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Inflation and the fine-tuning problem
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| describe a recently derived stochastic approach to inflaton dynamics which can address some serious
problems associated with conventional inflationary theory. Using this theory | derive an exact solution to the
stochastic dynamics for the case ofa@* potential and use it to study the generated primordial density
fluctuations. It is found that on both subhorizon and superhorizon scales the theory predicts Gaussian fluctua-
tions to a very high accuracy along with a near-scale-invariant spectrum. Of most interest is that the amplitude
constraint is found to be satisfied far~10"° rather than forn~10"1 of the conventional theory. This
represents a dramatic easing of the fine-tuning constraints, a feature likely to generalize to a wide range of
potentials [S0556-282(97)50116-(

PACS numbgs): 98.80.Cq, 05.46:j, 03.70+k

The inflationary universe scenario asserts that, at some Consistent with the conventional approach above is the
very early time, the universe went through a de Sitter phaséstochastic inflation” program initiated by Starobinsky]
expansion with scale facta(t) growing ase". Inflation is  and further developed by oth€s]. In this case the fields
needed because it solves the horizon, flatness, and monopalbeys
problems of the very early universe and also provides a
mechanism for the creation of primordial density fluctua- . V'(¢) H¥?
tions. For these reasons it is an integral part of the standard ¢ 3H 2@ w(t) )
cosmological mode]1].

The inflationary phase is driven by a quantum scalar fieldvhereF,(t) is a zero mean Gaussian white noise source of
with a potentiaV(®), that can take on many different forms unit amplitude. In this case describes the field coarse
that satisfy the “slow roll” conditions. In the conventional grained over a volume determined by the de Sitter Hubble
approach to inflaton dynami¢$], the inflaton field® is first  radius. We will refer to¢ as the local order parameter. In
split into a spatially homogeneous piece and an inhomogethis method the observable universe is comprised of many
neous piece patches each with its own local order parameter whose dy-

namics obeys Eq4). Spatial inhomogeneities arise because
D (x,8)= @(s)+ (X,S) . (1)  the local order parameter in each patch can take on different
values by virtue of the noise in Eq4). Equation(4) has

The dynamics of theb is then postulated to obey the classi- been the basis for many applications including studies of the

cal “slow roll” equation of motion generation of primordial density fluctuatiof,7] and the
very large scale structure of the univei$g.
. V(¢) A problem With_ thglcor_wentional approach is that it is
+ BTV =0. (2 assumed, without justification, that the local order parameter

¢ can be treated as a classical order parameter, and that the
. . . . . quantum fluctuations ofr are equivalent to classical fluctua-
This equation governs the dynamics ofwhich drives the  ,nq sinces and ¢ are treated as decoupled closed quan-
inflationary phase. It is also possible to discuss the genergyy, systems it is impossible for this method to explain the
tion of primordial density fluctuations using. ASsuming  o,antum-to-classical transition @ and ¢ from first prin-
that ¢> ¢, it can be shown thay is described by a free cinies Another more serious problem comes from directly
massle.ss .m|n|r'nally coupled quantum s'calar field. During exidentifying the quantum fluctuations)?), with the classical
ponential inflation the quantum fluctuationsigrow as{2]  cryations that generate primordial density fluctuations.
This scheme leads to an overproduction of primordial den-
(Y?)=(2m)~*H3. (3 ity fluctuations which can only be avoided by unnaturally
fine-tuning the coupling constants in the inflaton potential.
These quantum fluctuations are then identified with the clasthis is the well-known fine-tuning problem of inflation.
sical fluctuations which generate primordial density fluctua- Several authors have previously suggested that these
tions[1,3]. It is important to note here that interactions be-problems arise because the conventional approach to calcu-
tween the coarse-grained fieltl and its fluctuationsy are  lating primordial density fluctuations is inconsistent with the
ignored. This is possible in this approach because the densigstablished methods of nonequilibrium statistical physics.
fluctuations are directly identified witfy)?). This was first pointed out by Hu and Zhaf@] and further
developed in[10] (see also Lombardo and Mazzite]ll1]
and Morikawa[12]). Morikawa[13] first suggested that this
*Electronic address: andrewm@maths.su.oz.au inconsistency was the origin of the fine-tuning problem.
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Calzetta and Hu[14] and more recently Calzetta and sible to drop the inertial term in E¢5) and approximate the
Gonorazky[15] independently and in much greater detail colored noise by a white noise. In this case it has been shown

addressed this issue forxap* theory. [16] that Eq.(5) becomes
While the conventional approach may be the only pos-
sible one for a free field, if16] an alternative has been . V'(¢) H¥
developed for interacting fields which does address the prob- o+ 3H 864773\/ (@)Fu(). ©®

lems outlined above. The theory is similar in style to the

conventional stochastic inflation program but differs in afF  is a white noise of unit amplitude that is interpreted in the
fundamental way. In this theory we no longer identify the Stratonovich sensesince it is an approximation to a colored
guantum quctuation$:,b2> directly with the classical fluctua- noise. We also interpret the noise in E@) the same way,
tions that generate primordial density fluctuations. The newhough in this case one is also free to use the Ito interpreta-
role of the fieldy is to provide a noise sourceia back tion. Equation(6) is the result we will use in this Rapid
reaction in the quantum dynamics of the local order param-Communication.

eter ¢. This is nothing but an application of the well-known  Equation(6) is valid only as long as the slow roll approxi-
quantum Brownian motion paradigm of nonequilibrium sta-mation is valid. This approximation is valid when the slow

tistical physics(see[17] and references therginThe field  roll parameters and| 7| [18], which are defined by
¢ plays the role of an environment which couples to the

system¢ and indirectly generates fluctuatiofg in the sys- mé, V'($)\?

tem. This environmental noise will generate quantum deco- e(¢)= 167\ V(o) @
herence which is the process that leads to entropy generation

and the quantum-to-classical transition of the order paramand

eter and its fluctuations. We then identify the resulting clas- 5

sical fluctuations of the local order parametip, as those Cmp[ V() 1(V'(¢))|?

which lead to density fluctuations, rather than the quantum )= g V(g) 2\ V(g) /| | ®)

fluctuations derived directly frondy?). Clearly, in this ap-

proach the interaction betwegnand is critical. As wellas  are both less than 1. During inflation we haagp) <1, and
addressing the quantum-to-classical transition problem, thithe local order parameter rolls down the potential hill accord-
theory leads to a dramatic easing of the fine-tuning coning to Eq.(2) from its initial value ¢,. Inflation ends at a
straints, a problem that has plagued the conventional agield value ¢, which is determined by

proach to inflaton dynamics.

In the classical limit of this theory, the dynamics of the B m_;2:| V'(ge)|? ©
local order parameter is described [h6] €(be)= 167 V(de) |
b2 At this point slow rolling ends and the reheating phase com-
b+3HP+V ()= —=V"()F (1), (55  mences. Our discussion in this Rapid Communication will be
8 restricted to the potential
V(¢)=\¢*4 (10)

whereF. is a colored Gaussian noise of unit amplitude with

a correlation time of the orded ~*. The origin of the noise  for which Eq.(6) will be exactly solvable. For the potential
is the back reaction of quantum fluctuations with wave-(10) we find from Eq.(9) that ¢,=0.56mp. This sets a

lengths shorter than the coarse-graining scale. The noise cqgyer bound ong. The second slow roll condition is always
relation function is ultravioletinite and also turns out to be gayisfied up to this value.

independent of any ultraviolet cutoff. The noise is of a mul-  The number ok-folds of inflation which occur when the
tiplicative nature because its origin is the mode-mode COUsic|q evolves frome to ¢, is [1]
pling induced by the self-interaction of the inflaton. For a €

free field the stochastic term vanishes. This is because the 87 (4 V(')
environmenty and the systeng now decouple and the con- N(¢)= _2f — do'. 11
ventional situation is recovered. Significant simplification of mp/ 66V’ (")

Eq. (5) was obtained by invoking the standard slow roll as-

sumptions. This made it possible to show that neglecting th§m_oothness on scales comparable to the curr_en_t observable

potential renormalization and nonlocal dissipation terms wa&Niverse requiresN=60. This places a lower limit on the

a good first order approximation in the early slow roll phaseNitial field value o= o, whereN(¢qo) =60. For the po-
The coarse-graining scale must be greater than the Hubbigntial (10) we find from Eq.(11) that

radius. This condition allows us to ignore the spatial gradient

term in the system sector. The theory is essentially indepen- N( )= l((ﬁz— #2). (12)

dent of the coarse-graining scale when this condition is met. m,zp| €

This robustness to the nature of the coarse graining is an

important virtue of the theory. We also ignore information From this we can deducégy=4.4mp,. In this Rapid Com-

about spatial correlations between the order parameters afiunication, as is common in most inflation models, we as-

different regions. This allows a description based on a singlsume that the observable universe leaves the horizon during

degree of freedom. The slow roll assumptions make it posinflation at 60 Hubble times before the end of inflation, i.e.,
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when the inflaton field has the valyg,. The smallest scale done in studies of the Starobinsky equati@h [6,7], we

for which density fluctuations can be probedl Mpc) will include the effects of back reaction by simply assuming that
leave the horizon about ten Hubble times after the observabld is slowly varying as

universe. From Eq12) we find this corresponds to the field

value ¢5o=4.0mp,. Significant is that the critical field values S
¢e and ¢g_so are independent ok. The initial field ¢, H%(¢)= —= V(). (18)
cannot be arbitrarily large. It must also satisfyy=< ¢p 3mg

where¢p, is the field at the Planck boundary which satisfies ) ) . .

V(¢p)=mp,. While ¢ and ¢sy_go are independent o, This is possible sincél changes little over a Hubble time

this is clearly not so fokpp,. due to the slqw rolling of the |nflaton. Upon substltutmg Egs.
In this Rapid Communication we wish to calculate the (10) @nd(18) into Eq.(6), and changing to the dimensionless

statistical properties of observable density fluctuations prevariablesx=¢/mp and 7=tmpg|, we obtain

dicted by Eq.(6) for the potential(10). Our aim is to dem-

onstrate that this new approach to inflaton dynamics is con- dx=—fxdr+gx°F,(7)dr, (19

sistent with the observed near-Gaussian and scale-invariant

density fluctuations. It is well known from gauge-invariant where

analysis that the amplitude of a density fluctuation that

crosses back inside the horizon after inflation, can be de- N 1 2\ 14 o

duced from the quantitjl,3] f=1/ = g= m(?) N (20
13 H
P _ §¢ﬁ, (13  With the new variabley=—1/x, we find that Eq.(19) be-
P & comes

evaluated at the time the fluctuation scale of interest crossed dy=fx+gF,(7). (21)

outside the horizon during inflation. The power spectrum

A(k) is related to the mean square density fluctuationsrhis equation now describes an Ornstein-Uhlenbeck process
oplp via for which the solution is

sp\? [~ .
(F) = f_mA(k)dlnk (14) X( T):XoefT‘f‘gefo eifSFW(S)dS. (22)
0

from which we obtain Therefore, our solution to Eq19) is

d [8p)\?
A(k):—( P ) . (15) Xo(7)

dink| p x(1)= . ;
1—gx0f e SF,(s)ds
0

(23

The power spectrum is just the contribution, at a given time,
to the mean square fluctuations generated in a Hubble time.
We are interested in the power spectrum over observablehere the classical deterministic solutirg(7) is

scales. Therefore, we will evaluate the right-hand $RidS

of Eq. (15) at ¢, which is the classical field value at the xc(r):xoe‘”, (24)
time the scale of the observable universe leaves the horizon

during inflation. It is usual to assume that the density flucyyith x, as the initial field value. To obtain the fluctuations
tuation power spectrum (k) can, within the observable 54 we make a Gaussian approximation

range ofk, be written as

A(k)=AK""1, (16) X(7)=X¢(7)

1+gx0J'OTefSFW(s)ds) (25)

whereA andn are the amplitude and spectral index of the . . - . .
density fluctuations. Fon=1 we have a scale-invariant to Eq.(23) which will be justified later. From this we obtain

power spectrum of density fluctuations. From Efj6) we ,

find that the spectral index can be determined from the 5 ) AN > 2
power spectrum by (8X)“=([X(7) =xXc(7)]%) = 24W5XC(T)[X0—XC(T)]-
(26)
1 dA(k)
n=1+-—— . a7 ) _ _
A(k) dink We can compare this result directly to that predicted by

the Starobinsky equatiofd). Upon substituting Eqs(10)
Clearly, our first task is to calculate E{.3) for whichwe  and(18) into Eq.(4), we find the exact solution to the Star-
need to solve Eq6) in order to obtains¢. As is commonly  obinsky equation is
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Xo(7) tuations require setting the left-hand sideHS) of Eq. (33)
X(7)= < to 10 1% Settingx, and X, to X allows us to calculate a
\/1—2hx2fTe_2f5FW(s)ds value for\. The results are
0
0
A=1.2x10"° n=0.93. (34)
~ Xe(7) , (277  We can perform an exactly analogous calculation using the
1— hxsze‘Zst (s)ds fluctuations(29) derived from the exact solution of the Star-
0 w N . . .
0 obinsky equation. We find the familiar result
where As=6.6X101° ng=0.92. (35
1/ 2m\) 34 We see that Eq(6) leads to a dramatic easing of the fine-
= _(_) (28)  tuning required, but still gives a near-scale-invariant spec-
2m\ 3 trum of density fluctuations. Similar easings of the fine-

) ] o , tuning constraints have been reported18-16.
Making the same Gaussian approximation as previously, we  a|sq of great interest is a measure of how much the prob-

find that ability distribution of fluctuations deviates from a Gaussian
\ distribution. When the magnitude of the stochastic term in

X2 = —x2( AT x4 — x4 , 29 the denominator of Ec(23) is small (§ 1),_ it becomes pos-

(9%) 12 (X0~ %c(7)] 29 sible to make the Gaussian approximati@3) to the exact

solution(23). We are, therefore, led to define
where we use the subscriptto denote quantities evaluated

from the solution to the Starobinsky equation. 4 gXo Xo\ 36
Using Egs.(26), (18), and (24), we find that Eq.(13 T o s
becomes V2t 24

as a simple measure of the deviation from a Gaussian distri-

sp\2 1 ., , s bution.[The denominatok/2f of Eq. (36) is the typical fluc-
(7) :@7‘ X(T)[Xo=Xc(7)]. (30 tuation size of the stochastic term in E@3) in the station-

ary limit.] Using xo=4.4, and the resul34) for A, we find

To calculate the spectrugi5), we need to relate the classi- =610 ’. We can compare E(36) to that derived from
cal field value at some time to the scél¢hat is crossing the the exact solutior(27) of the Starobinsky equation. In this
horizon at the same time. We do this by first considering th&as€ We find

number ofe-folds N(k) between the horizon crossing of a hyd
scalek and the end of inflation. We are assuming that the :_Xf’:(
scale of the observable universe left the horizon 60 Hubble S pfl2

times before the end of inflation. We can, therefore, write i
N(K) as[1] Using the result(35) for \g, andxy,=4.4, we findds=5

X 10" 7. We therefore see that over scales of the observable
N(k)=60+In(k, /k), (31  universe both solutions predict nearly identical and negli-
gible deviations from a Gaussian distribution.
wherek, is the scale of the current observable Universe. BY assumingc,=xgowe are simply trying to exclude the
From Eqgs.(31) and(12), we find that effects of fluctuations on scales larger than our present hori-
zon. In actual fact, inflation would most likely have been in
1 progress for a long time before the observable universe left
Xa(7)= —[60+In(k, 1K) ]+%2. (32)  the Hubble radius during inflation. In this case we can con-
siderx, to be anywhere in the range 4&4,<Xxp,. For the

This determines the value of the field at the time a s&ale uTuaI ksk()alf—cc()jupllr)g iogg(t)%ntBln Eqsathw% f|r.1dt.thatfthe
crosses the horizon. This is the result we will use to calculatg anck boundary 18p;= - because Ihe devia '2”3 roma
the spectrum. Substituting E0) into Eq. (15) and using Gaussian distribution in E¢37) are proportional tg, there

}\S 1/2
1—2) X3. (37)

Eq. (32), we find is a possibility of significant deviations from Gaussian fluc-
tuations on superhorizon scales. For the new coupling con-
\2 stant in Eq.(34) we havexp=24. In this case the deviations
A(k)= —4x§( T)[3x§(r) - ZXS] ) (33)  from a Gaussian distribution i86) depend only linearly on
iy Xo- This, combined with the much smaller Planck boundary,

means that the solutio{23) predicts Gaussian fluctuations to
The explicitk dependence of this function is contained ina high accuracy over both superhorizon and subhorizon
X(7) via EQ.(32). The spectrum has only a very weak loga- scales. We have ignored the effects of boundary conditions
rithmic k dependence. This will clearly give rise to a near-that should be imposed &t and ¢p. These effects will be
scale-invariant spectrum. We can calculate the spectral indesmall and are unlikely to change these conclusions.
from Eq.(33) by using Eq.(17) and setting«; andx; to Xgq. Yi, Vishniac, and Mineshigé7] have analyzed in detall
Observable constraints on the amplitude of density flucsolutions of the Starobinsky equati¢im both Ito and Stra-
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tonovich interpretationsfor the model discussed here. They wide range of potentials. These results were based on the
discussed deviations from a Gaussian distribution in terms aflassical limit of the theory. The other great advantage of this
a simple measure for skewness derived from the probabilitgheory is that it leads naturally to a description of the inflaton
distribution of the exact solutiof27). We have also applied as a quantum open system. This allows the quantum-to-
this measure to the exact soluti@®3) and found it to give classical transition to occur as a nonequilibrium quantum
results consistent with the simpler measure discussed abov#atistical proces$decoherencde rather than being simply

In this Rapid Communication we showed that the newpostulated as in the conventional approach.
theory of inflaton dynamics developed [iti6] can address
the fine-tuning problem yet still predict density fluctuations | would like to thank the Australia Research Council for
in general agreement with observations. This was demortheir generous support of this research through an Australian
strated for the quartic potential but is likely to generalize to aPostdoctoral Research grant and an ARC small grant.
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