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In matrix theory the effective action for graviton-graviton scattering is a double expansion in the relative
velocity and inverse separation. We discuss the systematics of this expansion and subject matrix theory to a
new test. Low-energy supergravity predicts the coefficient of thev6/r 14 term, a two-loop effect, in agreement
with explicit matrix model calculations.@S0556-2821~97!50118-4#

PACS number~s!: 11.25.Sq, 04.65.1e

Matrix theory is a remarkable proposal for the fundamen-
tal degrees of freedom and their Hamiltonian. In the original
paper@1#, one of the principal tests was a successful com-
parison of graviton-graviton scattering in the matrix theory
and in eleven-dimensional supergravity. In subsequent work
this has been extended to scattering of extended objects@2,3#
and scattering with nonzero momentum transferq11 @4#. This
work has dealt with the leading term both at low velocity and
long distance, for examplev4/r 7 in graviton-graviton scat-
tering atq1150. Matrix theory predicts a series of correc-
tions both inv and r , and if it is correct these must all be
understood in eleven-dimensional terms.

Two of the present authors@5# have recently reported on
thev4/r 10 term atq1150, a two-loop matrix theory effect. It
vanishes as required by the matrix theory conjecture. In this
note we would like to develop some of the systematics of the
double expansion inv andr for graviton-graviton scattering
at q1150 and to report on a new test of matrix theory. We
observe that eleven-dimensional supergravity predicts the
coefficient of thev6/r 14 term. In matrix theory this is a two-
loop effect, and by an extension of the calculation@5# we
find agreement.1

Higher velocity corrections have recently been considered
in Ref. @7#. In that work there appeared to be a mismatch
between the supergravity and matrix theory amplitudes.
However, as noted by those authors, the mismatch is sub-
leading in the large-N expansion. To make the comparison
one must therefore have a precise understanding of the
meaning of the finite-N matrix theory. Happily, this has re-
cently been supplied in an important paper by Susskind@8#
~see also@9#!. Finite N is to be identified with compactifica-
tion of a null direction~henceforth the2 direction!, not a
spacelike direction. We will see that the velocity expansion
at fixedp2 is simpler than in Ref.@7#.

Let us consider first the matrix theory perturbation expan-
sion. The bosonic part of the matrix theory action is@1#

S5E dt TrS 1

2R
DtX

iDtX
i1

M6R

4
@Xi ,Xj #2D , ~1!

where R is the radius of eleventh dimension andM the
eleven-dimensional Planck mass up to a convention-
dependent numerical coefficient; the signs are appropriate for
Hermitian X. By rescalingt5u/R and Xi5yi /M3, the ac-
tion becomes

S5
1

M6 E du TrS 1

2
DuyiDuyi1

1

4
@yi ,yj #2D . ~2!

It follows that M6 is the loop-counting parameter, and that
the effective action atL loops is of the form

SL5M6L26E du fL~yi ,Du!

5RM6L26E dt f L~M3Xi ,R21Dt!. ~3!

Finally we have dimensional analysis:f L must have units of
(length)6L28. For the leading low-energy effective action,
depending on the velocityv i5DtX

i , but not the accelera-
tion, this becomes

SL5RM623LE dtr 423LgLS Xi

r
,

v i

RM3r 2D , ~4!

wherer 25XiXi . Let us write out the first few terms in the
expansion of the effective Lagrangian, indicating the depen-
dence onv andr , but suppressing the dependence onM , R,
andXi /r :2

1A recent paper by Ganor, Gopakumar, and Ramgoolam@6# con-
siders scattering of a graviton from anR8/Z2 fixed point, finding a
discrepancy at two loops. The extension of matrix theory to such
less symmetric backgrounds is an open issue. These authors also
discuss the general form of higher-order matrix theory amplitudes.

2The systematics of this expansion have also been considered by
Fischler and Susskind.
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In writing this expansion we have used the fact that the su-
persymmetry algebra with 16 supercharges prevents renor-
malization of the coefficient ofv2, and that the expansion
must be even inv by time-reversal invariance.

Now let us consider the supergravity prediction. We will
study the scattering of gravitons of momentap25N1 /R,
N2 /R, with N1 large enough that the first graviton can be
considered as a classical source for the gravitational field.
Ultimately, to understand the full form of the supergravity
amplitude, we will need to develop the Feynman rules for
supergravity with lightlike compactification, but we leave
that for future work.

Our conventions arex65x116t, and the time parameter

of the light-cone quantization ist5 1
2 x1. These are chosen

so that the large-N limit of the lightlike quantization is con-
sistent with the large-N limit of spacelike compactification.
Note that at largeN all particles are moving approximately
along lines ofdx115dt, so that withx25x112t the period-

icity is 2pR both inx2 andx11. Also, dt5 1
2 (dx111dt);dt

along any world line. Finally,p2 is positive.
The source graviton is taken to have vanishing transverse

velocity. Its world line isx25xi50, and it produces the
Aichelburg-Sexl metric@11#

Gmn5hmn1hmn , ~6!

where the only nonvanishing component ofhmn is

h225
2k11

2 p2

7v8r 7 d~x2!5
15pN1

RM9r 7 d~x2!. ~7!

Here k11
2 516p5/M9 ~see Ref.@3#, for example! and v8 is

the volume ofS8 . This metric can be thought of as obtained
from the Schwarzschild metric by taking the limit of infinite
boost in the1 direction, while the mass is taken to zero; the
latter accounts for the absence of higher-order terms in 1/r or
N1 . A more detailed derivation of this metric can be found
in the Appendix. The source graviton is in a state of definite
p2 and so we average over thex2P(0,2pR) direction to
give

h225
15N1

2R2M9r 7 . ~8!

For the action of the ‘‘probe’’ graviton in this field, we
use the following trick. Begin with the action for a massive
scalar~spin effects fall more rapidly withr ! in eleven dimen-
sions:

S52mE dt~2Gmnẋmẋn!1/2

52mE dt~22ẋ22v22h22ẋ2ẋ2!1/2, ~9!

where we have used the form of the Aichelburg-Sexl metric.
A dot denotes]t and v25 ẋi ẋi . This action vanishes if we
take m→0 with fixed velocities, but for the process being
considered here, it isp2 that is to be fixed. We therefore
carry out a Legendre transformation onx2:

p25m
11h22ẋ2

~22ẋ22v22h22ẋ2ẋ2!1/2. ~10!

The appropriate Lagrangian forxi at fixedp2 is ~minus! the
Routhian,

L8~p2!52R~p2!5L2p2ẋ2~p2!. ~11!

Equation ~10! determinesẋ2(p2); it is convenient before
solving to take the limit m→0, where it reduces to
Gmnẋmẋn50. Then

ẋ25
A12h22v221

h22
. ~12!

In the m→0 limit at fixed p2 the effective Lagrangian be-
comes

L8→2p2ẋ25p2H v2
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~13!

The r andv dependences match the diagonal terms in the
series~5!, and theN dependences are consistent with the
leading large-N behaviorNL11. The v4/r 7 agrees with the
one-loop matrix model amplitude, as asserted in Ref.@1# and
worked out in detail in Ref.@3#. The two-loop calculation in
Ref. @5# extended tov6 gives for SU~2! the value

225

32

1

R5M18

v6

r 14. ~14!

In @5#, RM3 was implicitly set to one, but we have restored it
by dimensional analysis and used the relationg52R for g
defined in Ref.@5#, as follows from the tree level term in Eq.
~13!. The separate contributions of the various two-loop
graphs are given in Table I. TheN dependence can be re-
constructed as follows. In double-line notation every graph
involves three index loops, and so is of orderN3. Terms
proportional to N1

3 or N2
3 would only involve one block

~graviton! and so could not depend onr . Symmetry under
interchange of 1 and 2 thus determines that the SU~2! result
~14! is multiplied by

N1N2
21N1

2N2

2
, ~15!
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in agreement with the supergravity result~13! for the term of
interest.

Note that we have not distinguished radial and transverse
velocities. Any term proportional to the radial velocity is
equivalent by parts to a term involving the acceleration. All
matrix theory calculations to date have considered straight-
line motion and so are insensitive to such terms. Thus, we
write v2 with the understanding that only the transverse part
is relevant.

It is difficult to be certain which of the many tests of
matrix theory actually test that conjecture and not just the
weaker and less controversial assumption that the IIA string
has an eleven-dimensional limit. In the present case the nu-
merical agreement is impressive. Moreover, it is difficult to
see how supersymmetry alone would determine the normal-
ization of thev6/r 14 term in the supersymmetric quantum
mechanics effective action, suggesting that an additional
structure~eleven-dimensional Lorentz invariance! is present.
A die-hard skeptic might still argue as follows. A ‘‘normal’’
supersymmetric invariant, obtained from a multiple commu-
tator with all sixteen supercharges~the analog of an integral
over all of superspace!, would be at least of orderv8. Thev6

term is therefore ‘‘chiral’’ and so might be constrained by
nonrenormalization theorems. Then one could continue from
the eleven-dimensional supergravity limit where one calcu-
lation is valid, to the IIA string limit where the other calcu-
lation is valid, and the answers must agree independent of
the matrix theory conjecture. But the skeptic is not willing to
bet that thev8/r 21 term, a three-loop effect, will show a
discrepancy.

It is interesting to consider higher corrections in the su-
pergravity theory. Thev6/r 14 term can be thought of as aris-
ing from the graph of Fig. 1~a!, with a second-order coupling
to the probe.3 Figure 1~b! would represent a nonlinear cor-
rection to the metric~8!, which as we have noted is absent.
The ladder graph is second order in the effective Lagrangian
and the crossed ladder is absent in the light-cone frame. It
appears that each graviton coupling to the source brings at
least anr 7 from the field ~8!, so that the leading large-r
behavior at orderN1

k would be the diagonalk-loop term that
we have considered.

Dimensionally, higher derivative operators in the low-
energy supergravity theory bring in additional powers ofv
and 1/r and so correspond to matrix model amplitudes that
lie, for a given power ofN1 , to the right of and/or below
N1

kv2k12/r 7k in the series~5!. However, higher-orderlocal
curvature invariantsR41R61••• in the D511 supergravity
action are not expected to change the low-energy scattering
of two gravitons when one of them has largep2 , i.e., when
it can be treated as a source for the gravitational field. The
reason is that~in contrast to the Schwarzschild solution, for
example! the corresponding plane-fronted wave background
~8! is not modified byRn corrections to the action: according
to the standard argument~see, e.g.,@12#!, the existence of a
covariantly constant null Killing vector implies the vanishing
of all second rank tensors constructed out of curvature and
the metric except the Ricci one~equivalently, corrections to
Schwarzschild disappear in the infinite boost, zero mass
limit !. Supergravity loop effects, being weak at low energy,
should also lie to the right of and below theN1

kv2k12/r 7k

term. Terms below the diagonal that arise in this way are
subleading inN1 for the given number of loops.4 It would be
interesting to relate these supergravity effects to the matrix
model, even at one matrix model loop where the whole series
is known @13#. In passing we would like to mention the ob-
servation that the coefficientc12 of the next higher one-loop
term v6/r 11 actually vanishes.

On the matrix model side there is the important compli-
cation of bound state effects.5 Matrix theory scattering cal-
culations to date have treated the 0-branes in a bound state as
being coincident with zero relative velocity. Note, however,
that a term which is dimensionally of orderv8 can have the
structurev1

2v2
6 and even with the center of massv1 vanishing

can generate av2
6 term proportional to the expectation value

of the relativev2 in the bound state. This would not affect
the present calculation because allv8 terms fall off more
rapidly in r , but to determine some higher terms one needs
an understanding of the bound state. One must also consider
recoil, interactions causing the gravitons to deviate from a
straight line. To the order we are working we believe that
this corresponds to omitting the one-particle-reducible two-
loop graphs, but at higher order it may be necessary to sepa-

3Note that this is second order in a first quantized description of
the probe. This does not correspond directly to second order in a
field theory action.

4This has also been noted by Susskind@10#.
5We would like to thank David Gross for raising this issue. See

also Ref.@6#.

TABLE I. Coefficients ofgv6/r 14. Graphs are labeled as in Ref.
@5#. We have included factors 1/2 for diagrams involving two cubic
vertices of the same type directly in this table.

(a)1 1
287481

28682
(b)3 2

4717523

229376
(c)1 1

107251

114688
(d)2 0

(a)2 2
27519

7168
(b)4 1

16965

4096
(c)2 1

892261

688128
(d)3 1

4615

672

(b)1 2
2366913

114688
(b)5 1

13311

4096
(c)3 1

231

1024
(d)4 1

7995

224

(b)2 1
31595

14336
(b)6 1

315

2048
(d)1 2

698165

43008
sum 1

225

64

FIG. 1. ~a! Graphical representation of probe graviton~thin
straight line! interacting with the metric of source graviton~heavy
straight line! at second order.~b! Vanishing nonlinear correction to
the metric of the source.
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rate the light and heavy matrix model degrees of freedom in
a more systematic way.

It is interesting to repeat the derivation of the Routhian for
scattering at fixed spacelike momentump11. Here we have
(t5t)

S52mE dt$12~ ẋ11!22v22h22~ ẋ1121!2%1/2. ~16!

Then one finds

L852p11ẋ
1152p11S 11

A12~11h22!v221

11h22
D .

~17!

Where the earlier Routhian~13! had only terms of order
v2(v2/r 7)k, this now has higher velocity corrections, a
double seriesv212l(v2/r 7)k. Spacelike compactification of
M theory gives the IIA string theory, and Eq.~17! is pre-
cisely the action for interaction of twoD0-branes via classi-
cal supergravity. This is the more complicated expansion
considered in Ref.@7#, but we see that it has no direct rel-
evance to finiteN matrix theory. We emphasize that the re-
sult ~13! is fully relativistic.

It is curious that the null and timelike Lagrangians~13!
and ~17! are related by the simple substitution
h22→11h22 ~the transverse velocities are in direct corre-
spondence because of our conventions, as noted earlier!. To
better understand the formal relation between the two cases,
note that just as Eq.~17! is essentially the Lagrangian for a
D0-brane probe moving in aD0-brane source background,
Eq. ~13! can be interpreted as aD0-brane probe Lagrangian
in a D510 background resulting from reducing theD511
plane wave ds11

2 5dx1dx21h22dx2dx21dxidxi ,
h225Q/r 7 , along the nullx2 direction6 instead of the spa-
tial x11 direction. While the reduction alongx11 gives the
standard 0-brane background, the reduction alongx2 pro-
duces the followingD510 ~string-frame! metric, dilaton,
and 1-form field

ds10
2 52h22

21/2dt21h22
1/2 dxidxi , ef5h22

3/4 ,

A52h22
21 dt, ~18!

wheret5 1
2 x1. This becomes the usual 0-brane solution if

t→t andh22→H511h22 ~andA→A1dt!. This relation
is implied by the structure of theD511 plane wave metric
~in particular, it remains invariant underx1→x12x252t
andh22→h2211!.

Thus Eq.~18! is formally the same as theshort-distance
~or ‘‘near-horizon’’! limit of the 0-brane background: then
h22@1 so thatH511h22'h22 . Equivalently, it may be
viewed as a large chargeQ;Ng or large N ~but fixed dis-
tancer ! limit of the 0-brane solution. The fact that the two
actions are formally related byh22→11h22 implies that
large r , small v expansion of the first action is simply the
leading part of the expansion of the second action.

As was already mentioned above, it is the ‘‘null reduc-
tion’’ action that is in direct correspondence with the matrix
theory results for finiteN. Remarkably, this conclusion ex-
tends also to more complicated cases of graviton scattering
off M -branes discussed in@2#. Again, the supergravity po-
tentials corresponding to the ‘‘fixedp2’’ case can be ob-
tained from the relevantD-brane probe actions in theD510
backgrounds following upon reduction along the ‘‘null’’ di-
rection x2. These actions are found from the ‘‘fixedp11’’
actions by replacing the 0-brane harmonic functionH by its
‘‘short-distance’’~or largeN! limit H215h22 . The result-
ing long-distance interaction potentials@containing in gen-
eral both static and velocity-dependent terms like
V5(1/r n)(a1bv21cv4)1O(1/r 2n)] are then in precise
agreement with the one-loop matrix model potentials with no
need to assume that the number of 0-branesN is large as was
done in@2# to be able to ignore additional subleading terms
present in the fixedp11 picture. This provides another test of
the proposal of Ref.@8#.

Finally, let us note that from another point of view, dis-
crete light-cone quantization can be regarded as a limit of
spacelike compactification as follows@14#. The null direction
has zero invariant length, so by a boost should be related to
the R11→0 limit. The naiveR11→0 limit is simply dimen-
sional reduction to thep11R1150 sector. Here one takes in-
stead thep11R115N sector, subtracts the overallN/R11, and
rescales to

Heff5
H2N/R11

R11
~19!

at fixed momentumpi . Noting that v i5O(R11p
i) and

h225O(R11
22), this yields Eq.~13! from Eq. ~17!.
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APPENDIX

In this appendix we would like to derive the form of the
Aichelburg-Sexl metric~7!. This follows closely the original
derivation of@11#. Start with the Einstein field equations

Rmn2 1
2 GmnR5k11

2 Tmn , ~A1!

and approximate

Gmn5hmn1hmn , ~A2!

where (hmn)2'0. This gives the linearized field equations

~] t
22D!cmn52k11

2 Tmn, ~A3!

where

cmn5hmn2 1
2 hmnhl

l. ~A4!

For a massless particle moving inx11 direction with the ve-
locity of light, the energy momentum tensor is

6More precisely, the directionx2 is null in flat space, but is space-
like in the curved plane wave background.

RAPID COMMUNICATIONS

56 R3177HIGHER ORDER GRAVITON SCATTERING IN . . .



Tmn5p2d~x2!d~x'!smsn, ~A5!

where sm5d0
m1d11

m and d(x')5P i 51
9 d(xi). Inserting Eq.

~A5! into Eq.~A3! gives a determining equation forcmn. To
solve it make the ansatz

cmn52k11
2 p2d~x2!G9~x'!smsn. ~A6!

ThenG9 satisfies nine-dimensional Poisson equation

DG9~x'!1d~x'!50. ~A7!

The solution is given by

G9~x'!5
15

2~2p!4

1

r 7 . ~A8!

Therefore

cmn5
15pN1

RM9r 7 d~x2!smsn. ~A9!

This determines the form of the fluctuation of the metric. The
only nonvanishing component ofhmn is h22 with the result
~7!.
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