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Quantum theory in curved spacetime using the Wigner function
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Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhage®é&hmark
(Received 30 January 1997

A nonperturbative approach to quantum theory in curved spacetime and to quantum gravity, based on a
generalization of the Wigner equation, is proposed. Our definition for a Wigner equation differs somewhat
from what has otherwise been proposed—it being an extension of methods from Yang-Mills theory in flat
spacetimes. It is an exact equation, equivalent to the Heisenberg equations of motion. The approach makes
different approximation schemes possible; e.g., it is in principle possible to perform a systematic calculation of
the quantum effects order by order. The method is illustrated with some simple examples and applications. A
calculation of the trace of the renormalized energy-momentum tensor is done, and the conformal anomaly is
thereby related to nonconservation of a currerdin2 dimensions and a relationship between a vector and an
axial-vector current il=4 dimensions. The corresponding “hydrodynamic equations” governing the evolu-
tion of macroscopic quantities are derived by taking appropriate moments. The emphasis is put on ihe spin-
case, but it is shown how to extend to arbitrary spins. Gravity is treated first in the Palatini formalism, which
is not very tractable, and then more successfully in the Ashtekar formalism, where the constraints lead to
infinite order differential equations for the Wigner functiofS0556-282197)03414-0

PACS numbgs): 04.60.Ds, 04.62¢v, 11.15.Tk

INTRODUCTION The next step is naturally to write down a similar equation
governing the gravitational fields. Since fermions causes tor-
One of the greatest problems we are facing in physicsion [4,5], it would at first sight seem convenient to intro-
today is gravitation: as is well known we do not possess guce two Wigner operatorEZt;?Cd and '—va for the spinor
well-behaved theory of quantum gravity. Even semiclassical;nnectionw® and the vierbeine? , respectively. These
gravity, 1.e., quantum _f|e|d theory in cur_ved spacetime, V\_/her igner functions will not, however, be covariant, thus intro-
the gravitational field is kept as a classical b_ackground,. is no ucing an unwanted gauge dependency. In the Ashtekar for-
that well behaved. It seems that perturbation theory is jus i instead introd i ant Wi
not applicable to problems involving gravitation; hence, new,mals_m nstead, we can infroduce W2 covarant WWigner
nonperturbative approaches have to be found. In this papefnctions: one for the S() connectionA" and one for its
inspired by recent results in QCspecially the study of ConjugateE?. In both cases, however, the equations become
quark-gluon plasmas we propose a nonperturbative ap- highly complicated and we will not be able to say much
proach based on the Wigner operator. The equation gover@bout them. We will basically, in this paper, consider the
ing the behavior of this operator is completely equivalent tobackground geometry as fixédemiclassical quantum grav-
the Heisenberg equations of motions for the fields. Thigty). Let us note that such an approach should find many
Wigner equation is the quantum analogue of the classicakpplications: Hawking radiation, the early universe, etc. We
Boltzmann or Vlasov equatiorfd—3] and thus allows for a will not, however, deal so much with these applications in
better intuitive understanding of the problems, since it posthis paper.
sesses a well-known classical analogue. Start with a flat This is not the first time the powerful Wigner-equation
spacetime manifold and a Dirac spinor figifx) on it. In-  methods have been suggested as a framework for quantum
stead of just looking aty(x) or its Fourier transformy(k) fields in curved spacetime. Some earlier work by Calzetta
we consider a “distribution”W(x,p) which is a functional et al. and Kandrup 6] uses either Riemann normal coordi-
of ¢ and depends explicitly on both and p. This “distri- nates or a mode-decompositiomhich only works for static
bution,” the Wigner operator, is, however, a nonpositive op-spacetimes they also show the connection between this ki-
erator, which is why we put the term “distribution” in quo- netic approach and the usual path-integral or Green’s
tation marks. The explicit form is given in the next section; it function-based approach; the Wigner function can be ex-
is essentially a kind of Fourier transform of the density ma-pressed as a Fourier transform of a two point function with
trix. The Dirac equation forys gives rise to an integro- respect to the middle point between the two poitie pre-
differential equation foilW, which is readily generalized to cise relationship is given in the next sectiotn general,
curved spacetimes. This allows us to attack the problem ofieither the Fourier transform nor the concept of a middle
fermions in curved spacetime from another angle than usugloint makes sense in a general curved background, at least
guantum field theoretical techniques and, furthermore, allowot in a coordinate-independent manner. Therefore, one
us to write down other approximation schemes. When theould attempt to use Riemann normal coordinates in order to
background is classical, i.e., when dealing with quantunbe able to defin&k—x’ for x,x’ points on the manifold, or
field theory in curved spacetime, the integrations can be pewne could make use of a mode decomposition of the solu-
formed and one ends up with an infinite order differentialtions to the equations of motion of a free field to generalize
equation. the Fourier transform. Neither of these two approaches are
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completely general, although they do represent useful calcthote thatW takes values in the Clifford algebra, a point we

lational short-cuts. Winte{7] has proposed an approach il use later. This definition can be made gauge invariant by
similar to the one put forward here in which one integrateseplacing

along curves(geodesics, to be preciseBut his approach
needs the solution of the geodesic as well as the geodesic 1 iy-0

deviation equations, a daunting task in general. This again P\ x— zy =e $(X) @)
essentially restricts the usefulness of his method to Riemann

normal coordinates or to other approximation scheffiest  with the gauge-covariant generalization

guantum corrections to the classical kinetic equatidrne

solution of the geodesic equation is not needed for the ap- zﬁ(x— 1 )Ee‘“l@y'vzp 3
proach presented here, even though we use parallel transport 2y '

along geodesics at an intermediate stage. This parallel trans-

port along geodesics is, however, not in general possibleyvhere V is the (gauge covariant derivative. Writing
since two arbitrary points on a manifold need not be conx.=x= 3y we can write
nected by such a curve. In a general background, only points

within a normal neighborhood will be connected byteen 4 _ iy T dy
unique geodesic. In this respect the method put forward heré’v(x’p)_f e P Y(x U (X, ’X)®U(X’X*)¢(X’)(2w)4’
is not more general than what has already been done. What is 4)
new, however, is the derivation of the kinetic equations and
some of the results which we can draw from them. where

Halliwell, Gell-Mann, and Hartle, and also Hat al. have b
shown that the Wigner function appears naturally in a quan- U(b,a)EPeXF( _igf AM(z)dz">, (5)
tum theory of historieg8] such as, for instance, quantum a

cosmology; it is the only setting in which the Wigner func- o )
tion of the gravitational degrees of freedom has been studiedVhereA,, denotes the Yang-Mills field, and the path of inte-
It is quite natural to extend the Wigner function to the gration is a straight linez(s)=a+ (b—ajs, which goes
Wheeler-DeWitt equation using the analogy with the nonrelfrom a to b ass goes from 0 to 1. The Dirac equation then
ativistic Schralinger equation, and is then a very useful toolimplies the following equation fovV:

for studying precisely the enigmatic quantum to classical

transition. In this paper, however, we will attempt another o E ~ _l. i

approach setting up Wigner functions for the gravitational M=y Put 31Va [ [W=51975X.W, )
fields in analogy with what has been in done in Yang-Mills

theory earlier. whereX, is an integral operator involving the field strength

It should finally be mentioned that Fonarev too, has extensor,
tended the Wigner function technique from flat spacetime to
a curved backgrounf®]. Similar to the approach proposed ~ n d 1 1
here, he uses the structure of phase space as a cotangent X«W=- ap fo (1_ 7S
bundle; our result, however, is much more closely related to !
the analogy with Yang-Mills theory. He furthermore empha- - =S _misa
sizes the case of the scalar field, whereas this paper mostly +Wf0 Te F.ds|, )
studies spinor fields, with some comments on the gravita-
tional field. The derivation of the conformal anomaly and of \yhere we have introduced theangle operator
the “hydrodynamic equations” are also new.

Most of the calculations are done ih=4 dimensions for d
concreteness but are valid for dll In some particular cases A=—o-V. ®)
the cased=2 is also considered.

e—[i(l—s)/Z]AFwwds

o

It is understood that the derivative with respect to momen-
tum always acts on the Wigner distributiafoneandnot on

We start out by considering the spacetime geometry a8ny of the other terms. _ _ ,
being fixed:; i.e., we begin by studying quantum field theory Or_1e should also mention the relationship to the Grgen S
(QFT) in curved spacetime. Our main source of inspirationfunctions. If G(x,x’) denotes the Green's function
are the papers by Vasak, Gyulassy, and El4#, in which  G(x,x") =(¥(x) ¢(x")) then the Wigner function can be re-
the Wigner operator formalism is derived for Dirac fields written as
interacting with Yang-Mills fields. We will give a brief in-
troduction to their results here, as this will indicate how to
generalize to curved spacetime.

Consider a second quantized Dirac fiell(x). The
Wigner operatoris defined to bd2,10] i.e., as a Fourier transform of the two point function with

1 1 dly respect to the distance between the two points. This shows
4 _ “iy- L _t ) the relationship with the more familiar approach to quantum
W(x,p)—f e’ F’Z(x+ 2Y ®¢/(x 2y>(27r)4’ @) theory using Green’s functions.

THE METHOD

ddy,

“ ) 1 1
W(X,D):<W(X,p)>°<f e'y'pG(x— SYX+ 3y
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The curvature two-formF,, appears through the ho- w3P= p°%e’e’T? — ptaely ef (12
. . . . y23 cCYpt uv popmCH
lonomy, i.e., through reexpressing the derivative of the par-
allel transporter in the principal bundlé(b,a) in terms of  and it is this quantity which is the analogue of the Yang-
an integration along a closed curve. The above equation agills potential Aj, . Even though we deal with fermions, we
tually holds forA, being an operator, but for a classical will in general assume that no torsion is present, i.e.,
background one can pull the field strength tensor out of th‘FZV:F’iM- This is a valid assumption since torsion does not
integral overy to obtain propagate and since we only want to deal with fields in a
given classical background.
(1 (1 With these comments the Wigner operator equation now
Jo EA —11 EA
where jo,j; are the usual spherical Bessel functions

' ©) reads

jo~Jd12,11~J32. We will now analyze this equation and the
steps leading to it.

First the obvious translations: the gauge field is replacedvhere now
by the spinor connectiow , = wiboab, whereby the gauge
covariant derivative becomes the spinor covariant derivative o ~ 1 d | (1 (1
and the field strength tensor becomes the Riemann- XaW=\/—;ea Tpilo(EA> —1 1(§A)
Christoffel curvature tensolRff;. Let us next consider the (14)
path of integration. In flat space we integrate along the
straight line fromx_=x—3y to x, =x+3y; i.e., we go in  with the triangle operator given by
the direction+y from x for a “period of time” 3||y||. The
curved spacetime analogue is now obvioysis a tangent A= Miv 15
vector, and we integrate along thienique geodesic with =€ pa M (15
tangent*y atx, the length of the curve segment at each side
of x is 3|ly| . Note that this simplifies things a lad:priori we  The curly brackets denote an anticommutator. Both the cur-
would have expecteg to lie in the manifold, but now we see vature two-form and the Wigner operator are Clifford alge-
that it really lies in the tangent space. Hence for each givera valued, thus the Clifford algebra and not only3)
point x in the manifold we integrate over all possible tan- appears here as the analogue of the internal symmetry group
gentsy lying in the tangent space &t T,M, which is a flat of Yang-Mills theory. One should remember that(3d)
space. This means that we keep the meadfy&(27)*. To  =spin(3,1)2C(3,1), so we have in a sense “extended” the
summarize, in flat spacetimey,p all belong to the same gauge algebra from the Lorentz algebra to the full Clifford
space, whereas in curved spacetikrie in the manifoldy in ~ algebra, with the price, of course, that we then no longer
the tangent space ang, in the cotangent space. The dot have a Lie algebra but a Clifford algebra instead. Also note
product y-p is then just the pairing betweeli,M and that s¢3,1)=spin(3,1) acts naturally on the Clifford algebra
T*M. What we have done is to make extensive use of th€(3,1) throughx—[x,a"]; it is under this Lie algebra that
intimate relationship between Yang-Mills theory as a theorythe Wigner function transforms.
of connections on a principal bundle and general relativity as Here we have just made the obvious translations from
related to connections on the frame bundel1-13. Yang-Mills theory to minimally coupled Dirac fermions in a

We will follow customary notation and denote flat spacecurved background. Nonminimally coupled fermions, i.e., in-
indices by Roman letters from the beginning of the alphabet¢luding a coupling to torsion, should be dealt with by making
and curved spacetime ones by Greek letters. In curved spacke substitutioanL?,oaba RZbV(rabJr SV, whereS,, is
time, the Clifford algebra relatiofy, ,v,}=2g,, implies  the torsion(the antisymmetric part of the Christoffel sym-
that the Dirac matrices are in genexatiependent; we intro- bol). This is because the curvature only enters through the
duce the vierbein as the transformation connecting them toommutatofV , ,VV]=Rf‘ﬁoab (via the holonomy and this

~ Jd
_ -1
XM—W 69DVF“V

m+ y* =—— kXKW, (13

N -

1
e‘;pa+ EI Vﬂ)

RZC{O'bcvW}v

14

the usual flafconstank Dirac matriceqd4,5]: gets modified to the above mentioned linear combination of
curvature and torsion when the latter is presgsit In a
7M=e‘;ya. (100  similar fashion one could introduce gauge degrees of free-

dom, coupling to a Yang-Mills field by addingigAX T, to
The connection between “curved” and “flat” indices is es- V,, whereT, are the generators of the gauged Lie algebra.
tablished by this vierbein. The covariant derivative thenWe would then have to add F‘;,,Ti< to the right-hand side
reads[5] of the commutatofV ,,V,]. The resulting Wigner function
and its equation of motion would then also be gauge covari-
V,=d,+ wzboab, 11 ant.

Covariance is ensured by noting thgt transforms as
with o4,=3i[ va,7,] the generators of the Lorentz algebra #—Uy, where U is the transformation matrix
sa3,1) in the spinor representation, and is the analogue oft/=exflia(X)0™’] for the purely gravitational case and
the generator of the gauge algebra in the Yang-Mills casd/=exfias(X)o?*+iga*(x)T,] with a coupling to a Yang-
The spin connection?” is related to the Christoffel symbol Mills field), and thatV, transforms covariantlyadjoint rep-
through resentatiopy V,—UV .U 1; one then see®/— 1AV,
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The Wigner equation is then an infinite-order differential Ao 1 9 )
equation. It is this equation which is the subject of this study. €abcd =~ 5ixe5(jo— 1] 1)&p (*R) 7pa, (19
CLIFFORD DECOMPOSITION with
The Wigner operator takes values in the Clifford algebra, )
aiven » J R = 5 egpedR. (20)

since it is given as a product of two spinors. Hence it can be
decomposed. Id=4 a basis for the Clifford algebra is given one knows that in Yang-Mills theory self-dual and anti-self-
by 1,75, ¥a:¥a¥s:0ap, @S is well known. We thus write dual curvature two-forms play an important rétaey corre-
spond to instantonf5,11-13), therefore it is encouraging
that the dual of the curvature two-form also appears in this

gravitational setting.

where then, of course$,P are a scalar and pseudoscalar, o Aabe :
V2 A2, are a vector and axial vector, afi$f an antisymmet- One should also note that the combinatigg,5¢3*° is
ric tensor. A similar splitting up of the operators can be madeproportional to the Ricci tensom,,62d3°°= 37~ Y2k (a/
using the properties of the Dirac matrices. The left-hand sidep,)R%(j,—ij), which implies that this combination van-
can be written ishes for the vacuum solution of general relativity, i.e., in
Ricci-flat spacetime®,,, = Ringe;f:O. This implies that in
many backgrounds of real physical interest, the right-hand
sides of these coupled equations simplify.

Another important consequence of this Clifford algebra

sa ou b 5 d\Vi— d dr 1WA decomposition concerns the classical limit. In this limit one
2l oYY }W_[er Y Aa+ 757 BalW would gxpect the Wigner function, considered as-adma-

17) trix to be diagonal:

W=S+ Pys+Vy,+ A2y ys+ TP 4p, (16

+ 44 +E' 7 _E bcu
m- 7y~ Pqg 2|ed(9//. zw,uebncd

having used f1
d_be_i, ac _bd_ _ab_dc dcba, 4 f2 F. 0
Vo =1 (70 = ™) yat 47 s va, W= g =l o g |71V
l —
which follows from the definition ofo,, and the standard o
trace formulas for the Dirac matrices, see, e.g., Itzykson and
Zuber[14]. We will write the right-hand side as This leads to the set of coupled equations
Jabey Lo W, (18 mS— Ay °=0, (21)
where J2°¢ then contains all the curvature information and BoW’=0, (22)
no Clifford algebra informatiorii.e., it is proportional to 1L R
With this notation we get mP— A%S=i ,,6232°¢S, (23)
MS— AV B A= _4€abcdjabc-’4dv BdS:4€gbcjach, (24
mP+ A, A% =B,V = — 5. 77,4205, where, as we have seen, the right-hand side in the third of
these vanish if the spacetime is Ricci-flat, i.e., a solution to
M= AUS+BIP—i (76705 — 7607 ACT 9+ 463 BT the vacuum Einstein equations.
A A A The second of these equations impligs=0, which then,
=i 705003205~ 2€d, IAPP+ 469 71 7ced2P°TE, from the first, yieldsn=0, hence we are left with the pair of
equations
MAY+ AYP— BIS+i (76185~ 7607 BT~ 4 €3 A°T .
X X ApS= — i 7580377, (25)
= — 4€5 S+ 8i (14503~ 74c5)I20P, )
BIS=4¢3, J20CS. (26)

m7¢'+ JiAley— JigleAl
Thus in a Ricci-flat spacetime, the only quantum corrections
= 1263, €547 T~ ( Dacedh— Naacep) J2°°AY, enter through the second of these, as the first become
AyS=0, i.e., the quantum corrections will depend only on

where we have used the symmetry propertie®F, i.e.,  the dual of the curvature two-form. The first equation then

Jabe= _ jacb 5 remove some terms involving's. One will implies thatS is an eigenstate of the differential operator
often be able to assunfé=.42=0, in which case the equa- eé‘ﬂﬁiwioei with eigenvalue—2ip,, whereas the second
tions can be simplified a little bit. equation determines the dependency on the other compo-

The equations involve not only the curvature two-form nents of the momentum. We will return to the cale=S in
but also its dual, since later sections. Let us note in passing that the extra term
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—2ipy added to the Dirac operator can be interpreted as a ) 1 1 1 ,
coupling to an Abelian connection, or as correspondingto a  (M“7;;—me;;) W — m pi+ pj+ Elﬁj W
Dirac operator in five dimension@s in the families index _
theorem[12,13)). " oW
For later use, we also give the Clifford decomposition in + 5' Ke| p;+ ecRap JW
d=2 dimensions. Here? corresponds tar; o, (the Pauli _ p
matrice$ and both ys; and o,, correspond to s 1 ki N PW
=—io,0,=—3i[oy,0,]. The covariant derivative can be = §K 76 elR R, s I 390,
written asV,=4,, since there is no spinor connection in )
d=2 [13]. With this (Latin indices going from 1 to Rthe 1 eteTR 4R, 5 32 9 Wy
Wigner equation reads g ci€ B0 PP,
1 oL oW
- 1 A 1 9 . 2K€k]e Raﬁ’ p +§|a J_ap
|:m_0'l(pi+—i5i):|W:_—lK0'e JRQB[(T3, W} B
2 4 pg K
5 1 1 ~ W
(27) 2|KEe FRapl Pt 510k JT. (34)
With the decomposition Rememberingl=j(3A)—ij,(3A) and thatA is Hermit-
ian, the Hermitian and anti-Hermitian parts of this equation
must be satisfied separately, which then leads to two coupled
W=Wpl+W,o'+ W03 (28)  equations whichV; has to satisfy.
EXAMPLE: COVARIANTLY CONSTANT CURVATURE
we then arrive at ) )
When the curvature tensor is covariantly constant,
V,R2%=0, we can take the square of the equation\igr
1 . 1 d
WO—(p-+—i(9-)Wl=——IK€|Je R, J—w,, (29 1 J R
2 2 o IPg W (m— VAR — vy, B2+ ZiKGQ‘f‘RZi' ch,ﬁ-])WZO
1 to obtain
mW — €; W pi+ |)W0 .
0=[m?—A%2—B2-2y:A-B]W
1(Raaw+ R pI— w) (30) K &
=—-ik| e'R, € €°R, ~
2 Fopg 2 T Plopg ° +16a¢ achvR%W{ch,vd{Uef,W}}

1
. R R 1 . 0 _ZlK[ vaA" ey dRifva {O'efvw}]
MW;—i gj; p'+§|al WJZ_Z|K77”eiaRa,B‘J£Wj- (31
B
1 d A
- ZI K{ YS’YaBaaeg‘ydRifvﬁ{oef ,W}] . (35)

We will return to this set of equations in the section concern-

ing the trace of the energy momentum tensodin2 and  We can split this into two equations by taking the Hermitian

d=4. For now let us just note that the set of coupled equaand anti-Hermitian parts out. For the Hermitian part we then

tions in d=2 can be re-expressed as an equation\igr  get the constraint equation generalizing the mass-shell con-

alone by using the first and third to expréa,W; as some  dition

operators acting oV, . Explicitly R
0=(m?—A?—B2-2A-Bys)W

K2 2

i Kk W 1 1 } map . apbcpef d A
- a 4 i + —elefv'R R Tpe, Y {0, WH,
Wy= 2melJe R"‘BJap (p|+2|<?|)W', (32) 16°a%dY Nurtp 19p,,0p(,{ ber Y {Ter, Wi}
(36)
ik ~OW, 1 whereas the anti-Hermitian part becomes the kinetic equation
Wa=— mﬂ”e?RagJﬁ—pﬁ"‘ €| P+ 5id W, (33 proper(as in the Yang-Mills casg10])

0=1 72A%+ y57,B% e y'RS, p Wh. (37

leading to
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The mass-shell condition, E¢36), can also be seen as a d
momentum diffusion equation of Fokker-Planck tyjde2], 0=2i(7atnde— ﬂae”df)AaeMdRvaa_S
but the important thing to note is that it i®t on its own a Py

kinetic equation specifying the state of the matter fields. N deet

Comparing this with a standard classical kinetic equation for — €31(Map”dg™ Mag?an) B Rwﬁ& (42)
a phase space distribution functign[1], !

This can be seen as an equation involving only dynamical

d 1 & friction and not momentum diffusion. Writing it in the clas-
a—pv(aVﬂJf > m(bMV]:): f(p.x)F (38  sical form
J
we see that,, the dynamical friction in our case is fi(p,x)F= p (a,h), (43
a,=0, (39  where the “force term”f, contains the operatah, we see

that the dynamical friction is given by

while b,,, the momentum diffusion coefficient, igsimply 1
N — i b f
take W=S to get the nonspin terms a,=(Das Mge— 77ae77df)( pe— Ewpa) eMdRiV
K’ o of de_ _ge df be pef — eIMePgrend,dTRE (44)
b,o = €a€4( 77 7= 797") (14c85 — ngnde) LSRG efar=p= Tp Tur
) It is very interesting to note that the resulting equations for
+ spin terms (40

W splits into two set of equations, one containing only mo-
mentum diffusion and the other only dynamical friction. In
andf(p,x), a kind of momentum force term, finally reads both cases the sources for the processes are given by quan-
tum effects, i.e., vanish in the classical limit if one ignores
f(p,x)= —(m?—A2—B2?) + Clifford algebraterms  (41)  spin effects. Furthermore, the coefficieais,b,,, are in both
cases given by the curvature and are thus geometrical quan-
tities as one would expect intuitively.
X . . ) Again, in the general case we would get higher deriva-
Thus in this particularly simple case, we see that thetivesgof momentugm, the “diffusion” equatign cor?taining all

mass-shell condition can be interpreted as a diffusion equas an powers of/dp, and the “friction” equation containing

tion In momentum space. Now, this momentum qn‘fusmn 'Sall the odd powers. These extra terms are pure quantum ef-
provided by the quantum and curvature corrections to th?ects and have no direct classical interpretation.

. - 2 . .
mass, i.e., the difference b.e“’.ve""ﬁ gndp ! itis thus apure To round off the discussion we also give the splitting of
quantum phenomenon. This is a kinetic interpretation of thqhe Wigner equation id=2. As we have seen, in this case
uncertainty principle and of the renormalization of the mass; . an make do with an eduation fof alone 'I:he Hermit-
, .

It is |_nt_U|t|v¢Iy pleasmg to see that the momentum _d|ffu3|on ian part of this equation is seen to be, in the case of covari-
coefficient is given simply by the curvature, and is thus a

purely geometric object, even though its source is purehNtly constant curvaturgorresponding to taking=1),

guantum. For a curvature which it covariantly constant,

the mass-shell condition contains higher derivatives with re- (2 j L L j
(M —me )W | pip;+ S1(pidj+pjdi) = 5 didj W

spect to the momentum, such terms do not have a direct

classical interpretation and therefore represent pure quantum

and is thus an operatgrememberA~p+Jd+ ).

.
effects. =— —k2pMele}R, 4R 5‘9_W]
The main difference between E(7) and the result for 8 70 9P s
Yang-Mills theory is the appearance of the anticommutator. 1 W
As we have seen earlier, this anticommutator can be traced — —¢ ek'ej"eﬁRaBng—k
back toW being Clifford algebra valued and that the genera- 4 IPsIPs
tors of the Lorentz algebra for Dirac fermions is precisely 1 1 \ow
oap Which is an element of the Clifford algebra. Remember + E"EkjeiaRaB( ph+ Elak)a (45)

that the elements, vy, of any Clifford algebraC(r,s) gen-
erate the Lie algebra sping) which is isomorphic t0  for the Hermitian part, and
so(r,s). For r=3s=1 this is the Lorentz algebra in

d=3+1 dimensions, while for=s=1 it is the correspond- . 1 W w,o Lo oW

ing algebra ind=1+1 dimensiong11]. It is this interrela- € J( Pit 519 |& RQBW: ele] Raﬁ( P+ 519 )W
tionship between the Clifford algebra and the Lorentz alge- A ?46)

bra (which is then the gauged algebra for gravitational

systemg which accounts for the anticommutator. for the anti-Hermitian part. Once again, we can interpret the

In the extreme classical limifv=S and the kinetic equa- Hermitian part as a momentum diffusion equation. This time
tion reduces to we also have a dynamical friction contribution
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2

" g ¥ have to make do with the equations on the “Dirac foriiri
2 7pap (bsWi) + ﬁ(agwﬂzf (X,p)W, . contrast to the “Klein-Gordon form” resulting from taking
BEe B squarel which do not have a direct classical analogue. The
The diffusion coefficient is interpretation will therefore not be as precise as one would
perhaps have wanted.
L1 - 1. . Writin
b%%:z K2< €' ek'ej“e|7+ > ann"eerjy) RogRys,  (47) 9
. . L = (n)
while the dynamical friction becomes W(X’p)_go AW (x,p) (50
ag:_ EKEiInjkejaRaB pi+ Ei&i), (48) and remembering= %ﬁ,A, we can co!lect tgrms with the
2 2 same power of Planck’s constant. Doing this we get

which is then a differential operator in this case. The force
term is again related to the mass-shell constraint, although in
a somewhat more complicated form:

m+ ek y? W

1
pﬂ+§|V#

1 J
= — — “ apbc) 7 0)  bc
fklzmzﬂkl_mekl_pkpl_%i(pkal_plak)_’_%akal‘ o' K€Y RW[&p,,W( i ] ®D

(49)  for the “classical” contribution°® which is recognized as

. - . ) . the same as for the case of covariantly constant curvature
The anti-Hermitian part is once more a pure dynamical fric-eated in the previous section, whereas the first correction
tion equation(it would have a momentum diffusion term too, gaiisfies

if the curvature was not covariantly constariut there is no
source term. Thus there is quite a big difference between the
results ind=2 andd=4 dimensions, a difference which
cannot simply be referred to the different Lorentz character
of the “distribution” in the two casegin d=2 we consid- 1 u_ambe) 0 1)
ered a vector, and id=4 a scala, but is very much due to =T 5lk&Y Ruv (9_DVW 1T
the difference in the structure of the two Clifford algebras

m+ ek y?

1
oL,

and the fact that there is no spin connectiomin2. This is 1 ambe 2
. _ (0)

an important caveat. 5 k€4 V,(v'R,5) &pyﬂppw ' Thel s (52
THE A-EXPANSION: QUANTUM CORRECTIONS while the second order contribution satisfigemembering

) that the vierbein is covariantly constant
The case of covariantly constant curvature corresponds, as

we have seen, to a kind of classical limit involving only a ua 1 2)
few quantum corrections. In this section we will commence g M+ €3 7"| P+ 5! V| |W
more systematic study of quantum corrections. This is don
by noting thatA appears multiplied byi, and that Planck’s 1 w acbe| 9 W2
constant only enters in this combination. An expansion in ~ ~ ~ 3!K€Y Ruv ap, 1Obe
A is therefore related to an expansionfin Thus, one can )
calculate quantumA corrections by expanding the spherical +EK8MV (y2RES) W o
Bessel functions irX to a given order. To do this we need 62 ° KV ap,ap, 1be
the standard formulas 1 3
. +—ikel RN ———W, g
Si 2 . Z2n 48 KeanVO.('y ,uv)( apvﬁpp&pa— 1Ope
jo(2)=—= -,
Jo(2)=— n:o( ) Zn+1)! 53)
sig cog n In general we will have a recursive scheme
i(2)= —— — — -1 n Zanl
h@=" -7 =2 (-1 (2n+1)! 1
m-+e4y?| p,+ EiVM> wn
Now, A is a Hermitian operator and the Bessel functions
only appear in the combinatiopy—ij,. Consequently, it is 1 N o
rather simple to make a separation into Hermitian and anti- + ElKeéfy R, JW 1O
Hermitian parts of the Wigner equation. One of these will v
then only contain odd powers df and the other only even = terms involving onIy\N(k) with k<n. (54)
powers.

Due to the complicated nature of the operators appearingihe terms on the right-hand side will involve more and more
in the Wigner equation, we cannot simply take the squarenomentum derivatives of the Wigner function®® and
and compare with the classical kinetic equations. Instead weimilarly higher and higher order covariant derivatives of the
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vierbeins and curvature two-forms. Higher order derivatives X 1 \2. b 2 . L
of curvature can in general be considered as related to fludv® = 6% \ S Hpﬁ —— Y

tuations of the geometry, thus the higher order Wigner func-

IPpIP,

tions are determined by the fluctuations of spacetime, more- 9?wW®

over, they couple to higher order derivatives with respect to X H%E{ 9p..9p va'gh] ,ch}

the momentum of the lower order Wigner functions, terms e

which, therefore, do not have a classical interpretatimny iKe e PWO

first and second order momentum derivatives appear in clas- + 4_8Y Vo Her W’ch ; (63
v P o

sical kinetic equations This shows how the expansion in

A is closely related to pure quantum effects with no classicahnd so on.

analogue. One cannot, however, guarantee that this expan- | et ys Clifford decompos&W. This is straightforward
sion is equivalent to the standard loop expansion in quanturgnq we get

field theory. In general there will be no such simple relation-

ship.

One should also take notice of the fact that the momentum
derivative operator is symmetric in its indices; this implies
that only the symmetric part of ,- - -V, acting on the cur-
vature will contribute. From the commutator relation we get

V.V,=V,V,~R0s, (55)

__AQ a H a " bci d
mS A Va+B Aa+2|K6deeaR,u.V&p A

for the scalar part,

1 J
MP+ A% A~ BV, + S ik 70a4R, (9—pVAd

whence it follows that the right-hand side of the recursivefor the pseudoscalar contribution,
scheme not only includes higher and higher order derivatives

of the curvature but also higher and higher powers of it.
If we introduce the operatoY by

YW:=| m+etqy?

1
pM+ EIV'U‘

1
; bc
+5ikey 'R,

5 W, (56)

Jd
ap, b
then we can write the recursive scheme as
Ywm=pm, (57)

where F©=0 andF™ depends onV®, k<n. Thus, on
the formal level,
WM (x,p)=Y"F(x,p), n=1. (58)

Written out explicitly, the first corrections then read

WO == §- ety (YR2S) W o (59
6 a'p wv ﬁp,ﬂpp’ bc|(

1 . AW
wi?) =5 kY~ ehV ( VaRZCV){ 7P, ,ch}

T
19 € oY v 37 am am Obcf -
48 a’e R ] I 7]
(60)
Defining
HOS =4V (RS, (61)
we can rewrite this as
1 . WO
\/\/(1>=—KY1Hb,C,‘ o ], (62
6 Pl ap,ap,’ °°

MV — AYS+BOP—i (76185 — 7eg07 A®T 9+ 43 BOTH

1 J
— Zike!RPS ﬁ[_ i 62635—2€29P+ 47297, ]

2 a’ ‘uv

for the vector part, while the axial vector contribution turns
out to be

MA+ AYP— BIS+i( 76160 7467 BST9— 4€d A°T'O

1 J
~ i KERR, 5[~ 4€RiS+8I(950¢— 825 P,

2 A
and finally
1 1 1 J
m7ef+ EIA[er] - E||3,[*9A“1 ol Kengia—m[lkﬁﬁ’fSéng

+ (g€ Saecn) Al

for the tensor part. On the right-hand side of the recursion
relation we have terms of the form

1 ) 7
=KV (¥*R)) W, o -

6 "1 9p,9p,
Now, here the covariant derivative is to act on the two form
Ri’fv i.e.,

V,R0S=3,R0C+T% RYS+T2 RS,
and hencé&/ , does not involve any Clifford algebra elements
[0y is only the generator of $8,1) in the spins represen-
tation]. Therefore we can move theonstant Dirac matrix
v? outside the covariant derivation. A Clifford decomposi-
tion of this term is thus straightforward, and we obtain

ap,ap,’

2
Si— 3 kel eped V,RyS)
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1 9244 make a similar ansatz for the first quantum correction, i.e.,
P:— 6Keanbd5a(Vp M)&p ap,’ wh=g§ =N exp(—a*’p,p,+B“p,+v). The equations
then reduce to
vl PSS 1 9P
Zik 2%t (V R) — 2 ketder(V RDS) 1 g 1 7
p M uv bc p N uv _pad pmpad S o ad
6 p,dp, 3 p,Ip, A"S + 2;<eaRW&p S1 6'Kea(v”R“”)ap appS ,
2 ad bc 32 f (72)
3K 77bf77cee£f(VpR,w)WTé
P 2
, , . —BYS, +2i KegRZ‘;ebc Fry Si=—3 S Kepaek(V,R0S)
. da bc R
A:i— §€bceg(VPR,uv)ap ap, §|K( 5353_5253) 2
5P X 3pap 5 (73)
X (V RPC) 9P,
p v ﬁp,ﬁp ' . . .. .
P Then, evaluating the differentiations with respect to the mo-
52 menta and collecting powers of these, we arrive at the fol-
. ag_ef bc . L. .
T:2kekeddest(V RS apyappTd 5 k(%S — 53eS! lowing set of conditions:
L d,a"=0, (74)
X (V,R2C
( rap, &pp 1 — 1 d "7
) — =iek(9,B")p,+ 5 kELREC a™P 0, (75
To have a look at a solution we can take the extreme case Pa™ 3% wB7)P 27w Po™

WO (x,p)=Sp(X,p) =Ne™ @ IPup,+ B0+ 7(X) (64) eld, y=0, (76)

As we have seen earlier, this is only possible provided 1 ad 1 ads op

m=0, in which caseS, has to satisfy the coupled set of € K@y 0 neat kRL)S1=gikea (VR a?"Sy  (T7)
equations

1 s from the first of the equations fa&$;, while the second give
d d us
—A So —KegRiVES =0, (65) B
—i ebcde“wbc-i- i Keg‘Rijebc(B"— a’p,)S;
—BYS,+ 2i ke R €935 = (66)

€ 1
atmy b°r?p =3 Kebeeh(V RN S, (79)

The second of these yields, upon insertion of the explicit
Combining these we get the following set of conditions:

form for Sy,

wp=— kR (a"p,+ BY), (67) Gpa?=0,
which implies Rz‘;a””zo. Inserting this into the first we RZCV?PZO,
arrive at

1 Ieg(ﬁﬂp) - KegR,u,V??Cda pp_zpd1
Pat Eieg(_aﬂayppvpp+(9ﬂﬁvpv+aﬂ’y)zoa (68) 1
(€pcelah’— ketRSeld ”)Sl——Kebce"(VpRZC,,) °Sy.
which is only possible if

In a general spacetime the first two of these will give

at’=0, 69 —,_ .
a*’=0 as for the lowest order term. Hence, the solution
Y= 2ix”+ const, (70) S, will once .more be of thg"ltner form, albeit with a much
more complicated expression f@(x)U*(x) = B*.
y=const. 71) To get more information about the recursive scheme pre-
sented in this section, we can find the Hermitian and anti-
Thus S, is of the so-called “tner form[2]: Hermitian parts of the squared equatiome., the Wigner
equation in “Klein-Gordon fornm’), as this is where we ex-
exp{ B[ w(x)—p“U ()1}, plect Ito see the analogy with classical kinetic theory most
clearly.

WhereB is the inverse temperaturg, the Gibbs energy, and We essentially calculated the squareYoin the previous
.. the four velocity, i.e.,8“=BU* y=Bu. Let us now section. The square &) is similarly
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E) 2_K_2Hbc WO o S2WO (T)—TrJ H}I 2y —m)W—)A(W}dd 84)
( ) _36 vp ap,ﬁpp,abc Ke apKo—,pE’a-gh . - T:M 2 Y CaVu p.
We also know
A Clifford decomposition of this is complicated by thg'
part oszCV and the quadratic appearanceWf®). We note KW= J [WX (other termg]; (85)
that (F)? is Hermitian, hence, it only contributes to the [

momentum diffusion ion generalizing the mass-shell Snr o .
co%stera;[rt:t w?] eruesag thgilijr?étci) c e?qi a?i 06:1 pr(fmv;nigh Css;g e|.e., thatXW is a total derivative, and thus that its integral

) . < . over the cotangent spaceavanish, leaving us with
from the anti-Hermitian part oY) does not get any contri-

bution from lower order terms. The momentum diffusion 1
equation then reads <T>:TrfT*M 517°€4V,—m|Wd'p. (86)
(m?—A%?—B2—2A-Bys) WY From this we see thgfT) measures the failure oW to sat-
) 5 isfy a Dirac equation with massn2 (thus it is most interest-
+ = eter~AR0C RE d 1) ing whenm=0). This equation is valid for akli_._To carry
16€aed7 R“VRP"&pV&pU{UbC'y {oer W} out the trace we need the Clifford decomposition, which is

thend dependent.
oh *WO) Ford=2 we get
HoP 7pap. sh! - (80)

1
(T(x))zzif* egnabaﬂwbdzp—mf* Wod?p, (87
At the next orderO(%2), however, there will be contribu- M M

tions from W%, W to the kinetic equation proper for \here we have writtenW=Wyl+W,0%+ W0y with
W too: namely, a,b=1,2. Introducing the current density(ja(x))

o BAKO) :=JW,d?p and the number densityn(x)):=W,d’p we
i 2| pube) W Opet( ef) "W o can write this in terms of these macroscopic quantities only
288 | ap,ap,’ " /| 9p,ap,dpe’ ©f as

2 S2WO
S

bc
i,
ap,ap," ¢

. . . . . 1
In general, the momentum diffusion equation will contain TON = Zie 3% g i.(x))—min(x 88
only squares, whereas the kinetic equation will contain only (T00) 2 “al (9J60¥)) (n0))- 3
cross productsgalways in the form of an anticommutajaof

; : For massless fields, the conformal anomaly is then related to
the lower order Wigner functions.

the nonconservation of the currejt, such that(T)#0 if
and only if j 5 is not conserved in expectation value.

THE CONFORMAL ANOMALY IN d=2 AND d=4 In d=4 we Sim”ar]y get
Let us calculate the trace ¢T,,), denoted by T). The 1 .
nonvanishing of this quantity is the conformal anomaly when (T(x))= L* y 5 (iegd,— w5 el noq) V*
m=0 [4]. x
The general expression féT ,,) in terms of the Wigner _ )
function is given by +2i€) b A'—mS|dp:
_ Anqd 1 .
(Ta0)=Tr [ wpWyatn. (6 = 5 (iefa, — oblet neal(])
- beypdy
It follows that (in d dimensionsW= (W) + €bedh @, (K% —m(n), (89)
where we have introduced the vector current
<T>:=<Tab7]ab>=TrJ ¥3p,Wdlp. 82  (ia):=JVad'p, the axial current(k,):=[.A,d*p, and the
XM number densityn): = fSd*p. We see that id+#2 the pos-
_ sible existence of a conformal anomaly or not is not as sim-
Now, from the equation fowV, ply related to the question of the conservation of a current as
ind=2.
1 : $ The fact that an anomaly can be expr dint f th
_ T a N _ _ nat ¢ y pressed in terms of the
m 2'7 (21pat gV ,) [W=XW, Wigner function integrated over the cotangent space suggests
_ a closer relationship betweéfd and anomalies, in particular
it follows that with the spin complex[12,13. The very nature of the
1 Wigner function, or rather the entire Wigner-Weyl-Moyal
= S formalism where operators are replaced by symbols on the
a — — aq M _ _
7' PaW (2'7 8V m)W XW. (83 cotangent bundle, makes the translation of analytical proper-

ties into geometrical or algebraic ones possible. Such a trans-
Hence, lation is at the heart of index theorems, and it has in fact
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been shown that the Atiyah-Singer index theorem can be

related to the classical limit of the Wigner-Weyl-Moyal
(WWM) formalism for the ordinary Heisenberg algebi®].
The way in which this generalized WWM formalism relates
to index theorems is presently under study.

THE HYDRODYNAMIC EQUATIONS: MOMENTS

FRANK ANTONSEN

Tap(X):=Tr J PaysysWd'p= f PaAnd®p,
)((X):=Trf 75Wd4p=f PdAp,

Xa(X): ZTI‘J' pa'ySWd“p:f pan“p,

The previous section calculated the trace of the energy-

momentum tensor from the Wigner equation, this is only one
macroscopic quantity which one can define. Let us define the

following moments of the Wigner functioffor simplicity
we suppress thé-)):

n00:=Tr [ watp= | sap
U00:=Tr [ prwap= [ pesatp,
j200: =T [ yawetp= [ via'p,
ka(X): =T J Ys7aWd'p= f Aqd*p,

Tap(X):=Tr f PaypWd'p= f PaVed*p,

NapdX): =Trj paa'chd‘lp:J’ pa%cd4p-

These are all the zeroth and first moments of the Wigner
function ind=4 dimensions. Most of these quantities have a
direct physical interpretatiom(x) is the number or energy
density, U2 is a momentum densityj,, a current,k, and
axial-vector currentT,, the energy-momentum tensor, and
Sap the spin density, whiler,,, is a kind of “pseudoenergy-
momentum tensor,”y and y, are related to chirality, and
Nabc represents a spin-momentum interaction term. The
equations of motion for these macroscopic quantities consti-
tute the corresponding set @fuantum hydrodynamic equa-
tions, which are derived by simply taking the zeroth and first
moments of the Wigner equation in its Clifford decomposed
form. Hence, each of the five equations in this Clifford de-
composition gives rise to two equations for these moments.
If we write

1-‘ bc__ 7 bc J
Aa: Pat EIDa, ‘]a :Jeg‘Rwﬁ, (90)
_ _ 4 !
San(X): TrJ TapWel'p JTabd P: we get the following ten equations:
|
1-" ia a
mn—T—ElDaj +B,k*=0, 9
U.— Vaq4 1. a a_ _a Joupb'caryd
m b pbpa d p+ ElDaTb+BaTb:Eb'cd‘]eaR,uvebk' (92)
my+7+ 51D ok*—~Bj*=0, (93)
a4 1. a a Jarpb’ ey d
Mxp+ | PaPpA®dip+ ElDaTb_BaTb: Mo aJesR,, epke, (99
@ jd_ Liag d tg, Lioef d f
mj?-U?-ZiD%n+B X~ (76185 gD A 9+ 5iD°s'9 | +4€5;B°SI=0, (95)
Td dcqdn_ Liad dy i sl 59 eZfogip 1 Sien o d pgeyfo
mT,— | pnp°Sd P= 51D Un+Bxn=1(7e165~ 77eg Dl | prpe7'ed P+ SID Ay | +deerB Ay
= —i 65JefRoS enn+ 25 cdel RyS eny — 47 my i meeJeAR; S ets®', (96)
g, Lad A d f h foy Lo e
mkd+ x + 51D —BIN+i(7e085— 7egdf)BSI— el | NoTO+ 5iD°s| =0, (97)
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1. . 1.
mr+ f Prp*Pd*p+ SiD Iy~ B Up+i (715§ - neg5?>Beng—4eng( f Prp°T%d*p+ SiD NS

=4e)2JetRCepn—8i (8380 — 8555) JekR2S el (98)
f_ 1“ [e;f] E [efl =
ms 4D | +2|B k=0, (99

. 1 . .
pleTf] - EiB[ermﬁ — 1260351 IebR S ersi9+ (Reg— e JehRCerkd, (100

PN

1
mAg -+ EiJ prpeVd*p—

whereT=TZ,7=75. Some of these have direct physical in- _ . _

terpretations, e.g., as we saw in the previous sectior{®j. IVy—>€uPat 51V, (102

gives a kinetic expression for the conformal anomaly when

m=0. In analogy with this, we will refer to the equation for gnd the “source term transformation”

7, EqQ. (93), as the pseudoconformal anomaly for lack of a

better word. Another important equation is E§5) which gJ—>XOW, (103

states that the momentum density and the mass times the

current densitywhich is also the velocity densibare not  \hereX is some integrodifferential operator containing the

identical; the difference between the two is an indication of . L .
i ) .~ source. For bosons with spf)) X is a 4s tensor andV is a

heat flow. Also, Eq.(99) gives an expression for the spin

density in terms of the velocity/current density and the ~ 2S tensor. Fors=1/2 we have already seen thetcarries a
axial currentk,,. Clifford algebra index(i.e., two spinor indicesand three

The quantities without a direct physical interpretation,'—oremz indices, two of which must be understood as coming

such as,ap, X» Xa Nane CaN be eliminated from these equa- from the Lie algebra so(d—r). Fors=3/2 we would get a
tions. One should also note that we are not able to eliminatd/igner function which had two more Lorentz indices, and
the second moments appearing in this set of equations. IX would also have four extra Lorentz indices to account for
general one will get an infinite hierarchy of moment equa-the vector index on the Rarita-Schwinger field. It is clear that
tions. This can be truncated by brute force at any given stag®r s=1 the notation quickly becomes cumbersome.
resulting in a set of approximate hydrodynamic equations. All Wigner functions are maps from the cotangent bundle
The second moments have a physical interpretation in termigto some algebra: for a scalar field the target space is simply
of viscous pressure, since C, for spind it is C(r,d—r), for s=1 we get
(T*Meg)e(T*M®gh) with g the internal gauge algebra,
R and so on. In general fermions will have Wigner functions
Mg =Tr f Prp“Wd*p= f prp®Sd*p (10D with values in C(r,d—r)®(T*M)®@"1) while bosonic
fields will have Wigner functions taking their values in

: . - (T*M)®2s, Gauge degrees of freedom are handled by simply
is the viscous pressure teng$@ll. The remaining second mo- enlarging the target space by tensoring it withg".

ments are th_en higher Cllffor_d algebra ana_logues of this, A spin-0 field ¢ would then give rise to a Wigner equa-
lacking a straightforward classical interpretation. tion of the form

ARBITRARY SPINS

1 2
(ieipaJr EiVM) +m?+¢R

W,=XOw,, (104
Clearly the fermions are the most difficult to treat due to
their Grassmannian nature and that is why we have chosen ton

consider such fields in great detail. Arbitrary spins are not
that difficult. Consider a field equation for a fiedel of some 1 2 A
spins, ( ie?p,— EVV) W, +RIW,,=XDW,, - (105

ile the Maxwell fieldA , gives rise to

(Dst+Mgy®=gJ, and a Rarita-Schwinger fielgt, would give rise to

whereDg is some differential operatdfirst order whenever 1 o ied v e 1 S (32
s is half integral and second order whenis an integer, 2 € Y5 Ypec €| €uPet 51V, [W,y =X 7 W
M is a mass term including couplings to curvature such as (106

éR for s=0 andR,, for s=1, g is a coupling constant, and

J is a source term. As we have seen above such an equatigrhere we have omitted the and subscripts on the Wigner
gives rise to an equation for the associated Wigner functiofiunctions for the cases of=1,3/2 and suppressed the spinor
Wy by the “minimal substitution” indices in the latter case. Yang-Mills fields could be treated
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analogously but will have more complicated kinetic equa- a 1 abcd o (Tyabpgh:cd

tions due to the nonlinearity of their field equations. €e,Pat EIVM)FV,J' —(peov)=X,gn T = (ue=v),
Internal degrees of freedom is also treated easily. The (112

fields will now be cross sections in some associated bundle,

and the parallel transporter has to include not just the curva- 1

ture effect but also the connection in the corresponding prin- a = ab__ _$(C)ay cb_

cipal bundle(the gauge field One simply replacpes thegcl?s- (eMpa+ ZIV")LVP (rop) =X Ly~ (nev),

variant derivative with the appropriate gauge covariant (113

derivative containing the gauge field and the metric connec-

tion. If the field transforms in the representatiprof g then  where )”(ELT,C) are integral operators containing the source

the Wigner function will transform in the representation terms. Expressing these sources in terms of the Wigner op-

p®p, if p is the fundamental representation, then this is theerator for the matter fields, e.g.,

adjoint one.

TabE<Tr( f yapde4p)>, (114
THE GRAVITATIONAL FIELD: PALATINI FORMALISM

Iwould then lead to a set of coupled integrodifferential equa-
tions, constituting the full set of equations for quantum grav-
é'ty. It must be remembered that fgy,,, a quantum field, we

calculating the back reaction of the quantum fields on th t take th ture two-f t of the int Lin th
spacetime geometrikeeping the energy-momentum tensor ca.nno ake the curvature two-form out of the integral in the

fixed) or (2) as constituting full-fledged quantum gravity original expression foiX. Therefore, the equation for the
(giving a set of coupled equations matter Wigner function becomes much more complicated. In
We immediately face a problem: although the connectiorl 10] the analogous situation in QCD is treated. We will not
is the formal analogue of the Yang-Mills fields, we cannotattempt this level of generality here, just note that the
take over the results by Else, Gyulassy, and Vasak, as thatraightforward generalization from Yang-Mills fields to
Einstein equations are first order in the connection, while th@ravitational fields does not give tractable kinetic equations,
Yang-Mills equations are second order. In the presence ot least not in the Palatini formalism.
torsion the field equations for gravity can be written

Next we write down the equations for the gravitational
field. This can be viewed from two point&t) as a means of

eERZt,’,= K( TZ—" %GZT), (107) THE GRAVITATIONAL FIELD: ASHTEKAR VARIABLES
As Elze, Gyulassy, and VasdlO0| have developed the
Wigner function technigue for Yang-Mills fields, one would
S;bZZK(Cgb_ Eggcngr zggcgd> (108 suspect that an approach similar to theirs_ can be_ fruitful if
7 7 one uses the Ashtekar formulation of gravity. In this formu-
lation [16] one has a complex SB) connection
whereTZ is the energy-momentum tensdr,its trace,Sq, A:Af‘dx‘aa, where o, are the generators of suand
the torsion, andC}, is given by i=1,2,3 is a spatial index. This formalism is based on the
fact that the Lorentz algebra (@2) in four dimensiongand
¢ 1 _— four dimensions onlyis isomorphic to the complexification
ab= 7 1E¥Y 0an, (109 of su,. The Ashtekar formalism therefore makes use of two
vital aspects of general relativity: the correct dimensionality

with E=deg? , see Ramond5]. We will have to introduce and the correct signature of spacetime. Canonically conju-
” i) . H 143 H H -1 1

two Wigner operators, one for the vierbein and one for thedate to the connection, we have the “electric fielil; , i.e.,

spin connection:

. {A(x),EL(x)}pa= 5561 8(x,X"). (115
: d%y
abjcd_— —ip-y ab cd
e f © U, oU-w, (2m)*’ (110 Introducing the field strength tensBf; , the constraints can
be written as
L3= [ e7PYU,e2@U ebﬂ (112 '
my TR = omA Di=ELF{j=0,
Unfortunately these are noncovariant, as the spin connection H= engiaE{)F?j =0,

transforms in an affine way under local(3d) transforma-
tions. This noncovariance will then introduce an unwanted
dependency on coordinate choidgauge dependengy

Finding the Wigner equations for these is straightforward
(albeit tediougs and will not be done here. They will have the In exact analogy with the Yang-Mills case as presented in
form [10], we could define

G,=V,EL=0.
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b dy Uov.T malism. The flat space Wigner function has a natural group
Io(x.p)= JTxm(ZW)“e_Ip'y(e_( VRS ) theoretical interpretatiofil7,19. Define the operator
& (FP 12y V" goo I(u,v)=expliup—ivQ), (122

then II(u,v) forms a ray representation of thébelian)

with F§;=E?®. Considering the Hamiltonian nature of the o9 _
Jroup of translations in phase space:

system, it is, however, more appropriate to introduce tw

slightly different Wigner functionsi.e., essentially splitting T, 0)TI(W 0 ) = e 1@ =9 (Ut 0’ o +07)

the above candidate into tyanamely, (123
3
Fa_EI:j d y3efip-y(ef(lIZ)y-VF_a_)®(Fkk)l’re(1/2)y-VT), This operator then gives the Weyl transformation, mapping
4 T3(2m) . an operator into a function on the classical phase space
(116 )
. Aw(u,v)=TrII(u,v)A. (124
’ Y oy e (DY Vi o (i o1y VT
Lap= J; <2m)3e PY(e” MV VE ) (Ef eV T, The Wigner function is thésymplecti¢ Fourier transform of

(117) the Weyl transform of the projection operattfor a pure

state | ) (¢, i.e.,
where we have used the global hyperbolicity of spacetime
always assumed in a Hamiltonian formulation of gravity, W(x :J el (UP—vX)¢ T (u dudy 12
M=3 X R, and, furthermore, made explicit use of the com- (x.p) (it (u0)]¥) - 129

plex nature of the connection and the *“electric field” N . .
(whence the daggers on the right-hand ide What we have done in this paper is to replace the Abelian

The constraints can then be used to derive relationshipdfOup Of translation on a flat phase space with the non-

between these two Wigner functions. The diffeomorphisrrro‘be"an group of parallel transport on the curved phase space
constraintD: can be rewritien T*M. This splits up into two parts, the parallel transport in
I

the base manifold/, which is generated by the momentum

(EL®ELN(FReFh=0. (118  operator, and théAbelian) translations in the fibefl; M,
) which is generated by.
Noting that the Wigner functionk?y, L1, are precisely the In a previous work18] | showed that one can generalize
Weyl transforms of these two tensor products, we see tha to a very large class of algebras, most notably finite di-
the quantum version of this constraint reads mensional Lie algebras, their corresponding loop and Kac-
i spab _ Moody algebras, as well as super Lie algebras and
Di=Lap" L' =0, (119 C*-algebras. To put it in algebraic language then, what one

does when going from flat space to curved space is to replace

where *.denotes the twisted produhe noncommutative the usual Heisenberg algebra by the curved space analogue
product induced on the set of phase-space functions by the

non-Abelian o & NN v S AT —
product of operatgrs [P..0]=—Ryu, [P,.0 ]__'5;u [9.9"]=0,
. 1 (126
frg~feltibg=fg+ ZifAg- -, (120 . o
2 whereR,,, is the curvature two-forntnot the Ricci tensox
. The twisted product is given by
with fAg:={f,g} being the Poisson bracket.

Similarly the Hamiltonian constrairii becomes Aw*By:=(AB)y=TrII(u,0)AB (127
_ b Ibl R R ’ _ - .
H=e f?/ L;a,* L{,'b,*Fﬁ?,j/—O. (121 and can be written in terms of a kernel [d8,19

One should note t_hat while the classical constramts—l are (f*g)(u1v):f K(u,o,u’,0",u" 0" (U’ v')g
purely algebraic me} ,EZ, the quantum versions become
infinite order differential equations in the corresponding T T
Wigner functions—equivalently, they become * algebraic, X (u",v")du'dv’du’dv”, (128
i.e., deformed. The last constraint, the Gauss one, howeve;h
gives rise to a differential equation fblﬁb, analogous to the
equation for the Dirac-Wigner functidior more precisely, to K(u,v,u’,v",u”,0"):=TrII(u,v)II(u’,vHII(U",v").
the Yang-Mills Wigner function as derived by Elze, (129

Gyulassy, and VasaKL0]. o o o
Thus the quantityI is the essential ingredient in any gener-

GROUP THEORETICAL ARGUMENTS aliz”ed “Wigner-WeyI-MoyaI forma_lism” or “s_ymt‘)‘ol calcu-
lus” [18]. Hence what is needed in generaliisa “symbol

We can round off this discussion with a few commentsmap” sending operator@ypically pseudodifferential opera-
about the algebraic structure behind the entire WWM for-tors) into functions on the cotangent bundle afiid a map
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connecting two fibers; this latter map is simply the symbol of Z(u,v)

the parallel translator. In principle one could have a different W(u,v)= Z00) (133
map in (ii), but the symbol of the parallel translator is the

simplest choice.

The formula we have derived foN was based on the The proper Wigner functional is then a symplectfanc-
phase space of a classicatechanical system, name]y’ tional) Fourier transform of this quantity. This makes it pos-
T*M. The Wigner function took its values in sible to interpret the partition functiofwith source} as es-
C(3,1)®T(T*M) then, whereC(3,1) is the Clifford algebra sentially the Wigner functional of the vacuum stabe, more
andI'(T*M) denotes the set of cross sections of the cotangenerally, the vacuum to vacuum transition
gent bundle. We used the group of parallel transport and
translations along the fibers to generalize the Wigner func-
tion from quantum mechanics in flat spacetime. One can pro-
ceed to quantum field theory by means of second quantiza-
tion, although this is not usually easy to define in a curved We have generalized the work by Elze, Gyulassy, and
background4]. Locally this always makes sense, but thereVasak to gravitation and quantum fields in curved spacetime.
are often global obstructions. Another method, which is notThereby we obtained a set ekact equations for QFT in
very common, is to treat the field and its conjugate momentaurved spacetime and even quantum gravity, which allows us
as the fundamental phase spdegich is then infinite di- to makenonperturbativecalculations in these cases. The ma-
mensional. The Wigner function is then a functional of jor draw back is the complicated nature of the equations—
these fields. This is very similar to the way one treats quanespecially in the full quantum gravity case. But on the other
tum gravity in quantum cosmology, where one then considhand, we can develop a recursive scheme for these gquantum
ers the wave function of the universe. The Wigner functioncorrections(the A expansioln, and we can therefore avoid
has already been extended to this situation. Let us considergerturbation theory all together. One should also note that
field theory in Hamiltonian formalism and denote the fieldsthis approach is, on the one hand, intimately related to the
and their conjugate momenta by and , respectively. algebraic structure of the space of quantum observdties
These can be either bosonic or fermionic. We then want ganonical commutator relations for the fieldsnd on the
functional W such that other, to the topological structure of spacetiftige Wigner

function is, for Dirac fermions, a mapping from the cotan-
gent bundle into the Clifford algebra, whereas for bosons it is
a mapping from the cotangent bundle into the tensor alge-
<A>Ef Wi, w]ALé, 7DD, (130 pra). It was this interplay that allowed us to find dynamical
expressions for the conformal anomalyds2 andd=4.

We also saw that the kinetic equation satisfied by the
Wigner function could be split up into two, one being the
mass-shell constraint giving the quantum and curvature in-
duced corrections to the mass, while the other was the kinetic

(Ay=TrpA= f Aw(X,p)W(x,p)dxdp. equation proper. In certain classical-like situations these
could be written as two Fokker-Planck equations, the one
with no momentum diffusion the other with no dynamical

If we have free fields, then the phase space is flat, and thgiction. We derived expressions for these kinetic quantities.
parallel transporter becomes simply We also saw how quantum corrections modified this simple

situation.

By taking appropriate moments of the Wigner equation

we arrived at a set of coupled equations governing macro-
: (131 scopic quantities such as energy-momentum tensor and cur-
rent and spin densities. These were the corresponding hydro-
dynamic equations. We saw that they, besides giving the
kinetic interpretation of the conformal anomaly, also lead to
an expression for the heat flow.

We attempted to handle first the gravitational degrees of
. ) ) ) freedom in the Palatini formalism, in which we had to intro-
which is the symplectic Fourier transform of the Wigner y,ce wigner functions for the vierbein as well as the spin
function, we conclude connection. These were not, however, covariant, and the re-
sulting equations were too complicated. We then turned to
the Ashtekar variables, where we could either introduce one
Wigner function forFfw in the standard way or use a canoni-
cal description to split this into two, one fEiﬂ and the other
for E,. These were by construction covariant. The con-
Noticing the concrete form ofl we see that exjif)Il is  straints induced conditions on these Wigner functions which
equivalent to adding a source tefmwith the sources denoted were * algebraic, i.e., infinite order differential relations due
by u andv, respectively, hence to a quantum deformation of the product.

CONCLUSION

which generalizes

H=ex;{iJ u&—v%dx
From the quantum mechanical relation

W(u,v)=TrpIl(u,v)=(I1(u,v)),

W(u,v):=(H(u,v))=%J eSTl(u,v)DpDw. (132



56 QUANTUM THEORY IN CURVED SPACETIME USING . .. 935

[1] R. L. Liboff, Kinetic Theory. Classical, Quantum, and Rela- [9] O. Fonarev, J. Math. Phy&N.Y.) 35, 2105(1994; Report No.

tivistic Descriptions (Prentice-Hall, Englewood Cliffs, NJ, gr-qc/9311018unpublishegt Report No. gr-qc/931201€un-

1990; Yu. L. Klimontovich, Kinetic Theory of Non-ldeal published.

Gases and Non-ldeal PlasméBergamon, Oxford, 1982 [10] H.-Th. Elze, M. Gyulassy, and D. Vasak, Nucl. Phi276,
[2] W. A. van Leeuwen, Ch. G. van Weert, and S. R. de Groot, 706 (1986; Phys. Lett. B177, 402 (1986; D. Vasak, M.

Relativistic Kinetic Theory (North-Holland, Amsterdam, Gyulassy, and H.-Th. Elze, Ann. Physl.Y.) 173 462(1987.

1980. [11] M. Gockeler and T. Schuker, Differential Geometry, Gauge

[3] C. Mdller, Theory of RelativityOxford University Press, Ox-
ford, 1973.

[4] N. D. Birrel and P. C. W. DavieQuantum Fields in Curved
Space-Time(Cambridge University Press, Cambridge, En-
gland, 1982 S. Fulling, Aspects of Quantum Field Theory in
Curved Space-TimgCambridge University Press, Cambridge,
England, 1988 A. A. Grib, S. G. Mamayev, and V. M.
Mostepanenko,Vacuum Quantum Effects in Strong Fields
(Friedmann, St. Petersburg, 1994&R. Wald, Quantum Field
Theory in Curved Space and Black Hole Thermodynamic

Theories, and Gravity(Cambridge University Press, Cam-
bridge, England, 1987

[12] C. Nash, Differential Topology and Quantum Field Theory
(Academic, London, 1991

[13] M. NakaharaGeometry, Topology and Physid©P, Bristol,
1990.

[14] C. Itzykson and J.-B. ZubeQuantum Field TheorfMcGraw-
Hill, New York, 1980.

5{15] R. Nest and B. Tsygan, Commun. Math. Phyg2 223

(University of Chicago Press, Chicago, 1994 (1999; G. A. Elliot, T. Natsume, and R. Nest, K-Theofy
[5] P. Ramond,Field Theory: A Modern Primer/2¢Addison- 409 (1993; Math. Inst. University of Copenhagen repoun-
Wesley, Redwood City, CA, 1989 published; R. Nest and B. Tsygan, Adv. MatH13 151
[6] E. Calzetta and B. L. Hu, Phys. Rev. &Y, 2878(1988; E. (1995.
Calzetta, S. Habib, and B. L. Hibid. 37, 2901 (1988; E.  [16] A. Ashtekar, Phys. Rev. Let67, 2244(1986; Phys. Rev. D
Calzetta, Physica A58 261(1989; E. Calzetta, irfFrontiers 36, 1587(1987).
in Physics edited by A. Astburyet al. (World Scientific, Sin-  [17] A. Grossman, Commun. Math. Phyd48, 191 (1976; A.
gapore, 1989 H. E. Kandrup, Phys. Rev. B7, 2165(1988. Royer, Phys. Rev. A5, 449(197%; J.-P. Dahl, Phys. ScB5,
[7] 3. Winter, Phys. Rev. [32, 1871(1985. 499 (1982; Proceedings of the Second International Wigner
[8] J. J. Halliwell, Phys. Rev. 216, 1610(1992; M. Gell-Mann SymposiumGoslar, Germany, 199unpublished
and J. Hartle, Report No. UCSB-91-15, 19@hpublishef S.  [18] F. Antonsen, Report No. quant-ph/96098142; short version in
Habib, Phys. Rev. D42, 2566 (1990; S. Habib and R. Proceedings of the Fourth Wigner Symposiu@uadalajara,
Laflamme, ibid. 42, 4056 (1990; B-L. Hu, J. Paz, and S. 1995, edited by B. WolfWorld Scientific, Singapore, 1996

Sinha, inDirections in General Relativityedited by B. L. Hu  [19] p. Kasperkovitz, report, 199@inpublishett P. Kasperkovitz
et al. (Cambridge University Press, Cambridge, England, and M. Peev, Ann. Phy$N.Y.) 230, 21 (1994.
1993, and references therein.



