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A nonperturbative approach to quantum theory in curved spacetime and to quantum gravity, based on a
generalization of the Wigner equation, is proposed. Our definition for a Wigner equation differs somewhat
from what has otherwise been proposed—it being an extension of methods from Yang-Mills theory in flat
spacetimes. It is an exact equation, equivalent to the Heisenberg equations of motion. The approach makes
different approximation schemes possible; e.g., it is in principle possible to perform a systematic calculation of
the quantum effects order by order. The method is illustrated with some simple examples and applications. A
calculation of the trace of the renormalized energy-momentum tensor is done, and the conformal anomaly is
thereby related to nonconservation of a current ind52 dimensions and a relationship between a vector and an
axial-vector current ind54 dimensions. The corresponding ‘‘hydrodynamic equations’’ governing the evolu-
tion of macroscopic quantities are derived by taking appropriate moments. The emphasis is put on the spin-1

2

case, but it is shown how to extend to arbitrary spins. Gravity is treated first in the Palatini formalism, which
is not very tractable, and then more successfully in the Ashtekar formalism, where the constraints lead to
infinite order differential equations for the Wigner functions.@S0556-2821~97!03414-0#

PACS number~s!: 04.60.Ds, 04.62.1v, 11.15.Tk

INTRODUCTION

One of the greatest problems we are facing in physics
today is gravitation: as is well known we do not possess a
well-behaved theory of quantum gravity. Even semiclassical
gravity, i.e., quantum field theory in curved spacetime, where
the gravitational field is kept as a classical background, is not
that well behaved. It seems that perturbation theory is just
not applicable to problems involving gravitation; hence, new,
nonperturbative approaches have to be found. In this paper,
inspired by recent results in QCD~especially the study of
quark-gluon plasmas!, we propose a nonperturbative ap-
proach based on the Wigner operator. The equation govern-
ing the behavior of this operator is completely equivalent to
the Heisenberg equations of motions for the fields. This
Wigner equation is the quantum analogue of the classical
Boltzmann or Vlasov equations@1–3# and thus allows for a
better intuitive understanding of the problems, since it pos-
sesses a well-known classical analogue. Start with a flat
spacetime manifold and a Dirac spinor fieldc(x) on it. In-
stead of just looking atc(x) or its Fourier transformc̃(k)
we consider a ‘‘distribution’’W(x,p) which is a functional
of c and depends explicitly on bothx and p. This ‘‘distri-
bution,’’ the Wigner operator, is, however, a nonpositive op-
erator, which is why we put the term ‘‘distribution’’ in quo-
tation marks. The explicit form is given in the next section; it
is essentially a kind of Fourier transform of the density ma-
trix. The Dirac equation forc gives rise to an integro-
differential equation forW, which is readily generalized to
curved spacetimes. This allows us to attack the problem of
fermions in curved spacetime from another angle than usual
quantum field theoretical techniques and, furthermore, allow
us to write down other approximation schemes. When the
background is classical, i.e., when dealing with quantum
field theory in curved spacetime, the integrations can be per-
formed and one ends up with an infinite order differential
equation.

The next step is naturally to write down a similar equation
governing the gravitational fields. Since fermions causes tor-
sion @4,5#, it would at first sight seem convenient to intro-
duce two Wigner operatorsGmn

ab;cd and Lmn
ab for the spinor

connectionvm
ab and the vierbeinem

a , respectively. These
Wigner functions will not, however, be covariant, thus intro-
ducing an unwanted gauge dependency. In the Ashtekar for-
malism instead, we can introduce two covariant Wigner
functions: one for the SU~2! connectionAi

a and one for its
conjugateEi

a . In both cases, however, the equations become
highly complicated and we will not be able to say much
about them. We will basically, in this paper, consider the
background geometry as fixed~semiclassical quantum grav-
ity!. Let us note that such an approach should find many
applications: Hawking radiation, the early universe, etc. We
will not, however, deal so much with these applications in
this paper.

This is not the first time the powerful Wigner-equation
methods have been suggested as a framework for quantum
fields in curved spacetime. Some earlier work by Calzetta
et al. and Kandrup@6# uses either Riemann normal coordi-
nates or a mode-decomposition~which only works for static
spacetimes!, they also show the connection between this ki-
netic approach and the usual path-integral or Green’s
function-based approach; the Wigner function can be ex-
pressed as a Fourier transform of a two point function with
respect to the middle point between the two points~the pre-
cise relationship is given in the next section!. In general,
neither the Fourier transform nor the concept of a middle
point makes sense in a general curved background, at least
not in a coordinate-independent manner. Therefore, one
could attempt to use Riemann normal coordinates in order to
be able to definex2x8 for x,x8 points on the manifold, or
one could make use of a mode decomposition of the solu-
tions to the equations of motion of a free field to generalize
the Fourier transform. Neither of these two approaches are
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completely general, although they do represent useful calcu-
lational short-cuts. Winter@7# has proposed an approach
similar to the one put forward here in which one integrates
along curves~geodesics, to be precise!. But his approach
needs the solution of the geodesic as well as the geodesic
deviation equations, a daunting task in general. This again
essentially restricts the usefulness of his method to Riemann
normal coordinates or to other approximation schemes~first
quantum corrections to the classical kinetic equation!. The
solution of the geodesic equation is not needed for the ap-
proach presented here, even though we use parallel transport
along geodesics at an intermediate stage. This parallel trans-
port along geodesics is, however, not in general possible,
since two arbitrary points on a manifold need not be con-
nected by such a curve. In a general background, only points
within a normal neighborhood will be connected by a~then
unique! geodesic. In this respect the method put forward here
is not more general than what has already been done. What is
new, however, is the derivation of the kinetic equations and
some of the results which we can draw from them.

Halliwell, Gell-Mann, and Hartle, and also Huet al.have
shown that the Wigner function appears naturally in a quan-
tum theory of histories@8# such as, for instance, quantum
cosmology; it is the only setting in which the Wigner func-
tion of the gravitational degrees of freedom has been studied.
It is quite natural to extend the Wigner function to the
Wheeler-DeWitt equation using the analogy with the nonrel-
ativistic Schro¨dinger equation, and is then a very useful tool
for studying precisely the enigmatic quantum to classical
transition. In this paper, however, we will attempt another
approach setting up Wigner functions for the gravitational
fields in analogy with what has been in done in Yang-Mills
theory earlier.

It should finally be mentioned that Fonarev too, has ex-
tended the Wigner function technique from flat spacetime to
a curved background@9#. Similar to the approach proposed
here, he uses the structure of phase space as a cotangent
bundle; our result, however, is much more closely related to
the analogy with Yang-Mills theory. He furthermore empha-
sizes the case of the scalar field, whereas this paper mostly
studies spinor fields, with some comments on the gravita-
tional field. The derivation of the conformal anomaly and of
the ‘‘hydrodynamic equations’’ are also new.

Most of the calculations are done ind54 dimensions for
concreteness but are valid for alld. In some particular cases
the cased52 is also considered.

THE METHOD

We start out by considering the spacetime geometry as
being fixed; i.e., we begin by studying quantum field theory
~QFT! in curved spacetime. Our main source of inspiration
are the papers by Vasak, Gyulassy, and Elze@10#, in which
the Wigner operator formalism is derived for Dirac fields
interacting with Yang-Mills fields. We will give a brief in-
troduction to their results here, as this will indicate how to
generalize to curved spacetime.

Consider a second quantized Dirac fieldc(x). The
Wigner operatoris defined to be@2,10#

Ŵ~x,p!5E e2 iy•pc̄ S x1
1

2
yD ^ cS x2

1

2
yD d4y

~2p!4
; ~1!

note thatŴ takes values in the Clifford algebra, a point we
will use later. This definition can be made gauge invariant by
replacing

cS x2
1

2
yD5e2 i ~1/2!y•]c~x! ~2!

with the gauge-covariant generalization

cS x2
1

2
yD[e2 i ~1/2!y•¹c, ~3!

where ¹ is the ~gauge! covariant derivative. Writing
x6[x6 1

2y we can write

Ŵ~x,p!5E e2 ip•yc̄ ~x1!U~x1 ,x! ^U~x,x2!c~x2!
d4y

~2p!4
,

~4!

where

U~b,a![PexpS 2 igE
a

b

Am~z!dzmD , ~5!

whereAm denotes the Yang-Mills field, and the path of inte-
gration is a straight line,z(s)5a1(b2a)s, which goes
from a to b ass goes from 0 to 1. The Dirac equation then
implies the following equation forŴ:

Fm2gmS pm1
1

2
i¹mD GŴ5

1

2
iggmX̂mŴ, ~6!

whereX̂m is an integral operator involving the field strength
tensor,

X̂mŴ[2
]

]pn
F E

0

1S 12
1

2
sDe2[ i ~12s!/2]nFmnŴds

1ŴE
0

112s

2
e~1/2!isnFmndsG , ~7!

where we have introduced thetriangle operator

n[
]

]p
•¹. ~8!

It is understood that the derivative with respect to momen-
tum always acts on the Wigner distributionaloneandnot on
any of the other terms.

One should also mention the relationship to the Green’s
functions. If G(x,x8) denotes the Green’s function
G(x,x8)5^ c̄ (x)c(x8)& then the Wigner function can be re-
written as

W~x,p!5^Ŵ~x,p!&}E e2 iy•pGS x2
1

2
y,x1

1

2
yDddy,

i.e., as a Fourier transform of the two point function with
respect to the distance between the two points. This shows
the relationship with the more familiar approach to quantum
theory using Green’s functions.
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The curvature two-formFmn appears through the ho-
lonomy, i.e., through reexpressing the derivative of the par-
allel transporter in the principal bundleU(b,a) in terms of
an integration along a closed curve. The above equation ac-
tually holds forAm

k being an operator, but for a classical
background one can pull the field strength tensor out of the
integral overy to obtain

X̂m5p21/2
]

]pn
FmnF j 0S 12n D2 i j 1S 12n D G , ~9!

where j 0 , j 1 are the usual spherical Bessel functions
j 0;J1/2, j 1;J3/2. We will now analyze this equation and the
steps leading to it.

First the obvious translations: the gauge field is replaced
by the spinor connectionvm5vm

absab , whereby the gauge
covariant derivative becomes the spinor covariant derivative
and the field strength tensor becomes the Riemann-
Christoffel curvature tensorRmn

ab . Let us next consider the
path of integration. In flat space we integrate along the
straight line fromx25x2 1

2y to x15x1 1
2y; i.e., we go in

the direction6y from x for a ‘‘period of time’’ 1
2iyi . The

curved spacetime analogue is now obvious:y is a tangent
vector, and we integrate along the~unique! geodesic with
tangent6y at x, the length of the curve segment at each side
of x is 1

2iyi . Note that this simplifies things a lot:a priori we
would have expectedy to lie in the manifold, but now we see
that it really lies in the tangent space. Hence for each given
point x in the manifold we integrate over all possible tan-
gentsy lying in the tangent space atx, TxM , which is a flat
space. This means that we keep the measured4y/(2p)4. To
summarize, in flat spacetimex,y,p all belong to the same
space, whereas in curved spacetimex is in the manifold,y in
the tangent space and,p in the cotangent space. The dot
product y•p is then just the pairing betweenTxM and
Tx*M . What we have done is to make extensive use of the
intimate relationship between Yang-Mills theory as a theory
of connections on a principal bundle and general relativity as
related to connections on the frame bundle@5,11–13#.

We will follow customary notation and denote flat space
indices by Roman letters from the beginning of the alphabet,
and curved spacetime ones by Greek letters. In curved space-
time, the Clifford algebra relation$gm ,gn%52gmn implies
that the Dirac matrices are in generalx dependent; we intro-
duce the vierbein as the transformation connecting them to
the usual flat~constant! Dirac matrices@4,5#:

gm5em
aga . ~10!

The connection between ‘‘curved’’ and ‘‘flat’’ indices is es-
tablished by this vierbein. The covariant derivative then
reads@5#

¹m5]m1vm
absab , ~11!

with sab5
1
2i @ga ,gb# the generators of the Lorentz algebra

so~3,1! in the spinor representation, and is the analogue of
the generator of the gauge algebra in the Yang-Mills case.
The spin connectionvm

ab is related to the Christoffel symbol
through

vm
ab5hcaec

ner
bGmn

r 2hcaer
b]mec

r , ~12!

and it is this quantity which is the analogue of the Yang-
Mills potentialAm

a . Even though we deal with fermions, we
will in general assume that no torsion is present, i.e.,
Gmn

r 5Gnm
r . This is a valid assumption since torsion does not

propagate and since we only want to deal with fields in a
given classical background.

With these comments the Wigner operator equation now
reads

Fm1gmS em
a pa1

1

2
i¹mD GŴ52

1

2
kgaX̂aŴ, ~13!

where now

X̂aŴ[
1

Ap
ea

m ]

]pn
F j 0S 12n D2 i j 1S 12n D GRmn

bc $sbc ,Ŵ%,

~14!

with the triangle operator given by

n[ea
m ]

]pa
¹m . ~15!

The curly brackets denote an anticommutator. Both the cur-
vature two-form and the Wigner operator are Clifford alge-
bra valued, thus the Clifford algebra and not only so~3,1!
appears here as the analogue of the internal symmetry group
of Yang-Mills theory. One should remember that so~3,1!
.spin(3,1)#C(3,1), so we have in a sense ‘‘extended’’ the
gauge algebra from the Lorentz algebra to the full Clifford
algebra, with the price, of course, that we then no longer
have a Lie algebra but a Clifford algebra instead. Also note
that so~3,1!.spin(3,1) acts naturally on the Clifford algebra
C(3,1) throughx°@x,sab#; it is under this Lie algebra that
the Wigner function transforms.

Here we have just made the obvious translations from
Yang-Mills theory to minimally coupled Dirac fermions in a
curved background. Nonminimally coupled fermions, i.e., in-
cluding a coupling to torsion, should be dealt with by making
the substitutionRmn

absab→Rmn
absab1Smn

r ¹r , where Smn
r is

the torsion~the antisymmetric part of the Christoffel sym-
bol!. This is because the curvature only enters through the
commutator@¹m ,¹n#5Rmn

absab ~via the holonomy! and this
gets modified to the above mentioned linear combination of
curvature and torsion when the latter is present@5#. In a
similar fashion one could introduce gauge degrees of free-
dom, coupling to a Yang-Mills fieldAm

k by addingigAm
k Tk to

¹m , whereTk are the generators of the gauged Lie algebra.
We would then have to addigFmn

k Tk to the right-hand side
of the commutator@¹m ,¹n#. The resulting Wigner function
and its equation of motion would then also be gauge covari-
ant.

Covariance is ensured by noting thatc transforms as
c→Uc, where U is the transformation matrix
„U5exp@iaab(x)s

ab# for the purely gravitational case and
U5exp@iaab(x)s

ab1igak(x)Tk# with a coupling to a Yang-
Mills field…, and that¹m transforms covariantly~adjoint rep-
resentation!, ¹m→U¹mU21; one then seesŴ→UŴU21.
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The Wigner equation is then an infinite-order differential
equation. It is this equation which is the subject of this study.

CLIFFORD DECOMPOSITION

The Wigner operator takes values in the Clifford algebra,
since it is given as a product of two spinors. Hence it can be
decomposed. Ind54 a basis for the Clifford algebra is given
by 1,g5 ,ga ,gag5 ,sab , as is well known. We thus write

Ŵ5S1Pg51Vaga1Aagag51Tabsab , ~16!

where then, of course,S,P are a scalar and pseudoscalar,
Va,Aa, are a vector and axial vector, andTab an antisymmet-
ric tensor. A similar splitting up of the operators can be made
using the properties of the Dirac matrices. The left-hand side
can be written

Fm1gdS pd1 1

2
ied

m]m2
1

2
vm
bceb

mhcdD
12i ebcd

a ea
mvm

bcg5gdGŴ[@m1gdAd1g5g
dBd#Ŵ

~17!

having used

gdsbc5 i ~hachbd2habhdc!ga14edcbag5ga ,

which follows from the definition ofsab and the standard
trace formulas for the Dirac matrices, see, e.g., Itzykson and
Zuber @14#. We will write the right-hand side as

Ĵabcga$sbc ,Ŵ%, ~18!

where Ĵabc then contains all the curvature information and
no Clifford algebra information~i.e., it is proportional to 1!.
With this notation we get

mS2AaV a1BaAa524eabcdĴ
abcAd,

mP1AaAa2BaVa52hachbdĴ
abcAd,

mVd2AdS1BdP2 i ~he fdg
d2hegd f

d!AeTf g14ee fg
d BeTf g

5 ihabdc
dĴabcS22eabc

d ĴabcP14da
dhb fhceĴ

abcTe f,

mAd1AdP2BdS1 i ~he fdg
d2hegd f

d!BeTf g24ee fg
d AeTf g

524eabc
d ĴabcS18i ~habdc

d2hacdb
d!ĴabcP,

mTe f1 1
2 iA

[eVf ]2 1
2 iB

[eAf ]

512eabc
g edg

e f ĴabcTdg2~hacedb
e f2hdaecb

e f !ĴabcAd,

where we have used the symmetry properties ofĴabc, i.e.,
Ĵabc52 Ĵacb, to remove some terms involvingh ’s. One will
often be able to assumeP5Aa50, in which case the equa-
tions can be simplified a little bit.

The equations involve not only the curvature two-form
but also its dual, since

eabcdĴ
abc52

1

2
ikea

m~ j 02 i j 1!
]

]pn
~*Rmn

ab !hbd , ~19!

with

*Rm
ab :5 1

2 eabcdRmn
cd . ~20!

One knows that in Yang-Mills theory self-dual and anti-self-
dual curvature two-forms play an important role~they corre-
spond to instantons@5,11–13#!, therefore it is encouraging
that the dual of the curvature two-form also appears in this
gravitational setting.

One should also note that the combinationhabdc
dĴabc is

proportional to the Ricci tensorhabdc
dĴabc5 1

2p
21/2k(]/

]pn)Rn
d( j 02 i j 1), which implies that this combination van-

ishes for the vacuum solution of general relativity, i.e., in
Ricci-flat spacetimesRmn5Rm

dhd
aen

a50. This implies that in
many backgrounds of real physical interest, the right-hand
sides of these coupled equations simplify.

Another important consequence of this Clifford algebra
decomposition concerns the classical limit. In this limit one
would expect the Wigner function, considered as a 434 ma-
trix to be diagonal:

Ŵ5S f 1 f 2

g1

g2

D [S F1 0

0 F2
D[S11V0g0 .

This leads to the set of coupled equations

mS2A0V050, ~21!

B0V050, ~22!

mV02A0S5 ihabdc
0ĴabcS, ~23!

BdS54eabc
d ĴabcS, ~24!

where, as we have seen, the right-hand side in the third of
these vanish if the spacetime is Ricci-flat, i.e., a solution to
the vacuum Einstein equations.

The second of these equations impliesV050, which then,
from the first, yieldsm50, hence we are left with the pair of
equations

A0S52 ihabdc
0ĴabcS, ~25!

BdS54eabc
d ĴabcS. ~26!

Thus in a Ricci-flat spacetime, the only quantum corrections
enter through the second of these, as the first become
A0S50, i.e., the quantum corrections will depend only on
the dual of the curvature two-form. The first equation then
implies thatS is an eigenstate of the differential operator
e0

m]m1 ivm
a0em

a with eigenvalue22ip0, whereas the second
equation determines the dependency on the other compo-
nents of the momentum. We will return to the caseŴ5S in
later sections. Let us note in passing that the extra term
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22ip0 added to the Dirac operator can be interpreted as a
coupling to an Abelian connection, or as corresponding to a
Dirac operator in five dimensions~as in the families index
theorem@12,13#!.

For later use, we also give the Clifford decomposition in
d52 dimensions. Herega corresponds tos1 ,s2 ~the Pauli
matrices! and both g5 and sab correspond to s3
52 is1s252 1

2i @s1 ,s2#. The covariant derivative can be
written as¹m5]m , since there is no spinor connection in
d52 @13#. With this ~Latin indices going from 1 to 2! the
Wigner equation reads

Fm2s i S pi1 1

2
i ] i D GŴ52

1

4
iks iei

aĴRabH s3 ,
]

]pb
ŴJ .

~27!

With the decomposition

Ŵ5W011Wis
i1W3s

3 ~28!

we then arrive at

mW02S pi1 1

2
i ] i DWi52

1

2
ike i j ei

aRabĴ
]

]pb
Wj , ~29!

mWi2e i jW
j2S pi1 1

2
i ] i DW0

52
1

2
ikS eiaRabĴ

]

]pb
W31e i j e

jaRabĴ
]

]pb
W0D , ~30!

mW32 i e i j S pi1 1

2
i ] i DWj52

1

4
ikh i j ei

aRabĴ
]

]pb
Wj . ~31!

We will return to this set of equations in the section concern-
ing the trace of the energy momentum tensor ind52 and
d54. For now let us just note that the set of coupled equa-
tions in d52 can be re-expressed as an equation forWi
alone by using the first and third to expressW0 ,W3 as some
operators acting onWi . Explicitly

W052
ik

2m
e i j ei

aRabĴ
]Wj

]pb
1

1

mS pi1 1

2
i ] i DWi , ~32!

W352
ik

4m
h i j ei

aRabĴ
]Wj

]pb
1

1

m
e i j S pi1 1

2
i ] i DWj , ~33!

leading to

~m2h i j2me i j !W
j2

1

mS pi1 1

2
i ] i D S pj1 1

2
i ] j DWj

1
1

2
ikek jS pi1 1

2
i ] i D S ekaRab Ĵ

]Wj

]pb
D

52
1

8
k2hk jei

aek
gRabRgd Ĵ2

]2Wj

]pb]pd

2
1

4
k2e i

jeklej
ael

gRabRgd Ĵ2
]2Wk

]pb]pd

1
1

2
kek jei

aRabS pk1 1

2
i ]kD Ĵ]Wj

]pb

2
1

2
ike i

jej
aRabS pk1 1

2
i ]kD Ĵ]Wk

]pb
. ~34!

RememberingĴ5 j 0(
1
2n)2 i j 1(

1
2n) and thatn is Hermit-

ian, the Hermitian and anti-Hermitian parts of this equation
must be satisfied separately, which then leads to two coupled
equations whichWi has to satisfy.

EXAMPLE: COVARIANTLY CONSTANT CURVATURE

When the curvature tensor is covariantly constant,
¹lRmn

ab50, we can take the square of the equation forŴ,

Sm2gaA
a2g5gaB

a1
1

4
ikea

mgaRmn
bc H sbc ,

]

]pn
•J D Ŵ50

to obtain

05@m22A22B222g5A•B#Ŵ

1
k2

16
ea

med
rgaRmn

bcRrs
e f ]2

]pn]ps
$sbc ,g

d$se f ,Ŵ%%

2
1

4
ikH gaA

a,ed
mgdRmn

e f ]

]pn
$se f ,Ŵ%J

2
1

4
ikH g5gaB

a,ed
mgdRmn

e f ]

]pn
$se f ,Ŵ%J . ~35!

We can split this into two equations by taking the Hermitian
and anti-Hermitian parts out. For the Hermitian part we then
get the constraint equation generalizing the mass-shell con-
dition

05~m22A22B222A•Bg5!Ŵ

1
k2

16
ea

med
rgaRmn

bcRrs
e f ]2

]pn]ps
ˆsbc ,g

d$se f ,Ŵ%‰,

~36!

whereas the anti-Hermitian part becomes the kinetic equation
proper~as in the Yang-Mills case@10#!

05H gaA
a1g5gaB

a,ed
mgdRmn

e f ]

]pn
$se f ,Ŵ%J . ~37!
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The mass-shell condition, Eq.~36!, can also be seen as a
momentum diffusion equation of Fokker-Planck type@1,2#,
but the important thing to note is that it isnot on its own a
kinetic equation specifying the state of the matter fields.
Comparing this with a standard classical kinetic equation for
a phase space distribution functionF @1#,

]

]pn
~anF!1

1

2

]2

]pm]pn
~bmnF!5 f ~p,x!F, ~38!

we see thatan , the dynamical friction in our case is

an50, ~39!

while bmn , the momentum diffusion coefficient, is~simply
takeŴ5S to get the nonspin terms!

bns5
k2

4
ea

med
r~hg fhde2hgehd f!~hgcdb

a2hgbdc
a!Rmn

bcRrs
e f

1 spin terms ~40!

and f (p,x), a kind of momentum force term, finally reads

f ~p,x!52~m22A22B2!1 Clifford algebra terms ~41!

and is thus an operator~remember,A;p1]1v).
Thus in this particularly simple case, we see that the

mass-shell condition can be interpreted as a diffusion equa-
tion in momentum space. Now, this momentum diffusion is
provided by the quantum and curvature corrections to the
mass, i.e., the difference betweenm2 andp2, it is thus a pure
quantum phenomenon. This is a kinetic interpretation of the
uncertainty principle and of the renormalization of the mass.
It is intuitively pleasing to see that the momentum diffusion
coefficient is given simply by the curvature, and is thus a
purely geometric object, even though its source is purely
quantum. For a curvature which isnot covariantly constant,
the mass-shell condition contains higher derivatives with re-
spect to the momentum, such terms do not have a direct
classical interpretation and therefore represent pure quantum
effects.

The main difference between Eq.~37! and the result for
Yang-Mills theory is the appearance of the anticommutator.
As we have seen earlier, this anticommutator can be traced
back toŴ being Clifford algebra valued and that the genera-
tors of the Lorentz algebra for Dirac fermions is precisely
sab which is an element of the Clifford algebra. Remember
that the elementsgagb of any Clifford algebraC(r ,s) gen-
erate the Lie algebra spin(r ,s) which is isomorphic to
so(r ,s). For r53,s51 this is the Lorentz algebra in
d5311 dimensions, while forr5s51 it is the correspond-
ing algebra ind5111 dimensions@11#. It is this interrela-
tionship between the Clifford algebra and the Lorentz alge-
bra ~which is then the gauged algebra for gravitational
systems! which accounts for the anticommutator.

In the extreme classical limitŴ5S and the kinetic equa-
tion reduces to

052i ~ha fhde2haehd f!A
aemdRmn

e f ]

]pn
S

2ee f
gh~habhdg2haghdh!B

aemdRmn
e f ]

]pn
S. ~42!

This can be seen as an equation involving only dynamical
friction and not momentum diffusion. Writing it in the clas-
sical form

f 1~p,x!F5
]

]pn
~anF!, ~43!

where the ‘‘force term’’f 1 contains the operatorn, we see
that the dynamical friction is given by

an5~ha fhde2haehd f!S pa2 1

2
vr
baDemdRmn

e f

2ee f
gheqr

paep
remdvr

qrRmn
e f ~44!

It is very interesting to note that the resulting equations for
Ŵ splits into two set of equations, one containing only mo-
mentum diffusion and the other only dynamical friction. In
both cases the sources for the processes are given by quan-
tum effects, i.e., vanish in the classical limit if one ignores
spin effects. Furthermore, the coefficientsam ,bmn are in both
cases given by the curvature and are thus geometrical quan-
tities as one would expect intuitively.

Again, in the general case we would get higher deriva-
tives of momentum, the ‘‘diffusion’’ equation containing all
even powers of]/]p, and the ‘‘friction’’ equation containing
all the odd powers. These extra terms are pure quantum ef-
fects and have no direct classical interpretation.

To round off the discussion we also give the splitting of
the Wigner equation ind52. As we have seen, in this case
we can make do with an equation forWi alone. The Hermit-
ian part of this equation is seen to be, in the case of covari-
antly constant curvature~corresponding to takingĴ[1),

~m2h i j2me i j !W
j2S pipj1 1

2
i ~pi] j1pj] i !2

1

4
] i] j DWj

52
1

8
k2hk jei

aek
gRabRgd

]2Wj

]pb]pd

2
1

4
e i
jeklej

ael
gRabRgd

]2Wk

]pb]pd

1
1

2
kek jei

aRabS pk1 1

2
i ]kD ]Wj

]pb
~45!

for the Hermitian part, and

ek jS pi1 1

2
i ] i DekaRab

]Wj

]pb
5e i

jej
aRabS pk1 1

2
i ]kD ]Wj

]pb
~46!

for the anti-Hermitian part. Once again, we can interpret the
Hermitian part as a momentum diffusion equation. This time
we also have a dynamical friction contribution
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1

2

]2

]pbpd
~bbd

kl Wl !1
]

]pb
~ab

klWl !5 f kl~x,p!Wl .

The diffusion coefficient is

bbd
ik 5

1

2
k2S e i j eklej

ael
g1

1

2
h jkh i l el

aej
gDRabRgd , ~47!

while the dynamical friction becomes

ab
kl52

1

2
ke i lh jkej

aRabS pi1 1

2
i ] i D , ~48!

which is then a differential operator in this case. The force
term is again related to the mass-shell constraint, although in
a somewhat more complicated form:

f kl5m2hkl2mekl2pkpl2
1

2
i ~pk] l2pl]k!1

1

4
]k] l .

~49!

The anti-Hermitian part is once more a pure dynamical fric-
tion equation~it would have a momentum diffusion term too,
if the curvature was not covariantly constant!, but there is no
source term. Thus there is quite a big difference between the
results ind52 and d54 dimensions, a difference which
cannot simply be referred to the different Lorentz character
of the ‘‘distribution’’ in the two cases~in d52 we consid-
ered a vector, and ind54 a scalar!, but is very much due to
the difference in the structure of the two Clifford algebras
and the fact that there is no spin connection ind52. This is
an important caveat.

THE n-EXPANSION: QUANTUM CORRECTIONS

The case of covariantly constant curvature corresponds, as
we have seen, to a kind of classical limit involving only a
few quantum corrections. In this section we will commence a
more systematic study of quantum corrections. This is done
by noting thatn appears multiplied by\, and that Planck’s
constant only enters in this combination. An expansion in
n is therefore related to an expansion in\. Thus, one can
calculate quantum corrections by expanding the spherical
Bessel functions inX̂ to a given order. To do this we need
the standard formulas

j 0~z!5
sinz

z
5 (

n50

`

~21!n
z2n

~2n11!!
,

j 1~z!5
sinz

z2
2
cosz

z
5 (

n51

`

~21!n
2n

~2n11!!
z2n21.

Now, n is a Hermitian operator and the Bessel functions
only appear in the combinationj 02 i j 1. Consequently, it is
rather simple to make a separation into Hermitian and anti-
Hermitian parts of the Wigner equation. One of these will
then only contain odd powers ofn and the other only even
powers.

Due to the complicated nature of the operators appearing
in the Wigner equation, we cannot simply take the square
and compare with the classical kinetic equations. Instead we

have to make do with the equations on the ‘‘Dirac form’’~in
contrast to the ‘‘Klein-Gordon form’’ resulting from taking
squares!, which do not have a direct classical analogue. The
interpretation will therefore not be as precise as one would
perhaps have wanted.

Writing

W~x,p!5 (
n50

`

\nW~n!~x,p! ~50!

and rememberingz5 1
2\n, we can collect terms with the

same power of Planck’s constant. Doing this we get

Fm1ea
mgaS pm1

1

2
i¹mD GW~0!

52
1

2
ikea

mgaRmn
bc H ]

]pn
W~0!,sbcJ ~51!

for the ‘‘classical’’ contribution\0 which is recognized as
the same as for the case of covariantly constant curvature
treated in the previous section, whereas the first correction
satisfies

Fm1ea
mgaS pm1

1

2
i¹mD GW~1!

52
1

2
ikea

mgaRmn
bc H ]

]pn
W~1!,sbcJ

1
1

6
kea

m¹r~gaRmn
bc !H ]2

]pn]pr
W~0!,sbcJ , ~52!

while the second order contribution satisfies~remembering
that the vierbein is covariantly constant!

Fm1ea
mgaS pm1

1

2
i¹mD GW~2!

52
1

2
ikea

mgaRmn
bc H ]

]pn
W~2!,sbcJ

1
1

6
kea

m¹r~gaRmn
bc !H ]2

]pn]pr
W~1!,sbcJ

1
1

48
ikea

m¹r¹s~gaRmn
bc !H ]3

]pn]pr]ps
W~0!,sbcJ .

~53!

In general we will have a recursive scheme

Fm1ea
mgaS pm1

1

2
i¹mD GW~n!

1
1

2
ikea

mgaRmn
bc H ]

]pn
W~n!,sbcJ

5 terms involving onlyW~k! with k,n. ~54!

The terms on the right-hand side will involve more and more
momentum derivatives of the Wigner functionsW(k) and
similarly higher and higher order covariant derivatives of the
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vierbeins and curvature two-forms. Higher order derivatives
of curvature can in general be considered as related to fluc-
tuations of the geometry, thus the higher order Wigner func-
tions are determined by the fluctuations of spacetime, more-
over, they couple to higher order derivatives with respect to
the momentum of the lower order Wigner functions, terms
which, therefore, do not have a classical interpretation~only
first and second order momentum derivatives appear in clas-
sical kinetic equations!. This shows how the expansion in
n is closely related to pure quantum effects with no classical
analogue. One cannot, however, guarantee that this expan-
sion is equivalent to the standard loop expansion in quantum
field theory. In general there will be no such simple relation-
ship.

One should also take notice of the fact that the momentum
derivative operator is symmetric in its indices; this implies
that only the symmetric part of¹r•••¹s acting on the cur-
vature will contribute. From the commutator relation we get

¹~m¹n5¹m¹n2Rmn
absab , ~55!

whence it follows that the right-hand side of the recursive
scheme not only includes higher and higher order derivatives
of the curvature but also higher and higher powers of it.

If we introduce the operatorŶ by

ŶW:5Fm1ea
mgaS pm1

1

2
i¹mD

1
1

2
ikea

mgaRmn
bc H ]

]pn
•,sbcJ GW, ~56!

then we can write the recursive scheme as

ŶW~n!5F ~n!, ~57!

whereF (0)50 andF (n) depends onW(k), k,n. Thus, on
the formal level,

W~n!~x,p!5Ŷ21F ~n!~x,p!, n>1. ~58!

Written out explicitly, the first corrections then read

W~1!5
1

6
kŶ21ea

m¹r~gaRmn
bc !H ]2W~0!

]pn]pr
,sbcJ , ~59!

W~2!5
1

6
kŶ21ea

m¹r~gaRmn
bc !H ]2W~1!

]pn]pr
,sbcJ

1
ik

48
Ŷ21ea

m¹r¹s~gaRmn
bc !H ]3W~0!

]pn]pr]ps
,sbcJ .

~60!

Defining

Hrn
bc :5ea

m¹r~gaRmn
bc !, ~61!

we can rewrite this as

W~1!5
1

6
kŶ21Hrn

bcH ]2W~0!

]pr]pn
,sbcJ , ~62!

W~2!5S 16 k D 2Ŷ21Hrn
bcH ]2

]pr]pn
Ŷ21

3Hke
ghH ]2W~0!

]pk]pe
,sghJ ,sbcJ

1
ik

48
Ŷ21¹rHsn

bc H ]3W~0!

]pn]pr]ps
,sbcJ , ~63!

and so on.
Let us Clifford decomposeŶW. This is straightforward

and we get

mS2AaVa1BaAa12ikebcd
a ea

mRmn
bc ]

]pn
Ad

for the scalar part,

mP1AaAa2BaVa1
1

2
ikdc

ahbdea
mRmn

bc ]

]pn
Ad

for the pseudoscalar contribution,

mVd2AdS1BdP2 i ~he fdg
d2hegd f

d!AeTf g14ee fg
d BeTf g

2
1

2
ikea

mRmn
bc ]

]pn
@2 idb

adc
dS22ebc

adP14hadTbc#

for the vector part, while the axial vector contribution turns
out to be

mAd1AdP2BdS1 i ~he fdg
d2hegd f

d!BeTf g24ee fg
d AeTf g

2
1

2
ikea

mRmn
bc ]

]pn
@24ebc

daS18i ~db
adc

d2dc
adb

d!P#,

and finally

mTe f1
1

2
iA [eVf ]2

1

2
iB [eAf ]2

1

2
ikea

mRmn
bc ]

]pn
@12ebc

agedg
e fTdg

1~dc
aedb

e f2dd
aecb

e f !Ad]

for the tensor part. On the right-hand side of the recursion
relation we have terms of the form

1

6
kea

m¹r~gaRmn
bc !H ]2

]pn]pr
W,sbcJ .

Now, here the covariant derivative is to act on the two form
Rmn
bc , i.e.,

¹rRmn
bc5]rRmn

bc1Grm
l Rln

bc1Grn
l Rlm

bc ,

and hence¹r does not involve any Clifford algebra elements
@sbc is only the generator of so~3,1! in the spin-12 represen-
tation#. Therefore we can move the~constant! Dirac matrix
ga outside the covariant derivation. A Clifford decomposi-
tion of this term is thus straightforward, and we obtain

S:2
2

3
kea

mebcd
a ~¹rRmn

bc !
]2Ad

]pn]pr
,
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P:2
1

6
kea

mhbddc
a~¹rRmn

bc !
]2Ad

]pn]pr
,

V:
1

6
ikdb

adc
dea

m~¹rRmn
bc !

]2S
]pn]pr

2
1

3
kebc

adea
m~¹rRmn

bc !
]2P

]pn]pr

1
2

3
khadhb fhceea

m~¹rRmn
bc !

]2

]pn]pr
Te f

A:2
2

3
ebc
daea

m~¹rRmn
bc !

]2S
]pn]pr

1
4

3
ik~dv

adc
d2dc

adb
d!

3~¹rRmn
bc !

]2P
]pn]pr

,

T:2kea
mebc

agedg
e f ~¹rRmn

bc !
]2

]pn]pr
Tdg2

1

6
k~dc

aedb
e f2dd

aecb
e f !

3~¹rRmn
bc !

]2Ad

]pn]pr
.

To have a look at a solution we can take the extreme case

W~0!~x,p!5S0~x,p!5Ne2amn~x!pmpn1bm~x!pm1g~x!. ~64!

As we have seen earlier, this is only possible provided
m50, in which caseS0 has to satisfy the coupled set of
equations

2AdS01
1

2
kea

mRmn
ad ]

]pn
S050, ~65!

2BdS012ikea
mRmn

bc ebc
da ]

]pn
S050. ~66!

The second of these yields, upon insertion of the explicit
form for S0,

vm
bc52kRmn

bc ~anrpr1bn!, ~67!

which impliesRmn
abanr[0. Inserting this into the first we

arrive at

pd1
1

2
ied

m~2]manrpnpr1]mbnpn1]mg!50, ~68!

which is only possible if

amn50, ~69!

bn52ixn1const, ~70!

g5const. ~71!

ThusS0 is of the so-called Ju¨ttner form @2#:

exp$b~x!@m~x!2pmUm~x!#%,

whereb is the inverse temperature,m the Gibbs energy, and
Um the four velocity, i.e.,bm5bUm,g5bm. Let us now

make a similar ansatz for the first quantum correction, i.e.,
W(1)[S15N8 exp(2āmnpmpn1b̄mpm1ḡ). The equations
then reduce to

2AdS11
1

2
kea

mRmn
ad ]

]pn
S15

1

6
ikea

m~¹rRmn
ad !

]2

]pn]pr
S0 ,

~72!

2BdS112ikea
mRmn

bc ebc
da ]

]pn
S152

2

3
kebc

daea
m~¹rRmn

bc !

3
]2

]pn]pr
S0 . ~73!

Then, evaluating the differentiations with respect to the mo-
menta and collecting powers of these, we arrive at the fol-
lowing set of conditions:

]mānr50, ~74!

pd2
1

2
ied

m~]mb̄n!pn1
1

2
kea

mRmn
ad ā nrpr50, ~75!

ed
m]m ḡ 50, ~76!

1

2
ea

m~vm
bcdb

ahcd1kRmn
ad !S15

1

6
ikea

m~¹rRmn
ad !arnS0 ~77!

from the first of the equations forS1, while the second give
us

2 i ebcd
a ea

mvm
bc1 ikea

mRmn
bc ebc

da~ b̄ n2 ā nrpr!S1

5
1

3
kebc

daea
m~¹rRmn

bc !anrS0 . ~78!

Combining these we get the following set of conditions:

]mānr50,

Rmn
bc ā nr50,

iea
m~]mb̄n!pn2kea

mRmn
achcdā

nrpr52pd ,

~ebcd
a ea

mvm
bc2kea

mRmn
bc ebc

dab̄ n!S15
1

3
kebc

daea
m~¹rRmn

bc !anrS0 .

In a general spacetime the first two of these will give
āmn[0 as for the lowest order term. Hence, the solution
S1 will once more be of the Ju¨ttner form, albeit with a much
more complicated expression forb(x)Um(x)5 b̄m.

To get more information about the recursive scheme pre-
sented in this section, we can find the Hermitian and anti-
Hermitian parts of the squared equations~i.e., the Wigner
equation in ‘‘Klein-Gordon form’’!, as this is where we ex-
pect to see the analogy with classical kinetic theory most
clearly.

We essentially calculated the square ofŶ in the previous
section. The square ofF (1) is similarly
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~F ~1!!25
k2

36
Hnr
bcH ]2W~0!

]pn]pr
,sbcJHke

ghH ]2W~0!

]pk]pe
,sghJ .

~79!

A Clifford decomposition of this is complicated by thega

part ofHmn
bc and the quadratic appearance ofW(0). We note

that (F (1))2 is Hermitian, hence, it only contributes to the
momentum diffusion equation generalizing the mass-shell
constraint, whereas the kinetic equation proper~which comes
from the anti-Hermitian part ofŶ2) does not get any contri-
bution from lower order terms. The momentum diffusion
equation then reads

~m22A22B222A•Bg5!W
~1!

1
k2

16
ea

med
rgaRmn

bcRrs
e f ]2

]pn]ps
ˆsbc ,g

d$se f ,W
~1!%‰

5
k2

36
Hnr
bcH ]2W~0!

]pn]pr
,sbcJHke

ghH ]2W~0!

]pk]pe
,sghJ . ~80!

At the next orderO(\2), however, there will be contribu-
tions from W(0),W(1) to the kinetic equation proper for
W(2) too: namely,

1

288
k2HHrn

bcH ]2W~1!

]pn]pr
,sbcJ ,~¹sHke

e f !H ]3W~0!

]ps]pk]pe
,se fJ J .

In general, the momentum diffusion equation will contain
only squares, whereas the kinetic equation will contain only
cross products~always in the form of an anticommutator! of
the lower order Wigner functions.

THE CONFORMAL ANOMALY IN d52 AND d54

Let us calculate the trace of^Tmn&, denoted bŷ T&. The
nonvanishing of this quantity is the conformal anomaly when
m50 @4#.

The general expression for^Tab& in terms of the Wigner
function is given by

^Tab~x!&5TrE
Tx*M

gapb^Ŵ&ddp. ~81!

It follows that ~in d dimensions,W5^Ŵ&)

^T&:5^Tabh
ab&5TrE

Tx*M
gapaWddp. ~82!

Now, from the equation forW,

Fm2
1

2
iga~2ipa1ea

m¹m!GW5X̂W,

it follows that

gapaW5S 12 igaaa
m¹m2mDW2X̂W. ~83!

Hence,

^T&5TrE
Tx*M

F S 12 igaea
m¹m2mDW2X̂WGddp. ~84!

We also know

X̂W5
]

]pn
@W3~other terms!#; ~85!

i.e., thatX̂W is a total derivative, and thus that its integral
over the cotangent space atx vanish, leaving us with

^T&5TrE
Tx*M

S 12 igaea
m¹m2mDWddp. ~86!

From this we see that̂T& measures the failure ofW to sat-
isfy a Dirac equation with mass 2m ~thus it is most interest-
ing whenm50). This equation is valid for alld. To carry
out the trace we need the Clifford decomposition, which is
thend dependent.

For d52 we get

^T~x!&5
1

2
i E

Tx*M
ea

mhab]mWbd
2p2mE

Tx*M
W0d

2p, ~87!

where we have writtenW5W011Was
a1W3s3 with

a,b51,2. Introducing the current density^ j a(x)&
:5*Wad

2p and the number densitŷn(x)&:5*W0d
2p we

can write this in terms of these macroscopic quantities only
as

^T~x!&5
1

2
iea

mhab^]m j b~x!&2m^n~x!&. ~88!

For massless fields, the conformal anomaly is then related to
the nonconservation of the currentj a , such that̂ T&Þ0 if
and only if j a is not conserved in expectation value.

In d54 we similarly get

^T~x!&5E
Tx*M

F12 ~ ied
m]m2vm

bceb
mhcd!Vd

12i ebcd
a ea

mvm
bcAd2mSGd4p:

5
1

2
~ ied

m]m2vm
bceb

mhcd!^ j
d&

1ebcd
a ea

mvm
bc^kd&2m^n&, ~89!

where we have introduced the vector current
^ j a&:5*Vad4p, the axial current̂ ka&:5*Aad

4p, and the
number densitŷn&:5*Sd4p. We see that indÞ2 the pos-
sible existence of a conformal anomaly or not is not as sim-
ply related to the question of the conservation of a current as
in d52.

The fact that an anomaly can be expressed in terms of the
Wigner function integrated over the cotangent space suggests
a closer relationship betweenW and anomalies, in particular
with the spin complex@12,13#. The very nature of the
Wigner function, or rather the entire Wigner-Weyl-Moyal
formalism where operators are replaced by symbols on the
cotangent bundle, makes the translation of analytical proper-
ties into geometrical or algebraic ones possible. Such a trans-
lation is at the heart of index theorems, and it has in fact
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been shown that the Atiyah-Singer index theorem can be
related to the classical limit of the Wigner-Weyl-Moyal
~WWM! formalism for the ordinary Heisenberg algebra@15#.
The way in which this generalized WWM formalism relates
to index theorems is presently under study.

THE HYDRODYNAMIC EQUATIONS: MOMENTS

The previous section calculated the trace of the energy-
momentum tensor from the Wigner equation, this is only one
macroscopic quantity which one can define. Let us define the
following moments of the Wigner function~for simplicity
we suppress thê•&):

n~x!:5TrE Wd4p5E Sd4p,
Ua~x!:5TrE paWd4p5E paSd4p,

j a~x!:5TrE gaWd4p5E Vad4p,
ka~x!:5TrE g5gaWd4p5E Aad

4p,

Tab~x!:5TrE pagbWd4p5E paVbd4p,

sab~x!:5TrE sabWd4p5E Tabd4p,

tab~x!:5TrE pag5gbWd4p5E paAbd
4p,

x~x!:5TrE g5Wd4p5E Pd4p,
xa~x!:5TrE pag5Wd4p5E paPd4p,

labc~x!:5TrE pasbcWd4p5E paTbcd4p.

These are all the zeroth and first moments of the Wigner
function ind54 dimensions. Most of these quantities have a
direct physical interpretation,n(x) is the number or energy
density,Ua is a momentum density,j a a current,ka and
axial-vector current,Tab the energy-momentum tensor, and
sab the spin density, whiletab is a kind of ‘‘pseudoenergy-
momentum tensor,’’x and xa are related to chirality, and
labc represents a spin-momentum interaction term. The
equations of motion for these macroscopic quantities consti-
tute the corresponding set of~quantum! hydrodynamic equa-
tions, which are derived by simply taking the zeroth and first
moments of the Wigner equation in its Clifford decomposed
form. Hence, each of the five equations in this Clifford de-
composition gives rise to two equations for these moments.
If we write

Aa5pa1
1

2
iD̂ a , Ja

bc5 Ĵea
mRmn

bc ]

]pn
, ~90!

we get the following ten equations:

mn2T2
1

2
iD̂ aj

a1Bak
a50, ~91!

mUb2E pbpaVad4p1
1

2
iD̂ aTb

a1Batb
a5eb8cd

a Ĵea
mRmn

b8ceb
nkd, ~92!

mx1t1
1

2
iD̂ ak

a2Baj
a50, ~93!

mxb1E papbAad4p1
1

2
iD̂ atb

a2BaTb
a5hb8dĴea

mRmn
b8ceb

nkd, ~94!

mjd2Ud2
1

2
iD̂ dn1Bdx2~he fdg

d2hegd f
d!S le fg1

1

2
iD̂ esfgD14ee fg

d Besfg50, ~95!

mTh
d2E php

dSd4p2
1

2
iD̂ dUh1Bdxh2 i ~he fdg

d2hegd f
d!S E php

eTf gd4p1
1

2
iD̂ elh

fgD14ee fg
d Belh

fg

52 idc
dĴeb

mRmn
bceh

nn12ebc
adĴea

mRmn
bceh

nx24hdahb fhceĴea
mRmn

bceh
nse f, ~96!

mkd1xd1
1

2
iD̂ dx2Bdn1 i ~he fdg

d2hegd f
d!Besfg24ee fg

h S le fg1
1

2
iD̂ esfgD50, ~97!
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mth
d1E php

dPd4p1
1

2
iD̂ dxh2BdUh1 i ~he fdg

d2hegd f
d!Belh

fg24ee fg
d S E php

eTf gd4p1
1

2
iD̂ elh

fgD
54ebc

daĴea
mRmn

bceh
nn28i ~db

adc
d2dc

adb
d!Ĵea

mRmn
bceh

nx, ~98!

msef2
1

4
D̂ [ej f ]1

1

2
iB [ekf ]50, ~99!

mlh
e f1

1

2
i E php

[eVf ]d4p2
1

4
D̂ [eTuhu

f ] 2
1

2
iB [et uhu

f ] 5212ebc
agedg

e f Ĵea
mRmn

bceh
nsdg1~dc

aedb
e f2dd

aecb
e f !Ĵea

mRmn
bceh

nkd, ~100!

whereT5Ta
a ,t5ta

a . Some of these have direct physical in-
terpretations, e.g., as we saw in the previous section Eq.~91!
gives a kinetic expression for the conformal anomaly when
m50. In analogy with this, we will refer to the equation for
t, Eq. ~93!, as the pseudoconformal anomaly for lack of a
better word. Another important equation is Eq.~95! which
states that the momentum density and the mass times the
current density~which is also the velocity density! are not
identical; the difference between the two is an indication of
heat flow. Also, Eq.~99! gives an expression for the spin
density in terms of the velocity/current densityj a and the
axial currentka .

The quantities without a direct physical interpretation,
such as,tab ,x,xa ,labc can be eliminated from these equa-
tions. One should also note that we are not able to eliminate
the second moments appearing in this set of equations. In
general one will get an infinite hierarchy of moment equa-
tions. This can be truncated by brute force at any given stage
resulting in a set of approximate hydrodynamic equations.
The second moments have a physical interpretation in terms
of viscous pressure, since

Ph
d :5TrE php

dŴd4p5E php
dSd4p ~101!

is the viscous pressure tensor@2#. The remaining second mo-
ments are then higher Clifford algebra analogues of this,
lacking a straightforward classical interpretation.

ARBITRARY SPINS

Clearly the fermions are the most difficult to treat due to
their Grassmannian nature and that is why we have chosen to
consider such fields in great detail. Arbitrary spins are not
that difficult. Consider a field equation for a fieldF of some
spin s,

~Ds1Ms!F5gJ,

whereDs is some differential operator~first order whenever
s is half integral and second order whens is an integer!,
Ms is a mass term including couplings to curvature such as
jR for s50 andRmn for s51, g is a coupling constant, and
J is a source term. As we have seen above such an equation
gives rise to an equation for the associated Wigner function
WF by the ‘‘minimal substitution’’

i¹m°em
a pa1

1

2
i¹m ~102!

and the ‘‘source term transformation’’

gJ°X̂~s!WF , ~103!

whereX̂ is some integrodifferential operator containing the
source. For bosons with spins, X̂ is a 4s tensor andW is a
2s tensor. Fors51/2 we have already seen thatX̂ carries a
Clifford algebra index~i.e., two spinor indices! and three
Lorentz indices, two of which must be understood as coming
from the Lie algebra so(r ,d2r ). For s53/2 we would get a
Wigner function which had two more Lorentz indices, and
X̂ would also have four extra Lorentz indices to account for
the vector index on the Rarita-Schwinger field. It is clear that
for s>1 the notation quickly becomes cumbersome.

All Wigner functions are maps from the cotangent bundle
into some algebra: for a scalar field the target space is simply
C, for spin-12 it is C(r ,d2r ), for s51 we get
(T*M^ g)^ (T*M^ g†! with g the internal gauge algebra,
and so on. In general fermions will have Wigner functions
with values in C(r ,d2r )^ (T*M )^ (2s21) while bosonic
fields will have Wigner functions taking their values in
(T*M )^2s. Gauge degrees of freedom are handled by simply
enlarging the target space by tensoring it withg^g†.

A spin-0 fieldf would then give rise to a Wigner equa-
tion of the form

F S iem
a pa1

1

2
i¹mD 21m21jRGWf5X̂~0!Wf , ~104!

while the Maxwell fieldAm gives rise to

S ien
apa2

1

2
¹nD 2Wmr1Rm

nWnr5X̂mr
~1!nlWnl , ~105!

and a Rarita-Schwinger fieldcm would give rise to

1

2
eabcdg5gbec

med
nS em

e pe1
1

2
i¹mDWnr5X̂mr

~3/2!nlWnl ,

~106!

where we have omitted theA andc subscripts on the Wigner
functions for the cases ofs51,3/2 and suppressed the spinor
indices in the latter case. Yang-Mills fields could be treated
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analogously but will have more complicated kinetic equa-
tions due to the nonlinearity of their field equations.

Internal degrees of freedom is also treated easily. The
fields will now be cross sections in some associated bundle,
and the parallel transporter has to include not just the curva-
ture effect but also the connection in the corresponding prin-
cipal bundle~the gauge field!. One simply replaces the co-
variant derivative with the appropriate gauge covariant
derivative containing the gauge field and the metric connec-
tion. If the field transforms in the representationr of g then
the Wigner function will transform in the representation
r̄ ^ r, if r is the fundamental representation, then this is the
adjoint one.

THE GRAVITATIONAL FIELD: PALATINI FORMALISM

Next we write down the equations for the gravitational
field. This can be viewed from two points:~1! as a means of
calculating the back reaction of the quantum fields on the
spacetime geometry~keeping the energy-momentum tensor
fixed! or ~2! as constituting full-fledged quantum gravity
~giving a set of coupled equations!.

We immediately face a problem: although the connection
is the formal analogue of the Yang-Mills fields, we cannot
take over the results by Else, Gyulassy, and Vasak, as the
Einstein equations are first order in the connection, while the
Yang-Mills equations are second order. In the presence of
torsion the field equations for gravity can be written

eb
nRmn

ab5kS Tm
a1

1

2
em
aTD , ~107!

Sab
c 52kSCab

c 2
3

7
da
cCdb

d 1
2

7
db
cCad

d D , ~108!

whereTm
a is the energy-momentum tensor,T its trace,Sbc

a

the torsion, andCbc
a is given by

Cab
c [

1

4
iE c̄gcsabc, ~109!

with E5detem
a , see Ramond@5#. We will have to introduce

twoWigner operators, one for the vierbein and one for the
spin connection:

Gmn
ab;cd[E e2 ip•yU1vm

ab
^U2vn

cd d4y

~2p!4
, ~110!

Lmn
ab[E e2 ip•yU1em

a
^U2en

b d4y

~2p!4
. ~111!

Unfortunately these are noncovariant, as the spin connection
transforms in an affine way under local so~3,1! transforma-
tions. This noncovariance will then introduce an unwanted
dependency on coordinate choices~gauge dependency!.

Finding the Wigner equations for these is straightforward
~albeit tedious! and will not be done here. They will have the
form

S em
a pa1

1

2
i¹mDGnr

ab;cd2~m↔n!5X̂mgh
~T!abGnr

gh;cd2~m↔n!,

~112!

S em
a pa1

1

2
i¹mDLnr

ab2~m↔n!5X̂mc
~C!aLnr

cb2~m↔n!,

~113!

where X̂m
(T,C) are integral operators containing the source

terms. Expressing these sources in terms of the Wigner op-
erator for the matter fields, e.g.,

Tab[ K TrS E gapbŴd4pD L , ~114!

would then lead to a set of coupled integrodifferential equa-
tions, constituting the full set of equations for quantum grav-
ity. It must be remembered that forgmn , a quantum field, we
cannot take the curvature two-form out of the integral in the
original expression forX̂. Therefore, the equation for the
matter Wigner function becomes much more complicated. In
@10# the analogous situation in QCD is treated. We will not
attempt this level of generality here, just note that the
straightforward generalization from Yang-Mills fields to
gravitational fields does not give tractable kinetic equations,
at least not in the Palatini formalism.

THE GRAVITATIONAL FIELD: ASHTEKAR VARIABLES

As Elze, Gyulassy, and Vasak@10# have developed the
Wigner function technique for Yang-Mills fields, one would
suspect that an approach similar to theirs can be fruitful if
one uses the Ashtekar formulation of gravity. In this formu-
lation @16# one has a complex SU~2! connection
A5Ai

adxisa , where sa are the generators of su2 and
i51,2,3 is a spatial index. This formalism is based on the
fact that the Lorentz algebra so~3,1! in four dimensions~and
four dimensions only! is isomorphic to the complexification
of su2. The Ashtekar formalism therefore makes use of two
vital aspects of general relativity: the correct dimensionality
and the correct signature of spacetime. Canonically conju-
gate to the connection, we have the ‘‘electric field’’Ea

i , i.e.,

$Ai
a~x!,Eb

j ~x8!%PB5db
ad i

jd~x,x8!. ~115!

Introducing the field strength tensorFi j
a , the constraints can

be written as

Di5Ea
j Fi j

a50,

H5ec
abEa

i Eb
j Fi j

c 50,

Ga5¹ jEa
j 50.

In exact analogy with the Yang-Mills case as presented in
@10#, we could define
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Gmn
ab~x,p!5E

TxM

d4y

~2p!4
e2 ip•y~e2~1/2!y•¹Fmr

a !

^ ~Fsn
b†e~1/2!y•¹†

!grs,

with F0i
a 5Ei

a . Considering the Hamiltonian nature of the
system, it is, however, more appropriate to introduce two
slightly different Wigner functions~i.e., essentially splitting
the above candidate into two!; namely,

G i jkl
ab 5E

TxS

d3y

~2p!3
e2 ip•y~e2~1/2!y•¹Fi j

a ! ^ ~Fkl
b†e~1/2!y•¹†

!,

~116!

Lab
i j 5E

TxS

d3y

~2p!3
e2 ip•y~e2~1/2!y•¹Ea

i ! ^ ~Eb
j†e~1/2!y•¹†

!,

~117!

where we have used the global hyperbolicity of spacetime
always assumed in a Hamiltonian formulation of gravity,
M.S3R, and, furthermore, made explicit use of the com-
plex nature of the connection and the ‘‘electric field’’
~whence the daggers on the right-hand side!.

The constraints can then be used to derive relationships
between these two Wigner functions. The diffeomorphism
constraintDi can be rewritten

~Ea
i

^Eb
j†!~Fik

a
^F jl

b†!50. ~118!

Noting that the Wigner functionsG i jkl
ab ,Lab

i j are precisely the
Weyl transforms of these two tensor products, we see that
the quantum version of this constraint reads

Dkl[Lab
i j * G ik j l

ab 50, ~119!

where * denotes the twisted product~the noncommutative
product induced on the set of phase-space functions by the
non-Abelian product of operators!,

f * g; f e~1/2!in
J

g5 f g1
1

2
i fnJ g•••, ~120!

with fnJ g:5$ f ,g% being the Poisson bracket.
Similarly the Hamiltonian constraintH becomes

H[ec
abec8

a8b8Laa8
i i 8 * Lbb8

j j 8 * G i j i 8 j 8
cc8 50. ~121!

One should note that while the classical constraintsDi ,H are
purely algebraic inFi j

a ,Ei
a , the quantum versions become

infinite order differential equations in the corresponding
Wigner functions—equivalently, they become * algebraic,
i.e., deformed. The last constraint, the Gauss one, however,
gives rise to a differential equation forLi j

ab , analogous to the
equation for the Dirac-Wigner function~or more precisely, to
the Yang-Mills Wigner function as derived by Elze,
Gyulassy, and Vasak@10#.

GROUP THEORETICAL ARGUMENTS

We can round off this discussion with a few comments
about the algebraic structure behind the entire WWM for-

malism. The flat space Wigner function has a natural group
theoretical interpretation@17,19#. Define the operator

P~u,v !5exp~ iup̂2 ivq̂!, ~122!

then P(u,v) forms a ray representation of the~Abelian!
group of translations in phase space:

P~u,v !P~u8,v8!5e2 i ~uv82vu8!P~u1u8,v1v8!.
~123!

This operator then gives the Weyl transformation, mapping
an operator into a function on the classical phase space

AW~u,v !5TrP~u,v !Â. ~124!

The Wigner function is the~symplectic! Fourier transform of
the Weyl transform of the projection operator~for a pure
state! uc&^cu, i.e.,

W~x,p!5E ei ~up2vx!^cuP~u,v !uc&dudv. ~125!

What we have done in this paper is to replace the Abelian
group of translation on a flat phase space with the non-
Abelian group of parallel transport on the curved phase space
T*M . This splits up into two parts, the parallel transport in
the base manifoldM , which is generated by the momentum
operator, and the~Abelian! translations in the fiberTx*M ,

which is generated byq̂.
In a previous work@18# I showed that one can generalize

P to a very large class of algebras, most notably finite di-
mensional Lie algebras, their corresponding loop and Kac-
Moody algebras, as well as super Lie algebras and
C* -algebras. To put it in algebraic language then, what one
does when going from flat space to curved space is to replace
the usual Heisenberg algebra by the curved space analogue

@ p̂m ,p̂n#52R̂mn , @ p̂m ,q̂
n#52 idm

n , @ q̂m,q̂n#50,
~126!

whereR̂mn is the curvature two-form~not the Ricci tensor!.
The twisted product is given by

AW*BW :5~ÂB̂!W5TrP~u,v !ÂB̂ ~127!

and can be written in terms of a kernel as@18,19#

~ f * g!~u,v !5E K~u,v,u8,v8,u9,v9! f ~u8,v8!g

3~u9,v9!du8dv8du9dv9, ~128!

with

K~u,v,u8,v8,u9,v9!:5TrP~u,v !P~u8,v8!P~u9,v9!.
~129!

Thus the quantityP is the essential ingredient in any gener-
alized ‘‘Wigner-Weyl-Moyal formalism’’ or ‘‘symbol calcu-
lus’’ @18#. Hence what is needed in general is~i! a ‘‘symbol
map’’ sending operators~typically pseudodifferential opera-
tors! into functions on the cotangent bundle and~ii ! a map
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connecting two fibers; this latter map is simply the symbol of
the parallel translator. In principle one could have a different
map in ~ii !, but the symbol of the parallel translator is the
simplest choice.

The formula we have derived forW was based on the
phase space of a classicalmechanical system, namely,
T*M . The Wigner function took its values in
C(3,1)^ G(T*M ) then, whereC(3,1) is the Clifford algebra
andG(T*M ) denotes the set of cross sections of the cotan-
gent bundle. We used the group of parallel transport and
translations along the fibers to generalize the Wigner func-
tion from quantum mechanics in flat spacetime. One can pro-
ceed to quantum field theory by means of second quantiza-
tion, although this is not usually easy to define in a curved
background@4#. Locally this always makes sense, but there
are often global obstructions. Another method, which is not
very common, is to treat the field and its conjugate momenta
as the fundamental phase space~which is then infinite di-
mensional!. The Wigner function is then a functional of
these fields. This is very similar to the way one treats quan-
tum gravity in quantum cosmology, where one then consid-
ers the wave function of the universe. The Wigner function
has already been extended to this situation. Let us consider a
field theory in Hamiltonian formalism and denote the fields
and their conjugate momenta byf and p, respectively.
These can be either bosonic or fermionic. We then want a
functionalW such that

^A&[E W @f,p#A@f,p#DfDp, ~130!

which generalizes

^Â&5TrrÂ5E AW~x,p!W~x,p!dxdp.

If we have free fields, then the phase space is flat, and the
parallel transporter becomes simply

P5expS i E uf̂2vp̂dxD . ~131!

From the quantum mechanical relation

W~u,v !5TrrP~u,v !5^P~u,v !&,

which is the symplectic Fourier transform of the Wigner
function, we conclude

W~u,v !:5^P~u,v !&5
1

Z~0!
E eiSP~u,v !DfDp. ~132!

Noticing the concrete form ofP we see that exp(iS)P is
equivalent to adding a source term~with the sources denoted
by u andv, respectively!, hence

W~u,v !5
Z~u,v !

Z~0!
. ~133!

The proper Wigner functional is then a symplectic~func-
tional! Fourier transform of this quantity. This makes it pos-
sible to interpret the partition function~with sources! as es-
sentially the Wigner functional of the vacuum state~or, more
generally, the vacuum to vacuum transition!.

CONCLUSION

We have generalized the work by Elze, Gyulassy, and
Vasak to gravitation and quantum fields in curved spacetime.
Thereby we obtained a set ofexact equations for QFT in
curved spacetime and even quantum gravity, which allows us
to makenonperturbativecalculations in these cases. The ma-
jor draw back is the complicated nature of the equations—
especially in the full quantum gravity case. But on the other
hand, we can develop a recursive scheme for these quantum
corrections~the n expansion!, and we can therefore avoid
perturbation theory all together. One should also note that
this approach is, on the one hand, intimately related to the
algebraic structure of the space of quantum observables~the
canonical commutator relations for the fields! and on the
other, to the topological structure of spacetime~the Wigner
function is, for Dirac fermions, a mapping from the cotan-
gent bundle into the Clifford algebra, whereas for bosons it is
a mapping from the cotangent bundle into the tensor alge-
bra!. It was this interplay that allowed us to find dynamical
expressions for the conformal anomaly ind52 andd54.

We also saw that the kinetic equation satisfied by the
Wigner function could be split up into two, one being the
mass-shell constraint giving the quantum and curvature in-
duced corrections to the mass, while the other was the kinetic
equation proper. In certain classical-like situations these
could be written as two Fokker-Planck equations, the one
with no momentum diffusion the other with no dynamical
friction. We derived expressions for these kinetic quantities.
We also saw how quantum corrections modified this simple
situation.

By taking appropriate moments of the Wigner equation
we arrived at a set of coupled equations governing macro-
scopic quantities such as energy-momentum tensor and cur-
rent and spin densities. These were the corresponding hydro-
dynamic equations. We saw that they, besides giving the
kinetic interpretation of the conformal anomaly, also lead to
an expression for the heat flow.

We attempted to handle first the gravitational degrees of
freedom in the Palatini formalism, in which we had to intro-
duce Wigner functions for the vierbein as well as the spin
connection. These were not, however, covariant, and the re-
sulting equations were too complicated. We then turned to
the Ashtekar variables, where we could either introduce one
Wigner function forFmn

a in the standard way or use a canoni-
cal description to split this into two, one forFi j

a and the other
for Ea

i . These were by construction covariant. The con-
straints induced conditions on these Wigner functions which
were * algebraic, i.e., infinite order differential relations due
to a quantum deformation of the product.
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