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We study critical behavior in the collapse of massive spherically symmetric scalar fields. We observe two
distinct types of phase transition at the threshold of black hole formation. Type II phase transitions occur when
the radial extent (l) of the initial pulse is less than the Compton wavelength (m21) of the scalar field. The
critical solution is that found by Choptuik in the collapse of massless scalar fields. Type I phase transitions,
where the black hole formation turns on at finite mass, occur whenlm@1. The critical solutions are unstable
soliton stars with masses&0.6m21. Our results in combination with those obtained for the collapse of a
Yang-Mills field @M. W. Choptuik, T. Chmaj, and P. Bizon, Phys. Rev. Lett.77, 424 ~1996!# suggest that
unstable, confined solutions to the Einstein-matter equations may be relevant to the critical point of other
matter models.@S0556-2821~97!50222-0#

PACS number~s!: 04.25.Dm, 04.40.2b, 04.70.Bw

The discovery of critical point behavior in gravitational
collapse has highlighted the role played by nonlinear dynam-
ics at the threshold of black hole formation, and has opened
up a fascinating area of research in general relativity.

Choptuik @1# performed the first definitive numerical
study of critical behavior in the collapse of spherically sym-
metric distributions of massless scalar field. His results indi-
cated that one parameter families of interpolating solutions
S@p# generically have a critical valuep5p* such that~i!
S@p,p* # are solutions in which the scalar field disperses to
infinity, and ~ii ! S@p.p* # are solutions in which the field
collapses to form a black hole. In slightly supercritical evo-
lutions, Choptuik found that the black-hole mass has a
simple power-law form

MBH.Kup2p* ug , ~1!

where the critical exponent isg.0.37 andK is a family

dependent constant. For near critical evolutions the field as-
ymptotically approaches a discretely self-similar form, with
an echoing periodD.3.44 which is the same for all families,
before either dispersing to infinity or forming a black hole.
Based on these observations, Choptuik conjectured that a
unique solution to the Einstein-scalar field equations acts as
the intermediate attractor for near critical evolutions.
Gundlach has directly constructed this critical solution, and
has computed the echoing period and the critical exponent to
beD53.445360.0005 andg50.37460.001@2,3#, thus con-
firming the numerical estimates. It has also been argued that
this picture is stable against the introduction of a small scalar
field mass@3–5#.

Motivated by the results of Choptuik, critical point behav-
ior has also been studied in other models of gravitational
collapse@6–9#. Dynamical self-similarity~either discrete or
continuous! in near critical evolutions, and a scaling relation
for black-hole mass, as in Eq.~1!, are common features of
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these models, although the numerical value of the critical
exponentg is model dependent. It is now well established
that the power law form for the black-hole mass derives from
the existence of a single unstable mode of the critical solu-
tion in each case@10,11,2#. Of the examples considered to
date, the evolution of the Yang-Mills field is exceptional.
Choptuik et al. @12# have studied this model, finding two
distinct types of phase transition depending on the initial
field configurations they considered. In what they refer to as
type I transitions, the black hole formation turns on at finite
mass and the critical solution is the Bartnik-McKinnon solu-
tion @13#—a regular, static, but unstable, solution to the
spherically symmetric Einstein-Yang-Mills equations. In
type II transitions black-hole formation turns on at infinitesi-
mal mass and the critical behavior is qualitatively similar to
that found by Choptuik for massless scalar fields, except that
the scaling exponent isg.0.20 and the echoing period is
D.0.74. An independent confirmation of these results has
been provided by Gundlach@14#.

Here we report on a detailed study of critical phenomena
in the collapse of spherically symmetric configurations of a
massive scalar field. The introduction of a massm destroys
the scale invariance of the Einstein-scalar field equations.
Moreover, the massive scalar-field equations admit soliton-
like solutions as discussed by Seidel and Suen@15#. These
observations suggest that the qualitative picture of critical
point behavior could differ from the massless limit, and
might be similar to that found by Choptuiket al. @12# in their
study of Einstein-Yang-Mills collapse.1 Our results show
that both type I and type II phase transitions occur in the
collapse of massive scalar fields. Furthermore, we advance a
simple criterion to determine which type of phase transition
will be observed for a given initial data set. If the radial
extent l of the initial pulse is greater than the Compton
wavelengthm21 of the scalar field then type I phase transi-
tions will be observed. Type II transitions develop from ini-
tial data with lm&1. This criterion provides an intuitive,
physical explanation of the observed phenomenology, and
clarifies the role played by intrinsic scales in critical collapse.

We write the general, spherically symmetric line element
in terms of a retarded timeu and a radial coordinater , which
measures proper area of the 2-spheres, as

ds252g ḡdu222gdudr1r 2dV2 , ~2!

1In this case, the SU~2! Yang-Mills charge breaks the scale invari-
ance of the field equations.

TABLE I. The three initial data sets considered in our evolu-
tions. Only a single parameter is varied when looking for a critical
point. The types of phase transitions which may occur are indicated
under type.

f(u50,r ) Parameters Type

~i! f0r 2exp@2(r2r0)
2/s2# s, f0 I, II

~ii ! f0$12tanh@(r2r0)/s#% s, f0 I, II
~iii ! f0r (r 1r 0)2s/(11er) s, f0 I, II

FIG. 1. ~a! The time evolution off as a function of retarded
time u at the origin for a near critical evolution with Gaussian
initial data ~see Table I!. It clearly exhibits an underlying periodic
solution with a superimposed amplitude modulation.~b! The
squared amplitude of the discrete Fourier transform off(0,u). The
fundamental oscillation has an angular frequencyv0'1.8m, and, in
agreement with Seidel and Suen@15#, the next important feature is
at three times this frequencyv;5.65m. The sidebands determine
the period of the amplitude modulation to be'15.7m21.

FIG. 2. ~a! The time evolution off as a function of retarded
time u at the origin for the same evolution as in Fig. 1, but after the
nearly critical phase which ends atu'100. The solution is essen-
tially periodic, with a low-frequency amplitude modulation.~b! The
squared amplitude of the discrete Fourier transform of the field for
u>100. The fundamental oscillation has an angular frequency
v0;1.05m, which suggests that it is determined by the scalar field
mass~which is set to unity!. The inset demonstrates that other har-
monics are not strongly excited in this solution. For other initial
data sets, we find that the amplitude of the oscillations tends to
decay slowly, and the solutions are dispersing.
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whereg and ḡ are functions of bothr andu, anddV2 is the
line-element on the unit 2-sphere. We choose to normalizeu
to be proper time at the origin, thus fixingg(0,u)51. Im-
posing regularity of the spacetime at the origin requires
ḡ (0,u)51. The evolution of the massive scalar field is gov-
erned by the wave equationhf2m2f50. It is convenient
to introduce an auxiliary fieldh @16#, related tof by

f5 h̄5
1

r E0

r

dr8h~r 8,u! , ~3!

in terms of which the wave equation can easily be written in
a first-order form. Thus, the coupled Einstein-scalar field
equations are

~ lng! ,r5r 21~h2 h̄ !2 , ~4!

~r ḡ ! ,r5g~12m2r 2 h̄2! , ~5!

~r h̄ ! ,r5h , ~6!

h,u2
ḡ

2
h,r5

1

2r
~h2 h̄ !@g~12m2r 2 h̄2!2 ḡ #2rgm2 h̄ /2.

The dynamics is completely encompassed in the last equa-
tion, which is the wave equation written in terms of the new
fields h and h̄ .

The characteristic initial value problem requires only the
field f to be supplied on some initial outgoing null cone,

which we will take, without loss of generality, to be atu50.
We have considered the evolution of three different initial
data sets as shown in Table I.

The numerical algorithm used to integrate these equations
is documented@17,18# elsewhere. We have followed the
scheme as outlined by Garfinkle@18#. The accuracy of the
code has been tested previously, where it was used to study
radiative tails of a massless scalar field propagating in as-
ymptotically de Sitter spacetimes@19#, and was found to be
locally second-order accurate.

It is reasonable to expect that the picture of critical behav-
ior offered by Choptuik@1# is robust against the introduction
of a small scalar-field mass@3–5#. More precisely, the evo-
lution of an initial distribution of scalar field will differ from
the massless evolution only if the characteristic length scale
m21, set by the scalar field mass, is smaller than the radial
extentl of the region in which the field is nonzero.2 This
expectation is supported by our numerical integrations. We
generally observe type II phase transitions whenlm!1.
Furthermore, we find that the scaling relation for the black
hole mass is in agreement with the massless limit, having
g'0.378.

The new feature, arising due to the presence of the mass
m, is the existence of type I phase transitions—phase transi-
tions in which black hole formation turns on at finite mass.
The critical solutions are soliton stars on the unstable branch
of the mass versus radius curve discussed by Seidel and Suen

2For generic initial data it is not possible to define the radial
extent, however, for the initial data sets~i! and~ii ! in Table I, we set
l52s.

FIG. 3. The black-hole massMBH as a function of log10uf02f0* u
for supercritical evolutions withm51.0. The results displayed are
for the initial data set~iii ! in Table I with r 052.0 ands510.0. The
critical point was determined to bef0* 53.872 452 334 59 with an
initial radial discretizationDr 50.05. The black hole tolerance pa-
rameter~see text! was set at 1010. The inset shows results obtained
from the same evolution, but with a lower black hole tolerance level
of 104. For low values of the tolerance the mass spectrum exhibits
spuriousdiscontinuities.

FIG. 4. The Bondi mass of the initial scalar field profile, in
practicem(r ,0)5r (12 ḡ /g)/2 evaluated at the outer edge of the
grid, and the measured black-hole mass at the critical point versus
the radial extentl of the initial profile for the data sets~i! and ~ii !
in Table I. Type I transitions are evident forlm@1, and type II
transitions whenlm!1. The interface between type I and type II
behavior is clearly visible whenMBondi.0.4m21, andlm;1.
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@15#. The mass gap at the threshold of black hole formation
lies in the range 0.35&mMBH&0.59, the upper limit being
set by the maximum mass that a soliton star can have.

For the three initial data sets we examined~see Table I!,
we have found both type I and type II behavior, along with
evidence that both critical solutions play a role whenlm'1.
In contrast to the Einstein-Yang-Mills system@12# our re-
sults suggest that the shape of the initial data does not deter-
mine the critical point behavior.

Physically the existence of the different regimes can be
understood if we recall the two known limits for scalar field
collapse. In the massless regimelm!1 an outward pressure
is required for the field to bounce back to infinity, whereas in
the adiabatic regimelm@1 the collapse is pressureless@20#.
Hence, by continuity in the space of solutions, it seems likely
that there can exist configurations, characterized by
lm5C;1, such that the field neither disperses to infinity
nor collapses to a singularity.

Figure 1 shows the fieldf at the originr 50 during the
critical phase of a type I evolution for the Gaussian initial
data in Table I withr 055.0, s51.2, andf056.4746. The
solution behaves like a soliton star with an effective mass
;0.52m21 confined within a radius;4m21 for an amount
of time u;100. The angular frequency of its fundamental
mode isv0'1.8m, the next mode is also apparent at 3v0.
Superimposed on these oscillations is an amplitude modula-
tion with period;15.7m21 which is reflected in the side-
band structure of the Fourier amplitude.

Subcritical evolutions generally settle down to a scalar
field configuration dominated by a single oscillatory mode
with angular frequencyv'1.05 as shown in Fig. 2 for
m51.0. Further exploration indicates that the fundamental
oscillations have a period given approximately by 2pm21.
Unfortunately, the characteristic evolution scheme makes it
difficult to follow the evolutions beyondu;400. Neverthe-
less, the trend suggests that the amplitude of the scalar field
is decreasing slowly—indeed this is precisely the regime in
which the stationary phase approximation is valid@20#.

When the critical solution corresponds to the marginally
stable soliton star with effective mass;0.6m21, we have
found evidence of further phenomenology. In particular, the
solutions may closely approach the solitonic configuration,
begin to disperse, but recollapse to form black holes. This
behavior merits further investigation, however our numerical
scheme is not well suited for this purpose.

As evidence of the observed mass gap, we present in Fig.
3 the spectrum of black hole masses near to criticality for the
initial data set~iii ! of Table I. The black-hole mass at thresh-
old is MBH'0.51m21. This mass spectrum is most interest-
ing for what it does not do, rather than what it does. We

determine that a solution contains a black hole if either of the
metric functionsg or ḡ exceeds some prespecified tolerance
Gmax anywhere on a slice of constantu. Suppose this occurs
at u5uBH@f0#, wheref0 is the parameter being varied in
the initial data. The mass of the black hole is then
MBH5 1

2 r BH where r BH is the location of theglobal mini-
mum of f (r ;f0)[ ḡ (r ,uBH@f0#)/g(r ,uBH@f0#) on the slice
u5uBH . Notice thatMBH need not depend continuously on
f0 if f (r ;f0) has more than one local minimum. Indeed, as
f0 is varied in our simulations we sometimes observe dis-
continuities in the black-hole mass when the toleranceGmax

is not large enough; this is shown in the inset of Fig. 3. A
careful inspection, varying both the numerical resolution and
the tolerance, suggests that the discontinuities arenot a real
effect in the black-hole mass spectrum.~Discontinuities in
the mass spectrum are also alluded to in@12#; it would be
interesting to check if they arise for similar reasons.! In con-
trast, the oscillation imposed on the mass spectrum in Fig. 3
is not an artifact of the numerics, but is similar to the fine
structure found in the Choptuik results@2,21#.

To better understand the selection effect between type I
and type II phase transitions, we have constructed families of
interpolating solutionsSl@f0# for several values ofl. Gen-
erally, we find type I transitions occur when the Bondi mass
MBondi of the initial field profile is greater than;0.4m21 and
its radial extent is larger than the Compton wavelength of the
field, i.e., lm*1. Figure 4 shows the Bondi mass of the
initial data at the critical pointf05f0* , and the resulting
black-hole mass, for the initial data sets~i! and ~ii ! in Table
I.

In conclusion, we find that the presence of a length scale
changes the nature of critical phenomena in gravitational col-
lapse of a scalar field. It introduces new phenomenology
which is similar to that discussed by Choptuiket al. @12#.
Moreover, it is tempting to speculate that unstable, confined
solutions will act as critical solutions in other matter models.
We therefore expect that both type I and type II phase tran-
sitions should occur in the gravitational collapse of perfect
fluids ~with equations of state which allow stationary con-
figurations!, and in the collapse of charged massive scalar
fields @22#.
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@8# S. Hod and T. Piran, Phys. Rev. D55, 3485~1997!.
@9# S. L. Liebling and M. W. Choptuik, Phys. Rev. Lett.77, 1424

~1996!.
@10# T. Koike, T. Hara, and S. Adachi, Phys. Rev. Lett.74, 5170

~1995!.
@11# D. Maison, Phys. Lett. B366, 82 ~1996!.
@12# M. W. Choptuik, T. Chmaj, and P. Bizon, Phys. Rev. Lett.77,

424 ~1996!.
@13# R. Bartnik and J. McKinnon, Phys. Rev. Lett.61, 141 ~1988!.
@14# C. Gundlach, Phys. Rev. D55, 6002~1997!.

@15# E. Seidel and W. M. Suen, Phys. Rev. Lett.66, 1659~1991!.
@16# D. Christodoulou, Commun. Math. Phys.93, 171 ~1984!.
@17# D. S. Goldwirth and T. Piran, Phys. Rev. D36, 3575~1987!.
@18# D. Garfinkle, Phys. Rev. D51, 5558~1995!.
@19# P. R. Brady, C. M. Chambers, W. Krivan, and P. Laguna,

Phys. Rev. D55, 7538~1997!.
@20# S. M. C. V. Gonc¸alves and I. G. Moss, Class. Quantum Grav.

14, 2607~1997!.
@21# S. Hod and T. Piran, Phys. Rev. D55, 440 ~1997!.
@22# E. Seidel and W. M. Suen, Phys. Rev. D42, 384 ~1990!.

RAPID COMMUNICATIONS

56 R6061PHASES OF MASSIVE SCALAR FIELD COLLAPSE


