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In the presence of a Killing symmetry, various self-gravitating field theories with massless scalars~moduli!
and vector fields reduce tos models, effectively coupled to three-dimensional gravity. We argue that this
particular structure of the Einstein-matter equations gives rise to quadratic relations between the asymptotic
flux integrals and the area and surface gravity~Hawking temperature! of the horizon. The method is first
illustrated for the Einstein-Maxwell system. A derivation of the mass formula is then also presented for the
Einstein-Maxwell-dilaton-axion model, which is relevant to the bosonic sector of heterotic string theory.
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I. INTRODUCTION

It has been known for a long time that the Einstein-Hilbert
action in the presence of a Killing fieldkm, say, describes a
two-dimensional s model effectively coupled to three-
dimensional gravity@1#. The target manifold of thes model
is the symmetric space SL~2!/SO~2!, which is parametrized
in terms of two gravitational scalars~the norm ofkm and its
twist potential!.

The Einstein-Maxwell~EM! system with a Killing sym-
metry reveals a similar structure, where now thes model
comprises the gravitational scalars and two additional elec-
tromagnetic potentials@2#. Again, the target manifold is a
symmetric spaceG/H. If the dimensional reduction is per-
formed with respect to a timelike Killing field one finds
G/H5SU(2,1)/S„U(1,1)3U(1)…, whereasG/H5SU(2,1)/
S„U(2)3U(1)… if km is spacelike. It is this particular prop-
erty of the EM equations which gives rise to the Ernst po-
tentials@3#, the Mazur identity@4# and, in the presence of a
second Killing field, to the total integrability of the field
equations@5#. Moreover, it is most likely that the black hole
uniqueness theorem itself owes its existence to the
s-model structure~see, e.g.,@6#!.

Obvious generalizations of the EM system are self-
gravitating field theories with massless scalars and Abelian
vector fields. Considering scalar fields with symmetric target
spaceḠ/H̄, Breitenlohneret al. @7# were able to classify
those models for which the dimensional reduction yields
again as model with symmetric spaceG/H. Hence, these
models admit a symmetry group which is large enough to
compriseall scalar fields arising on the effective level within
onecoset space. In terms of a representationF of G/H, the
field equations assume the form

R~p!5 Tr$J^J%, d* J50. ~1.1!

HereR(p) denotes the Ricci tensor with respect to the pro-
jection metricp, andJ is thes-model current,

p[Vg1k^k, J[ 1
2F21dF, ~1.2!

whereg is the spacetime metric andV[2gmnk
mkn.

For the vacuum and the EM equations the explicit param-
etrization of the matrixF in terms of the target space coor-
dinates~Ernst potentials! resulted from the work of Ehlers
@1#, Ernst@3#, Geroch@8#, Kinnersley and co-workers@9,10#,
Neugebauer and Kramer@2#, and others. Only recently,
Gal’tsov and Kechkin were able to find the generalized Ernst
potentials and the correspondings-model representation for
the Einstein-Maxwell-dilaton-axion~EMDA! equations@11#.
The EMDA model is relevant toN54 supergravity and to
the bosonic sector of four-dimensional heterotic string
theory. In fact, this system provides the simplest~nontrivial!
example of the models classified by Breitenlohneret al. @7#.
The relevant coset turns out to be Sp(4,R)/U~1,1!, where the
fact that SO~2,3! is locally isomorphic to Sp(4,R) is of cru-
cial importance to the explicit representation ofF @12#.

The matrixJ comprises dim(G) algebraically indepen-
dent current one-formsj i , say. However, since the target
manifold is a symmetric space, only dim(G/H) of the con-
servation lawsd* j i50 are independent. By virtue of the
Killing symmetry, each conserved current gives rise to a
closedtwo-form V i[*( k` j i). Integrating these two-forms
over a spacelike hypersurface~which intersects the horizon
and extends to infinity!, Stokes’ theorem yields a set of re-
lations between the asymptotic flux integrals, the corre-
sponding horizon quantities, and the values of thes-model
fields ~potentials! at the horizon. In this way one obtains, for
instance, the Smarr formula@13# for stationary EM black
hole configurations.

As one is only dealing with dim(G/H) independent
equations of the formdV i50, one might expect that Stokes’
theorem yields as many relations between the charges and
the horizon values of the potentials. This is, however, not the
case. In fact, the situation is better: Although there are
dim(H) conservation laws which can be obtained from the
remaining ones,all currentsj i are algebraically independent.
For this reason, Stokes’ theorem yields dim(G) nonredun-
dant relations of the Smarr-type when applied to the two-
forms V i . The entire set of relations may then be used to
eliminate the unknown horizon values of thes-model sca-
lars. In this way one ends up with a relation which involves
only the total charges and the corresponding horizon quanti-
ties. For both the EM and the EMDA system we shall prove
that all stationary black hole configurations with nonrotating
Killing horizon satisfy
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MH
2 5M21N21D21A22Q22P2, ~1.3!

where the right-hand side~RHS! comprises the asymptotic
flux integrals, i.e., the total mass, the Newman-Unti-
Tamburino~NUT! charge, the dilaton and axion charges, and
the electric and magnetic charges, respectively. The quantity
MH is the Komar integral over the horizon,
MH52(8p)21*H* dk. The left-hand side~LHS! of the
above relation can, therefore, be expressed in terms of the
area of the horizonA, and its surface gravityk or, equiva-
lently, its Hawking temperatureTH :

MH5
1

4p
kA5

1

2
THA. ~1.4!

The ‘‘extreme’’ Reissner-Nordstro¨m solution is well
known to satisfy the bound 05M22Q22P2. The corre-
sponding Bogomol’nyi-Prasad-Sommerfield~BPS! bound
for the EMDA system, 05M21D21A22Q22P2, was ob-
tained by Cle´ment and Gal’tsov@14#, constructing the null
geodesics of the target space. Discussing the asymptotic be-
havior of target space geodesics for spherically symmetric
configurations, Breitenlohneret al. obtained Eq.~1.3! with
unspecified LHS@7#. In fact, many of thespherically sym-
metricblack hole solutions with scalar and vector fields~see,
e.g.,@15–17#! are known to satisfy Eq.~1.3!, where the LHS
is expressed in terms of the horizon radius~see also@18# and
references therein!. Using the generalized first law of black
hole thermodynamics, Gibbonset al. @19# were recently able
to derive Eq.~1.3! for spherically symmetric solutions with
an arbitrary number of vector and moduli fields.

In the present paper we establish Eq.~1.3! for arbitrary
soliton (MH[0) and stationary, nonrotating black hole so-
lutions of the EM and EMDA equations. Our derivation is
neither restricted to spherical symmetry, nor do we require
the configurations to be static. The crucial observation is that
the coset structure gives rise to a set of Smarr-type formulas
which is sufficiently large to derive the desired relation.
Since the EMDAs model does not reduce to the EMs
model for vanishing dilaton and axion fields@14#, we derive
Eq. ~1.3! separately for the two cases.

Although the recipe is simple, it is a rather unpleasant
task to write out the current matrixJ for a given representa-
tion F. We think that it should be possible to obtain the
formula ~1.3! even without having an explicit representation
of the matrixF at hand. We, therefore, conjecture that rela-
tions similar to Eq.~1.3! hold for all models which reduce to
the form~1.1! in the presence of a stationary Killing symme-
try.

The paper is organized as follows: We start with a simple
example: the static, purely electric EM system. In this case,
the conserved currents are derived ‘‘from scratch,’’ that is,
without making use of thes-model structure~see also@6# for
this approach!. The third section is devoted to the general
stationary EM equations. We recall the dimensional reduc-
tion and use the coset structure to construct all conserved
currents and closed two-forms. Integrating the latter over a
spacelike hypersurface will provide us with a set of general-
ized Smarr formulas, which we then use to compute the ho-
rizon potentials and to derive Eq.~1.3!. In the fourth section
the procedure is repeated for the EMDA system, where we

take advantage of the coset representation found by Gal’tsov
and Kechkin@11#. Since we prefer to use the exterior calcu-
lus, some computational rules for differential forms are com-
piled in the Appendix.

II. A SIMPLE EXAMPLE

As a motivation we consider the static, purely electric
Einstein-Maxwell ~EM! equations. In this case, the field
strength two-form,F5dA, can be expressed in terms of the
stationary Killing field ~one-form! k and the electric one-
form E:F5(k/V)`E, whereV[2kmk

m[2^k,k&. Staticity
implies that the twist of the Killing field vanishes and, there-
fore,d(k/V)50 @see Eq.~A5!#. Hence, the Bianchi identity,
dF50, and the Maxwell equation,d*F50, become

dE50, d†SEVD50, ~2.1!

respectively, whered†5* d* denotes the coderivative opera-
tor. @Here we have used Eq.~A4! for a5E/V.# In addition,
we consider the~00! component of Einstein’s equations,
R(k,k)58pT(k,k)5^E,E&. In the static case, Eq.~A12!
reduces to the Poisson equation,d†(dV/V)522R(k,k)/V.
Introducing the potentialf, df5E, and using the formula
d†( fa)5 f d†a2^d f ,a& ~for arbitrary functionsf and one-
forms a), Eq. ~2.1! implies (1/V)^E,E&52d†(fE/V).
Hence, both the Maxwell and the Poisson equation assume
the form of current conservation laws:

d† j Q50, j Q[
df

V
, ~2.2!

d† j M50, j M[2
1

2

dV

V
1f

df

V
. ~2.3!

In the presence of the Killing fieldk, every conserved
one-form j , gives rise to a closed two-form,V[* (k`j ).
As dV vanishes, Stokes’ theorem,*]S ~two-form!
5*S d(two-form), implies

E
S`
2 * ~k` j !5E

H
* ~k` j !, ~2.4!

where the integral on the RHS extends over the topological
two-sphereH5HùS,H and S being the horizon and a
spacelike hypersurface, respectively. In order to apply this
formula to the above currents, we have to express
* (k` j Q) and* (k` j M) in terms of the two-formsF,*F and
* dk. This is immediately achieved by using the static, purely
electric identities2(k`dV/V)5dk and (k`E/V)5F @see
Eq. ~A5!#. The closed two-forms corresponding to the cur-
rents defined in Eqs.~2.2! and ~2.3! are

* ~k` j Q!5*F and * ~k` j M !5 1
2 * dk1f*F,

~2.5!

respectively.
Defining the horizon quantitiesMH[2(1/8p)*H* dk and

QH[2(1/4p)*H*F, and using the Komar expression
M52(1/8p)*`* dk for the total mass of a stationary space-
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time, as well as the corresponding expression for the total
charge,Q52(1/4p)*`*F, we immediately find from Eqs.
~2.4! and ~2.5!

Q5QH , M5MH1fHQH , ~2.6!

which implies the Smarr formula,M5MH1fHQ. We also
recall that, for a Killing horizonH with null generator Kill-
ing field k, we haveMH5(1/4p)kA, wherek andA are,
respectively, the surface gravity and the area of the horizon
~at time S). Here we have adopted the gaugef`50 and
used the fact that the electric potential assumes a constant
value on the Killing horizon,fH , say. We also recall that
asymptotic flatness and the Killing property of the horizon
imply V`51 andVH50, respectively. As a consequence of
the above relations~i.e., the Smarr formula!, the horizon
value of the electric potential is determined by the total mass
M , the total chargeQ, and the horizon quantitiesk andA,

fH5
1

QSM2
1

4p
kAD . ~2.7!

Until now we have only used Stokes’ theorem and the fact
that the field equations assume the form of differential con-
servation laws. One may wonder if there exist additional
conserved currents which can also be expressed in terms of
the one-formsdV/V and df/V. Although the conservation
laws for these currents will give rise to redundant equations
on the differential level, they may, nevertheless, provide us
with new information after integration. This is due to the fact
that the coefficients in front of the one-formsdV/V and
df/V can be pulled out of the boundary integrals, provided
that they depend only on the potentialsV andf, and assume,
therefore, constant values onH and S`

2 . In this way one
obtains combinations ofM , Q, MH , and QH which are
independent of the relations~2.6! derived from the field
equations. In fact, it is immediately verified from Eqs.~2.2!
and ~2.3! that

d† j 350, j 3[~V1f2!
df

V
2f

dV

V
. ~2.8!

@Used†( fa)5 f d†a2^d f ,a& ~for arbitrary functionsf and
one-formsa) to show thatj 3 is conserved.# We can, there-
fore, apply Stokes’ theorem~2.4! to the new closed two-form
obtained fromj 3,

* ~k` j 3!5~V1f2!*F1f* dk. ~2.9!

As the potentials assume constant values on the horizon and
at infinity, we immediately find Q5fH

2QH12fHMH

52fH
2Q12fHM , where we have also used Eqs.~2.6! in

the second step. Now using the expression~2.7! for fH gives
Q25(M2MH)(M1MH) and hence

M25S 1

4p
kAD 21Q2 i.e., TH5

2

AAM22Q2,

~2.10!

whereTH5(1/2p)k is the Hawking temperature.
The relation between the charges and the horizon quanti-

ties following from Eq.~2.8! was already derived by Israel in

1967 for a nondegenerate Killing horizon,kÞ0 @20#. @The
above derivation does not require that the horizon contains
its bifurcation surface, implying that Eq.~2.10! also holds in
the degenerate case.# In fact, Israel and other authors used
quadratic relations of the above kind to conclude that the
electric potential depends only on the gravitational potential,
f5f(V). This important result opened the way for the ex-
tension of the vacuum Israel theorem@20# to static electrovac
black hole spacetimes@21,22#.

The existence of the additional conserved current~2.8! is
not accidental: In the presence of a Killing field, the EM
equations form a nonlinears model ~effectively coupled to
three-dimensional gravity! with a symmetric target space
G/H @2# ~see the next section!. The isometries of the target
space imply that, in addition to the dim(G/H) field equa-
tions, there exists an extra set of dim(H) conserved currents.
In the static, purely electric case under consideration one
ends up with the two equations~2.2! and ~2.3! for V and
f, respectively, and the additional conserved currentj 3,
given in Eq.~2.8!. ~The full EM system comprises four plus
four conserved currents; the truncationU50, c50 is, in
this case, compatible with the coset representation. HereU
andc are the twist and the magnetic potential, respectively,
to be defined in the following section.!

III. THE STATIONARY EINSTEIN-MAXWELL SYSTEM

In the previous section we have restricted ourselves to the
static, purely electric case. We shall now construct the com-
plete set of conserved currents for the general stationary EM
equations. We do so by taking advantage of thes-model
structure of the EM equations in the presence of a Killing
field. The eight conserved currents give rise to eight closed
two-forms which will be integrated over a spacelike hyper-
surface. The resulting Smarr formulas are finally used to ob-
tain the desired quadratic relation~1.3! between the flux in-
tegrals and the quantityMH5(1/4p)kA.

A. Dimensional reduction

We start by briefly recalling some basic facts concerning
the dimensional reduction of the Maxwell and the Einstein
equations in the presence of a~stationary! Killing field @8#
~see also@23,24, or 6#!. Throughout this paper we use the
symbolsk,V, and v for the stationary Killing field~one-
form!, its norm, and its twist one-form, respectively:

V[2^k,k&, v[ 1
2 * ~k`dk!. ~3.1!

In the presence of a Killing field, the Bianchi identity,
dF50, and the Maxwell equation,d*F50, give rise to two
~local! scalar potentialsf andc, respectively: Since the Lie
derivatives ofF and*F with respect tok vanish, one obtains
~with Lk5 i k+ d1d+ i k) the equations d( i kF)50 and
d( i k*F)50, and hence

E[2 i kF5df, B[ i k*F5dc. ~3.2!

@Here and in the following i ka denotes the interior
derivative of the p-form a with respect to k,
( i ka)m2 . . .mp

[kmamm2 . . .mp
; see also Eq.~A3!.# By virtue of
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Eq. ~3.2!, the electromagnetic two-form can be expressed in
terms ofk, df, anddc as follows:

F5
k

V
`df1* S kV`dc D . ~3.3!

In the Appendix we show that each closed and invariant
two-form gives rise to a local conservation law for a current
one-form @see Eq.~A7!#. Applying this result toF and *F
brings the Maxwell equations in the form~A8!,

d†S dc

V
12f

v

V2D50, d†S df

V
22c

v

V2D50. ~3.4!

As for the reduction of the Einstein equations, the
R(k,•) components of the Ricci tensor are obtained from the
general Killing field identity~A11! derived in the Appendix.
Also using the expressions 8p* @k`T(k)#522df`dc
and 8pT(k,k)5^df,df&1^dc,dc& for the electromag-
netic stress-energy tensor@whereT(k)m[Tmnk

n#, the gen-
eral identities~A12! and ~A13! yield

d†S dVV D54
^v,v&
V2 22

^df,df&1^dc,dc&
V

~3.5!

and

dv522df`dc ⇒ v5dU1cdf2fdc, ~3.6!

respectively, whereU denotes the twist potential. We have
already argued that the Maxwell equations forf andc can
be cast into the form of conservation laws~3.4!. This is, in
fact, also true for the Poisson equation~3.5!: Using again the
identity d†(v/V2)50, we haved†(Uv/V2)52^dU,v/V2&
which, by virtue of Eq.~3.6!, brings Eq.~3.5! into the form
~3.8! below. We, therefore, end up with the following set of
conserved currents, given in terms of the four potentials
V, U, f, andc:

d† j N5d†S v

V2D5d†S 1V2 ~dU1cdf2fdc! D50, ~3.7!

d† j M5d†S 2
1

2

dV

V
1c

B

V
1f

E

V
22U

v

V2D50, ~3.8!

d† j Q5d†SEV22c
v

V2D50, ~3.9!

d† j P5d†SBV12f
v

V2D50. ~3.10!

In addition to these equations for the electromagnetic
and the gravitational potentials, one has the Einstein equa-
tions for the projection metricp[Vg1k^k (g being the
spacetime metric!. These are readily obtained from Eq.
~A14! and the fact that the electromagnetic stress-energy ten-
sor satisfies T(X,Y)5(1/V)@T(k,k)g2(1/4p)(df ^df
1dc ^dc)](X,Y) for vector fieldsX andY orthogonal to
k. The equation for the Ricci tensor of the projection metric
p thus becomes

R~p!5
1

2V2 ~dV^dV!1
2

V2 ~v ^ v!

2
2

V
~df ^df1dc ^dc!. ~3.11!

It is well known, and of crucial importance to what fol-
lows, that the entire set of field equations~3.7!–~3.11! is
obtained from the effective action~see, e.g.,@24#!

Seff5E S 2R~p!1
^dV,dV&
2V2 12

^v,v&
V2

22
^df,df&1^dc,dc&

V Dh~p!, ~3.12!

by considering variations with respect to the electromagnetic
potentialsf,c, the gravitational potentialsV,U, and the
metric p @wherev5v(U,f,c)5dU1cdf2fdc#. Here
R(p) andh (p) denote the Ricci scalar and the volume three-
form with respect top. Two comments may be helpful.

First, we note that* j52(k/V)` *̃ j for arbitrary one-
forms j orthogonal tok, ^ j ,k&50, ~where *̃ denotes the
Hodge dual with respect to the metricp). The identity~A5!,
therefore, implies that the conservation lawsd *̃ j50 ob-
tained from the effective action~3.12! can also be written in
the formd* j50, that is, in the four-dimensional notation of
Eqs.~3.7!–~3.10!.

Second, theR(k,X) component of the Einstein equations
is not obtained from the effective action~3.12! but has al-
ready been used in order to express the one-formv in terms
of the potentialsU, f, andc. ThesystematicKaluza-Klein
reduction of the Einstein-Hilbert action in the presence of a
Killing field yields an effective action in terms of the gravi-
tational potentialV, the projection metricp, and the bundle
connection one-formg, say. The equation forg then implies
the existence of the potentialU. SubstitutingdU for *̃ dg
~by applying the Lagrange multiplier method! yields the
‘‘partially on shell’’ action ~3.12!.

B. Coset formulation

The action~3.12! describes a harmonic mapping into a
four-dimensional target space, effectively coupled to three-
dimensional gravity. Ernst@3# was able to parametrize the
target space in terms of two complex potentials,E andL,

E[V2~f21c2!12iU , L[2f1 ic. ~3.13!

In order to find the isometries of the target manifold,
Neugebauer and Kramer@2# solved the corresponding Kill-
ing equations. This revealed the coset structure of the target
space@4# and provided a parametrization of the latter in
terms of the Ernst potentials@2,3#. ~See also@25,5,26# for the
complete integrability of the reduced system in the case of
two Killing fields.! In the simplest case, that is for vacuum
gravity, the coset spaceG/H is SU~1,1!/U~1!, whereas
G/H5SU(2,1)/S„U(1,1)3U(1)… for the Einstein-Maxwell
equations with a timelike Killing field.@If the dimensional
reduction is performed with respect to a spacelike Killing
field, thenH5S„U(2)3U(1)….#
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The explicit representation of the coset manifold in terms
of the above Ernst potentialsE andL is given by the Her-
mitian matrix

Fab5hab22 v̄ avb , ~3.14!

whereh5 diag(21,11,11), and wherev is the Kinnersley
vector @9,10#,

~v0 ,v1 ,v2!5
1

2AV
~E21,E11,2L!. ~3.15!

It is not hard to verify that, in terms ofF, the effective action
~3.12! assumes the manifestly SU~2,1!-invariant form

Seff5E ~2R~p!1 Tr^J,J&!h~p!, with J5 1
2F21dF.

~3.16!

The equations of motion following from the above action are
the three-dimensional Einstein equations~obtained from
variations with respect top) and thes-model equations~ob-
tained from variations with respect toF):

R~p!5 Tr$J^J%, d* J50. ~3.17!

@Here we have again used the four-dimensional notation; see
the comment below Eq.~3.12!.# An important feature of the
coset structure is the fact that it provides one with a set of
differential equations which islarger than the original one:
In addition to the dim@SU(2,1)/S„U(1,1)3U(1)…#5four
equations~3.7!–~3.10!, the above equation for the matrix
current J comprises dim@S„U(1,1)3U(1)…#5four extra
conservation laws. A straightforward~but rather unpleasant!
computation gives the following explicit representation for
J:

2J5S 2 i j N j M 0

j M i j N j Q2 i j P

0 2 j Q2 i j P 0
D

1S i ~ j 11 j 2! i j 2 2 j 34

2 i j 2 i ~ j 12 j 2! j 34

2 j 34 2 j 34 22i j 1
D ,

wherej N , j M , j Q , and j P were given in Eqs.~3.7!–~3.10!.
The four additional currentsj 1 , j 2, and j 34[ j 31 i j 4 are lin-
ear combinations of the one-formsv/V2, dV/V, E/V, and
B/V as well. Using Eqs.~3.7!–~3.10! to express the latter in
terms of j N , j M , j Q , and j P , one finds

j 15~f21c2! j N1~c j Q2f j P!, ~3.18!

j 252UjM1~f21c22V!~c j Q2f j P!

1 1
2 @114U21~f21c22V!~3f213c22V!# j N ,

~3.19!

j 35f j M22F2fU1cS f21c22
V

2 D G j N
2 1

2 ~3c21f2112V! j Q1~fc2U ! j P , ~3.20!

j 452c j M22FcU1fS f21c22
V

2 D G j N
1 1

2 ~3f21c2112V! j P2~fc1U ! j Q . ~3.21!

It is obvious from Eq.~3.17!, and also easy to verify directly
from Eqs.~3.7!–~3.10!, thatd† j 15d† j 25d† j 35d† j 450. As
an example, we obtain for the first currentd† j 15
22^fE1cB, j N&2^B, j Q&1^E, j P&50. @Use the identity
d†( fa)5 f d†a2^d f ,a& ~for arbitrary functionsf and one-
formsa) to obtain this.#

C. Mass formulas

In order to apply Stokes’ theorem~2.4! we use Eq.~A4!,
which shows that each conserved currentj , d† j50, gives
rise to a closed two-form* (k` j ), d* (k` j )50. Using
Eqs. ~3.3! and ~3.9!, and the identity ~A5!, d(k/V)
52* (k`v/V2), we find, for instance,

* ~k` j Q!5* S k`
E

VD2cdS kVD5*F2dS c
k

VD .
In a similar way one derives the desired expressions for
* (k` j P) and* (k` j M) @also taking advantage of the iden-
tity * (k`dV/V)52* dk22(k/V)`v#. The closed two-
forms obtained from the conserved currents~3.7!–~3.10! be-
come

* ~k` j N!5* S k`
v

V2D5
1

2
dS kVD , ~3.22!

* ~k` j M !5
1

2*
dk1cF1f*F2dSU k

VD , ~3.23!

* ~k` j Q!5*F2dS c
k

VD , ~3.24!

* ~k` j P!5F1dS f
k

VD . ~3.25!

Stokes’ theorem~2.4! now yields a set of relations between
the chargesM ,Q,P and the corresponding horizon quantities
MH ,QH ,PH , defined by

M ,MH52
1

8pES`
2 ,H

* dk, Q,QH52
1

4pES`
2 ,H

*F,

P,PH52
1

4pES`
2 ,H

F, ~3.26!

where, by definition,MH5(1/4p)kA. For asymptotically
flat solutions the NUT charge vanishes and the integrals over
the exact two-forms do not contribute. In this case, we im-
mediately obtain from Eqs.~3.23!–~3.25!
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M5MH1fHQH1cHPH ,Q5QH ,P5PH , ~3.27!

where we have used the fact that all potentials assume con-
stant values on the horizon. We also recall that asymptotic
flatness impliesV`51, whereas, by the definition of a Kill-
ing horizon,VH50. Here and in the following we adopt a
gauge for which all other potentials vanish in the asymptotic
regime,U`5f`5c`50. ~For static, regular configurations
without horizon the above relations reduce to
M5Q5P50, which yields the well-known nonexistence
theorem for self-gravitating Abeliansoliton solutions@7#.!

So far we have used the field equations to derive Eqs.
~3.27!, which imply the Smarr formula,
M5MH1fHQ1cHP. The interesting observation is that
Stokes’ formula for theadditional conserved currentsj 1– j 4
@given in Eqs.~3.18!–~3.21!# yields a set ofnew relations
between the charges and the horizon quantities. Since the
potentials assume constant values on the horizon, they can be
pulled out of the integrals, which implies that the additional
relations do not depend on the original ones@although, as
already emphasized, the differential lawsd† j i50
( i51, . . . ,4) do notcontain new information#. In order to
evaluate Stokes’ theorem~2.4! for the additional four closed
two-forms* (k` j i), one uses

È * ~k` j N!5E
H
* ~k` j N!50,

È * ~k` j M !5E
H
* ~k` j M !524pM ,

È * ~k` j Q!5E
H
* ~k` j Q!524pQ,

È * ~k` j P!5E
H
* ~k` j P!524pP.

In this way we immediately obtain from Eqs.~3.18! and
~3.19! the formulas

fHP5cHQ and UHM50, ~3.28!

respectively. Together with the Smarr formula~3.27!, this
enables one to solve for the horizon potentials in terms of the
charges andMH ,

fH5Q
M2MH

Q21P2 , cH5P
M2MH

Q21P2 , UH50,

~3.29!

whereUH50 reflects the fact that, for the moment, we have
restricted ourselves to configurations with vanishing NUT
charge. We may finally apply Stokes’ theorem to either of
the remaining equations~3.20! or ~3.21!. Using Eq.~3.20!
we find

052fHM2~3cH
2 1fH

2 11!Q12~fHcH2UH!P. ~3.30!

Substituting the expressions~3.29! for the potentials into this
equation eventually yields the desired formula, which in-
volves only global charges and the horizon quantityMH :

M25MH
2 1Q21P2, with MH5

1

4p
kA5 1

2THA.
~3.31!

The derivation of Eq.~3.31! implies that this formula holds
for every stationary, asymptotically flat black hole solution
with nonrotating horizon, i.e., with Killing horizon generated
by the stationary Killing fieldk. Considering the uniqueness
theorem for the Reissner-Nordstro¨m metric, this is, of
course, not surprising. However, the above derivation does,
for instance, circumvent the staticity problem. Moreover, we
have not required a nondegenerate horizon. Hence, the for-
mula ~3.31! also implies that the stationary, nonrotating so-
lutions with vanishing surface gravity saturate the
Bogomol’nyi boundM25Q21P2, and vice versa@27,28#
~provided, of course, that the horizon is connected!. Before
we derive a similar formula for the EMDA system, we also
evaluate the above currents for configurations with nonvan-
ishing NUT charge.

D. Mass formulas including NUT charge

The NUT chargeN and its horizon counterpartNH are
defined by the boundary integrals

N,NH52
1

4pES`
2 ,H

* ~k` j N!52
1

8pES`
2 ,H

dS kVD . ~3.32!

Like the magnetic chargeP,N is a topological quantity.~An
illustration is provided by the Schwarzschild-NUT solution:

~4!g52V~dt22Ncosqdw!21
1

V
dr21~r 21N2!dV2,

~3.33!

with

V~r !5
r ~r22M !2N2

r 21N2 .

The stationary Killing one-form is k52V(dt
22Ncosqdw). Hence, we haved(k/V)522Nsinqdq`dw
and2(1/8p)*d(k/V)5N for any two-sphere; in particular,
N5NH . Also using * dk52(r 21N2)(dV/dr)dV
1(dr`•••), one finds

M ,MH52
1

8pES`
2 ,H

* dk5F2N2r1M ~r 22N2!

r 21N2 G
`,rH

.

As expected, the RHS yieldsM as r→` whereas, for
r5r H5M1AM21N2, we obtainMH5AM21N2. For the
Schwarzschild-NUT metric we, therefore, have

N5NH , M21N25MH
2 . ~3.34!

It will follow below, that this relation holds for any station-
ary, nonrotating vacuum black hole solution.!

Let us now return to the general stationary EM equations
and evaluate Stokes’ theorem for the closed two-forms
~3.22!–~3.25! with nonvanishing NUT charge. Instead of
Eqs.~3.27! we now obtain the slightly modified relations~in
a gauge wheref`5c`5U`50)
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N5NH , Q5QH22cHN, P5PH12fHN,
~3.35!

and

M5MH1fHQ1cHP22UHN. ~3.36!

Here we have already used the consequence
fHQH1cHPH5fHQ1cHP of Eqs. ~3.35! to obtain the
Smarr formula~3.36! with NUT charge. Using the fact that
the potentials assume constant values on the horizon, we can
again evaluate Stokes’ theorem for the remaining closed
two-forms * (k` j i)( i51, . . .,4), where now
2(1/4p)*`* (k` j N)52(1/4p)*H* (k` j N)5N. The ex-
pressions ~3.18!–~3.21! then imply the relations~with
V`51 andVH50)

05~fH
2 1cH

2 !N1~cHQ2fHP!,

N52UHM1~fH
2 1cH

2 !~cHQ2fHP!

1 1
2 @114UH

2 13~fH
2 1cH

2 !2#N,

05fHM12@fHUH2cH~fH
2 1cH

2 !#N

2 1
2 ~3cH

2 1fH
2 11!Q1~fHcH2UH!P,

05cHM12@cHUH1fH~fH
2 1cH

2 !#N

2 1
2 ~3fH

2 1cH
2 11!P1~fHcH1UH!Q.

Adding togetherfH times the third andcH times the fourth
relation and using the Smarr formula~3.36! one finds
(fH

2 1cH
2 )(M1MH)5fHQ1cHP. In combination with the

first of the above formulas, this enables one to solve for
fH andcH . Substituting the result into the Smarr formula
then also yieldsUH :

fH5
~M1MH!Q2NP

~M1MH!21N2 , cH5
~M1MH!P1NQ

~M1MH!21N2 ,

~3.37!

UH5
~M1MH!~Q21P21MH

2 2M2!2~M2MH!N2

2N@~M1MH!21N2#
.

~3.38!

We may finally use these expressions for the horizon poten-
tials in the second of the above formulas, which can
also be written in the form 4UHN(M1UHN)
5N22(fHP2cHQ)

2. A short computation yields the de-
sired relation between the total charges and the horizon
quantityMH5(1/4p)kA,

M21N25S 1

4p
kAD 21Q21P2, ~3.39!

which generalizes the previous result~3.31!.

IV. THE EINSTEIN-MAXWELL-DILATON-AXION
SYSTEM

Let us now consider the bosonic sector of four-
dimensional heterotic string theory or, equivalently,N54

supergravity with one vector field. Denoting the dilaton sca-
lar field withS, the axion pseudoscalar field withk, and the
Abelian ~Maxwell! vector field withA, the effective action
can be cast into the form

S5
1

16pE @2*R12F`*G12dS̀ * dS1 1
2e

4Sdk`* dk#,

~4.1!

whereF is the field strength of the vector field. Here we have
introduced the two-formG, which turns out to be very con-
venient in the following. For vanishing dilaton and axion
fields we haveG5F, whereas, in general,G is a combina-
tion of F and*F, involving the dilaton and the axion fields:

G[e22SF2k*F, where F5dA. ~4.2!

~Hence,F`*G5e22SF`*F1kF`F.! It is also worth-
while recalling that it is the boundary integral over*G
~rather than over*F) which is identified with the electric
charge in the presence of a dilaton and an axion~see, e.g.,
@19# and Eq.~4.37! below!.

A. Dimensional reduction

The dimensional reduction of the field equations in the
presence of the stationary Killing fieldk can be performed
along the same lines as for the EM system discussed in the
previous section. The Bianchi identity,dF50, and the
‘‘Maxwell’’ equation, d*G50 ~i.e., the variational equation
with respect toA), give ~locally! again rise to two scalar
potentials, f and c, say: Since LkF50 and
Lk*G5* LkG50 one obtains~with Lk5 i K+ d1d+ i k) the
equationsd( i kF)50 andd( i k*G)50, and, therefore,

df52 i kF, dc5 i k*G. ~4.3!

Since bothF and*G are closed and invariant with respect to
the Killing field k, we can apply the construction discussed
in the Appendix@see Eq.~A7!# to obtain two conserved cur-
rent one-forms:

d† j P50, where j P5
B̂

V
12f

v

V2 , B̂[ i k*F, ~4.4!

d† j Q50, where j Q5
Ê

V
22c

v

V2 , Ê[2 i kG.

~4.5!

It is easy to see that the one-formsÊ and B̂ are linear com-
binations indf anddc:

S Ê
B̂
D 5DS df

dc D , with D5S e22S1k2e2S ke2S

ke2S e2S D .
~4.6!

In terms ofÊ,B̂, the potentials and the Killing one-form, we
also have

F5
k

V
`df1* S kV`B̂D , G5

k

V
`Ê1* S kV`dc D ,

~4.7!
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which generalize Eq.~3.3!. It is worth recalling that the sym-
metric and symplectic matrixD is a special case of the ma-
trix introduced in@7#, parametrizing an arbitrary number of
moduli fields~see also@19#!. @For vanishing axion and dila-
ton fields we haveG→F, D→1, Ê→df, and B̂→dc,
which shows that Eqs.~4.4! and~4.5! reduce to the ordinary
Maxwell equations~3.4! in this case.#

The axion and dilaton equations are obtained from varia-
tions of the action~4.1! with respect tok andS, respectively.
One finds

d†~e4Sdk!522^F,*F&, ~4.8!

d†~dS2 1
2e

4Skdk!5^F,G&. ~4.9!

~Note that the variation with respect to the dilaton field first
gives d†dS1 1

2e
4S^k,k&5e22S^F,F&. Integrating by parts

and using the axion equation~4.8! and the definition ofG
then yields Eq.~4.9!. Also note that̂ a,b&* 1[a`*b for
arbitrary forms of the same degree; hence^F,G&
51

2FmnG
mn.! Now using the ‘‘Maxwell’’ equations~4.4! and

~4.5!, the identity d†(v/V2)50 and the formula
d†( fa)5 f d†a2^d f ,a& ~for arbitrary functionsf and one-
formsa), we can write the axion and dilaton equations~4.8!
and ~4.9! in the form of current conservation laws as well,
since

^F,*F&522d†S f
B̂

V
1f2

v

V2D ,
^F,G&5d†S f

Ê

V
2c

B̂

V
22fc

v

V2D .
It remains to consider the Einstein equations. In order to

evaluate the Poisson equation~A12! and the twist equation
~A13!, we have to compute the Ricci one-formR(k). Since
the kinetic terms of the axion and the dilaton do not contrib-
ute toR(k), we haveR(k)m5@ tmn2 1

2gmnt
s

s]k
n, wheretmn

is the stress-energy tensor of the vector field:

tmn5
1

8p
@2FmsGn

s2gmn^F,G&#. ~4.10!

Contracting withkn and using the expressions~4.7!, Eqs.
~A12! and ~A13! yield

d†S dVV D5
4

V2 ^v,v&2
2

V
~2^ i kF,i kG&1V^F,G&!, ~4.11!

and

dv522df`dc, ~4.12!

respectively. The twist equation~4.12! implies the existence
of a twist potentialU, such thatdU5v1fdc2cdf. The
Poisson equation~4.11!, therefore, also assumes the form of
a conservation law, since its RHS becomes

4

V2 ^v,v&2
2

V
~^df,Ê&1^dc,B̂&!

5d†S 2f
Ê

V
12c

B̂

V
24U

v

V2D .
In conclusion, the field equations for the three pairs of

scalar potentials (V,U), (f,c) and (S,k) can be cast into
the form of six conservation laws for the following current
one-forms~see@7# for the more general case of an arbitrary
number of moduli fields!:

d† j N5d†S v

V2D50, where v5dU1cdf2fdc,

~4.13!

d† j M5d†S 2
1

2

dV

V
1c

B̂

V
1f

Ê

V
22U

v

V2D 50, ~4.14!

d† j Q5d†S Ê
V

22c
v

V2D 50, ~4.15!

d† j P5d†S B̂
V

12f
v

V2D 50, ~4.16!

d† j A5d†S e4Sdk14f
B̂

V
14f2

v

V2D 50, ~4.17!

d† j D5d†S 22dS1e4Skdk22c
B̂

V
12f

Ê

V
24fc

v

V2D 50,

~4.18!

whereÊ andB̂ are defined in terms ofS, k, df, anddc by
Eq. ~4.6!. It may be worth noticing that Eqs.~4.13!–~4.16!
reduce to the corresponding Einstein and Maxwell equations
~3.7!–~3.10! for vanishing dilaton and axion fields. However,
for k5S50, theentireset of equations~4.13!–~4.18! is not
equivalent to Eqs.~3.7!–~3.10!, since the dilaton and axion
equations~4.17! and ~4.18! impose additional restrictions to
the vector fieldA. It is for this reason that the coset formu-
lation to be discussed below does not reduce to the electro-
vac coset representation fork5S50.

The remaining equations, which will not be used in the
following, are the Einstein equations for the projection met-
ric p5Vg1k^k. These are again obtained from the reduc-
tion formula ~A14!, using Rmn58ptmn12SmSn

11
2e

4Skmkn . Also taking advantage of the expression~4.10!
for tmn , the Einstein equations forp become

R~p!5
1

2V2 ~dV^dV!1
2

V2 ~v ^ v!2
2

V
~df ^ Ê1dc ^ B̂!

12dS^dS1 1
2e

4Sdk ^dk, ~4.19!

which reduces to Eq.~3.11! for the EM case.

B. Coset representation

The entire set of field equations, i.e., the conservation
laws ~4.13!–~4.18! and the three-dimensional Einstein equa-
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tions ~4.19! can be obtained from variations of the effective
action Seff with respect to the scalar fields
V, U, f, c, S, k, and the projection metricp, where

Seff5E F2R~p!1
^dV,dV&
2V2 12

^v,v&
V2 22

^df,Ê&1^dc,B̂&
V

12^dS,dS&1 1
2e

4S^dk,dk&Gh~p!. ~4.20!

@Recall thatv5dU2fdc1cdf, andÊ andB̂ are given in
terms of the potentials by Eq.~4.6!.# Combining the Maxwell
potentials into a vector,a[(f,c)T, and using the matrix
D defined in Eq.~4.6!, the effective action assumes the com-
pact form

Seff5E F2R~p!1
^dV,dV&
2V2 12

^v,v&
V2 22

^daT,Dda&

V

1^D21dD,D21dD&Gh~p!, ~4.21!

where the inner product in the last two terms also involves
the matrix trace. In terms ofa and the antisymmetric 232
tensor « one hasv5v(U,a)5dU1aT«21da. The Eqs.
~4.13!–~4.16! are obtained from variations with respect to
the gravitational potentialsV and U and the potentiala.
SinceD is symmetric and symplectic, the axion and the di-
laton describe a nonlinears model with coset space
Ḡ/H̄5SL(2,R)/U(1) ~see, e.g.,@29#!. Hence, the variation
of the above action with respect toD yields the axion and
dilaton equations~4.17! and ~4.18! and an additional equa-
tion. In fact, one easily finds the following additional con-
served current:

d† j AD[d†S 4kdS1~12k2e4S!dk14c
Ê

V
24c2

v

V2D 50.

~4.22!

This formula is, of course, a consequence of the set of field
equations~4.13!–~4.18!, as can also be verified directly.
However, its integrated version will provide us with an ad-
ditional relation between the charges and the horizon quan-
tities. The axion and dilaton equations~4.17!, ~4.18!, and
~4.22! assume the formd†J50, where

J5D21dD14~aT^ «a! j N12@a^ j2«21~a^ j !T«#,
~4.23!

and where we have introduced the notations

J[S j D j A

j AD 2 j D
D , j[S j Qj PD . ~4.24!

@In deriving Eq.~4.23! we have also used Eqs.~4.13!, ~4.15!,
and ~4.16! to substitute the one-formsv/V2, Ê/V, and
B̂/V by the currentsj N , j Q , and j P .# Before we proceed,
we recall some facts concerning the structure of the station-
ary EMDA system.

Since SL(2,R) is isomorphic to SU~1,1!, the axion and
dilaton describe a nonlinears model with the same coset

space as the vacuum Ernst system, SU~1,1!/SU~1!. @In fact,
using the complex target space coordinatez5k1 ie22S, the
effective density Tr̂D21dD,D21dD& becomes^dz,d z̄&/
(z2 z̄ )2, which is the same expression as one finds for the
vacuum Ernst potential. For axion-dilaton gravity without
vector fields, the Ka¨hler metric on the target space is, there-
fore, generated by the potential ln(Ve22S); see@29# for de-
tails.#

The action~4.20! obviously describes a harmonic map-
ping which is effectively coupled to three-dimensional grav-
ity. This is indeed the case for an arbitrary number of self-
gravitating Abelian vector fields coupled to massless scalar
~moduli! fields which form a coset spaceḠ/H̄. Breitenlohner
et al. @7# have given a classification of models which admit a
sufficiently large symmetry group, such that theentireset of
potentials, i.e., the moduliand the vector and gravitational
potentials, form a coset spaceG/H.

The SL(2,R) axion-dilaton symmetry is still present in
axion-dilaton gravity with an Abelian gauge field. Like in the
EM case, the system also possesses an SO~1,2! symmetry,
arising from the dimensional reduction with respect to the
Abelian isometry group generated by the Killing field.
Gal’tsov and Kechkin@11# have shown that the full symme-
try group is, however, larger than SL(2,R)3SO(1,2). In-
deed, the target space for dilaton-axion gravity with a U~1!
vector field is the coset SO(2,3)/@SO(2)3SO(1,2)# @12#.
Using the fact that SO~2,3! is isomorphic to Sp(4,R),
Gal’tsov and Kechkin@30# were also able to give a param-
etrization of the target space in terms of 434 ~rather than
535) matrices. The relevant coset was shown to be
Sp(4,R)/U(1,1), which implies that, in addition to the field
equations~4.13!–~4.18!, there exists a set offour additional
conserved currents@one of which, j AD , was already con-
structed above from the SL(2,R) symmetry#.

The explicit representation of the target space in terms of
the potentials (V,U), (f,c), and (S,k) is given by the
symplectic 434 matrixF,

F5S P21 P21Q
QP21 P1QP21QD , ~4.25!

whereP andQ are the 232 matrices

P5e22SS e2SV22f2 A2f

A2f 21
D ,

Q5S 22f~c1kf!22U A2~c1kf!

A2~c1kf! 2k
D , ~4.26!

see, e.g.,@31,14#. @Our potentials slightly differ from the
ones used in@14#: The potential pairs (f ,x), (v,u), and
(k,f) of @14# are our (V,U), (2A2f,A2c), and (k,S),
respectively.# In terms of the matrixF the effective action
~4.21! assumes the desired form

Seff5E @2R~p!1 Tr^F21dF,F21dF&#h~p!, ~4.27!

where the trace-free matrixF21dF comprises four 232
current matrices, three of which are algebraically indepen-

56 969BOGOMOL’NYI-TYPE MASS FORMULAS FOR A CLASS OF . . .



dent. A lengthy computation yields the following explicit
expressions for the latter in terms of the ten currents
j N , j M , j Q , j P , j A , j D , j AD , and j 1– j 3:

P21dQP2152S 2 j N A2 j P
A2 j P j A

D , ~4.28!

QP21dQP211dPP215S 22 j M 2A2 j 1
A2 j Q j D

D , ~4.29!

dQ2dPP21Q2QP21dP2QP21dQP21Q

5S 22 j 3 A2 j 2
A2 j 2 2 j AD

D . ~4.30!

The conservation laws for the currentsj N , j M , j Q , j P , j A , j D
are identical with the field equations~4.13!–~4.18!. The con-
served currentj AD , arising from the dilaton-axion symme-
try, was given in Eq.~4.22!. The remaining additional con-
served currents,j 1– j 3 can be expressed in terms of
j N , j M , j5( j Q , j P)

T and the 232 matrixD21dD as follows:

S j 1j 2D 5~D21dD121j M !a1~VD2122U«!~ j12 j N«a!,

~4.31!

j 35 Tr$aT«@~D21dD!a12VD21~ j12 j N«a!#%14UjM

1~V214U2! j N . ~4.32!

C. Mass formulas

In order to apply Stokes’ theorem~2.4!, we have to com-
pute the closed two-forms* (k` j ) obtained from the ten
conserved currentsj N , j M , j , J, ( j 1 , j 2), and j 3, given in
Eqs. ~4.13!–~4.16!, ~4.23!, ~4.31!, and ~4.32!, respectively
@see Eq.~4.24! for the definitions ofj andJ#. To this end,
we first express the two-forms arising from the gravitational
and the electromagnetic currents~4.13!–~4.16! in terms of
the two-forms* dk, d(k/V), *G, andF ~which give rise to
the mass, the NUT charge and the electric and magnetic
charges, respectively!. This is achieved in a similar way as in
the EM case. One finds

* ~k` j N!5* S k`
v

V2D5 1
2dS kVD , ~4.33!

* ~k` j M !5 1
2 * dk1cF1f*G2dSU k

VD , ~4.34!

* ~k` j Q!5*G2dS c
k

VD , ~4.35!

* ~k` j P!5F1dS f
k

VD . ~4.36!

@For vanishing axion and dilaton fields this reduces to the
corresponding EM expressions~3.22!–~3.25!, since then
G5F.# The following integrals overS`

2 andH5SùH give

the electric, magnetic, dilaton, and axion charges, and their
counterparts,QH , PH , DH , andAH defined on the hori-
zon:

Q,QH52
1

4pES`
2 ,H

*G, P,PH52
1

4pES`
2 ,H

F,

~4.37!

D,DH52
1

8pES`
2 ,H

* ~k` j D!,

A,AH52
1

8pES`
2 ,H

* ~k` j A!. ~4.38!

Requiring that bothS andk remain finite on the horizon, we
find from the general properties of Killing horizons that

DH50, AH50. ~4.39!

We recall that the total massM and the corresponding hori-
zon quantityMH5(1/4p)kA are given by the Komar inte-
grals overS`

2 andH. In a similar way one obtains the NUT
chargeN and its horizon counterpartNH :

M ,MH52
1

8pES`
2 ,H

* dk, N,NH52
1

8pES`
2 ,H

dS kVD .
~4.40!

We may now apply Stokes’ theorem~2.4! to the closed two-
forms ~4.33!–~4.36!. Adopting a gauge for which the elec-
tromagnetic and the twist potentials vanish at infinity,
f`5c`5U`50, we immediately obtain the relations

N5NH , Q5QH22cHN, P5PH12fHN,
~4.41!

and

M5MH1fHQ1cHP22UHN, ~4.42!

where we have already used Eqs.~4.41! on the RHS of the
Smarr formula ~4.42!, i.e., we have replaced
fHQH1cHPH by fHQ1cHP.

The information from the remaining conservation laws is
now extracted as follows: First, we chooseS`5k`50. ~This
can by achieved by generalized Ehlers and Harrison transfor-
mations; see@32#.! The currentsj A and j AD then coincide at
infinity and the definitions~4.38! of the dilaton and axion
charges yield@with a`5(f` ,c`)

T50#

2
1

4pES`
2 * ~k`D21dD!52SD A

A 2D D ,
E
H
* ~k`D21dD!50. ~4.43!

~In the second integral we have used Eq.~4.39! and the fact
that k and S assume constant values on the horizon.!
Since all potentials can be pulled out of the integrals, we
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are now able to evaluate Stokes’ theorem for the remain-
ing closed two-forms;* (k`J) and * @k` j i #~i51, . . .,3)],
using

È * ~k` j N!5E
H
* ~k` j N!524pN,

È * ~k` j M !5E
H
* ~k` j M !524pM ,

È * ~k` j !5E
H
* ~k` j !524p~Q,P!T.

From the closed matrix two-form* (k`J) @with J given
in Eq. ~4.23!# we obtain an expression for the dilaton charge
D and two expressions for the axion chargeA. Combining
these gives

D5fH~Q1NcH!2cH~P2NfH!,

A5cH~Q1NcH!1fH~P2NfH!, ~4.44!

and

N~fH
2 1cH

2 !5fHP2cHQ. ~4.45!

Stokes’ theorem for* (k` j 3) @with j 3 given in Eq.~4.32!# is
easily evaluated, since the trace term gives no contribution at
the horizon@VH50,(D21dD)H50# and also vanishes at in-
finity (a`50). We thus have, from Eq.~4.32!,

N54UH~M1UHN!. ~4.46!

Finally, the evaluation of the two-forms* (k` j 1) and
* (k`j 2) @with j 1 and j 2 given in Eq.~4.31!# yields

Q52fH~M12UHN!22UHP,

P52cH~M12UHN!12UHQ. ~4.47!

For vanishing NUT charge, Eq.~4.46! givesUH50. Other-
wise, we can solve forUH and use the result in Eqs.~4.47! to
obtain the explicit expressions for the potentialsfH and
cH in terms of the chargesM , N, Q, andP. One finds

fH5
1

2NS NQ2MP

AM21N2
1PD , cH5

1

2NS NP1MQ

AM21N2
2QD ,

UH5
1

2N
~AM21N22M !. ~4.48!

We may eventually use these formulas to eliminate the po-
tentials from the relations~4.44! and~4.45!. A short calcula-
tion gives 2D(M21N2)52NPQ1M (Q22P2) and
2A(M21N2)52MPQ2N(Q22P2). Hence,

2McDc5~Qc!
2, ~4.49!

where the complex chargesMc , Qc , andDc are defined by

Mc[M1 iN, Qc[Q1 iP, Dc[D1 iA. ~4.50!

We have now exhausted all information from the additional
conservation laws following from the coset structure. The
only equation which has not been used yet is the Smarr for-
mula ~4.42!. Substituting the horizon values~4.48! for the
potentials into the Smarr formula~4.42!, we obtain the fol-
lowing expression forMH in terms of the charges:

MH5
2uMcu22uQcu2

2uMcu
. ~4.51!

Taking the square of this formula@and using Eq.~4.49! to
eliminate theuQcu4 term# finally yields the desired expres-
sion,MH

2 5uDcu21uMcu22uQcu2, that is,

S 1

4p
kAD 21Q21P25M21N21D21A2. ~4.52!

For MH50, the above formulas have been obtained for
various spherically symmetric BPS solutions of the EM and
EMDA equations~see, e.g.,@14,18#, and references therein!.
For spherically symmetric configurations with nondegenerate
horizons (kÞ0), Eq. ~4.52! was obtained by Breitenlohner
et al. @7#, where the term on the LHS was not specified.
More recently, Gibbonset al. @19# were able to establish the
full relation~4.52! for spherically symmetric solutions, using
the generalized first law of black hole thermodynamics. A
version of Eq.~4.52! which also includes the rotation param-
eter was derived by Gal’tsov and Kechkin@11# for the
dilaton-axion-Kerr-NUT dyon solution. The latter was con-
structed from the Kerr-NUT metric, using the symmetries of
the target space. The relation was also derived by applying
generalized Ehlers and Harrison transformations to the seed
Schwarzschild solution@18,32#.

The above derivation shows that the generalization~4.52!
of the Bogomol’nyi equation holds for arbitrary, stationary,
asymptotically flat~or asymptotically NUT! solutions of the
EM and EMDA equations. The non-negative term which
transforms the inequalityM21N21D21A22Q22P2>0
into an equality is found to be@(1/4p)kA#2. Although we
have established the above results by using explicit represen-
tations of the EM and EMDA cosets, we expect them to hold
in the general case as well. More precisely, we conjecture
that the Hawking temperature of all stationary, asymptoti-
cally flat ~or asymptotically NUT! black holes with massless
scalars and Abelian vector fields is given by

TH5
2

AA( ~QS!
22( ~QV!2, ~4.53!

provided that the field equations assume the form~1.1!, ~1.2!,
andF is a map into asymmetric space G/H. HereQS and
QV denote the charges of the scalars~including the gravita-
tional ones! and the vector fields, respectively.
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APPENDIX

In this Appendix we recall some identities for Killing
fields. Throughout,k will denote a timelike Killing field
~one-form! with normV and twist~one-form! v:

V[2^k,k&, v[ 1
2 * ~k`dk!. ~A1!

The Lie derivative of an arbitraryp-form a with respect to a
Killing field commutes with the Hodge dual, i.e.,

Lk*a5* Lka, where Lk5 i k+ d1d+ i k . ~A2!

The operatori k denotes the interior product~derivative!
which assigns to a the (p21)-form (i ka)m2 . . .mp

[amm2 . . .mp
km. The latter is also obtained from the exterior

product of the dual ofa with k:

i ka52* ~k`*a!, i k*a5* ~a`k!, ~A3!

where the second identity is obtained from the first one by
replacinga with its dual and using* 2a52(21)pa. For an
invariant one-forma, Lka50, Eqs. ~A2! and ~A3! imply
d* (k`a)52d( i k*a)5 i kd*a, and hence

d* ~k`a!52~d†a!* k if Lka50, ~A4!

whered†[* d* is the coderivative operator. The above for-
mula also provides one with a coordinate-invariant formula-
tion of Stokes’ theorem for stationary~but not necessarily
static! spacetimes.

The Frobenius theorem, implying that the hypersurfaces
of constantV are orthogonal tok if and only if the twistv
vanishes, is recovered from the identity

dS kVD52* S k`
v

V2D52
2

V2 i k*v. ~A5!

@This is obtained from Eqs.~A1! and ~A2!, which yield
2i k*v5 i k(k`dk)52Vdk2k`dV, since i kdk52dikk
5dV.# Applying the exterior derivative to the above identity
and using Eq.~A2! yields 05 i kd* (v/V

2) and thus@since
d* (v/V2) is a four-form#

d†S v

V2D50. ~A6!

The identities~A5! and ~A6! also imply the following: Let
V be a closed two-form which is invariant with respect to the
isometry group generated by the Killing fieldk. Then there
exist ~locally! a function f and a~current! one-form j , such
that

d† j50, where j5
i k*V

V
22 f

v

V2 and d f5 i kV.

~A7!

First, by virtue of Eq.~A2!, LkV50 and dV50 imply
d( i kV)50 and thus the local existence of a potentialf , such
that d f5 i kV. Using this and the identity ~A5!
gives d„(k/V)`V…522V` i k*v/V252d f`*v/V2

52d( f *v/V2), where we have taken advantage of the iden-
tity ~A6! in the last step. Using Eq.~A3! in the first term
proves the above formula.

As an application of Eq.~A7! one can write the Maxwell
equations in the presence of a Killing field in the form of
conservation laws for two current one-forms. The Bianchi
identity and the Maxwell equation imply that both the elec-
tromagnetic two-formF and its dual*F are closed. More-
over, assuming thatF is stationary,LkF50, Eq. ~A2! im-
plies that*F is stationary as well,Lk*F50. Hence, we can
either chooseV5F or V5*F in Eq. ~A7!. Introducing the
potentialsf andc, defined by2df5 i kF and dc5 i k*F,
respectively, the stationary Maxwell equations become

d† j P50, where j P5
dc

V
12f

v

V2 ,

d† j Q50, where j Q5
df

V
22c

v

V2 . ~A8!

In the presence of a~timelike! Killing field, the Ricci
tensor can be reduced with respect to the projection metric
p5Vg1k^k. TheR(k,•) components can also be obtained
from the Ricci identity,

2Dk5d†dk52R~k!, with R~k!m[Rmnk
n, ~A9!

by expressing the Laplacian ofk in terms ofV andv. @For a
Killing one-form one has d†k50 and, therefore,
2Dk5(d†d1dd†)k5d†dk.# To this end, one uses Eq.~A5!
in the form

* dk5 i k*
dV

V
22

k

V
`v. ~A10!

Applying the exterior derivative to this identity and taking
advantage of Eq.~A2! in the first and of Eq.~A5! in the
second term gives

d* dk52 i kd*
dV

V
1

4

V2 i k*v`v12
k

V
`dv.

Now using i kv50, i k* 15* k, and the Ricci identity~A9!
yields the desired result,

2R~k!52Dk5Fd†S dVV D24
^v,v&
V2 Gk12* S kV`v D .

~A11!

Since the last one-form is orthogonal tok, we immediately
find

2R~k,k!52Vd†S dVV D14
^v,v&
V

, ~A12!
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k`R~k!52* dv, ~A13!

where the second equation implies R(k,X)
5(1/V)(* dv)(k,X), for any vector fieldX orthogonal to
k. Finally, we also recall the projection formula for the re-
maining components of the Ricci tensor@8# ~see, e.g.,@24#!.
For X andY orthogonal tok one finds

R~X,Y!5
1

V
R~k,k!g~X,Y!1R~p!~X,Y!

2
1

2V2 ~dV^dV14v ^ v!, ~A14!

whereR(p) denotes the Ricci tensor obtained from the metric
p5Vg1k^k.
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