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Bogomol’nyi-type mass formulas for a class of nonrotating black holes
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In the presence of a Killing symmetry, various self-gravitating field theories with massless $oadalsli)
and vector fields reduce te models, effectively coupled to three-dimensional gravity. We argue that this
particular structure of the Einstein-matter equations gives rise to quadratic relations between the asymptotic
flux integrals and the area and surface graviiawking temperatudeof the horizon. The method is first
illustrated for the Einstein-Maxwell system. A derivation of the mass formula is then also presented for the
Einstein-Maxwell-dilaton-axion model, which is relevant to the bosonic sector of heterotic string theory.
[S0556-282(97)01114-4

PACS numbgs): 04.70.Bw, 04.20.Cv, 04.20.Jb

I. INTRODUCTION For the vacuum and the EM equations the explicit param-
etrization of the matrixp in terms of the target space coor-
It has been known for a long time that the Einstein-Hilbertdinates(Ernst potentialsresulted from the work of Ehlers
action in the presence of a Killing fiekt*, say, describes a [1], Emst[3], Geroch[8], Kinnersley and co-worker®,10],
two-dimensional o model effectively coupled to three- Neugebauer and Krame], and others. Only recently,
dimensional gravity1]. The target manifold of the model Gal'tsov and Kechkin were able to find the generalized Ernst
is the symmetric space $2)/SO(2), which is parametrized potentials and the correspondiagmodel representation for

: o : the Einstein-Maxwell-dilaton-axiofEMDA) equationg11].
n terms of two gravitational scalafthe norm ofk* and its . .
Itwist potentig gravitat ¢ I The EMDA model is relevant ttN=4 supergravity and to

: ; . - the bosonic sector of four-dimensional heterotic string
The Einstein ngyveII(EM) system with a Killing sym theory. In fact, this system provides the simplegxsintrivial)
metry reveals a similar structure, where now #henodel

example of the models classified by Breitenlohatal. [7].

comprises the gravitational scalars and two additional eIecT-he relevant coset turns out to be SPOAU(L,1), where the
tromagnetic potential§2]. Again, the target manifold is a fact that S@2,3) is locally isomorphic to Sp(,ﬁj is of cru-

symmetric spacés/H. If the dimensional reduction is per- s importance to the explicit representation®df[12].
formed with respect to a timelike Killing field one finds  The matrixJ comprises dimG) algebraically indepen-
G/H=SU(2,1)5(U(1,1)xXU(1)), whereasG/H=SU(2,1)/  dent current one-formg;, say. However, since the target
S(U(2)XU(1)) if k* is spacelike. It is this particular prop- manifold is a symmetric space, only di®(H) of the con-
erty of the EM equations which gives rise to the Emst po-seryation lawsd*j;=0 are independent. By virtue of the
tentials[3], the Mazur identity{4] and, in the presence of a Killing symmetry, each conserved current gives rise to a
second Killing field, to the total integrability of the field closedtwo-form Q,=*(k/\j;). Integrating these two-forms
equationg5]. Moreover, it is most likely that the black hole over a spacelike hypersurfaé&hich intersects the horizon
uniqueness theorem itself owes its existence to thand extends to infinify Stokes’ theorem vyields a set of re-
o-model structurdsee, e.g.[6]). lations between the asymptotic flux integrals, the corre-
Obvious generalizations of the EM system are self-sponding horizon quantities, and the values of éhenodel
gravitating field theories with massless scalars and Abeliafields (potentialg at the horizon. In this way one obtains, for
vector fields. Considering scalar fields with symmetric targeinstance, the Smarr formulgl3] for stationary EM black
spaceG/H, Breitenlohneret al. [7] were able to classify hole configurations. _ _ _ _
those models for which the dimensional reduction yields AS one is only dealing with din%/H) independent
again ac model with symmetric spac&/H. Hence, these €dquations of the formd(};=0, one might expect that Stokes’
models admit a symmetry group which is large enough tgheorem yields as many relations between the charges and
compriseall scalar fields arising on the effective level within the horizon values of the potentials. This is, however, not the

f|e|d equations assume the form d|m(H) Conservation IaWS Wh|Ch can be Obtained from the
remaining onesall currentsj; are algebraically independent.
RP = Tr{J®J}, d«J=0. (1.1) For this reason, Stokes’ theorem yields d@)(nonredun-

dant relations of the Smarr-type when applied to the two-

. . forms ;. The entire set of relations may then be used to
(p) - !
Here R denotes the Ricci tensor with respect to the pro eliminate the unknown horizon values of tbemodel sca-

jection metricp, andJ is the o-model current, lars. In this way one ends up with a relation which involves
only the total charges and the corresponding horizon quanti-

p=Vg+kok, J=id dd, (1.2 ties. For both the EM and the EMDA system we shall prove
that all stationary black hole configurations with nonrotating
whereg is the spacetime metric and=—g,,, k“k". Killing horizon satisfy
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M ﬁ =M2+N2+D?+A%—-Q%-P?, (1.3y  take advantage of the coset representation found by Gal'tsov
and Kechkin[11]. Since we prefer to use the exterior calcu-
where the right-hand sidé€RHS) comprises the asymptotic lus, some computational rules for differential forms are com-
flux integrals, i.e., the total mass, the Newman-Unti-piled in the Appendix.
Tamburino(NUT) charge, the dilaton and axion charges, and

the electric and magnetic charges, respectively. The quantity Il. A SIMPLE EXAMPLE
My is the Komar integral over the horizon, L ) ) .
My=—(8%) fy*dk. The left-hand side(LHS) of the As a motivation we consider the static, purely electric

above relation can, therefore, be expressed in terms of tHeinstein-Maxwell (EM) equations. In this case, the field
area of the horizomd, and its surface gravitk or, equiva-  Streéngth two-formF=dA, can be expressed in terms of the
lently, its Hawking temperaturg,, : stationary Killing field (one-form) k and the electric one-

form E:F = (k/V)/\E, whereV= —k k*= —(k,k). Staticity

1 1 implies that the twist of the Killing field vanishes and, there-
My=7-xA=5ThA. (1.4  fore,d(k/V)=0 [see Eq(A5)]. Hence, the Bianchi identity,
dF=0, and the Maxwell equatiord* F=0, become

The “extreme” Reissner-Nordstm solution is well
known to satisfy the bound ®M?—Q?—P2. The corre- dE=0, df
sponding Bogomol'nyi-Prasad-Sommerfiel@PS bound
for the EMDA system, & M2+ D?+A?—Q?—P?, was ob-
tained by Clenent and Gal'tsof14], constructing the null
geodesics of the target space. Discussing the asymptotic b
havior of target space geodesics for spherically symmetri

configurations, Breitenlohnegt al. obtained Eq.(1.3) with . . -
unspecified LHS7]. In fact, many of thespherically sym- educes to the Poisson equatiati(dV/V) = —2R(k,k)/V.

metricblack hole solutions with scalar and vector fieldse, 'Ntroducing the potentiay, d¢=E, and using the formula

e.g.,[15-17) are known to satisfy Eq1.3), where the LHS dT(f“):de“_<df’“>, (for arbitrary functionsf Tand one-
is expressed in terms of the horizon radigee alsg18]and [OrMS @), EqQ. (2.1) implies (1NV)(E,E)=—d'(¢E/V).
references thereinUsing the generalized first law of black Hence, both the Maxwell and the Poisson equation assume
hole thermodynamics, Gibbores al.[19] were recently able e form of current conservation laws:
to derive Eq.(1.3) for spherically symmetric solutions with dob
an arbitrary number of vector and moduli fields. d'jg=0, jo=-, 2.2
In the present paper we establish Ef.3) for arbitrary \Y
soliton (My=0) and stationary, nonrotating black hole so-
lutions of the EM and EMDA equations. Our derivation is dto—0 fe=— ldv d¢ 23
neither restricted to spherical symmetry, nor do we require =0 Iv="357 té Ve 23
the configurations to be static. The crucial observation is that
the coset structure gives rise to a set of Smarr-type formulak the presence of the Killing fielk, every conserved
which is sufficiently large to derive the desired relation.one-formj, gives rise to a closed two-fornQ) =+ (k/\j).
Since the EMDA¢ model does not reduce to the EM  As dQ vanishes, Stokes’ theoremf, (two-form)
model for vanishing dilaton and axion fielfis4], we derive  =[y d(two-form), implies
Eq. (1.3 separately for the two cases.
Although the recipe is simple, it is a rather unpleasant . .
task to write out the current matrixfor a given representa- Lz*(k/\]): jH*(k/\J ), 2.4
tion . We think that it should be possible to obtain the -
formula (1.3 even without having an explicit representation here the integral on the RHS extends over the topological
of the matrix® at hand. We, therefore, Conjecture that rela'two_sphereH:HﬂE,H and 2 being the horizon and a
tions similar to Eq(13) hold for all models which reduce to space"ke hypersurface, respectively_ In order to app'y this
the form(1.1) in the presence of a stationary Killing symme- formula to the above currents, we have to express
try. . _ . . *(k/\]q) and=* (k/\jy) in terms of the two-form&,*F and
The paper is organized as follows: We start with a simplex gk This is immediately achieved by using the static, purely
example: the static, purely electric EM system. In this CaSe€glectric identities— (k/\dV/V)=dk and k/\E/V)=F [see

the conserved currents are derived “from scratch,” that is,zq (A5)]. The closed two-forms corresponding to the cur-
without making use of the-model structurésee als@6] for  rents defined in Eq€2.2) and(2.3) are

this approach The third section is devoted to the general

stationary EM equations. We recall the dimensional reduc- *(kN\jg)=*F and *(kA\jy)=32*dk+ ¢*F,

tion and use the coset structure to construct all conserved (2.5
currents and closed two-forms. Integrating the latter over a

spacelike hypersurface will provide us with a set of generalfespectively.

ized Smarr formulas, which we then use to compute the ho- Defining the horizon quantitied ;= — (1/87) [ ;> dk and
rizon potentials and to derive E(L.3). In the fourth section Qu=-—(1/47)[y*F, and using the Komar expression
the procedure is repeated for the EMDA system, where wé/l = — (1/87) [..* dk for the total mass of a stationary space-

E
—)zo, 2.1

respectively, wherd"=*d* denotes the coderivative opera-
for. [Here we have used E@¢A4) for a=E/V.] In addition,
e consider the(00) component of Einstein's equations,
(k,k)=87T(k,k)=(E,E). In the static case, EqA12)
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time, as well as the corresponding expression for the total967 for a nondegenerate Killing horizor# 0 [20]. [The
charge,Q=—(1/4w)[..xF, we immediately find from Eqs. above derivation does not require that the horizon contains
(2.4 and(2.5 its bifurcation surface, implying that E.10 also holds in
the degenerate cagdn fact, Israel and other authors used
Q=Qy, M=My+éyQu, quadratic relations of the above kind to conclude that the
L electric potential depends only on the gravitational potential,
which implies the 'S.marr fqrmulaM - Myt onQ. We also ¢=@(V). This important result opened the way for the ex-
recall that, for a Killing horizorH with null generator Kill-
ing field k, we haveM = (1/47)«x A, wherex and A are,

tension of the vacuum Israel theor¢®] to static electrovac
) i _black hole spacetimd1,27.
respgctlvely, the surface gravity and the area of the horizon The existence of the additional conserved curf@rs) is
(at time %). Here we have adopted the gauge=0 and o accidental: In the presence of a Killing field, the EM
used the fact thz?lt the glectrlc potential assumes a ConStaQ&uations form a nonlinear model (effectively coupled to
value on the Killing horizong,, say. We also recall that hree_dimensional gravitywith a symmetric target space
asymptotlc flatness and the K|II_|ng property of the honzonG/H [2] (see the next sectionThe isometries of the target
imply V..=1 andVy =0, respectively. As a consequence of gace imply that, in addition to the di®(H) field equa-
the above relationsi.e., the Smarr formula the horizon  iqhg ‘there exists an extra set of diff)(conserved currents.
value of the electric potential is determined by the total mas$,, ihe static, purely electric case under consideration one
M, the total charg®, and the horizon quantities and A, ends up with the two equation@.2) and (2.3 for V and
1 1 qS res_pectively, and the additional Conseryed currppt
¢H:_( M — 4—K.A). 2.7 given in Eq.(2.8). (Thefull EM system comprises four plus
Q ™ four conserved currents; the truncatibh=0, =0 is, in
Until now we have only used Stokes’ theorem and the facfh'(sj case, c;]ompgtlble c\lethh the cosgt repres_er?tatlon. lHl_ereI
that the field equations assume the form of differential con-anb‘//;rﬁ t S .tW";t afn ”t e magnetic potential, respectively,
servation laws. One may wonder if there exist additionalto e defined in the following sectign.
conserved currents which can also be expressed in terms of
the one-formsdV/V and d¢/V. Although the conservation Ill. THE STATIONARY EINSTEIN-MAXWELL SYSTEM
laws for these currents will give rise to redundant equations In th : . h icted | h
on the differential level, they may, nevertheless, provide us r_1t € previous sectlon we have restricted ourselves to the
with new information after integration. This is due to the fact static, purely electric case. We shall now construct the com-

(2.6

that the coefficients in front of the one-formbv/V and

d¢/V can be pulled out of the boundary integrals, provided

that they depend only on the potentigsind ¢, and assume,
therefore, constant values d# and S2. In this way one
obtains combinations oM, Q, My, and Qg which are
independent of the relation&.6) derived from the field
equations. In fact, it is immediately verified from Ed2.2)
and(2.3) that

d dv
ja=(V+ 850~ 6y

ti
d'j3=0, v v

(2.9
[Used'(fa)=fd"a—(df,a) (for arbitrary functionsf and
one-formsa) to show thatj; is conserved.We can, there-
fore, apply Stokes’ theorei2.4) to the new closed two-form
obtained fromj 3,

*(k/\j3)=(V+ ¢p?)*F + ¢p=dk. (2.9

As the potentials assume constant values on the horizon a

at infinity, we immediately find Q=¢>$,QH+2¢HMH
=—¢4Q+2¢yM, where we have also used Edg.6) in
the second step. Now using the expressidid) for ¢ gives

Q?=(M—My)(M+My) and hence
2 2
+Q% e, Ty=—yM?-Q?

A
(2.10

MZZ(LK.A
4

whereTy=(1/27) k is the Hawking temperature.

The relation between the charges and the horizon quantiderivative of
ties following from Eq.(2.8) was already derived by Israelin (ixa),, . -upEkﬂau

plete set of conserved currents for the general stationary EM
equations. We do so by taking advantage of thenodel
structure of the EM equations in the presence of a Killing
field. The eight conserved currents give rise to eight closed
two-forms which will be integrated over a spacelike hyper-
surface. The resulting Smarr formulas are finally used to ob-
tain the desired quadratic relatigh.3) between the flux in-
tegrals and the quantityl ;= (1/47) k A.

A. Dimensional reduction

We start by briefly recalling some basic facts concerning
the dimensional reduction of the Maxwell and the Einstein
equations in the presence of(stationary Killing field [8]
(see alsd23,24, or 8). Throughout this paper we use the
symbolsk,V, and o for the stationary Killing field(one-
form), its norm, and its twist one-form, respectively:

=—(kk), wo=2ikAdK). (3.9

Tﬁ the presence of a Killing field, the Bianchi identity,

dF=0, and the Maxwell equatioml* F=0, give rise to two
(local) scalar potentialgh and ¢, respectively: Since the Lie
derivatives ofF and* F with respect tk vanish, one obtains
(with Ly =iwd+deiy) the equationsd(i,F)=0 and
d(i,*F)=0, and hence
=—iF=d¢, B=ixF=dy. (3.2
[Here and in the followingiya denotes the interior
the p-form « with respect to k,

ho ooy S€€ also EqA3).] By virtue of
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Eq. (3.2), the electromagnetic two-form can be expressed in

terms ofk, d¢, anddy as follows:

F

k/\ k/\ )
v dop+* v dy|. (3.3

In the Appendix we show that each closed and invariant

M. HEUSLER

56
R(P) = ! (dVedV)+ 2 (0@ w)
2v? V2
2
—y(d¢@de+dyody). (3.11)

It is well known, and of crucial importance to what fol-

two-form gives rise to a local conservation law for a currentiows, that the entire set of field equatiof®.7)—(3.11) is

one-form[see Eq.(A7)]. Applying this result toF and*F
brings the Maxwell equations in the for(A8),

d,r(dw de

26—]=0, df 20— 1=0. (34
v PRt 70 Ay T 20e) 0. 34

As for the reduction of the Einstein equations, the

obtained from the effective actiaisee, e.g.[24])

s [ o G20 2l
_2<d¢,d¢>\4;<d‘r’f'd‘/’> .ol (3.12

R(k,-) components of the Ricci tensor are obtained from the

general Killing field identity(A11) derived in the Appendix.
Also using the expressions#8[k/AT(k)]=—2d¢N\dy
and 87 T(kk)=(d¢,d¢p)+(dy,dy) for the electromag-
netic stress-energy tenspwhere T(k) ,=T,,k"], the gen-
eral identities(A12) and(A13) yield

dV| (w,0) (d¢,d¢)+(dy,dy)
dT(v)—4 vz 2 v (3.5
and
do=-2d¢p/N\dy = w=dU+ydd—¢dy, (3.6

respectively, wheréJ denotes the twist potential. We have
already argued that the Maxwell equations @rand ¢ can
be cast into the form of conservation la@&4). This is, in
fact, also true for the Poisson equati@5): Using again the
identity d(w/V?) =0, we haved"(Uw/V?)=—(dU,w/V?)
which, by virtue of Eq.(3.6), brings Eq.(3.5 into the form

by considering variations with respect to the electromagnetic
potentials ¢, ¢, the gravitational potential/,U, and the
metric p [where w=w(U, ¢, ) =dU+ ydd— ¢dy]. Here

R( and (P denote the Ricci scalar and the volume three-
form with respect tqp. Two comments may be helpful.

First, we note thatj=—(k/V)/\*| for arbitrary one-

forms j orthogonal tok, (j,k)=0, (where* denotes the
Hodge dual with respect to the metpg. The identity(A5),

therefore, implies that the conservation ladisj=0 ob-
tained from the effective actiof8.12 can also be written in
the formdx j=0, that is, in the four-dimensional notation of
Egs.(3.7—(3.10.

Second, th&k(k,X) component of the Einstein equations
is not obtained from the effective actid.12 but has al-
ready been used in order to express the one-form terms
of the potentialdJ, ¢, andy. The systematidaluza-Klein
reduction of the Einstein-Hilbert action in the presence of a
Killing field yields an effective action in terms of the gravi-

(3.8 below. We, therefore, end up with the following set of tational potentiaV, the projection metrip, and the bundle
conserved currents, given in terms of the four potential$onnection one-formy, say. The equation foy then implies

V, U, ¢, andi:
d'j =d*(3)=d*(i<dU+¢d¢>—¢d¢))=0 (3.7
N V2 V2 ! ’
.4l 1dv. B E ®

T T @

d jQZd \—/—2(#\7 =0, (39)

dto=di| S 262 =0 (3.10
JP_ V ¢V_Z - . .

the existence of the potenti&l. SubstitutingdU for *dvy
(by applying the Lagrange multiplier methogields the
“partially on shell” action (3.12.

B. Coset formulation

The action(3.12 describes a harmonic mapping into a
four-dimensional target space, effectively coupled to three-
dimensional gravity. Erns3] was able to parametrize the
target space in terms of two complex potentidgand A,

A=—¢+iy. (313

In order to find the isometries of the target manifold,
Neugebauer and Kramég] solved the corresponding Kill-

E=V—(d%+ )+ 2iU,

ing equations. This revealed the coset structure of the target

In addition to these equations for the electromagneticspace[4] and provided a parametrization of the latter in
and the gravitational potentials, one has the Einstein equaerms of the Ernst potentialg,3]. (See als¢25,5,24 for the
tions for the projection metrip=Vg+k®k (g being the complete integrability of the reduced system in the case of
spacetime metric These are readily obtained from Eq. two Killing fields.) In the simplest case, that is for vacuum
(Al14) and the fact that the electromagnetic stress-energy temravity, the coset spac&/H is SU1,1)/U(1), whereas
sor satisfies T(X,Y)=(1IN)[T(k,k)g—(1/4m)(dp®de G/H=SU(2,1)5(U(1,1)xU(1)) for the Einstein-Maxwell
+dydi)](X,Y) for vector fieldsX andY orthogonal to  equations with a timelike Killing field[If the dimensional
k. The equation for the Ricci tensor of the projection metricreduction is performed with respect to a spacelike Killing
p thus becomes field, thenH=S(U(2)x U(1)).]
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The explicit representation of the coset manifold in terms _ _

of the above Ernst potentiasand A is given by the Her- js=¢jn—2| —dU+y

mitian matrix

—

N

por
o —3(3yP+ ¢*+1-V)jo+(py—U)jp, (3.20
D op= 1ap— 20 aUp, (3.19

ja=—¢jn—2| U+ ¢

Vil
¢2+¢2—§ In

wheren= diag(—1,+1,+ 1), and where is the Kinnersley

vector(9,10) F 132+ P4 1-V)jp— (bt U)jg. (32D

It is obvious from Eq(3.17), and also easy to verify directly
from Eqgs.(3.7—(3.10, thatd'j,;=d"j,=d'j;=d"j,=0. As
an example, we obtain for the first curret’j,;=
—2(¢E+yB,jN)—(B.jo)+(E.jp)=0. [Use the identity
d'(fa)=fd'a—(df,a) (for arbitrary functionsf and one-
forms «) to obtain this]

1
(Uo,Ul,Uz):m(g_l,g‘f'l,z/\). (315)

It is not hard to verify that, in terms @b, the effective action
(3.12 assumes the manifestly $2J1)-invariant form

Seﬁ:f (—RP+ Tr(3,3)) 5, with J=3d 1dd, C. Mass formulas

(3.16 In order to apply Stokes’ theore(@.4) we use Eq(A4),

which shows that each conserved currgntd’j=0, gives

The equations of motion following from the above action arerise to a closed two-formx (k/\j), d*(k/\j)=0. Using

the three-dimensional Einstein equatiofsbtained from Egs. (3.3 and (3.9, and the identity (A5), d(k/V)
variations with respect tp) and thea-model equationgob-  =2* (k/\w/V?), we find, for instance,

tained from variations with respect tb): E ” "

* =% — — — | =% — —
RP=Tr{JeJd}, d*J=0. (3.17) (kAio) (kA V) ¢d(V) - d( wV)'

: : : . _In a similar way one derives the desired expressions for
[Here we have again used the four-dimensional notation; see

the comment below Eq3.12.] An important feature of the *(kA\jp) and+(k/\jw) [also taking advantage of the iden-

coset structure is the fact that it provides one with a set oFty *(k/\qu)_ —*dk=2(k/V)/\w]. The closed two-
differential equations which itarger than the original one: orms obtained from the conserved curre@s)—(3.10 be-

In addition to the difiSU(2,1)8(U(1,1)xU(1))]=four ~ °OM€

equations(3.7)—(3.10, the above equation for the matrix ol 1 [k

current J comprises dinS(U(1,1)X U(1))]=four extra *(k/\jN):*(k/\ _2) :—d(—), (3.22

conservation laws. A straightforwaktut rather unpleasant v 27\

computation gives the following explicit representation for

. 1 k

J: #(KA\jw)= 5*dk g + g F—d UV)’ (3.23
—ijn im 0 )
—J=| im N jo—ijp *(k/\jQ)z*F—d(wv), (3.29
0 —jo—ijp O
WUatl) e *(kA\jp)=F+d ¢V)' (3.29
+ —1J2 i(J1—1J2) 134 ,
—ja4 —js  —2ij1 Stokes’ theoren{2.4) now yields a set of relations between

the charged#l,Q,P and the corresponding horizon quantities
wherejy, jm, iq, andjp were given in Eqs(3.7—(3.10.  Mu,Qu, Py, defined by
The four additional currents;, j,, andjz,=j3+ij, are lin-

ear combinations of the one-forneg V2, dV/V, E/V, and _ i _ i
. . M,My= *dk, Q,Qu= *F,
B/V as well. Using Eqgs(3.7)—(3.10 to express the latter in 8mJ<2 H 4]
terms ofjy,ju.jo, andjp, one finds
1
j1=(¢*+ )N+ (o= dip), (3.18 P.Py=- nfsi,HF’ (3.29
j2=2Uju+ (¢ + 4=V (¢io— dip) where, by definition,M = (1/47)kA. For asymptotically

. flat solutions the NUT charge vanishes and the integrals over
1 2 2 2_ 2 2_

T2[1+4UH (@74 Y = V) (347 + 347 = V) ]jn, the exact two-forms do not contribute. In this case, we im-

(3.19 mediately obtain from Eqg3.23—(3.25
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M=My+ ¢uQu+ ¥Pu,Q=Qu,P=Py, (3.2 1
WM QT PP Q= Qn PPy, (327 M2=MZ+Q%+P2  with My=7—KkA=3TyA,

where we have used the fact that all potentials assume con- (3.31)
stant values on the horizon. We also recall that asymptotic '
flatness implies/.,= 1, whereas, by the definition of a Kill- The derivation of Eq(3.31) implies that this formula holds
ing horizon,V;=0. Here and in the following we adopt a for every stationary, asymptotically flat black hole solution
gauge for which all other potentials vanish in the asymptotiowith nonrotating horizon, i.e., with Killing horizon generated
regime,U..= ¢..= .= 0. (For static, regular configurations by the stationary Killing fielck. Considering the uniqueness
without horizon the above relations reduce totheorem for the Reissner-Nordstno metric, this is, of
M=Q=P=0, which yields the well-known nonexistence course, not surprising. However, the above derivation does,

theorem for self-gravitating Abeliasoliton solutions[7].) for instance, circumvent the staticity problem. Moreover, we
So far we have used the field equations to derive Egshave not required a nondegenerate horizon. Hence, the for-
(3.27), which imply the Smarr formula, mula(3.31) also implies that the stationary, nonrotating so-

M=My+ ¢yQ+ ¢yyP. The interesting observation is that lutions with vanishing surface gravity saturate the
Stokes’ formula for theadditional conserved currents—j,  Bogomol'nyi boundM?=Q?+ P2, and vice versg27,28
[given in Egs.(3.18—(3.21)] yields a set ofnew relations  (provided, of course, that the horizon is connegt&Efore
between the charges and the horizon quantities. Since thee derive a similar formula for the EMDA system, we also
potentials assume constant values on the horizon, they can legaluate the above currents for configurations with nonvan-
pulled out of the integrals, which implies that the additionalishing NUT charge.

relations do not depend on the original orje&hough, as

already emphasized, the differential |aW$iTj i =0 D. Mass formulas including NUT charge

(i=1,...,4) do notcontain new informatioh In order to
evaluate Stokes’ theoref2.4) for the additional four closed
two-forms* (k/\j;), one uses

The NUT chargeN and its horizon counterpail,, are
defined by the boundary integrals

1 . 1 K
J * (kA= JH*("AJN):O* NNw== Ejsi,H*(k/\lN)_ B %Lg,Hd V)' (332
Like the magnetic chargB,N is a topological quantitytAn
f *(k/\jM):f *(kN\jy)=—47M, illustration is provided by the Schwarzschild-NUT solution:
o H
1
(4)92 _V(dt_ 2NCOSﬁd(p)2+ vdr2+(r2+ NZ)dQZ7
fm*(kAjQ): JH*(k/\jQ):—“r#Q, 3
with

k/\j =f k/N\jp)=—4mP.
LJ*( ip) H*( ip) ™ F(r—2M)— N2
r= r2+ N2 )
In this way we immediately obtain from Eq$3.18 and

(3.19 the formulas The stationary Kiling one-form is k=—V(dt
—2Ncosddy). Hence, we havel(k/V)= —2Nsinddd/\de

¢wP=yQ and UyM=0, (328 4ng —(1/8m) fd(k/V)=N for any two-sphere; in particular,
N=Ny. Also using =*dk=—(r2+N?(dV/dr)dQ

respectively. Together with the Smarr formula27, this g(dr/\' .Y, one finds

enables one to solve for the horizon potentials in terms of th

charges andMy, 2N2r +M(r2—N?)

1
M,M :__j * :{
M—My M—My " o8mle rP+Nt ]

— TH

¢H=Qw. ‘//H:PW: Upy=0,

(3.29 As expected, the RHS yieldM asr—x whereas, for

r=ry=M+M?+N?, we obtainM,=M?+N?. For the

whereU =0 reflects the fact that, for the moment, we haveSchwarzschild-NUT metric we, therefore, have
restricted ourselves to configurations with vanishing NUT

charge. We may finally apply Stokes’ theorem to either of N=N,, M2+N?=M3. (3.39

the remaining equation€.20 or (3.21). Using Eq.(3.20 ] ) .

we find It will follow below, that this relation holds for any station-
ary, nonrotating vacuum black hole solutipn.

0=2¢uM— (3y3+ ¢p3+1)Q+2(pupy—Uy)P.  (3.30 Let us now return to the general stationary EM equations

and evaluate Stokes’ theorem for the closed two-forms
Substituting the expressiofi3.29 for the potentials into this  (3.22—(3.25 with nonvanishing NUT charge. Instead of
equation eventually yields the desired formula, which in-Egs.(3.27) we now obtain the slightly modified relatioitis
volves only global charges and the horizon quartity : a gauge whereé.,= ¢,=U_,.=0)
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N=Ny, Q=0Qu—2yuyN, P=Py+2¢uN, supergravity with one vector field. Denoting the dilaton sca-
(3.35 lar field with S, the axion pseudoscalar field wiiy and the
Abelian (Maxwell) vector field withA, the effective action
and can be cast into the form

M:MH+¢HQ+¢/HP_2UHN (336) 1 14

S= FJ [—*R+2F/A\*xG+2dS\*dS+ se*Sdx/A\*d«],
Here we have already used the consequence 4.2
PuQu+ YuPu= ouQ+ ¥yP of Egs. (3.39 to obtain the '
Smarr formula(3.36 with NUT charge. Using the fact that \yhereF is the field strength of the vector field. Here we have
the potentials assume constant values on the horizon, we c@fyroduced the two-fornG, which turns out to be very con-
again evaluate Stokes’ theorem for the remaining closegenient in the following. For vanishing dilaton and axion
two-forms  x(k/\j)(i=1,...,4),  where  now fig|ds we haveG=F, whereas, in generaG is a combina-

_(1/477)f°°*(k/\jN): _(1/477)_fH*(k/\jN): N. The ex- tjon of F and*F, involving the dilaton and the axion fields:
pressions (3.18—(3.2) then imply the relations(with

V.=1 andV4=0) G=e F—«*F, where F=dA. 4.2
0= (3 + 2N+ (pyQ— PpyP), (Hence, FA*G=e 2SF/A*F+«F/\F.) It is also worth-
while recalling that it is the boundary integral oveiG
N=2UuM + (3 + ¢2) (¥yQ— dnP) (rather than overF) which is identified with the electric
. ) 2 20 charge in the presence of a dilaton and an axsee, e.g.,
+2[1+4U5+3(dh+ ¥n)°IN, [19] and Eq.(4.37 below).
0= M +2[ pyUp— r(Bfi + ¥7) IN A. Dimensional reduction
—%(3¢ﬁ+¢ﬁ+1)Q+(¢H¢H—UH)P, The dimensional reduction of the field equations in the
presence of the stationary Killing fieki can be performed
0=yuM+2[ U+ du( 3+ ¥2) IN along the same lines as for the EM system discussed in the
L 5 previous section. The Bianchi identityF=0, and the
=38+ Y+ 1P+ (upy+Up)Q. “Maxwell” equation, d*G=0 (i.e., the variational equation

with respect toA), give (locally) again rise to two scalar

Adding togethergy times the third andyy times the fourth potentials, ¢ and ¢ say: Since L,F=0 and

relgtionz and using the Smarr formul@._36)_one-finds L,*G=+L,G=0 one obtains(with L,=ixed+doi,) the
(1 + ) (M+My) = ¢, Q+ ¢y P. In combination with the o ationgd(i,F) =0 andd(i*G)=0, and, therefore,
first of the above formulas, this enables one to solve for

¢y and ¢ . Substituting the result into the Smarr formula dp=—iF, dy=i*G. 4.3

then also yieldgJ,, :
Since bothF and* G are closed and invariant with respect to

_(M+My)Q—NP _(M+My)P+NQ the Killing field k, we can apply the construction discussed
HT (M+My)Z+NZ H™ (M +M)Z+NZ in the Appendixsee Eq(A7)] to obtain two conserved cur-
(3.37 rent one-forms:

(M+M)(Q2+ P2+ M2 —M2) — (M—M,;)N2 N B o L
= d'jp=0, wherejp=5+2¢5, B=i*F, (4.4
H ON[(M+Mpy)2+N7| ' e lp=y t2dyz *F, (44
(3.38 A
E w .
We may finally use these expressions for the horizon poten- deQ=O, WherejQ=v—2¢W, E=-i,G.

tials in the second of the above formulas, which can 4.5

also be written in the form W N(M+UZxN) '

—NI2 2 : H A~ ~

=N"=(¢nP—¢Q)". A short computation yields the de- | s easy to see that the one-foriisandB are linear com-

sired relation between the total charges and the hor'ZOBinations ind¢ anddy:

quantityM = (1/4m) kA, '

D a0

=D\ 4

KGZS e2$

e—25+ K2e23 Ke2S)

2 E .
+Q2+ PZ’ (339 é y W|th D:<

1
M2+ N2= (EKA
(4.9

which generalizes the previous res(8t31). A
In terms ofE, B, the potentials and the Killing one-form, we

IV. THE EINSTEIN-MAXWELL-DILATON-AXION also have
SYSTEN F k/\d k/\Ea G k/\|‘5 I(/\d
= — * | — = — * | —
Let us now consider the bosonic sector of four- \/ ¢+ V ’ \/ + \/ vl

dimensional heterotic string theory or, equivalenty=4 4.7
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which generalize Eq.3.3). It is worth recalling that the sym- 2 . N
metric and symplectic matri® is a special case of the ma- yz{w )= (dé,E)+(dy,B))
trix introduced in[7], parametrizing an arbitrary number of

moduli fields(see alsd19]). [For vanishing axion and dila- E B w

ton fields we haveG—F, D—1, E—d¢, and B—dy, :dT(2¢v+2¢v—4UV7 :

which shows that Eqg4.4) and(4.5) reduce to the ordinary

Maxwell equationg3.4) in this cas€|. In conclusion, the field equations for the three pairs of

The axion and dilaton equations are obtained from variascalar potentials\{,U), (¢,) and (S,x) can be cast into
tions of the actior{4.1) with respect ta« andS, respectively.  the form of six conservation laws for the following current
One finds one-forms(see[ 7] for the more general case of an arbitrary

number of moduli fields
d'(e*Sdk)=—2(F,*F), (4.9

d‘er:dT(%) =0, where w=dU+ ¢dp— pdy,

t _1.4S _
df(dS—Le*Skdk)=(F,G). (4.9 4.13

(Note that the variation with respect to the dilaton field first 1dv B E ©
gives d'dS+3e*(x, k)= 2%F,F). Integrating by parts d'j, = d‘r(___+¢ +dy _2> =0, (4.14)
and using the axion equatig@.8) and the definition ofG 2 V

then yields Eq.4.9). Also note that «,B)* 1=a/\* B for
arbitrary forms of the same degree; hendé&,G)
=%FWG/“’.) Now using the “Maxwell” equationg4.4) and
(4.5, the identity d'(w/V®)=0 and the formula
d'(fa)=fd'a—(df,«) (for arbitrary functionsf and one-
forms «), we can write the axion and dilaton equatigasd) d'jp=d"
and (4.9 in the form of current conservation laws as well,
since

dfjo=d' E—2¢3):o (4.15
Q Y, V2 ’ :

+2¢ ) (4.16

B
deAZdT(GASdK+4¢v+4¢2%)ZO, (4.17)
(F*F)——ZdT<¢ +¢? 2),
Y . R
B E 1)
ti 4t — 4S _ — — — | =
(4.18

whereE andB are defined in terms &, «, d¢, anddy by
Eqg. (4.6). It may be worth noticing that Eq$4.13—(4.16

Qeduce to the corresponding Einstein and Maxwell equations
evaluate the Poisson equatiohl2) and the twist equation (3.7)—(3.10 for vanishing dilaton and axion fields. However,

(AL3), we have to compute the Ricci one-foiR(k). Since for k=S=0, theentire set of equation$4.13—(4.18 is not

the kinetic terms of the axion and the dilaton do not contrib- ~_ . - - .
ute toR(k), we haveR(k) ,=[t,,— %gwt"(,]k”, wheret ,, equwglent to Eqs(3.7)—(3._10), since thg dilaton and_ axion
is the stress-energy tensor of the vector field: equatlons(4:17) and_(4.18) impose additional restrictions to
the vector fieldA. It is for this reason that the coset formu-
1 lation to be discussed below does not reduce to the electro-
- o_ vac coset representation far=S=0.
t [2F oGy~ 9l F.C). (4.10 The remaining equations, which will not be used in the
following, are the Einstein equations for the projection met-
Contracting withk” and using the expressiori4.7), Eqs.  fic p=Vg+k®k. These are again obtained from the reduc-
(A12) and(A13) yield ton formula (Al4), using R,,=8wt,,+2S,S,
+3e*5k,«, . Also taking advantage of the expressi@ni0

—dT< E B w)
(F.G)=d"| ¢ — vy — 2042/

It remains to consider the Einstein equations. In order ta

; dv\ 4 2 fort,,, the Einstein equations fgr become
v :\7<w,w)—\—/(2<|kF,|kG>+V<F,G>), (4.17 L ) ,
(P) = _ = & A
g R Wz(dV@dVH V—z(w®w) V(d¢®E+d¢®B)
an

+2dS®dS+ 1e*Sdk@dk, (4.19

do=—-2d¢/\dy, 4.1 .

@ ¢Ady 4.12 which reduces to E¢3.11) for the EM case.

respectively. The twist equatio@d.12 implies the existence
of a twist potentialU, such thadU=w+ ¢dyy— d¢. The

Poisson equatiof4.11), therefore, also assumes the form of The entire set of field equations, i.e., the conservation
a conservation law, since its RHS becomes laws (4.13—(4.18 and the three-dimensional Einstein equa-

B. Coset representation
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tions (4.19 can be obtained from variations of the effective space as the vacuum Ernst system(BU/SU(1). [In fact,
action Se Wwith respect to the scalar fields using the complex target space coordinatex+ie 25, the
V, U, ¢, ¢, S, «, and the projection metrip, where effective density TD 'dD,D 'dD) becomes(dz,dz)/
R R (z—Z)?, which is the same expression as one finds for the
dv,dv 0,0 d¢,E)+(dy,B vacuum Ernst potential. For axion-dilaton gravity without
Seﬁ:”_R(p)+< VAV | o) (6.8 (dE) p gravity

vV Vv vector fields, the Klaler metric on the target space is, there-
fore, generated by the potential \tg 25); see[29] for de-
tails.]

+2(dS,dS)+ ze*X(dxk,dk) | 7P (4.20 The action(4.20 obviously describes a harmonic map-

ping which is effectively coupled to three-dimensional grav-

[Recall thatw=dU— ¢dy+ yd andE andB are given in ity. This is indeed the case for an arbitrary number of self-
terms of the potentials by EQ4.6),.] Combining the Maxwell gravitating Abelian vector fields coupled to massless scalar
potentials into a vectora=(¢,)", and using the matrix (modulj fields WhiCh form a coset spac¥H. Breite_nlohner_
D defined in Eq(4.6), the effective action assumes the com- €t al.[7] have given a classification of models which admit a
pact form sufficiently large symmetry group, such that #wtire set of
; potentials, i.e., the modukind the vector and gravitational
Seﬁ:f [—R(p)+<dv’dv> +2<w,w> _2<d§ ,Dda) potentials, form a coset spaG/H.

2\/2 V2 Vv The SL(2R) axion-dilaton symmetry is still present in
axion-dilaton gravity with an Abelian gauge field. Like in the
EM case, the system also possesses afl 20symmetry,
arising from the dimensional reduction with respect to the
Abelian isometry group generated by the Killing field.
where the inner product in the last two terms also involvesGal'tsov and Kechkirj11] have shown that the full symme-
the matrix trace. In terms i and the antisymmetric’22  try group is, however, larger than SL{,XSO(1,2). In-
tensore one hasw=w(U,a)=dU+a’e 'da. The Egs. deed, the target space for dilaton-axion gravity with @)U
(4.13—(4.16 are obtained from variations with respect to vector field is the coset SO(2,380(2)xS0(1,2) [12].
the gravitational potential¥ and U and the potentiaB.  Using the fact that S@,3 is isomorphic to Sp(&),
SinceD is symmetric and symplectic, the axion and the di-Gal'tsov and Kechkir{30] were also able to give a param-
laton describe a nonlinearr model with coset space etrization of the target space in terms ok4 (rather than
G/H=SL(2R)/U(1) (see, e.g.[29]). Hence, the variation 5X5) matrices. The relevant coset was shown to be
of the above action with respect @ yields the axion and Sp(4R)/U(1,1), which implies that, in addition to the field
dilaton equationg4.17) and (4.18 and an additional equa- equationg4.13—(4.18), there exists a set dour additional
tion. In fact, one easily finds the following additional con- conserved currentfone of which,j.p, was already con-
served current: structed above from the SL(2) symmetny.
The explicit representation of the target space in terms of

i E 1) the potentials V,U), (¢,4¥), and S,«) is given by the

dfjap=d’ 4KdS+(1—Kze4s)df<+4l//v—41//2w) =0.  symplectic 4<4 matrix P,

(4.22

+<D1dD,D1dD>} 7P, (4.2

Pt P
This formula is, of course, a consequence of the set of field = op1 p+ Qplg)’ (4.29
equations(4.13—(4.18, as can also be verified directly.
However, its integrated version will provide us with an ad-where? and Q are the 2<2 matrices
ditional relation between the charges and the horizon quan-
tities. The axion and dilaton equatiori4.17), (4.18, and ’s e’SV—2¢2 \2¢
t7= P=e" ,
(4.22 assume the fornd' 7=0, where \/§¢ 1
J=D 'dD+4(a"®ea)jy+2[avj—s Yawj)'e],
- T 423 _( —2¢(y+x)=2U 2yt k) 426
and where we have introduced the notations \/E( Yt K
i i j see, e.g9.[31,14. [Our potentials slightly differ from the
J=|. ° A ) jE( _Q)_ (4.24  ones used if14]: The potential pairs f,x), (v,u), and
lao ~lo/ = \le (k,) of [14] are our {,U), (—+2¢,2¢), and (,S),

respectively] In terms of the matrixpb the effective action

[In deriving Eqg.(4.23 we have also used Eg&t.13, (4.15), (4.21) assumes the desired form

and (4.16 to substitute the one-forms/V2, E/V, and
B/V by the current§y, jo. andjp.] Before we proceed, _
we recall some facts concerning the structure of the statiorteft =
ary EMDA system.

Since SL(2R) is isomorphic to SWd,1), the axion and where the trace-free matrisb ~dd comprises four X2
dilaton describe a nonlinear model with the same coset current matrices, three of which are algebraically indepen-

f [—RP+ T 1dd, & dd)] 5P, (4.27)
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dent. A lengthy computation yields the following explicit the electric, magnetic, dilaton, and axion charges, and their
expressions for the latter in terms of the ten currentcounterpartsQy, Py, Dy, and Ay defined on the hori-

in» Ims Jo» Jps Jas Jby JaD, @Ndji—j3: zon:
2in  \2jp 1f lf
-1 -1_ _ Qu=—— *G, P,Py=——
pdop (\/Ejp ja )’ 429 Q.Qn Am)2 m H A )2 H
(4.37
—2jm  —2i;
QP—ldQP—1+d7>7>—1=( , , , (4.29 1 _
\/EJQ JD D'DH:_EfSi,H*(kAJD),
dQ—dPP 19— 9P dP- QP doP 1Q 1
A,AH:_EJ’si'H*(k/\jA). (4.39

( ~2j3  \2j, )
= ) ) . (4.30
\/512 —JAaD
Requiring that botts and « remain finite on the horizon, we

The conservation laws for the currertg,jm.jo.jp.iasip find from the general properties of Killing horizons that
are identical with the field equatiort4.13—(4.18. The con-
served currenjp, arising from the dilaton-axion symme- Dy=0, Aj=0. (4.39
try, was given in Eq(4.22. The remaining additional con-
served currents,j;—j; can be expressed in terms of We recall that the total madd and the corresponding hori-
INvImod =(jQ,jF,)T and the 22 matrixD~1dD as follows:  zon quantityM = (1/47) kA are given by the Komar inte-

- grals overS? andH. In a similar way one obtains the NUT

i1 chargeN and its horizon counterpaM :
. :(D’ldD+21]jM)§+(VD’1—2U8)(1+2st§),

I2
1 1 k
(4.31) __ f S f <
M.My=— Si’H*dk, N.Ny=— & si,Hd ik
js= Tr{a'e[(D~'dD)a+2VD *(j+2jysa) ]} +4Ujy (4.40
+(V2+4Ud)jy. (4.32  We may now apply Stokes’ theoref®.4) to the closed two-

forms (4.33—-(4.36. Adopting a gauge for which the elec-
C. Mass formulas tromagnetic and the twist potentials vanish at infinity,

b= ,=U,=0, we immediately obtain the relations
In order to apply Stokes’ theoref2.4), we have to com-

pute the closed two-forms(k/\j) obtained from the ten N=N,, Q=0Qu—2¢uN, P=P,+2éuN,
conserved currentsy, jms j» J» (j1.j2), andjs, givenin (4.4
Egs. (4.13-(4.16, (4.23, (4.3)), and (4.32, respectively

[see Eq.4.249 for the definitions ofj and 7]. To this end, and

we first express the two-forms arising from the gravitational

and the electromagnetic curren.13—(4.16 in terms of M=My+ Q-+ yyP—2UpxN, (4.42
the two-formstdk, d(k/V), *G, andF (which give rise to

the mass, the NUT charge and the electric and magnetiwhere we have already used E¢.41) on the RHS of the
charges, respectivelyThis is achieved in a similar way as in Smarr formula (4.42, ie., we have replaced

the EM case. One finds SHQu+ YuPH by dQ+ P
K The information from the remaining conservation laws is
w A = _ H
S (kAT =% | kA2 = ld(—) , 43 now extracted as follows: First, we chod8e= k.. =0. (This
(AT ( V2> SRY (4.33 can by achieved by generalized Ehlers and Harrison transfor-

mations; se¢32].) The currentg 5 andjap then coincide at

) ) k infinity and the definitiong4.38 of the dilaton and axion
*(kA\jy)=3*dk+¢yF+ p*G—d| U v (4.39 charges yieldwith a..= (.. .)T=0]

k 1 ) D A
*(k/\jQ)=*G—d(¢v), (4.35 _Efsg*(k/\p daD)=2| , _ ]
. k -1
*(K\jp)=F+d| ¢/ (4.39 fH*(k/\D dD)=0. (4.43

[For vanishing axion and dilaton fields this reduces to thglIn the second integral we have used 439 and the fact
corresponding EM expression8.22—(3.25, since then that k and S assume constant values on the horiyon.
G=F.] The following integrals oveB2 andH=3N" give  Since all potentials can be pulled out of the integrals, we
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are now able to evaluate Stokes’ theorem for the remain-

ing closed two-formsx (k/\J) and*[kA\j;](i=1,...,3)],
using

L*(k/\j,\,):fH*(k/\jN):_‘le,
[0 = [ i = s,

L*(k/\j_):JH*(k/\l)=—47r(Q,P)T.

From the closed matrix two-form(k/\ ) [with 7 given

in Eq. (4.23] we obtain an expression for the dilaton charge

D and two expressions for the axion chaye Combining
these gives

D=¢u(Q+Niyy) — yu(P—Noy),

A= (Q+Ny) + dpp(P—Ney), (4.44
and
N( 4+ i) = duP— Q. (4.45

Stokes' theorem for (k/\j3) [with j5 given in Eq.(4.32] is

easily evaluated, since the trace term gives no contribution
the horizonV=0,(D~'dD),=0] and also vanishes at in-

finity (a.=0). We thus have, from Ed4.32),

N=4U,(M+UyxN). (4.49
Finally, the evaluation of the two-forms (k/\j;) and
*(k/\j,) [with j; andj, given in Eq.(4.31)] yields

Q=2¢n(M+2UyN)—2U P,

P=2yy(M+2ULuN)+2U4Q. (4.47
For vanishing NUT charge, E¢4.46 givesUy=0. Other-
wise, we can solve fdd, and use the result in Eqgt.47) to
obtain the explicit expressions for the potentialg and
Yy in terms of the charge®dl, N, Q, andP. One finds

1 [NQ-MP 1 [NP+MQ
PNl e ) TN e Q)
N\ yM2+N N\ yM2+N

UHz%(\/MZJrNZ—M). (4.48

971

M.=M+iN, Q.=Q+iP, D.=D+iA. (4.50

We have now exhausted all information from the additional
conservation laws following from the coset structure. The
only equation which has not been used yet is the Smatrr for-
mula (4.42). Substituting the horizon valugg.48 for the
potentials into the Smarr formul@.42), we obtain the fol-
lowing expression foMy in terms of the charges:

2|M >~ Q/?
H:W (4.51
Cc
Taking the square of this formuland using Eq(4.49 to
eliminate the|Q|* term] finally yields the desired expres-
sion, MZ=|D|?+|M¢?>—|Qq/?, that is,

( 1
47 KA

For My=0, the above formulas have been obtained for
various spherically symmetric BPS solutions of the EM and
EMDA equations(see, e.g.[14,18, and references thergin
For spherically symmetric configurations with nondegenerate
horizons #0), Eqg. (4.52 was obtained by Breitenlohner
et al. [7], where the term on the LHS was not specified.
More recently, Gibbonst al.[19] were able to establish the
full relation(4.52 for spherically symmetric solutions, using
the generalized first law of black hole thermodynamics. A
version of Eq.(4.52 which also includes the rotation param-
Aier was derived by Gal'tsov and Kechk[d1] for the
dilaton-axion-Kerr-NUT dyon solution. The latter was con-
structed from the Kerr-NUT metric, using the symmetries of
the target space. The relation was also derived by applying
generalized Ehlers and Harrison transformations to the seed
Schwarzschild solutioh18,32.

The above derivation shows that the generalizatibb2
of the Bogomol'nyi equation holds for arbitrary, stationary,
asymptotically flatlor asymptotically NUY solutions of the
EM and EMDA equations. The non-negative term which
transforms the inequalityM?+ N?+ D%+ A%2—Q?— P?=0
into an equality is found to bp(1/4w) k.AJ?. Although we
have established the above results by using explicit represen-
tations of the EM and EMDA cosets, we expect them to hold
in the general case as well. More precisely, we conjecture
that the Hawking temperature of all stationary, asymptoti-
cally flat (or asymptotically NUJ black holes with massless
scalars and Abelian vector fields is given by

2
TH=Z\/2 (Q9*=2 (Qu?,

provided that the field equations assume the fatr), (1.2),
and® is a map into asymmetric space (. HereQg and
Qy denote the charges of the scalé@recluding the gravita-

2

+Q%+P?=M?+N2+D2+ A% (4.5

(4.53

We may eventually use these formulas to eliminate the potional ones and the vector fields, respectively.

tentials from the relation&t.44) and(4.45. A short calcula-

tion gives D(M?+N?)=2NPQ+M(Q?-P? and
2A(M?+N?)=2MPQ—N(Q?- P?). Hence,
ZMCDC:(QC)Z! (4.49

where the complex chargéé., Q., andD, are defined by
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APPENDIX

In this Appendix we recall some identities for Killing
fields. Throughoutk will denote a timelike Killing field
(one-form with normV and twist(one-form w:

V=—(kk), w=3*k/\dk). (A1)
The Lie derivative of an arbitrarg-form « with respect to a
Killing field commutes with the Hodge dual, i.e.,
Lk*a=*Lka, where Lk:ik°d+d°ik. (AZ)
The operatori, denotes the interior produdderivative
which assigns to a« the (p—1)-form (i ka)M2

=, ..
product of the dual ofr with k:
iva=—*(kN\*a),

i * a=*(a/\k), (A3)

where the second identity is obtained from the first one by

replacinge with its dual and using2a= — (—1)Pa. For an
invariant one-forma, L,a=0, Egs.(A2) and (A3) imply
d* (kNa)=—d(i* @) =i, d* @, and hence

d*(kAa)=—(d"a)*k if La=0, (A4)

whered'=xd= is the coderivative operator. The above for-
mula also provides one with a coordinate-invariant formula-

tion of Stokes’ theorem for stationarpput not necessarily
statig spacetimes.

M. HEUSLER

. xQ
where j=——

i
d'j=0, v

and df=i, (.
(AT)

First, by virtue of Eq.(A2), L,Q2=0 and dQ=0 imply
d(i Q2)=0 and thus the local existence of a potentiasuch
that df=i Q). Using this and the identity (A5)
gives d((kIV)A\Q)=—20Ni* 0/V?=2df/\* w/V?
=2d(f* w/V?), where we have taken advantage of the iden-
tity (A6) in the last step. Using EqA3) in the first term
proves the above formula.

As an application of Eq(A7) one can write the Maxwell
equations in the presence of a Killing field in the form of
conservation laws for two current one-forms. The Bianchi
identity and the Maxwell equation imply that both the elec-
tromagnetic two-formF and its duak F are closed. More-
over, assuming thaf is stationary,L,F=0, Eq. (A2) im-
plies thatx F is stationary as well,.,* F=0. Hence, we can
either choosd)=F or Q=*F in Eq. (A7). Introducing the

w
~2f 7

uk". The latter is also obtained from the exterlor potentials¢ and ¢, defined by—d¢=iF anddy=i*F,

respectively, the stationary Maxwell equations become

d
d'jp=0, wherejp= l’//+2gb

vZ

.. . do o
d'jo=0, where]sz—Zsz. (A8)

In the presence of &imelike) Killing field, the Ricci
tensor can be reduced with respect to the projection metric
p=Vg+kok. TheR(k,-) components can also be obtained
from the Ricci identity,

—Ak=d'dk=2R(k), with R(K) ,=R,,K", (A9)

by expressing the Laplacian kfin terms ofV andw. [For a

Kiling one-form one has d'k=0 and, therefore,
—Ak=(d'd+dd")k=d'dk.] To this end, one uses EG5)

in the form

The Frobenius theorem, implying that the hypersurfaces

of constantV are orthogonal t& if and only if the twistw
vanishes, is recovered from the identity

k 1) 2
d(v)=2*<k/\v—z>:—v—zlk*w. (AS)
[This is obtained from Egs(Al) and (A2), which vyield
2i* w=i (kNdk)=—-Vdk—kAdV, since idk=—dik
=dV.] Applying the exterior derivative to the above identity
and using Eq(A2) yields 0=i,d*(w/V?) and thus[since
d* (w/V?) is a four-forn

2
d(vz

The identities(A5) and (A6) also imply the following: Let

(AB)

dv 2k/\
v e

*dkzlk* Vi

(A10)

Applying the exterior derivative to this identity and taking
advantage of Eq(A2) in the first and of Eq(A5) in the
second term gives
d*dk 'ddv lf AN 2k/\d
* = — * — — | % —
Ik v +V2|k w/\w+ V w.

Now usingi,w=0, i*1=+Kk, and the Ricci identityA9)
yields the desired result,

(@,0)

V2 k+ 2%

dv
2R(k):—Ak=[dT<v)

V/\w) .
(A11)

Since the last one-form is orthogonal kp we immediately

Q be a closed two-form which is invariant with respect to thefind

isometry group generated by the Killing fiekd Then there
exist (locally) a functionf and a(curren} one-formj, such
that

(@,0)

+4V

(A12)

dv
2R(k,k)= —VdT<
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kAR(K)=—*dw, (A13) 1
R(X,Y)= vR(k,k)g(X,Y) +RP(X,Y)

where the second equation implies R(k,X) 1

=(1N)(*dw)(k,X), for any vector fieldX orthogonal to ~Hyz(dVedvVtiedw), (A14)

k. Finally, we also recall the projection formula for the re-

maining components of the Ricci tend@] (see, e.g.[24]).  whereR(®) denotes the Ricci tensor obtained from the metric
For X andY orthogonal tok one finds p=Vg+kak.
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