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We find the general solution of equations of motion for self-gravitating spherical null dust as a perturbative
series in powers of the outgoing matter energy-momentum tensor, with the lowest order term being the Vaidya
solution for the ingoing matter. This is done by representing the null-dust model as a 2D dilaton gravity theory,
and by using a symmetry of a pure 2D dilaton gravity to fix the gauge. Quantization of this solution would
provide an effective metric which includes the back-reaction for a more realistic black hole evaporation model
than the evaporation models studied previously.
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PACS number~s!: 04.40.2b, 04.20.Jb, 04.70.Dy

Two-dimensional ~2D! dilaton gravity theories have
turned out to be very useful toy models of black hole forma-
tion and evaporation@1#. They are also relevant for four-
dimensional~4D! black holes, since a spherically symmetric
scalar field collapse can be described by a 2D dilaton gravity
model
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whereG is the Newton constant and the 4D line elementds4
is related to the 2D line elementds by

ds4
25ds21e22FdV2. ~2!

R is a 2D scalar curvature associated with a 2D metricgmn ,
¹m is the corresponding covariant derivative,F is the dilaton
field, f is the scalar field, anddV is a two-sphere line ele-
ment. Quantization of Eq.~1! would provide us with a semi-
classical metric which would include the back reaction.
However, the progress is hindered by the absence of explicit
solutions of the classical equations of motion. In the case of
2D black holes described by the Callan-Giddings-Harvey-
Strominger~CGHS! model @2#, the analog of Eq.~1! is ex-
actly solvable, and by quantizing the solution, one can obtain
an effective semiclassical metric up to any finite order in
matter loops@3–5#. Since the matter in the CGHS model is
2D conformally coupled, this motivates us to consider a
modification of Eq.~1!,
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so that f will obey a free-field equation of motion in the
conformal gauge, and consequently the general solution

could be found more easily. Action~3! describes the dynam-
ics of spherically symmetric self-gravitating null dust
~SSND!. For purely ingoing matter, the solution of the equa-
tions of motion is given by the Vaidya metric@6#

ds252S 12
2m~v !

r Ddv212 dv dr , ~4!

wherer 5exp(2F), G51, and

dm~v !

dv
5Tvv~v !5

1

2
~d f /dv !2. ~5!

An analytic model of black hole evaporation based on the
quantization of the Vaidya solution has been studied in@7#,
and a qualitative agreement with the numerical results of@8#
has been found. However, in order to fully take into account
the back reaction in the analytic approach, one needs the
most general solution for which the outgoing matter is also
present@9,7#.

In order to find the general solution of the SSND model,
we rewrite the action~3! as
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wheref5e22F5r 2, g̃mn5rgmn , andV52/r . We do this in
order to establish the connection with a generic 2D dilaton
gravity model, which can be represented by the action of the
form ~6!. For example, the CGHS model is given byV
54l2, wherel is a 2D cosmological constant. The equa-
tions of motion are given by

¹m¹nf2
1

2
gmnV52Tmn , ~7!

R1
dV

df
50, h f 50, ~8!

where we have omitted the tildes,h5gmn¹m¹n and
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gmn~¹m f !2.

In the conformal gaugeds̃252e2rdx1dx2 one obtains

]1]2f52
1

4
Ve2r, ~9!

]1
2 f22]1r]1f52~]1 f !2, ~10!

]2
2 f22]2r]2f52~]2 f !2, ~11!

]1]2r52
1
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dV

df
e2r, ~12!

and ]1]2 f 50. We want to solve the system~9!–~12! in
analogy to the CGHS case, where a gauger50 can be cho-
sen. This is possible since]1]2r50 is a consequence of the
equations of motion. In the SSND caser is not a free field,
so that we have to find an appropriate modification. We will
use as the starting point the free-field currents for thef 50
case@11#

j 15E df

2E1J~f!
, ~13!

j̃ 25 log~¹f!2, ~14!

where 2E5(¹f)22J(f), dJ/df5V, andE is a constant
of motion. j ’s satisfy

h j 150, h j̃ 21R50. ~15!

By going into the conformal gauge one can see that the equa-
tions ~15! imply that j 1 and j 25 j̃ 222r are free fields. In the
SSND case, whenf 50 one has 2j 15r 12M logur/2M21u
and j 25 logur22Mu22r, whereM52E/4 is the black hole
mass. The Schwarzschild solution is obtained for

2 j 15
1

2
~v2u!, ~16!

j 250. ~17!

The gauge choice~16! gives the familiar relation betweenr
andu, v coordinates, while the gauge choice~17! is equiva-
lent to

ds252
e2r

r
du dv52~122M /r !du dv. ~18!

Note that the gauge choicej 250 gives a relation betweenr
andf, which is of the type we are looking for, and hence we
will concentrate on it.

When the matter is added, the relations~15! change as
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4
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2
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~19!

so thatj ’s are not free fields any more. The form of Eqs.~19!
and our remark aboutj 2 suggest that we look for a free field
of the form

j 5 j 21X, ~20!

whereX is to be determined from Eqs.~19!. This gives

]1]2X52F T11

~]1f!2 1
T22

~]2f!2G]1]2f. ~21!

Equation~21! is valid for any potentialV, and can be solved
as

X5X01 logU]2f

]1fU12E dx2
T22

]2f
, ~22!

whereX0 is a free-field solution.
In the SSND casef5r 2, x15v, x25u, and we choose

X050, which fixes the gauge. It is convenient to use a gen-
eralized form of the Vaidya metric@10#

ds252e2cF dv212ecdr dv, ~23!

which can be related to the conformal form of the metric via
ds252C(u,v)dudv andC5e2r/r . Then the gauge choice
j 50 is equivalent to

c52E du
Tuu

]ur 2 , ~24!

whereTuu5 1
2 T22 . Note that we have not specified the lim-

its of u integration in Eq.~24!, which means that a constant
of integration will occur. Only when this constant is speci-
fied, the gauge will be completely fixed.

The equations which determiner are Eqs.~9! and ~10!,
while Eqs.~11! and ~12! are the consistency conditions for
the gauge choice, which are satisfied by construction. Equa-
tion ~9! becomes

]u]vr 25ec]ur , ~25!

while Eq. ~10! gives

]v
2r 222]vr]vr 252~]v f !2, ~26!

wherer is determined from the gauge choice as

2r5 logu2]ur 2u1c. ~27!

Equation ~11! follows from Eqs.~27! and ~24!, while Eq.
~12! follows from Eqs.~27!, ~25!, and ~24!. By integrating
Eq. ~25! with respect tou, we obtain
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m(v) is a constant of integration, and can be determined
from Eq. ~26!. By inserting Eq.~28! into Eq. ~26!, and by
using Eq.~27!, we get

Tvv5
dm

dv
2

1

2
~12ec22r ]vc!]vr 2

1

2
]vE du~ec21!]ur .

~29!

When c50, Eq. ~28! yields F5122m/r and Eq.~29!
gives the relation~5!, so that one recovers the Vaidya solu-
tion. WhencÞ0, the equations look difficult. However, their
form is such that a perturbative solution inTuu can be easily
found. Let us introduce an expansion parametere by replac-
ing Tuu with eTuu . Then we will seek a solution in the form

r 5r 01er 11e2r 21••• . ~30!

The expansion~30! then implies

c5ec11e2c21••• , ~31!

where

c15E du
Tuu

r 0]ur 0
, c252E du Tuu

]u~r 1r 0!

~r 0]ur 0!2 ,••• .

~32!

In general one should also take

m~v !5m0~v !1em1~v !1e2m2~v !1••• , ~33!

although it is possible that the series in Eq.~33! gets trun-
cated, like in the example we consider in this paper, where
m5em1 . By inserting the expansions~30!, ~31!, and ~33!
into the equation forr ~28!, we get an infinite hierarchy of
equations

]vr 05
1

2 S 12
2m0

r 0
D ,

]vr 15
m0

r 0
2 r 12

m1
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1

1

2r 0
E duc1]ur 0 ,

]vr 25
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2 r 22
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r 0
2

r 1

r 0
]vr 11

1

2r 0
E duF S 1

2
c1

21c2D ]ur 0

1c1]ur 1G , . . . . ~34!

The system~34! can be solved, since for everyn the equa-
tion for r n does not involver k with k.n and each equation
is a first order linear differential equation forr n , except for
n50, which is a nonlinear first order differential equation.
Therefore by starting fromn51, one can write an explicit
solution for anyr n in terms of r 0 and Tuu . At each step
several integration constantsC(u) andC(v) will arise ~due
to u and v integrations!, and these constants can be deter-
mined from the constraint equation~29!, exactly as in the

Tuu50 case. This can be done because Eq.~29! also decom-
poses into an infinite hierarchy of equations under the expan-
sions~30!, ~31!, and~33!

Tvv5dm0 /dv,

05dm1 /dv1
1

2
~c112r 0]vc1!]vr 02

1

2
]vE duc1]ur 0 ,

05dm2 /dv1
1

2 S c21
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212r 0]vc212r 1]vc1D ]vr 0

1
1

2
~c112r 0]vc1!]vr 12

1

2
]vE duF S c21

1

2
c1

2D ]ur 0

1c1]ur 1G , . . . . ~35!

Equations~35! will also determine themn(v), provided we
fix the integration constantscn(v) which appear in Eqs.
~32!. These are related to the complete specification of the
gauge, or equivalently, to the choice of thev coordinate,
since a coordinate changev5v( ṽ) in Eq. ~23! gives

c̃5c1 log
dv
dṽ

. ~36!

At the end, one setse51 and writes the solution as

r 5r 01r 11r 21 ••• , c5c11c21 ••• . ~37!

These general features can be nicely illustrated on the
example of a white hole emiting a shock wave. This is sim-
ply a shock-wave Vaidya solution where theu andv coor-
dinates are interchanged. The corresponding spacetime is de-
scribed by the Penrose diagram of Fig. 1. In this caseTuu
Þ0, and one can find an exact solution forr 5r (u,v), so that

FIG. 1. Penrose diagram of a white hole emiting a shock wave.
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the expansions~30! and ~31! and the corresponding equa-
tions ~34! and ~35! can be checked. By takingTuu5Md(u
2u0), we get

ds25 H 2du222 du dr u.u0 ,
2~122M /r !du222 du dr u,u0 . ~38!

This can be rewritten as

ds25 H 2dv212 dv dr u.u0 ,
2Fe2cdv212ecdv dr u,u0 , ~39!

whereF5122M /r ,

c52 logU12
4M

v2u0
U, ~40!

and r 51/2(v2u) for u.u0 , while for u,u0

r 1r slogur /r s21u5
1

2
~v2u!1r slogu~v2u0!/2r s21u,

~41!

wherer s52M . The form of the solution, given by Eqs.~40!
and ~41!, is such that

r 5 (
n>0

r s
nr̃ n , c5 (

n>1
r s

nc̃n , ~42!

which is of the form~37!. More exactly, one can show that

r n5r s
nr̃ n and cn5r s

nc̃n satisfy Eqs.~34! and ~35! with m
5m15M . Also, starting fromn52, nontrivial integration
constantscn(v) appear.

In conclusion we can say that we have found a useful
form of the general solution, given by the expansions~37!
and Eqs.~34! and ~35!. The expansions~37! are clearly in
powers of the outgoing energy-momentum tensor, and by
truncating them at finiten we obtain an explicit perturbative
solution. This form of the solution can be used to construct
an effective quantum metric in the approximation of a finite
number of matter loops via the method of quantization of the
classical solution@3–5,7#. The corresponding construction is
going to be more involved than in the 2D case@3–5# or the
Vaidya case@7#, since the relation between the metric and
the dilaton~radius! is more complicated. For example, for
the one-loop approximation one would taker 5r 01r 1 and
c5c1 , with Tmn replaced bŷ Tmn& evaluated in an appro-
priate quantum state. Note that in the one-loop case one does
not have to truncate the expansions~37! at n51. By includ-
ing the higher-order terms, one extends the validity of the
one-loop approximation to a smaller radius.

Our solution can also serve as a good starting point for
finding approximate analytic solutions for the more realistic
collapse described by the action~1!.
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@7# J. Cruz, A. Miković, and J. Navarro-Salas, Phys. Lett. B395,

184 ~1997!.
@8# R. Parentani and T. Piran, Phys. Rev. Lett.73, 2805~1994!.
@9# W. A. Hiscock, Phys. Rev. D23, 2813~1981!.

@10# J. M. Bardeen, Phys. Rev. Lett.46, 382 ~1981!.
@11# J. Cruz, J. Navarro-Salas, M. Navarro, and C. F. Talavera,

Phys. Lett. B402, 270 ~1997!.

RAPID COMMUNICATIONS

R6070 56ALEKSANDAR MIKOVIĆ


