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I describe a recently derived stochastic approach to inflaton dynamics which can address some serious
problems associated with conventional inflationary theory. Using this theory I derive an exact solution to the
stochastic dynamics for the case of alf4 potential and use it to study the generated primordial density
fluctuations. It is found that on both subhorizon and superhorizon scales the theory predicts Gaussian fluctua-
tions to a very high accuracy along with a near-scale-invariant spectrum. Of most interest is that the amplitude
constraint is found to be satisfied forl;1025 rather than forl;10214 of the conventional theory. This
represents a dramatic easing of the fine-tuning constraints, a feature likely to generalize to a wide range of
potentials.@S0556-2821~97!50116-0#

PACS number~s!: 98.80.Cq, 05.40.1j, 03.70.1k

The inflationary universe scenario asserts that, at some
very early time, the universe went through a de Sitter phase
expansion with scale factora(t) growing aseHt. Inflation is
needed because it solves the horizon, flatness, and monopole
problems of the very early universe and also provides a
mechanism for the creation of primordial density fluctua-
tions. For these reasons it is an integral part of the standard
cosmological model@1#.

The inflationary phase is driven by a quantum scalar field
with a potentialV(F), that can take on many different forms
that satisfy the ‘‘slow roll’’ conditions. In the conventional
approach to inflaton dynamics@1#, the inflaton fieldF is first
split into a spatially homogeneous piece and an inhomoge-
neous piece

F~x,s!5f~s!1c~x,s! . ~1!

The dynamics of thef is then postulated to obey the classi-
cal ‘‘slow roll’’ equation of motion

ḟ1
V8~f!

3H
50 . ~2!

This equation governs the dynamics off which drives the
inflationary phase. It is also possible to discuss the genera-
tion of primordial density fluctuations usingc. Assuming
that f@c, it can be shown thatc is described by a free
massless minimally coupled quantum scalar field. During ex-
ponential inflation the quantum fluctuations ofc grow as@2#

^c2&5~2p!22H3t . ~3!

These quantum fluctuations are then identified with the clas-
sical fluctuations which generate primordial density fluctua-
tions @1,3#. It is important to note here that interactions be-
tween the coarse-grained fieldf and its fluctuationsc are
ignored. This is possible in this approach because the density
fluctuations are directly identified witĥc2&.

Consistent with the conventional approach above is the
‘‘stochastic inflation’’ program initiated by Starobinsky@4#
and further developed by others@5#. In this case the fieldf
obeys

ḟ1
V8~f!

3H
5

H3/2

2p
Fw~ t ! , ~4!

whereFw(t) is a zero mean Gaussian white noise source of
unit amplitude. In this casef describes the fieldF coarse
grained over a volume determined by the de Sitter Hubble
radius. We will refer tof as the local order parameter. In
this method the observable universe is comprised of many
patches each with its own local order parameter whose dy-
namics obeys Eq.~4!. Spatial inhomogeneities arise because
the local order parameter in each patch can take on different
values by virtue of the noise in Eq.~4!. Equation~4! has
been the basis for many applications including studies of the
generation of primordial density fluctuations@6,7# and the
very large scale structure of the universe@8#.

A problem with the conventional approach is that it is
assumed, without justification, that the local order parameter
f can be treated as a classical order parameter, and that the
quantum fluctuations ofc are equivalent to classical fluctua-
tions. Sincef andc are treated as decoupled closed quan-
tum systems it is impossible for this method to explain the
quantum-to-classical transition off and c from first prin-
ciples. Another more serious problem comes from directly
identifying the quantum fluctuationŝc2&, with the classical
fluctuations that generate primordial density fluctuations.
This scheme leads to an overproduction of primordial den-
sity fluctuations which can only be avoided by unnaturally
fine-tuning the coupling constants in the inflaton potential.
This is the well-known fine-tuning problem of inflation.

Several authors have previously suggested that these
problems arise because the conventional approach to calcu-
lating primordial density fluctuations is inconsistent with the
established methods of nonequilibrium statistical physics.
This was first pointed out by Hu and Zhang@9# and further
developed in@10# ~see also Lombardo and Mazzitelli@11#
and Morikawa@12#!. Morikawa @13# first suggested that this
inconsistency was the origin of the fine-tuning problem.*Electronic address: andrewm@maths.su.oz.au
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Calzetta and Hu@14# and more recently Calzetta and
Gonorazky@15# independently and in much greater detail
addressed this issue for alf4 theory.

While the conventional approach may be the only pos-
sible one for a free field, in@16# an alternative has been
developed for interacting fields which does address the prob-
lems outlined above. The theory is similar in style to the
conventional stochastic inflation program but differs in a
fundamental way. In this theory we no longer identify the
quantum fluctuationŝc2& directly with the classical fluctua-
tions that generate primordial density fluctuations. The new
role of the fieldc is to provide a noise source~via back
reaction! in the quantum dynamics of the local order param-
eterf. This is nothing but an application of the well-known
quantum Brownian motion paradigm of nonequilibrium sta-
tistical physics~see@17# and references therein!. The field
c plays the role of an environment which couples to the
systemf and indirectly generates fluctuationsdf in the sys-
tem. This environmental noise will generate quantum deco-
herence which is the process that leads to entropy generation
and the quantum-to-classical transition of the order param-
eter and its fluctuations. We then identify the resulting clas-
sical fluctuations of the local order parameterdf, as those
which lead to density fluctuations, rather than the quantum
fluctuations derived directly from̂c2&. Clearly, in this ap-
proach the interaction betweenf andc is critical. As well as
addressing the quantum-to-classical transition problem, this
theory leads to a dramatic easing of the fine-tuning con-
straints, a problem that has plagued the conventional ap-
proach to inflaton dynamics.

In the classical limit of this theory, the dynamics of the
local order parameter is described by@16#

f̈13Hḟ1V8~f!5
H2

8p3
V-~f!Fc~ t ! , ~5!

whereFc is a colored Gaussian noise of unit amplitude with
a correlation time of the orderH21. The origin of the noise
is the back reaction of quantum fluctuations with wave-
lengths shorter than the coarse-graining scale. The noise cor-
relation function is ultravioletfinite and also turns out to be
independent of any ultraviolet cutoff. The noise is of a mul-
tiplicative nature because its origin is the mode-mode cou-
pling induced by the self-interaction of the inflaton. For a
free field the stochastic term vanishes. This is because the
environmentc and the systemf now decouple and the con-
ventional situation is recovered. Significant simplification of
Eq. ~5! was obtained by invoking the standard slow roll as-
sumptions. This made it possible to show that neglecting the
potential renormalization and nonlocal dissipation terms was
a good first order approximation in the early slow roll phase.

The coarse-graining scale must be greater than the Hubble
radius. This condition allows us to ignore the spatial gradient
term in the system sector. The theory is essentially indepen-
dent of the coarse-graining scale when this condition is met.
This robustness to the nature of the coarse graining is an
important virtue of the theory. We also ignore information
about spatial correlations between the order parameters of
different regions. This allows a description based on a single
degree of freedom. The slow roll assumptions make it pos-

sible to drop the inertial term in Eq.~5! and approximate the
colored noise by a white noise. In this case it has been shown
@16# that Eq.~5! becomes

ḟ1
V8~f!

3H
5

H1/2

A864p3
V-~f!Fw~ t ! . ~6!

Fw is a white noise of unit amplitude that is interpreted in the
Stratonovich sense~since it is an approximation to a colored
noise!. We also interpret the noise in Eq.~4! the same way,
though in this case one is also free to use the Ito interpreta-
tion. Equation~6! is the result we will use in this Rapid
Communication.

Equation~6! is valid only as long as the slow roll approxi-
mation is valid. This approximation is valid when the slow
roll parameterse and uhu @18#, which are defined by

e~f!5
mPl

2

16pS V8~f!

V~f! D 2

~7!

and

h~f!5
mPl

2

8p FV9~f!

V~f!
2

1

2S V8~f!

V~f! D 2G , ~8!

are both less than 1. During inflation we havee(f),1, and
the local order parameter rolls down the potential hill accord-
ing to Eq. ~2! from its initial valuef0. Inflation ends at a
field valuefe which is determined by

e~fe!5
mPl

2

16pS V8~fe!

V~fe!
D 2

51. ~9!

At this point slow rolling ends and the reheating phase com-
mences. Our discussion in this Rapid Communication will be
restricted to the potential

V~f!5lf4/4 ~10!

for which Eq.~6! will be exactly solvable. For the potential
~10! we find from Eq. ~9! that fe50.56mPl . This sets a
lower bound onf. The second slow roll condition is always
satisfied up to this value.

The number ofe-folds of inflation which occur when the
field evolves fromf to fe is @1#

N~f!5
8p

mPl
2 Efe

f V~f8!

V8~f8!
df8. ~11!

Smoothness on scales comparable to the current observable
Universe requiresN>60. This places a lower limit on the
initial field valuef0>f60, whereN(f60)560. For the po-
tential ~10! we find from Eq.~11! that

N~f!5
p

mPl
2 ~f22fe

2! . ~12!

From this we can deducef6054.4mPl . In this Rapid Com-
munication, as is common in most inflation models, we as-
sume that the observable universe leaves the horizon during
inflation at 60 Hubble times before the end of inflation, i.e.,
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when the inflaton field has the valuef60. The smallest scale
for which density fluctuations can be probed~;1 Mpc! will
leave the horizon about ten Hubble times after the observable
universe. From Eq.~12! we find this corresponds to the field
valuef5054.0mPl . Significant is that the critical field values
fe and f60250 are independent ofl. The initial field f0
cannot be arbitrarily large. It must also satisfyf0<fPl
wherefPl is the field at the Planck boundary which satisfies
V(fPl)5mPl

4 . While fe and f50260 are independent ofl,
this is clearly not so forfPl .

In this Rapid Communication we wish to calculate the
statistical properties of observable density fluctuations pre-
dicted by Eq.~6! for the potential~10!. Our aim is to dem-
onstrate that this new approach to inflaton dynamics is con-
sistent with the observed near-Gaussian and scale-invariant
density fluctuations. It is well known from gauge-invariant
analysis that the amplitude of a density fluctuation that
crosses back inside the horizon after inflation, can be de-
duced from the quantity@1,3#

dr

r
5df

H~f!

ḟ
, ~13!

evaluated at the time the fluctuation scale of interest crossed
outside the horizon during inflation. The power spectrum
D(k) is related to the mean square density fluctuations
dr/r via

S dr

r D 2

5E
2`

`

D~k!dlnk ~14!

from which we obtain

D~k!5
d

dlnkS dr

r D 2

. ~15!

The power spectrum is just the contribution, at a given time,
to the mean square fluctuations generated in a Hubble time.
We are interested in the power spectrum over observable
scales. Therefore, we will evaluate the right-hand side~RHS!
of Eq. ~15! at f60 which is the classical field value at the
time the scale of the observable universe leaves the horizon
during inflation. It is usual to assume that the density fluc-
tuation power spectrumD(k) can, within the observable
range ofk, be written as

D~k!5Akn21 , ~16!

whereA and n are the amplitude and spectral index of the
density fluctuations. Forn51 we have a scale-invariant
power spectrum of density fluctuations. From Eq.~16! we
find that the spectral index can be determined from the
power spectrum by

n511
1

D~k!

dD~k!

dlnk
. ~17!

Clearly, our first task is to calculate Eq.~13! for which we
need to solve Eq.~6! in order to obtaindf. As is commonly

done in studies of the Starobinsky equation~4! @6,7#, we
include the effects of back reaction by simply assuming that
H is slowly varying as

H2~f!5
8p

3mPl
2

V~f! . ~18!

This is possible sinceH changes little over a Hubble time
due to the slow rolling of the inflaton. Upon substituting Eqs.
~10! and~18! into Eq.~6!, and changing to the dimensionless
variablesx5f/mPl andt5tmPl , we obtain

dx52 f xdt1gx2Fw~t!dt , ~19!

where

f 5A l

6p
, g5

1

A24p3S 2p

3 D 1/4

l5/4. ~20!

With the new variablex521/x, we find that Eq.~19! be-
comes

dx5 f x1gFw~t! . ~21!

This equation now describes an Ornstein-Uhlenbeck process
for which the solution is

x~t!5x0ef t1gef tE
0

t

e2 f sFw~s!ds. ~22!

Therefore, our solution to Eq.~19! is

x~t!5
xc~t!

12gx0E
0

t

e2 f sFw~s!ds

, ~23!

where the classical deterministic solutionxc(t) is

xc~t!5x0e2 f t , ~24!

with x0 as the initial field value. To obtain the fluctuations
df we make a Gaussian approximation

x~t!.xc~t!S 11gx0E
0

t

e2 f sFw~s!dsD ~25!

to Eq. ~23! which will be justified later. From this we obtain

~dx!25^@x~t!2xc~t!#2&.
l2

24p5
xc

2~t!@x0
22xc

2~t!# .

~26!

We can compare this result directly to that predicted by
the Starobinsky equation~4!. Upon substituting Eqs.~10!
and ~18! into Eq. ~4!, we find the exact solution to the Star-
obinsky equation is
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x~t!5
xc~t!

A122hx0
2E

0

t

e22 f sFw~s!ds

.
xc~t!

12hx0
2E

0

t

e22 f sFw~s!ds

, ~27!

where

h5
1

2pS 2pl

3 D 3/4

. ~28!

Making the same Gaussian approximation as previously, we
find that

~dxs!
2.

l

12
xc

2~t!@x0
42xc

4~t!# , ~29!

where we use the subscripts to denote quantities evaluated
from the solution to the Starobinsky equation.

Using Eqs.~26!, ~18!, and ~24!, we find that Eq.~13!
becomes

S dr

r D 2

5
1

6p3
l2xc

4~t!@x0
22xc

2~t!# . ~30!

To calculate the spectrum~15!, we need to relate the classi-
cal field value at some time to the scalek that is crossing the
horizon at the same time. We do this by first considering the
number ofe-folds N(k) between the horizon crossing of a
scalek and the end of inflation. We are assuming that the
scale of the observable universe left the horizon 60 Hubble
times before the end of inflation. We can, therefore, write
N(k) as @1#

N~k!5601 ln~k* /k! , ~31!

where k* is the scale of the current observable Universe.
From Eqs.~31! and ~12!, we find that

xc
2~t!5

1

p
@601 ln~k* /k!#1xe

2 . ~32!

This determines the value of the field at the time a scalek
crosses the horizon. This is the result we will use to calculate
the spectrum. Substituting Eq.~30! into Eq. ~15! and using
Eq. ~32!, we find

D~k!5
l2

6p4
xc

2~t!@3xc
2~t!22x0

2# . ~33!

The explicit k dependence of this function is contained in
xc(t) via Eq.~32!. The spectrum has only a very weak loga-
rithmic k dependence. This will clearly give rise to a near-
scale-invariant spectrum. We can calculate the spectral index
from Eq.~33! by using Eq.~17! and settingxc andx0 to x60.
Observable constraints on the amplitude of density fluc-

tuations require setting the left-hand side~LHS! of Eq. ~33!
to 10210. Settingxc and x0 to x60 allows us to calculate a
value forl. The results are

l51.231025, n50.93 . ~34!

We can perform an exactly analogous calculation using the
fluctuations~29! derived from the exact solution of the Star-
obinsky equation. We find the familiar result

ls56.6310215, ns50.92. ~35!

We see that Eq.~6! leads to a dramatic easing of the fine-
tuning required, but still gives a near-scale-invariant spec-
trum of density fluctuations. Similar easings of the fine-
tuning constraints have been reported in@13–16#.

Also of great interest is a measure of how much the prob-
ability distribution of fluctuations deviates from a Gaussian
distribution. When the magnitude of the stochastic term in
the denominator of Eq.~23! is small (!1), it becomes pos-
sible to make the Gaussian approximation~25! to the exact
solution ~23!. We are, therefore, led to define

d5
gx0

A2 f
5

x0l

A24p5
~36!

as a simple measure of the deviation from a Gaussian distri-
bution.@The denominatorA2 f of Eq. ~36! is the typical fluc-
tuation size of the stochastic term in Eq.~23! in the station-
ary limit.# Using x054.4, and the result~34! for l, we find
d5631027. We can compare Eq.~36! to that derived from
the exact solution~27! of the Starobinsky equation. In this
case we find

ds5
hx0

2

2 f 1/2
5S ls

12D
1/2

x0
2 . ~37!

Using the result~35! for ls , and x054.4, we findds55
31027. We therefore see that over scales of the observable
universe both solutions predict nearly identical and negli-
gible deviations from a Gaussian distribution.

By assumingx05x60 we are simply trying to exclude the
effects of fluctuations on scales larger than our present hori-
zon. In actual fact, inflation would most likely have been in
progress for a long time before the observable universe left
the Hubble radius during inflation. In this case we can con-
sider x0 to be anywhere in the range 4.4<x0<xPl . For the
usual self-coupling constant in Eq.~35! we find that the
Planck boundary isxPl.5000. Because the deviations from a
Gaussian distribution in Eq.~37! are proportional tox0

2, there
is a possibility of significant deviations from Gaussian fluc-
tuations on superhorizon scales. For the new coupling con-
stant in Eq.~34! we havexPl.24. In this case the deviations
from a Gaussian distribution in~36! depend only linearly on
x0. This, combined with the much smaller Planck boundary,
means that the solution~23! predicts Gaussian fluctuations to
a high accuracy over both superhorizon and subhorizon
scales. We have ignored the effects of boundary conditions
that should be imposed atfe andfPl . These effects will be
small and are unlikely to change these conclusions.

Yi, Vishniac, and Mineshige@7# have analyzed in detail
solutions of the Starobinsky equation~in both Ito and Stra-
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tonovich interpretations! for the model discussed here. They
discussed deviations from a Gaussian distribution in terms of
a simple measure for skewness derived from the probability
distribution of the exact solution~27!. We have also applied
this measure to the exact solution~23! and found it to give
results consistent with the simpler measure discussed above.

In this Rapid Communication we showed that the new
theory of inflaton dynamics developed in@16# can address
the fine-tuning problem yet still predict density fluctuations
in general agreement with observations. This was demon-
strated for the quartic potential but is likely to generalize to a

wide range of potentials. These results were based on the
classical limit of the theory. The other great advantage of this
theory is that it leads naturally to a description of the inflaton
as a quantum open system. This allows the quantum-to-
classical transition to occur as a nonequilibrium quantum
statistical process~decoherence!, rather than being simply
postulated as in the conventional approach.
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