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In matrix theory the effective action for graviton-graviton scattering is a double expansion in the relative
velocity and inverse separation. We discuss the systematics of this expansion and subject matrix theory to a
new test. Low-energy supergravity predicts the coefficient ofsfie’* term, a two-loop effect, in agreement
with explicit matrix model calculation§S0556-282197)50118-4

PACS numbds): 11.25.Sq, 04.65.e

Matrix theory is a remarkable proposal for the fundamen- 1 _ _ 6 o
tal degrees of freedom and their Hamiltonian. In the original S:f dr Tr(ﬁDTX'DTX'Jr T[X',XJ]Z . @D
paper[1], one of the principal tests was a successful com-
parison of graviton-graviton scattering in the matrix theory
and in eleven-dimensional supergravity. In subsequent worlnere R is the radius of eleventh dimension andl the
this has been extended to scattering of extended o235 eleven-dimensional Planck mass up to a convention-

and scattering with nonzero momentum transfgr{4]. This  gependent numerical coefficient; the signs are appropriate for
work has dealt with the leading term both at low velocity andyermitian X. By rescalingz=u/R and X'=y'/M?3, the ac-

long distance, for example?/r” in graviton-graviton scat- tion pecomes
tering atqq;=0. Matrix theory predicts a series of correc-
tions both inv andr, and if it is correct these must all be
understood in eleven-dimensional terms. 1 1 imuin o i
Two of the present authof$§] have recently reported on S=ue f duTr 5Dy Dwy'+ 7y Y17 (2
thev*/r% term atq,,=0, a two-loop matrix theory effect. It
vanishes as required by the matrix theory conjecture. In this
note we would like to develop some of the systematics of thdt follows that M® is the loop-counting parameter, and that
double expansion in andr for graviton-graviton scattering the effective action at loops is of the form
at q;,=0 and to report on a new test of matrix theory. We
observe that eleven-dimensional supergravity predicts the
coefficient of they®/r# term. In matrix theory this is a two- S = MGL*GJ duf_(y',D,)
loop effect, and by an extension of the calculati@ij we
find agreement.
Higher velocity corrections have recently been considered = RMGL‘GJ drf (M3X',R7ID,). ©)
in Ref. [7]. In that work there appeared to be a mismatch
between the supergravity and matrix theory amplitudes.
However, as noted by those authors, the mismatch is sulFinally we have dimensional analysi§: must have units of
leading in the largeN expansion. To make the comparison (lengthf-~8. For the leading low-energy effective action,
one must therefore have a precise understanding of thgepending on the velocity‘=DTXi, but not the accelera-
meaning of the finiteN matrix theory. Happily, this has re- tjon, this becomes
cently been supplied in an important paper by Susskéid
(see alsd9]). Finite N is to be identified with compactifica- . _
tion of a null direction(henceforth the— direction), not a _ 6_3Lf a-3L (X' v' )
. . . . . . S =RM drr N Et=yviwil (4)
spacelike direction. We will see that the velocity expansion r 'RM°r
at fixedp_ is simpler than in Ref]7].
Let us consider first the matrix theory perturbation expan-

sion. The bosonic part of the matrix theory actior[1$ Wherer2=XiXi. Let us write out the first few terms in the
expansion of the effective Lagrangian, indicating the depen-

dence orv andr, but suppressing the dependenceMnR,

L andX'/r:?
A recent paper by Ganor, Gopakumar, and RamgodBincon-

siders scattering of a graviton from &%/Z, fixed point, finding a

discrepancy at two loops. The extension of matrix theory to such

less symmetric backgrounds is an open issue. These authors als@The systematics of this expansion have also been considered by
discuss the general form of higher-order matrix theory amplitudesFischler and Susskind.
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Lo=Co?, .
0™ ooV S=—mf dr(—G, x*x")1?
L v* + v? + v’ +

=Cyy—r +Cpyig + Crgrs v o e

1 11r7 12r11 13r15 _ _mf dT(—ZX —Uz—h__X X )1/2, (9)
4 6 8 . .

v v where we have used the form of the Aichelburg-SexI metric.

A dot denotes?, andv?=x'x'. This action vanishes if we
take m— 0 with fixed velocities, but for the process being

52:Czlﬁﬁ(322rT1+(323rT3‘F Tt

vt v’ v8 considered here, it ip_ that is to be fixed. We therefore
£3:C31r_13+c32r_17+c33r_21+ U (5) carry out a Legendre transformation rn:
In writing this expansion we have used the fact that the su- p_=m — 1+2h“xi_ . (10)
persymmetry algebra with 16 supercharges prevents renor- (=2x"—v“=h__x"Xx7)

malization of the coefficient 062, and that the expansion
must be even in by time-reversal invariance.
Now let us consider the supergravity prediction. We wil
study the scattering of gravitons of momerga=N,/R, r ——R =r -
- . . _)=- _)=L—p_X _). 11
N, /R, with N; large enough that the first graviton can be (p-) (p-) P (P-) (D
considered as a classical source for the gravitational fieldzquation (10) determinesx™(p_): it is convenient before

Ultimately, to understand the full form of the supergravity so|ving to take the limitm—0, where it reduces to
amplitude, we will need to develop the Feynman rules forGW)'(ug(V:O_ Then

supergravity with lightlike compactification, but we leave

The appropriate Lagrangian fat at fixedp_ is (minus the
| Routhian,

that for future work. . NJ1-h__v?*-1
Our conventions arg™=x'+t, and the time parameter X =—p (12

of the light-cone quantization is=3x". These are chosen
so that the largeN limit of the lightlike quantization is con- In the m—O0 limit at fixed p_ the effective Lagrangian be-
sistent with the larg®N limit of spacelike compactification. comes
Note that at largeN all particles are moving approximately
along lines oféx!= 6t, so that withx” =x*!—t the period- ) o v
o . L'——p_x =p_| 5+
icity is 2R both inx~ andx!™. Also, §7= 3(dx'+ 8t) ~ 6t 2
along any world line. Finallyp_ is positive.

The source graviton is taken to have vanishing transverse —

2 h__04 h2_6
8 16

+O(h3v8)]

Nz , 15N;N, v* 225 N3N, u° (va)

_ V2t — =357+ — —c—15 -T2 —
velocity. Its world line isx”=x'=0, and it produces the 2R 16 RM® r’ * 64 R°M18r14 rat
Aichelburg-Sex| metri¢11] (13)
Guv=nuthy,, (6) Ther andv dependences match the diagonal terms in the
o _ series(5), and theN dependences are consistent with the
where the only nonvanishing componenttof, is leading largeN behaviorN-*1. The v*/r” agrees with the

0,2 one-loop matrix model amplitude, as asserted in Rgfand
K11P -

h S(x)= 1 S5(x7) ) worked out in detail in Ref3]. The two-loop calculation in
T Tawgr! ~ RMr’ : Ref.[5] extended ta® gives for SU2) the value
Here «2,=167°/M° (see Ref[3], for example and wg is 225 1 0_6 (14
the volume ofS;. This metric can be thought of as obtained 32 R°M 18 (14

from the Schwarzschild metric by taking the limit of infinite

boost in the+ direction, while the mass is taken to zero; the In [5], RM? was implicitly set to one, but we have restored it
latter accounts for the absence of higher-order termsriorl/ by dimensional analysis and used the relatipa2R for g
N;. A more detailed derivation of this metric can be found defined in Ref[5], as follows from the tree level term in Eq.
in the Appendix. The source graviton is in a state of definite(13). The separate contributions of the various two-loop
p_ and so we average over the e (0,27R) direction to  graphs are given in Table I. The dependence can be re-

give constructed as follows. In double-line notation every graph
involves three index loops, and so is of ordéf. Terms
15N, proportional to Nf or Ng would only involve one block
h——:W' ®) (graviton and so could not depend an Symmetry under

interchange of 1 and 2 thus determines that th€2ptésult

For the action of the “probe” graviton in this field, we (14) is multiplied by
use the following trick. Begin with the action for a massive
\ e A : NiN3+N2N
scalar(spin effects fall more rapidly with) in eleven dimen- 12T N2

sions: 2 ) (15



RAPID COMMUNICATIONS

R3176 BECKER, BECKER, POLCHINSKI, AND TSEYTLIN 56

TABLE I. Coefficients ofgv®/r'4. Graphs are labeled as in Ref.
[5]. We have included factors 1/2 for diagrams involving two cubic
vertices of the same type directly in this table.

287481 4717523 107251
a + b Cc); + d), 0
@1 +2ges2 P2 ~220376 (V) *11se8s (V2
27519 16965 892261 4615 (a) (b)
a ———— (b ——— (c d _
@z —75s ™+ 006 (D2 togais (V2 T
2366913 13311 231 7995
O —zees P 2006 (3 tiomm (D¢ tom
FIG. 1. (a) Graphical representation of probe gravitGiin
31595 315 698165 225 stra!ght I_mé interacting with the me_tn(_: of source grawtcjhe_avy
0o +—— B +— () — sum 4+ straight ling at second ordexb) Vanishing nonlinear correction to
14336 2048 43008 64 the metric of the source.

in agreement with the supergravity resd8) for the term of Dlmen5|onally,.h|gher derlyatlye ope.rfitors in the low-
interest. energy supergravity theory bring in additional powersvof

Note that we have not distinguished radial and transvers@nd 1f and so correspond to matrix model amplitudes that
velocities. Any term proportional to the radial velocity is “‘?(! fztar? given power 0N, to the right of and/or below
equivalent by parts to a term involving the acceleration. AlIN1v =" */r " in the series(5). However, higher-ordefocal
matrix theory calculations to date have considered straightcurvature invariant®*+R®+ -+ in the D =11 supergravity
line motion and so are insensitive to such terms. Thus, wéction are not expected to change the low-energy scattering

write v2 with the understanding that only the transverse parff two gravitons when one of them has lange, i.e., when
is relevant. it can be treated as a source for the gravitational field. The

It is difficult to be certain which of the many tests of reason is thatin contrast to the Schwarzschild solution, for

matrix theory actually test that conjecture and not just theexample the corresponding plane-fronted wave background
weaker and less controversial assumption that the 1IA string8) is not modified byR" corrections to the action: according
has an eleven-dimensional limit. In the present case the nio the standard argumefgee, e.g.[12]), the existence of a
merical agreement is impressive. Moreover, it is difficult tocovariantly constant null Killing vector implies the vanishing
see how supersymmetry alone would determine the normaPf all second rank tensors constructed out of curvature and
ization of thev®/r! term in the supersymmetric quantum the metric except the Ricci orfequivalently, corrections to
mechanics effective action, suggesting that an additionabchwarzschild disappear in the infinite boost, zero mass
structure(eleven-dimensional Lorentz invariands present. limit). Supergravity loop effects, being weak at low energy,
A die-hard skeptic might still argue as follows. A “normal” should also lie to the right of and below tiv2<*2/r 7
supersymmetric invariant, obtained from a multiple commu-term. Terms below the diagonal that arise in this way are
tator with all sixteen superchargée analog of an integral subleading irN; for the given number of loop’It would be
over all of superspagewould be at least of order®. Thev® interesting to relate these supergravity effects to the matrix
term is therefore “chiral” and so might be constrained by model, even at one matrix model loop where the whole series
nonrenormalization theorems. Then one could continue fronis known[13]. In passing we would like to mention the ob-
the eleven-dimensional supergravity limit where one calcuservation that the coefficiemt, of the next higher one-loop
lation is valid, to the IIA string limit where the other calcu- termv®/r*! actually vanishes.
lation is valid, and the answers must agree independent of On the matrix model side there is the important compli-
the matrix theory conjecture. But the skeptic is not willing to cation of bound state effectsMatrix theory scattering cal-
bet that thev®/r?! term, a three-loop effect, will show a culations to date have treated the O-branes in a bound state as
discrepancy. being coincident with zero relative velocity. Note, however,
It is interesting to consider higher corrections in the su-that a term which is dimensionally of ordef can have the
pergravity theory. The ®/r'4 term can be thought of as aris- structurevv$ and even with the center of masg vanishing
ing from the graph of Fig. @), with a second-order coupling can generate ag term proportional to the expectation value
to the probé€. Figure 1b) would represent a nonlinear cor- of the relativev? in the bound state. This would not affect
rection to the metri¢8), which as we have noted is absent. the present calculation because afl terms fall off more
The ladder graph is second order in the effective Lagrangiafapidly inr, but to determine some higher terms one needs
and the crossed ladder is absent in the light-cone frame. Bn understanding of the bound state. One must also consider
appears that each graviton coupling to the source brings agcoil, interactions causing the gravitons to deviate from a
least anr” from the field (8), so that the leading large- straight line. To the order we are working we believe that
behavior at ordeN¥ would be the diagonai-loop term that  this corresponds to omitting the one-particle-reducible two-
we have considered. loop graphs, but at higher order it may be necessary to sepa-

3Note that this is second order in a first quantized description of “This has also been noted by Susskita.
the probe. This does not correspond directly to second order in a®we would like to thank David Gross for raising this issue. See
field theory action. also Ref[6].
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rate the light and heavy matrix model degrees of freedom in As was already mentioned above, it is the “null reduc-
a more systematic way. tion” action that is in direct correspondence with the matrix
It is interesting to repeat the derivation of the Routhian fortheory results for finiteN. Remarkably, this conclusion ex-
scattering at fixed spacelike momentymy,. Here we have tends also to more complicated cases of graviton scattering
(m=1t) off M-branes discussed i2]. Again, the supergravity po-
tentials corresponding to the “fixed_" case can be ob-
_ oin2 2 C11 20 1/2 tained from the relevarid-brane probe actions in tH2=10
5= mf df{1=(x) v =h_(x*=1)F7 (16 backgrounds following upon reduction along the “null” di-
rectionx™. These actions are found from the “fixqml "

Then one finds actions by replacing the 0-brane harmonic functibmy its

W— 1 “short-distance” (or largeN) limit H—1=h__. The result-
L£'=—pyxt=—pyl 1+ ( i _ ing long-distance interaction potentidlsontaining in gen-
1+h__ eral both static and velocity-dependent terms like

A7 v=(1r")(a+bv2+co*)+O(1/2M] are then in precise
agreement with the one-loop matrix model potentials with no
need to assume that the number of O-bradés large as was
done in[2] to be able to ignore additional subleading terms
present in the fixeg,; picture. This provides another test of
the proposal of Ref(8].

Finally, let us note that from another point of view, dis-
ete light-cone quantization can be regarded as a limit of
spacelike compactification as folloy&4]. The null direction
has zero invariant length, so by a boost should be related to
the R;;—0 limit. The naiveR;;—0 limit is simply dimen-
sional reduction to th@;;R,,=0 sector. Here one takes in-
stead thep11R;=N sector, subtracts the overdlfR,,, and
rescales to

Where the earlier Routhiafil3) had only terms of order
v?(v?/r")%, this now has higher velocity corrections, a
double serie??(v?/r7)X. Spacelike compactification of
M theory gives the IIA string theory, and E(l7) is pre-
cisely the action for interaction of twb 0-branes via classi-
cal supergravity. This is the more complicated expansior]:r
considered in Ref[7], but we see that it has no direct rel-
evance to finitedN matrix theory. We emphasize that the re-
sult (13) is fully relativistic.

It is curious that the null and timelike Lagrangiatikd)
and (17) are related by the simple substitution
h__—1+h__ (the transverse velocities are in direct corre-
spondence because of our conventions, as noted eailer
better understand the formal relation between the two cases, H—N/Ry;
note that just as Eq17) is essentially the Lagrangian for a Heﬁ:R—
DO0-brane probe moving in B0-brane source background, 11
Eq. (13) can be interpreted as@0-brane probe Lagrangian
in a D=10 background resulting from reducing tbe=11
plane  wave dsi;=dx"dx +h__dx dx +dxdx,
h__=Q/r”, along the nulix~ directior? instead of the spa- We would like to thank David Gross, Simeon Hellerman,
tial x'* direction. While the reduction along'! gives the and Lenny Susskind for helpful conversations. This work
standard O-brane background, the reduction alengpro-  was supported in part by NSF Grant Nos. PHY91-16964 and
duces the followingD =10 (string-frame metric, dilaton, PHY94-07194, DOE Grant No. DOE-91ER4061, PPARC,
and 1-form field and the EC TMR Grant No. ERBFMRX-CT96-0045.

(19

at fixed momentump'. Noting that v'=0(R;;p') and
h__=O(Rl’12), this yields Eq.(13) from Eq. (17).

_ _pnl24 2 1/2 iy ¢ _ 34
d%o— h,, dr +h,7dXdX, e —h,,, APPENDIX

__ph1
A=-h__dr, (18 In this appendix we would like to derive the form of the
Aichelburg-Sexl metri¢7). This follows closely the original

_1.,+ H _ H H . ! . . : : .
where 7=3x". This becomes the usual 0-brane solution if 4oy ation 0f[11]. Start with the Einstein field equations

r—tandh__—H=1+h__ (andA— A+dt). This relation

is implied by the structure of thB=11 plane wave metric R,,— %GILVR: Kil-rw, (A1)
(in particular, it remains invariant under” —x*" —x~ =2t
andh__—h__+1). and approximate
Thus Eq.(18) is formally the same as th&hort-distance
(or “near-horizon”) limit of the 0-brane background: then Guv=Muthy,, (A2)

h__>1 sothatH=1+h__~h__. Equivalently, it may be ) o ) . ] ]
viewed as a large charg@~Ng or large N (but fixed dis- where f,,)°~0. This gives the linearized field equations
tancer) limit of the 0-brane solution. The fact that the two

2 v_ 2 v
actions are formally related by _—1+h__ implies that (Fr—A)YHr=2k, T, (A3)
larger, smallv expansion of the first action is simply the h
leading part of the expansion of the second action. where

g =her— gy, (A4)

5More precisely, the directior™ is null in flat space, but is space- For a massless particle movingp, direction with the ve-
like in the curved plane wave background. locity of light, the energy momentum tensor is
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THY'=p_86(x")8(x, )sts”, (A5) 15
3 GQ(XL):WW- (A8)
where s#= 8¢+ 6% and 8(x,)=1II}_,8(x;). Inserting Eq.
(Ab) into Eq.(A3) gives a determining equation fgr*”. To
solve it make the ansatz Therefore
Kr=2 k5 p_ 8(X " )Gg(X,)SHS". A6 157N
U K11P- 8(X7)Gg(X,) (A6) = RMQr% S(x")shs”. (A9)
Then Gy satisfies nine-dimensional Poisson equation
AGg(x, )+ 8(x,)=0. (A7)  This determines the form of the fluctuation of the metric. The
only nonvanishing component f,, is h__ with the result
The solution is given by (7).
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