PHYSICAL REVIEW D VOLUME 56, NUMBER 2 15 JULY 1997

Decay of accelerated particles
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We study how the decay properties of particles are changed by acceleration. It is shown that under the
influence of acceleratiofll) the lifetime of particles is modified an@) new processe&uch as the decay of
the proton become possible. This is illustrated by considering scalar models for the decay of muons, pions,
and protons. We discuss the close conceptual relation between these processes and the Unruh effect.
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I. INTRODUCTION the inverse of the neutron decay. Here, the decay products
are heavier than the original decaying particle. Obviously,
Usually, the lifetime of a particle is regarded as one of itsthe missing energy must be supplied by the accelerating de-
inherent and characteristic properties. In spite of its statisticatice.
nature, the decay process possesses a certain regularity ex-The effects discussed in this paper should not come so
pressed by the decay rate or the linewidth. The lifetime ofmuch as a surprise if one realizes that also in other branches
particles such as the pion or the muon can be calculated fromf quantum physics apparently inherent properties of quan-
the knowledge of the fundamental interaction which governgum objects can be modified by external influences. Ex-
the decay(or a suitable model of it Other particles, such as amples are provided by cavity quantum electrodynamics,
the electron or the proton, are regarded as stable; i.e., they adhere it is demonstrated that “constants” such as the spon-
not decay at allin the standard modgl taneous emission rate of an atom or the Lamb shift of energy
In the present paper, we will show that the decay properlevels are changed inside a cavjty]. Elementary particles
ties of particles are less fundamental than commonlare subject to these environmental influences too, as has been
thought. One can manipulate the lifetime of an unstable parshown for the magnetic moment of an electron inside a cav-
ticle by exposing it to a largacceleration e.g., in a storage ity (see, e.g.[2]) or near a topological defe¢8].
ring or a collider. This effect is not to be confused with the It is also known that acceleration can influence quantum
ordinary special relativistic time dilation. Instead, accelerafield theoretical effects in a nontrivial way. The most promi-
tion causes a modification of particle lifetimes with respectnent example is the Unruh effept]: the spontaneous exci-
to their own proper time, i.e., in their accelerated rest frametation of a uniformly accelerated two-level atom. This pro-
A different, even more exciting effect is that supposedlycess is not possible for inertially moving atoms, in close
stable particles can decay under the influence of acceleratioanalogy to the proton decay discussed above. Other ex-
Usually forbidden processes such as the decay of the protaamples of quantum properties that are modified by accelera-
become possible, leading to a finite lifetime for these partion include the spontaneous emission rate of an 6]
ticles. That does not mean that new fundamental interactionand the Lamb shiff7]. We will discuss the connection be-
are involved as in grand unified theories. The calculatiortween the processes considered here and the Unruh effect in
given below stays entirely within the framework of presentlymore detail below.
established interactions. The effect can therefore be regarded We also note that quantum field theory in accelerated
as prediction of the standard model. frames is conceptually closely related to the quantum theory
To illustrate these general statements, we will considein curved spacetimes. There, effects like black hole radiation
three specific processes in a toy model approach: the decaye theoretically derived which have attracted considerable
of muons, of pions, and of protons, interest. However, very few predictions of both theories have
a chance of being tested in laboratory experiments in the
foreseeable futurée.g., the Bell-Leinaas propodd] for de-
tecting the Unruh effeg¢t Some of the effects presented in
this paper appear to be not totally out of the range of experi-
mental possibilities. If detected, they may help in gaining a
pT—ne*v,. deeper insight into the more fundamental aspects of quantum
field theory under noninertial conditions.
The first two processes occur already for nonaccelerated par-
ticles. We will investigate how the corresponding decay rates Il. MUON DECAY
are influenced by acceleration. The third process, proton de-

cay, is forbidden without acceleration. It can be regarded as We first consider a model for the decay of an accelerated
muon:

mo—o€ Vv,

T =0 Vs
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o o, 0, @, 0, o 9, o, The probability amplitude for the decay of the particle
; ‘ ' into a state with definite momentq for the ¢; is given by

A=iG f A= g(K1Koks| W (X) (%) do(X) (X)),
3

where|i) is the initial state containing only the accelerated
V. To obtain the total decay probability we have to sum the

©)
, o squared amplitude over all possible final momenta:
FIG. 1. The decay processes considered in this paper: Scalar

model of (a) muon decay,(b) pion decay, andc) proton decay.

a) b)

Dashed lines denote massless particles; solid lines denote massive pP= E 2 2 |A|2
particles. ki kz K3
pr—etver,. =sz d4x\/—gf d*x’\—g'(i|¥(x)|0)
These are weak interaction processes which are well de- 3
scribed by Fermi's four-fermion contact interaction. We are (0| w(x)IY T (0] p(x)dy(x’)|0).
k=1

mainly interested in the structural features of the

acceleration-induced modifications. We therefore construct a

toy model of the actual physical interaction which simplifies ~ To model the physical situation of a particle beam in an
the calculation considerably. We neglect the complicated@ccelerator, we assume that the initial accelerated particle is
Spin dynamics of Dirac partic|es and consider scalar quanprepared in a narrow beam sufficiently concentrated around
tum fields instead. The Fermi interaction is replaced by ghe uniformly accelerated trajectory. It can be described by a
quadrilinear coupling of the four fields with a suitably cho- wave packet whose center of mass follows this trajectory.
sen coupling constar®. As a result of this simplification, Electric or magnetic fields prevent its spreading. E€K)

we will be able to evaluate the modification to the inertial denote the mode function corresponding to the initial state of
decay rate analytically and to give an estimate of their rela¥. Then Eq.(4) becomes

tive magnitude.

In our scalar model, we are dealing with the process , : ,
shown in Fig. 1a): ’ P P:sz d"'x\/—gf d*x’ V=g’ fr (x)fi(x")

V— d10203. (1)

HereW denotes the decaying massive particle while the de-
cay productse,, ¢,, ¢ are assumed to belong to three o .
different scalar particle species. As the textbook calculatiorf*S S€€n from the accelerated frame, the particle is essentially
of the muon decay showsee, for exampld9,10]), the elec- at rest. Its energy in th|§ frame is therefore just the rest mass
tron mass can be neglected to a good approximation, th¥» and the wave function can be written as
corrections being only of the ordelrn(a/mﬂ)z. We will adopt .
this approximation in the following; i.e., all three final par- fi(x)=hi(x(m)e ™. 5
ticles will be regarded as massless. In this paper, capital
Greek letters generally denote massive particles, while smahlere, 7 denotes theproper timewith respect to the acceler-
Greek letters mean massless particles. ated trajectoryx(7) = (t(7),x(7)). The functionh;(x) gives

In the standard treatment one starts from Fermi's goldethe spatial form of the wave packétee, e.g.[11]).
rule and determines the decay rate by evaluating the momen- Because we have assumed a very narrow wave packet, the
tum integrals over the phase space of the decay products. Werrelation function of thep fields in Eq.(4) can be evalu-
will choose a different approach because it turns out that thated essentially along the trajectotyr) of the ¥ particle.
usual procedure is quite impractical for treating accelerateVe therefore write
particles. We will instead use a Green’s-function-based for-
malism. ) M)
To describe the decail) we assume an interaction of the P=G Kf de dr'e
form

3
><klj1 (0] i (X) i(x")|0). 4

3
L£,=GW (X) b1(X) do(X) pa(X) -0, 2) ><kl:Il (0] pi(t(7), (7)) P (t(7"),x(7'))[0),  (6)

whereG is the coupling constant and=(t,x). All fields are )

real scalar quantum fields. The theory defined by this interWith

action is not renormalizable, in accordance with the original )

Fermi theory. This will not represent a problem for our cal- _ 3y [T 03

culations since we are only interested in tree-level processes. K=| | aXV=gEh ) (@)
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The quantityx depends on the detailed shape of the wave . °
packet. Its exact value will not be necessary for our purposes,
but for physically realistic wave packets, it is of order unity.
Finally we note that the vacuum expectation value of the 7}
product of field operators is just the Wightman function

8

G+(X'X’):<O|¢(X)¢(X’)|O> Al
1 d3k _ _ _ Al
:2(277)3f w_kexq_'wk(At—m)ﬂkAx], _

®

where At=t—t' and Ax=x—x’. Its explicit form for real 1t
massless scalar fields is given {see, e.9.[12])

0 L L L L L

0.2 0.4 0.6 08 1 aM 1.2
GH(x,x")=— ! 5 , 12 5. 9 FIG. 2. Decay rate in the scalar model of the muon decay. The
(2m)? (At—ie)*—|AX| rate is shown in units 062x/(64(27)°) as a function of/M.
For all stationary trajectorieéwhich follow the orbit of a G2%k
timelike Kiling vector field, the Wightman function l'o=3540.5 (15

G*(x(7),x(7")) depends only on the proper time interval
u=r7—7'. In this case, it is useful to divide out an infinite is the decay rate of the unaccelerated particle in our scalar
proper time integral and to consider the decay fatee., the  model. It depends on the coupling constant and on the quan-

transition probability per unit proper time: tity . Since it appears as a common factor for all terms in
Eq. (14), its numerical value is unimportant for our purposes
G2k (= 1 because we are only interested in tiedative magnitude of

I=- @ ,deéMu[(At—ie)2—|Ax|2]3' (100 the corrections to the inertial decay rate.
A plot of ' as a function ofa/M is shown in Fig. 2. We

. L . . , see that the decay rate increases monotonically with the ac-
This equation is the starting point for our calculation of the cg|eration. For small accelerations, however, which are ex-

lifetime of an accelerate¥ particle. The fact that the decay perimentally relevant, the acceleration-induced modification

rate considered here refers to the proper time in the accele@—rOWS only quadratically witha [cf. Eq. (14)], making the
ated frame shows that the special relativistic time dilation iSs¢fect difficult to detect in this regime. '

automatically included when a transformation to the labora- | ot s estimate the magnitude of the effect for accelera-

tory time is performed. _ tions that can be achieved in present experiments. From Eg.
In the following, we will concentrate on a uniformly ac- (14) e see that the modification of the decay rate from its
celerated particle which follows the trajectory inertial value is governed by the dimensionless parameter

alM=a/[ (5% 10?° m/$) X (mass in MeV). This indicates
that very large accelerations are needed for an appreciable
effect. The situation is not hopeless, however. Muons can be
(11) accelerated very efficiently in storage rings or ring colliders
) where they are subject to a large circular acceleration. This
Using kind of acceleration has a similar effect as the linear accel-
eration considered here.
(At—ie)?— |Ax|2=izsinhz(é(r— T’)—ie), (12) _At the moment, the lifetime of the muon can be measured
a 2 with an accuracy of 10° For a detection of the
acceleration-induced modification of the decay rate, the ef-

t(r)=§sinr(ar), z(r)=%cosr(ar), x(7)=y(7)=0.

we have to evaluate fect had to be larger. This is achieved &M = 0.0014 or, if
, we insert the muon masa=7X 10?’g. This must be com-
- Gk a - dudMu 1 pared with the acceleratiom~10' which has been

(27)° 64) . {sin (a/2)u—ie]}®" achieved already 20 years ago at CERN’s muon storage ring

(13)  (Ref. [13] contains a precision measurement of the muon
lifetime obtained at this facility or with a~10%’g at the
The integral can be easily calculated by closing the integraprojected Brookhaven muon-muon collider. Since none of
tion contour at Img)=2mi/a. We obtain these rings were designed for a large acceleratighich
even leads to undesirable synchrotron radigfitmere seems
to be some chance of observing the present effect in future
experiments.
We want to stress again that the present calculation can-
where not yield exact numerical predictions since it approximates

2
+4

. (19

1 a a
I'=To7—g=zamra 1+5| IV
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fermionic particles by scalar quantum fields. Neverthelesscan be found. These contributions are subtracted from the
we can expect to get at least an estimate of the order adriginal integral in Eq.(20), leaving a well-behaved inte-

magnitude of the effect. grand which is finite ak=0 and can be treated with the
usual numerical methods. To obtain the decay rate, the ana-
IIl. PION DECAY lytically calculated integrals of the singular parts must be

. _ added to the numerical result so thats determined accord-
Let us now consider the decay of an accelerated pion: ing to

+ +
T = U V.

F=j dx{ (original integrang— (singular party]

As in the previous section we will simplify the analysis by

treating a scalar model of the procé&sg. 1(b)] + (integral of singular pars (21
VD, (16) For our particular integral20), the singular parts of the
integrand areG2xkmA(™/(2)* with

An acceleratedV particle decays into a massive; and a 23 (= PP m
masslessp, scalar field. The decay is described by the in-  g(m—_—_ X+ —(1—2y—im)
teraction Lagrangian 8m) _.. " [sinh(x—ie)] 8

o i2Mx/a

£,=G¥(X)D1(X) b2(x) V0. (17 « f e (22
2
w [SiNh(x—ie€)]

We use the same model assumptions as before and arrive at

the analogue of E(q6): 2k+1

s, (—1)
_ZE '(k+1)'

P=G2Kf drf dr’eMT=7)(0|®  (x( 7)) D1 (x(7'))|0) . n
xf dxéz""x’aln(—sinr(x—ie))
X(0| po(X(7))po(x(7'))|0). (18 - a

H i 2k—-2
The Wightman function for the massive scalar field is more X[sini(x=ie)] ' (23

complicated now than in the massless case: wherey is Euler’s constant. The integrals used for the imple-
mentation of the above calculation scheme are

Ki(my[AX[*—(At—i€)?)

22m? AP (At ie? Z<w>:a_3J°°dx—
(19) 1 8mJ_. [sinh(x—ie)]*

<O|(D1(X)(D1(X’)|O>: ei2Mx/a

where K, is a modified Bessel function. If we insert the — ™ (a2+M?)[1—e27M/a]-1
uniformly accelerated trajector{l3) and consider the rate 3m '
with respect to the proper timg we arrive at the expression

: ma e|2M></a m
2 V== —| dx In x—ie)
T'=—j Gk Wma J dXéZMX/a 4 (X [ )2 ( )
2m)*
m
HP[(2m/a)sinh(x—i€)] —Wm'\"{l 7—'§+'”(2M”
- . 3 y (20)
[sinh(x—ie€)] oM/
Tﬂ) am 1o - J—w g e|2an
’ . . - - - Y 12
wherex=a(7— 7')/2 andH{® is a Hankel function of the =g (Im2ymim | X[sinhx—ie)]
second kind.

The integral in Eq(20) cannot be evaluated analytically __r M(1—2v—im)[1— e 2mM/ay-1
because the hyperbolic sine in the argument of the Hankel oM ( y-imll-e I
function leads to a very complicated branch cut structure.

Instead, we have used numerical methods. However, even 7t — ma m?| (= | m\ _uya

the numerical integration of E¢20) turns out to be exceed- 4 12 * 8al |_. n EX €

ingly difficult because of the highly singular nature of the

integrand ak=0. To circumvent this difficulty we adopt the B ma2 m?

following strategy: Using the ascending series expansion T \leM 4|\/| Inj — +7 : (24)

aroundx=0 of the Hankel functiorfsee Eqs(9.1.10 and

(9.1.19 of Ref.[14]], we isolate all contributions of the in- Some further remarks concerning the numerical treatment
tegrand in Eq.(20) which are singular ak=0. They can are in order: First, fox— *<, the integrand is oscillatory
either be treated analytically, or a solvable auxiliary integralwith monotonically decreasing magnitude. This is difficult to
which has the same singularity structure as the original onbandle for ordinary integration routines. We have therefore
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5 ' ' ' ; ' ' — lifetime, although the slope of the curves is very small for
r low accelerations.

I - Figure 4 shows the decay rate as a function of the mass
ratio m/M for fixed acceleratiora/M. The solid line corre-
sponds to the inertial decay rate 0. For nonaccelerated
- particles no decays are possible for whitt»M; i.e., the
decay product ikieavierthan the decaying particle. The fig-

] ure shows that this is possible for accelerated particles. This
is one of the main results of the present paper.

To get an estimate for the absolute magnitude of the ef-
fect, we note that the modification of the pion decay rate
amounts to 1% for/M~0.03, i.e.,a=2-10°° m/s?. This is
far above the presently achievable accelerations.

0 072 074 ofe ofe 1I 172 174 am 18 IV. PROTON DECAY
A most intriguing effect is that particles which are usually
units 0fG2x/(2)*. The curves from top to bottom show the decay considered to be stable can decay if they are accelerated. As

rate as a function of the acceleratianM for different values of a prototype of such a process, we consider the decay of the

m/M= 0, 0.2, 0.5, 0.757, 1.0, 1.2. The solid line corresponds to thepmton via the reaction
ratio of muon to pion mass.

FIG. 3. Decay rate for the proce¥s— ®, ¢, (“pion” decay) in

p*—ne’v,. (25

used fast Fourier methods to compute the integral at larg&his “inverse neutron decay” does not occur for inertial
|x|. Second, very close to the origin numerical extinctionprotons because the sum of the rest energies of the decay
occurs and the integrand cannot be reliably evaluated. This roducts is greater than the proton mass itself. In this section,
circumvented by fitting the integrand to a cubic polynomialWwe will show that this process is possible if the initial proton

in this region. In spite of the smoothness of the integrand thiés accelerated and give an estimate of its magnitude.

is the main source of error in the integration scheme. Finally As in the previous sections, we consider a scalar model
we note that the decay rate given by ERQ) is formally a  [Fig. 1(c)]
complex quantity. The condition Ih()=0 can serve as a
consistency check and provides an estimate of the numerical

error in the actual calculatipn. . . ___ with the interaction Lagrangian
The results of the numerical integration are shown in Figs.

3 and 4. Figure 3 displays the decay rate ofdhearticle[in L£,=GW (x)®1(X) da(X) b3(x)V—g. (27)
units of G?«/(2)*] as a function of the acceleratical M

for different values of the mass ratim/M. The solid line  The model differs from the one of Sec. Il only in th&y is
corresponds to the ratio of muon to pion mas., now a massive scalar fieldn(denotes the mass df,, while
m/M=105.7 MeV/139.6 MeV). Generally, the decay rate the mass of the initial’ is M). Again, this fact leads to
decreases as the mass of the decay product(figes top to  considerable computational difficulties.

bottom). A larger acceleration leads to a reduction of the The decay probability is given by

V—®d,03 (26)

25 T ' T ' ' P:GZKJ drf dT,eiM(T_T,)<O|(D1(X(T))(I)1(X(T'))|O>
2
xk[[l (0] i (X(7) i (X(7'))| 0. (28)

If we insert the explicit expressions for the Wightman func-
tions evaluated along the accelerated trajectory, we obtain
for the decay rate

i . o Gora'm fw dXéZMX/aH(lz)[(Zm/a)sinr(x—ie)]
= 64(2m)°) .. [sinh(x—ie)]>

0 \\\;_\;__» ----- e (29)

As in the previous section, the integration must be performed
05 - v - - ” " . numerically, and we can use the scheme developed there. We
M use again the ascending series expansion of the Hankel func-
FIG. 4. Decay rate of the “pion” decay as a function of the tion to isolate all contributions which divergeﬁFO. These
mass ratian/M. From bottom to top, the curves are f@=0, 0.2,  contributions are in the present case given by
0.5, 1.0. G2kmAP/64(27)°, where
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. gi2Mx/a 2 2 (_1)k

- a I L _ _ e
AP=— m wdx[sin—r(x—ie)]GJrEk:O K+ 2 fﬁxdxe' In gsmr’(x—le) [sinh(x—ie)]
1t — 1)k [\ 2k+1 1 " ‘
T aA ﬁ(g) (2¢(k+1)+m—irr f_deéZMX/a[Sinf'(X—ie)]2k_4, (30)

where (k) is the logarithmic derivative of thE function. Put together, the following integrals possess the same singularity
structure ax=0 as the original integrand and can therefore be subtracted from the latter to obtain a finite integrand for the
numerical integration routines:

2m (= . In[(m/a)|x—ie 2 In[(m/a)|x—ie 1 1 . 0(—x 2. 6(—x
Z.g-p):_ dXéZMX/a [( | 7 |]__ [( | > |] - i 2—|7T ( i )4+—|7T ( i )2
T )~ (Xx—1ie€) 3 (x—1ie€) 6 (x—ie) (x—ie)* 3 " (x—ie)
8m(M\3 11 66l m 3 16m/(M\[3 | ar
%ala yOaM) ™ T Ea\a|a Y T Mam) T 2)
a I~ eiZMx/a 8M M 2 4
P _ = — 45 ] 42 _ a—27M/ay-1
73 m _ocdx[sinr(x—i:s)]6 15m[4 5<a a }[1 © I
me (= e?2M¥a 4m3M m ar
p)— _ SR (X —1 = — v+ PR [,
73 wa3ffmdx(x—ie)2|n a X Ie)) a* [1 yHin 2M> '2}’
20— 44m . 2m3+ m° le m\ e [ 44m 2m*  m° o (M
4 =\ 257a " 3wa® 3wa®) ) . \a”)® |\ " %57a 37a® 3| Y M\ m) |
m o ei2M></a 8mM
P (1—Dm—i v — _ 2 2 I, PO _ a—27M/aj-1
7! —(1-2y |w)f_ocolA[Sirm(X_i6)]4 37 (@M (1-2y—im)[1l-e 171,
m3 5 % eiZMX/a 2m3M / 5
P |2 _9a_i X - _ T, P _ a—27M/ay-1
6 ~2mall2 %Y '”)de [sinhx—ie)]2 at 2727 '”)[1 € e
|
where 6(x) is Heaviside’s function. the ratioa/M is exceedingly small. For example, the circular

The numerical integration leads to the results shown iracceleration achieved at the CERN Large Hadron Collider
Figs. 5 and 6. Figure 5 shows the decay rate ofithearticle ~ (LHC) will only lead to a/M~10"*% Since in the limit
as a function of the accelerati@iM. The rate is plotted in a/M—0 the expressions used in the numerical treatment do
units of G?«/(64(2)®) for various choices of the mags  NOt behave well, we cannot directly calculate the decay rate
of the decay product. The solid line corresponds to thefor such a small value ai/M. Instead we have to resort to a
neutron/proton mass ratioVM =1.0014. As expected, the Nnumerical extrapolation of our data. We find that the slow
rate is zero fora=0 and rises very slowly with increasing "SIN9 of the solid curve in Fig. 5 is well described for small

a. The top curve is fom=0; it is identical to the one dis- &M by (a/M)*. If we assume the validity of this behavior
played in Fig. 2 down toa=0 we find 13° years for the proton lifetime at

In Fig. 6, the decay rate is shown as a function of theLHC accelerations. Although this estimate gives a smaller

mass ratiom/M. The solid curve corresponds &0=0 and I'Egmri ma;‘ttr?e c;?e {)ire(i:cter(]j tby grr:;ntljl :Jngle((jj t?ec;ngls, It/\lls
vanishes fom>M. The curves foa>0 show that under the V%€ atthe efiect 1s much too sma' to be detectauie. e

influence of acceleration, the decay is possible even if thé)nly mention that we obtain for the proton lifetime at earth’s

decay products are heavier than the initial particle. acceleration approximately 1byears.

Getting a numerical estimate of the size of the effect is
somewhat more difficult than in the previous sections. There,
the acceleration-modified decay rates could be directly com- Let us finally discuss in more detail the relation between
pared with their inertial values. However, for the “proton” the effects presented in this paper and the Unruh effect. In
decay considered here, there is no effecdat0. Therefore, the latter, one considers a two-level system accelerating
we calculate in our model the decay rate of a neutron at resthrough the quantum vacuum. If it is prepared in the ground
which is analytically possible, and adjust our coupling con-state initially, there is a nonvanishing probability to find it in
stants to the experimentally known value of the neutron lifethe excited state at some later time. An acceleration-induced
time. The estimation of the proton lifetime is further compli- spontaneous excitation has taken place which is forbidden at
cated by the fact that even in the largest proton acceleratora,=0.

V. CONNECTION WITH THE UNRUH EFFECT
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L L L L L L L
0 0.2 0.4 06 0.8 1 1.2 1.4 WM 1.6 -1 L L L L L
m/M

FIG. 5. Decay rate for the proceds— @, ¢, ¢ (model for the
proton decay p—ne‘v.). The rate is plotted in units of
G?k/(64(2m)®) as a function of the accelerati@iM. The curves
correspond to different mass ratios/M (m/M=0, 0.2, 0.5,
1.0014, 1.2 from top to bottomThe solid line corresponds to the
neutron/proton mass ratio.

FIG. 6. Decay rate for the proce¥s— ®, ¢, 5 as a function of
the mass ration/M. From bottom to topa/M = 0 (solid line), 0.2,
0.5, 0.8, 1.0.

theory, we have investigated the decay of the muon and of
the pion. With regard to a possible experimental realization,

The direct analogue of this effect is the proton decay disthe modification of the muon decay rate appeared to be the
cussed in the previous section. The two levels are replacg0St promising candidate. Furthermore, we have shown that
by the rest energies of proton and neutron. The spontaneo&'é‘der the influence of a sufficiently large acceleration, the

excitation occurring in the Unruh effect corresponds to theProton becomes unstable and can decay via an inverse neu-
transition where the initial statéproton has a lower rest (ron decay process. The estimate of the decay rate showed,
energy than the final stat@eutron. This similarity shows however, that enormous accelerations are necessary to detect

up already at the formal level. In the evaluation of the Unruhthis effect. _ o .
effect, for example, the Fourier transformation of the Wight-  The effects derived here have nothing in common with
man function has to be evaluated along the accelerated tripe classical speC|aI—reIat_|V|st|c pme dllatlo_n which can be
jectory (see[12,15)). Equation(28) shows that in the calcu- understood from purely klnerjnancall reasoning. Instgad th.ey
lation of the proton decay, the product of three Wightman@'® of quantum field theorethal origin. .Moreover, in their
functions appears, one of them corresponding to a massivéervation no nonstandard particle physittse grand unified
field. The difference in the calculation schemes comes frontheories enter. Therefore, the effects are a direct prediction
the fact that a simple two-level approximation would be too®f quantum field theory in accelerated frames. Apart from
crude for the quantitative evaluation of the proton decay. AP€INg interesting in its own right, this theory may also help
correct treatment must take into account all possible finaf® Understand the quantum theory in curved spacetime more

momenta of the decay produdishich are integrated out for thoroughly. o . .
finding the total decay rate The results presented in this paper are derived by approxi-

The processes discussed in Secs. Il and Il are not forbidNating Dirac particles with scalar quantum fields. Although
den inertially. Instead the rates of existing decay channels ai¥€ can gain a qualitative understanding of the physical pro-
modified under the influence of acceleration. Strictly speak€€Sses in this way, the numerical predictions derived with
ing, these reactions are not analogous to the Unruh effect b§t/Ch @ model can only be regarded as rough order-of-
to the modification of spontaneous emission which wagnagnitude estimates. An important next step is therefore to
found in Ref.[5]. There, an inertially existing procegspon- obtain more quantitative statements by basing the calculation

taneous emissioris modified in the presence of acceleration O" Dirac fields and the Fermi interaction. A further interest-
in a similar manner as the particle decays discussed in th@9 question is how decay processes are influenced by space-
present paper. time curvature(instead of acceleratignThis may have im-

portant consequences in the early universe where such
curvature-induced correctiorier new processgsnay influ-

VI CONCLUSION ence particle reactions in a non-negligible way.

We have studied how the decay properties of particles are
modified by acceleration. We have shown tkibt the life- ACKNOWLEDGMENTS
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