal gauge one can see that the equa-
tions (15) imply thatj, andj,=j,—2p are free fields. In the

SSND case, whefi=0 one has §,=r+2M log|r/2M —1| . _
and j ,=log|r —2M|—2p, whereM = —E/4 is the black hole whereTuu 2T,, Note that we have not specified the lim-

of integration will occur. Only when this constant is speci-

1 fied, the gauge will be completely fixed.
2j,== (v—u), (16) The equations which determirmeare Egs.(9) and (10),
2 while Egs.(11) and (12) are the consistency conditions for
the gauge choice, which are satisfied by construction. Equa-
j»=0. (17)  tion (9) becomes

Y= ZJdU&rz, (24

2: l//
The gauge choic€l6) gives the familiar relation betwean dudyI==e"aur, (25

andu, v coordinates, while the gauge choid) is equiva- |\ hile Eq. (10) gives

lent to
~2d,pd,r2=—(a,f )2, (26)
e?r
ds*=— - dudv=—(1-2M/r)dudv. (18 wherep is determined from the gauge choice as
2p=log|— d r?|+ . (27

Note that the gauge choigg=0 gives a relation between

and ¢, which is of the type we are looking for, and hence weEquation(11) follows from Egs.(27) and (24), while Eq.

will concentrate on it. (12) follows from EQs.(27), (25), and(24). By integrating
When the matter is added, the relatidd$) change as Eq. (25) with respect tau, we obtain



1 2m(v)
(9UI'=§ 1- r

1
+§Jdu(e¢—1)(9ur. (28)

m(v) is a constant of integration, and can be determined

from Eq. (26). By inserting Eq.(28) into Eq. (26), and by
using Eq.(27), we get
dm 1
(1—e¥—2rd,4)d,r —

= b
Too w2 Jdu(e 1)d,r.

(29
When =0, Eq.(28) yields F=1-2m/r and Eq.(29)

gives the relation(5), so that one recovers the Vaidya solu-

tion. Wheny# 0, the equations look difficult. However, their
form is such that a perturbative solutionTp, can be easily
found. Let us introduce an expansion parametby replac-
ing T, with €T,,. Then we will seek a solution in the form

F=ro+er;+eiry+---. (30)
The expansior§30) then implies
Y= e+ e+ (31)
where
wl:f du rodufo’ fd Tuu(r &rlrro))2
(32)
In general one should also take
m(v)=mg(v)+emy(v)+ e?my(v)+--+, (33

although it is possible that the series in E§3) gets trun-

cated, like in the example we consider in this paper, where

m=em,. By inserting the expansion@0), (31), and (33)
into the equation for (28), we get an infinite hierarchy of
equations

1 1 2mg
W=z | 1T )
mg ml 1
d,r1= —2—r1 2ro jdu:,bla ro,
mg m, Iq 1 f 1,
— +— = Y+
Iyl 2= Wz ra— fo To dyl1 2y du(z Y1t ) duro
+¢1&ur1}, Ce (34

The system(34) can be solved, since for everythe equa-
tion for r,, does not involve , with k>n and each equation
is a first order linear differential equation fof, except for

n=0, which is a nonlinear first order differential equation.

Therefore by starting fronm=1, one can write an explicit
solution for anyr, in terms ofry, and T,,. At each step
several integration constan®u) andC(v) will arise (due
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FIG. 1. Penrose diagram of a white hole emiting a shock wave.

T,u=0 case. This can be done because (26) also decom-

poses into an infinite hierarchy of equations under the expan-
sions(30), (31), and(33)

T,,=0dmy/dv,

1 1

O=dm,/dv+ > (Y1+2r9d,41) 3, o— > avf dudyro,
1

0= dmzldU+ ((/lz+ 1//1+2roz9 1//2+2r1(9 1//1)(9 ro

1 1
+ > (12190, th1) 0,11 — > 5uf du

1 2
( ’r/f2+ E ‘/’1 &urO

+dgrl, .. (35

Equations(35) will also determine them,(v), provided we

fix the integration constantg,(v) which appear in Egs.
(32). These are related to the complete specification of the
gauge, or equivalently, to the choice of thecoordinate,
since a coordinate change=v(v) in Eq. (23) gives

T=utlog 2 36
= y+log P (36)

At the end, one sets=1 and writes the solution as
r=ro+rotrot -, =g+ i+ (37

These general features can be nicely illustrated on the
example of a white hole emiting a shock wave. This is sim-
ply a shock-wave Vaidya solution where tbheandv coor-
dinates are interchanged. The corresponding spacetime is de-

to u andv integration$, and these constants can be deter-scribed by the Penrose diagram of Fig. 1. In this cage

mined from the constraint equatid@9), exactly as in the

#0, and one can find an exact solution fetr(u,v), so that
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the expansion$30) and (31) and the corresponding equa- r,=ror, and ,/,nzrg',;n satisfy Egs.(34) and (35) with m

tions (34) and (35) can be checked. By taking,,=M (u
—Ug), we get

4P —du?—2dudr u>ug, -
T | —(1-2M/r)du®—2dudr u<ug. (38)
This can be rewritten as
—dv2+2dvdr u>ug,
dsz:[—Fez*”dvzﬂLZe‘/’dv dr u<up, (39
whereF=1—-2M/r,
=—log 1_v—u0 : (40

andr=1/2(v —u) for u>ugy, while for u<ug

1
r+rgoglr/irs—1|= > (v—u)+rgog|(v—ug)/2r,—1|,
(41)

wherer=2M. The form of the solution, given by Eq&l0)
and(41), is such that

r=> W, =2 T, (42)

n=0 n=1

=m;=M. Also, starting fromn=2, nontrivial integration
constantsy,(v) appear.

In conclusion we can say that we have found a useful
form of the general solution, given by the expansi¢83)
and Egs.(34) and (35). The expansion$37) are clearly in
powers of the outgoing energy-momentum tensor, and by
truncating them at finite we obtain an explicit perturbative
solution. This form of the solution can be used to construct
an effective quantum metric in the approximation of a finite
number of matter loops via the method of quantization of the
classical solutioi3—5,7. The corresponding construction is
going to be more involved than in the 2D cd&e-5| or the
Vaidya casd 7], since the relation between the metric and
the dilaton(radiug is more complicated. For example, for
the one-loop approximation one would takery+r, and
Y=y, with T, replaced by T,,) evaluated in an appro-
priate quantum state. Note that in the one-loop case one does
not have to truncate the expansid3) at n=1. By includ-
ing the higher-order terms, one extends the validity of the
one-loop approximation to a smaller radius.

Our solution can also serve as a good starting point for
finding approximate analytic solutions for the more realistic
collapse described by the acti¢h).
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