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I. INTRODUCTION

The problem of finding and understanding the relationship
between quantum theory and gravitation is an extremely dif-
ficult one~that has defied solution for close to 70 years! and
is simultaneously such a profound problem that it has at-
tracted a great deal of attention. Its resolution could easily be
a major stepping stone to a more complete understanding of
our physical world. The difficulties, however, are such that
we might well need radical changes in our views or com-
pletely new ideas before the problem can be solved~see, for
instance,@1#!. Even if this is the case, this does not mean that
we should necessarily abandon the exploration of more tra-
ditional approaches, since even if they fail, they could indi-
cate possible directions to explore in the search for the uni-
fication of gravity with quantum theory.

In this paper we present an approach to this issue which,
although based on many of the standard ideas, differs from
other approaches in several substantial ways. In some sense
our formulation lies between the conventional and noncon-
ventional approaches@2#.

The first issue we discuss is our view towards classical
general relativity~GR!. At the classical level, a clear distinc-
tion can be made between GR and other field theories. Only
in GR does the geometry play adynamical role. Though
often noted, this distinction has been re-emphasized in a re-
cent series of papers by presenting GR as a theory of char-
acteristichypersurfaces@3–5# rather than as a theory of the
metric field. From this point of view the spacetime metric
and associated connection are derived concepts: the basic
variables are families of three-surfaces and a scalar function
~a conformal factor! from which a metric can be derived. The
surfaces are automatically the characteristic surfaces of the
metric and the metric automatically satisfies the Einstein
field equations. This reformulation of GR has been referred

to as the null surface formulation~NSF! of GR. It appears
that no other physically relevant field theory can be stated as
such a theory of surfaces.

Here, we study the quantization of the linearized version
of this approach. From this quantization of the NSF, we ap-
pear to be led to new ideas and results on the form a quantum
theory of gravity might take. The new view essentially says
that the null surfaces become operators that obey commuta-
tion relations. Furthermore, since there is a prescription for
locating points of spacetime using foliations by families of
null surfaces, the spacetime points themselves become op-
erators.

Roughly speaking, our formalism is a union between the
Ashtekar asymptotic quantization@6# of the gravitational
field and the NSF. In our formalism, the free Bondi data at
future null infinity I1 play a very important role. They enter
as a source in the NSF field equations. Thus, for each data
set, the solution to our classical equations represents a regu-
lar radiative spacetime. On the other hand, the formalism
developed by Ashtekar gives a kinematic quantization of the
radiative degrees of freedom of the gravitational field at
I1. By promoting the classical Bondi data to quantum op-
erators and introducing a Fock space of asymptotic states
~modulo technical difficulties addressed in detail by Ash-
tekar!, one is left with the ‘‘in’’ ~or ‘‘out’’ ! states of quantum
theory. What is missing in the Ashtekar approach is the dy-
namical part of the quantum theory, which would relate the
asymptotic states to the geometry of the interior of space-
time.

In this paper we adopt Ashtekar’s asymptotic quantization
in its simplest form~avoiding infrared issues! by promoting
the free Bondi data to quantum operators. The solutions to
the classical NSF equations determine families of null sur-
faces in terms of these free data. It follows that in the ‘‘quan-
tum theory’’ the null surfaces become operator functions of
the operator data. Furthermore, since the spacetime points
are themselves determined by the intersections of the null
surfaces~and are expressible in terms of the surfaces!, they
can also be thought of as operator functions of the data, with
implied nontrivial commutation relations. We emphasize that
we neither give equal time commutation relations nor use a
Hamiltonian to obtain the ‘‘evolution’’ of the operators: ap-
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propriate commutation relations for the operator data are
given onI1, and the information about the dynamics~i.e.,
the full spacetime! is implicitly determined by the NSF equa-
tions. We emphasize that we are not discussing a field theory
on spacetime; our variables are not fields, they are surfaces
composed of spacetime points. The surfaces and associated
points become the operators.

We point out that there is no Hamiltonian for a Schro¨-
dinger evolution; rather the operator ‘‘evolution’’ is given by
the NSF equations. The formalism is most closely tied to a
Heisenberg representation.

In Sec. II we will review some relevant aspects of the
NSF of GR.@Note that we use signature (1,2,2,2).# In
Sec. III we discuss what happens when we implement the
Ashtekar quantization procedure. In Sec. IV we summarize
our main results and discuss possible meanings and ramifi-
cations of these ideas. An outline of our results and a more
detailed discussion of their physical interpretation have ap-
peared in@7#. We relegate many of the technical details,
which can become complicated, to appendixes. In Appendix
A, as an example, we apply our methods to the quantization
of the Maxwell theory, obtaining the standard quantization in
the Coulomb gauge.

II. NULL-SURFACE FORMULATION OF GR

In this section we review a new formulation, the null-
surface formulation of classical general relativity@3–5,8#,
where the emphasis has been shifted away from more stan-
dard type of field variable~metric, connection, holonomy,
curvature, etc.! to, instead, families of three-dimensional sur-
faces on a four-manifoldM4. ~These surfaces eventually turn
out to be the characteristic surfaces of a metric.! On the
sphere bundle overM4, topologicallyM43S2, with no fur-
ther structure, there are given differential equations for the
determination of these surfaces. From the surfaces them-
selves, by differentiation and algebraic manipulation, a~con-
formal! metric tensor can be obtained. These surfaces, which
play the role of the basic geometric quantities, are then au-
tomatically the characteristic surfaces of this conformal met-
ric. Furthermore, the equations allow for a choice of confor-
mal factor that makes the conformal metric into a metric
which automatically satisfies the vacuum Einstein equations.
In other words the vacuum Einstein equations are formulated
as equations for families of surfaces and a single~scalar!
conformal factor. All geometric quantities, the metric, the
connection, spin coefficients, Weyl and Ricci tensors, can be
expressed in terms of the surfaces and the conformal factor.
In our present discussion we will be mainly concerned with
these characteristic surfaces~i.e., the conformal structure!,
though of course in the full theory the conformal factor plays
an essential role.

Since the details of the differential equations are relatively
complicated@3–5,8# and we do not need them for the present
work, we will adopt the following strategy. We will assume
that the differential equations for the surfaces~and conformal
factor! have been solved explicitly and then attempt to un-
derstand the meaning of the solutions and what can be de-
rived from them.

First of all, we have the explicit expression for the con-
formal factorV5V(xa,z,@data#), where thexa are some

local coordinates on the manifoldM4, while thez is a com-
plex stereographic coordinate on the sphereS2, and@data# is
the Bondi shear@s,s̄ #. We will have little further use here
for V(xa,z). Of fundamental importance to us are the fami-
lies of surfaces given as solutions to our equations, with
specific free data. They take the form

Z~xa,z,@data# !5u5const. ~1!

For fixed valuesof (u,z) the above is a single function of the
four coordinatesxa and thus describes a particular three-
surface. As the value ofu varies ~for fixed z) we have a
one-parameter foliation~of a local region! by the surfaces.
The z then labels a sphere’s worth of these foliations, i.e., a
sphere’s worth of surfaces passes through each spacetime
point. Assuming that theZ satisfies the NSF differential
equations, one can then, in a simple and straightforward
fashion,obtain a conformal metric in terms of Z@3#. Sym-
bolically, we thus have

gab~x
a,@data# !5gab†Z~xa,z,@data# !‡,

wheregab is a conformal metric, undetermined by an overall
conformal factor. Note that whileZ is a function ofz, the
metricgab is independent ofz.

The details of this construction are not of importance
here. What is important is that automatically there is a~con-
formal! metric,gab(xa) such that

gabZ,aZ,b50 ~2!

for all z; i.e., the surfacesZ5const, are characteristic sur-
faces of this metric. For simplicity, we can then choose~in a
natural fashion! a special member of the conformal class
yielding an explicit metric in terms ofZ. @The ‘‘naturalness’’
arises from the fact that a simple function~see below! of Z is
an affine parameter for this special member of the conformal
class.# We emphasize that all conformal information about
the spacetime is contained in knowledge ofZ(xa,z).

For each fixed value ofz the level surfaces ofZ describe
a foliation by~null! surfaces: TreatingZ simply as a sphere’s
worth of scalar functions onM4, we can construct other
scalar functions by differentiatingZ several times in both the
z and z̄ directions and then holdingz constant afterwards.1

Particularly useful to us are the two first derivatives and the
mixed second derivative. Together with theZ(xa,z), these
are the four functions:

u5Z~xa,z,@data# !, ~3a!

v5ZZ~xa,z,@data# !, ~3b!

v̄5ZZ~xa,z,@data# !, ~3c!

R5ZZZ~xa,z,@data# !, ~3d!

1Note that differentiatingZ with respect toz is equivalent to
finding the intersections of adjacent null surfaces. For a detailed
discussion, see@4#.
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whereZ andZp are ~essentially! the z and z̄ derivatives@9#.
With the definitions

u i5~u0,u1,u2,u1![~u,v,v̄,R!,

we have

u i5u i~xa,z,@data# !. ~4!

These four scalar functions~parametrized byz) have a
simple geometric meaning.

~1! u05u5Z(xa,z,@data#)5const, for fixedz, describes
a null surface. Changingu leads to a one-parameter foliation
of M4 by null surfaces.

~2! u15v5ZZ(xa,z,@data#)5const and u25v̄

5ZpZ(xa,z,@data#)5const choose a null geodesic on that
surface.

~3! u15R5ZZpZ(xa,z,@data#) parametrizes points on that
null geodesic.~In factR is an affine parameter along the null
geodesics for the special member of our conformal class
mentioned earlier.! The four u i , for fixed z, thus locate
spacetime points. They define a sphere’s worth of null coor-
dinate systems, and Eq.~4! gives the coordinate transforma-
tion between theu i andxa for each fixedz.

SinceZ(xa,z,@data#) contains all the conformal informa-
tion of the spacetime, so do theu i .

An important conceptual issue is that Eq.~4! can, in prin-
ciple, be~locally! algebraically inverted into the form

xa5xa~u,v,R;z;@data# !. ~5!

Since Eq.~5! is equivalent to Eq.~3!, it too contains the full
information about the solutions to the conformal Einstein
equations; i.e., from knowledge of Eq.~5!, a metric confor-
mal to an Einstein metric can be obtained analytically@5#.
The information about the conformal Einstein space is coded
into the functional dependence on the data.

The information about the conformal structure of space-
time, originally encoded inZ, can now be extracted in an
alternate manner from Eq.~5!; a manner that is, at the mo-
ment, of direct interest to us. If values of the (u,v,z) are
chosen arbitrarily but kept constant andR is allowed to vary,
Eq. ~5! is the description of anull geodesicof the spacetime.
The five-dimensional space of null geodesics is coordina-
tized by the (u,v,z), with (v,z) complex, whileR param-
etrizes the individual geodesics. The conformal structure is
determined by the knowledge of all null geodesics through
each spacetime point, and the dependence of these on the
@data# encodes the particular spacetime. Note the dual role
Eqs.~4! and~5! play; Eq.~4! describes null surfaces, its null
geodesics, and points on the geodesics in terms of some
‘‘standard’’ coordinatesxa, while Eq.~5! describes, in para-
metric form, all the null geodesics of the space. Though at
first they appeared to describe the coordinate transformations
between some null coordinates and an arbitrary set of coor-
dinatesxa, they now have a coordinate-independent mean-
ing. We return to Eq.~5! later.

Asymptotically flat vacuum spacetimes

Before we proceed further, we make the specialization
from a description of any~local! Einstein spacetime to the

study of asymptotically flat vacuum spacetimes. In this case
the geometrical meanings of the various quantities become
clearer. We begin with the fact that null infinityI1 exists. It
can be coordinatized by a Bondi coordinate system,

~u,z, z̄ !, ~6!

with u the Bondi retarded time, and (z, z̄ )PS2 labeling the
null generators ofI1. With this notation we can give a pre-
cise meaning to the null surfaces described by
u5Z(xa,z,@data#); they are the past null cones of the points
(u,z, z̄ ) of I1. With this meaning toZ we have a dual
interpretation ofZ(xa,z)5u, namely, if the spacetime point
xa is held constant but the (z, z̄ ) is varied overS2, we obtain
a two-surface~topologicallyS2) on I1, the so-called light
cone cut ofI1, defined as the intersection of the future light
cone of the pointxa with I1. It consists of all points ofI1

reached by null geodesics fromxa. Z is then referred to as
the light cone cut function.

We have a geometric interpretation, not only of
Z(xa,z,@data#), but also of v5ZZ(xa,z,@data#) and
R5ZZpZ(xa,z,@data#). v is the ‘‘stereographic angle’’ that
the light cone cuts make with the Bondiu5const cuts@i.e., it
labels the backward direction of the null geodesics from the
point (u,z)PI1 to xa#. R is a measure of the curvature of
the cut, and thus a measure of the ‘‘affine distance’’ from
I1 to xa along the null geodesic.

The four functionsu i(xa,z,@data#), which are defined
geometrically onI1, describe the interior of the spacetime.
They can be inverted@see Eq.~5!#, leading to

xa5xa~u i ;z;@data# !, ~7!

which gives the location of spacetime points in terms of
~geometrical! information onI1, namely, theu i .

Linearization of the NSF

With this asymptotically flat point of view, we now con-
sider the linearization of the null-surface formulation of the
Einstein equations. The coordinates used here and subse-
quently are the standard Cartesian coordinatesxa of the
background Minkowski spacetime. We will make extensive
use of this later. In this case the conformal factor can be
taken as one: i.e.,

V~xa,z,@data# !51, ~8!

and the differential equation forZ becomes

Z2Z2Z5Z2s̄
R
~xa,z!1Z2s

R
~xa,z![D~xa,z,@s#! . ~9!

The data are given by a complex-valued spin-weight-2 func-
tion on I1, namely, s(u,z) @and its complex conjugate
s̄ (u,z)# which can be given freely. The data are then re-
stricted to the Minkowski light cone cutS2(xa), described by
~see@10#!
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u~z!5Z0~x
a,z![xal a~z!,

l ~z!•l ~z![habl
a~z!l b~z!5l a~z!l a~z!50, ~10!

where l a5(1/A2)„1,(z1 z̄ )/(11z z̄ ),2 i (z2 z̄ )/
(11z z̄ ),(211z z̄ )/(11z z̄ )… satisfies Z2l a5Zp2l a50
andZ0(x

a,z)5Z(xa,z,@0#), i.e., Z0 is the Minkowski light
cone cut function satisfying Eq.~9! with zero data. Note that
the components ofl a ~and henceZ0) are simple combina-
tions of the first four spherical harmonics. Equation~10!, in
turn, leads to the restriction, to the light cone cuts, of the data
s(u,z): i.e.,

s
R
~xa,z!5s„Z0~x

a,z!,z…. ~11!

~Note thats
R
can be viewed in two different ways. It is the

pullback or restriction ofs to a cut ofI1 labeled by the
spacetime pointsxa, but it can also be directly viewed as a
function on the sphere bundle over spacetime.! Equations~8!
and ~9! are equivalent to the linearized vacuum Einstein
equations. The general regular solution to Eq.~9! is obtained
as the sum of a particular solution plus the general solution
Z0 to the homogeneous equation: i.e.,

Z~xa,z,@data# !5Z0~x
a,z!1E

S2
G~z,h!D~xa,h,@s#!dSh

2 ,

~12!

where dSh
2 is the volume element on the two-sphere and

G(z,h) is a simple Green’s function of the operatorZ2Z2,
given by

G~z,h!5
1

4p
l ~z!•l ~h! ln @ l ~z!•l ~h!#. ~13!

We want to point out and emphasize an important aspect of
the solution~12!. Z0(x

a,z) consists only of combinations of
l50,1 spherical harmonics; the second term~the particular
solution! has been chosen so that its spherical harmonic ex-
pansion contains nol50,1 harmonics. One could have cho-
sen other particular solutionswith l50 or l51 harmonics
having as coefficients four arbitrary functions of thexa.
These four functions would constitute an arbitrary gauge
transformation in the linear theory. Our choice for them to
vanish is equivalent to a particular gauge choice@12#. The
implied gauge is the equivalent of the Coulomb gauge of
Maxwell theory, namely, forgab5hab1hab, we have
h0a50. The analogous gauge choice for Maxwell theory is
described in Appendix A 3.

For later use, Eq.~12! can be rewritten as

Z~xa,z,@s#!5Z0~x
a,z!1E

S2
@Zh

2G~z,h!s
R
~xa,h!

1Zh
2G~z,h!s̄

R
~xa,h!#d2Sh

[Z0~x
a,z!1Z1~x

a,z,@s#!. ~14!

This expression is obtained from Eq.~12! by using properties
of the Green’s functionG(z,h) ~see Appendix C!, and from
the assumption thats

R
is a regular function on the sphere.

By differentiation ~with respect toz) of Eq. ~12! it is a
simple matter to construct the full set ofu i , i.e., Eqs.~3a!–
~3d!, and invert them explicitly to obtain Eq.~5!. The explicit
linearized inversion is given in Sec. III D.

Simply for completeness, we mention that the full~exact!
set of Einstein equations are a generalization of Eqs.~8! and
~9!; Eq. ~8! for the conformal factor becomes more compli-
cated, while Eq.~9!, the equation forZ, retains the same
form; it has an additional, rather complicated, term added to
the right-hand side that does depend on theV @11#.

III. QUANTIZATION OF LINEARIZED GR

In the previous section we described how the classical
data onI1 can be used to reconstruct various geometrical
structures in the interior of the spacetime: null surfaces, null
geodesics, and the locations of spacetime points in a given
local chart. In this section, by analogy, we begin with an
asymptotic quantum theory atI1 @6#, and subsequently ex-
tend it into the interior of the spacetime. We implement this
idea by constructing quantum operators corresponding to the
various geometrical entities described in the previous sec-
tion. We finally compute various physically interesting com-
mutation relations obtained from the free-field commutation
relations on the data atI1.

While most of our calculations are formal, all quantities
~in the linearized case! can be defined rigorously on the
asymptotic Fock space. Alternatively, we can think of all
quantities as abstract operators subject to nontrivial commu-
tation relations.

In the first subsection we briefly introduce the asymptotic
quantum theory~done in detail for the free Maxwell field in
Appendix A 1!, essentially the quantization of the character-
istic free data atI1, and describe the construction of the
asymptotic Fock space~the details are given in Appendix
A 2!. We describe Ashtekar’s asymptotic quantization@6#,
differing only in notational details. In addition, we ignore
infrared sectors.

The remaining subsections contain the construction of the
new quantum operators. Since all of them have a functional
dependence on the data through theZ function, our first re-
sult is the quantization of the null surfaces, in Sec. III B. The
commutator for theZ function at two different points is,
then, of fundamental importance to the remainder of the sec-
tion, in which we construct the quantum analogues of the
various geometrical quantities~Sec. III C! and quantum
spacetime points~Sec. III D!.

A. Asymptotic quantum theory

As is well known, the radiative degrees of freedom of the
gravitational field are specified by the characteristic initial
data onI1. The space of characteristic initial data is a phase
space coordinatized by either the Bondi shearsab(u,z)
5s(u,z)m̄am̄b1 s̄ (u,z)mamb , or the complex Bondi news
Nab5N(u,z)m̄am̄b1N̄(u,z)mamb . The complex Bondi
shears(u,z) serves as a potential for the complex Bondi
newsN5]s/]u. The action of the symplectic form on two-
vectors~infinitesimal news scalars! dN1 anddN2 tangent to
the phase space of characteristic data is@6#
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V~dN1 ,dN2!5
1

2pE E
I1
du dS2 du8 dS28d2~z2z8!

3D~u2u8!@dN1~u,z!dN̄2~u8,z8!

2dN2~u,z!dN̄1~u8,z8!#, ~15!

whereD(u)5 1
2 sgn(u) is the skew-symmetric antiderivative

of d(u), so that d(u)5]D(u)/]u ~as distributions!; and
du dS2522idu` dz`d z̄ /(11z z̄ )2 is the volume ele-
ment onI1. Note that this phase space is analogous to the
phase space for source-free Maxwell theory, withs,N play-
ing the roles ofA,E, respectively. Thus the asymptotic as-
pects of the quantization are identical to the construction
detailed in Appendix A.

Consider the spaceS of C` spin-weight-2 complex scalar
fieldsN onI1, all of whose components in a (u,z) chart and
all their derivatives fall off faster than 1/uuun for any n, for
large values ofuuu. On the positive frequency~with respect
to u) subspaceS1 of news functions, one can introduce a
Hermitian inner product analogous to Eq.~A28!. One can
then Cauchy complete this space to obtain the one particle
Hilbert space, on which one constructs the asymptotic Fock
space of the characteristic data for the radiative modes of
GR. In a fashion analogous to that for the free Maxwell field,
one then constructs operator-valued distributions correspond-
ing to the Bondi news, and the Bondi shears(u,z). These
operator-valued distributions satisfy@6# the formal commu-
tation relations given by

@ŝ~u,z!, ŝ̄ ~u8,z8!#522p i\D~u2u8!d2~z2z8!1̂,
~16!

whered2(z2z8) has spin weight 2 inz and22 in z8, and is
defined such that*S2d

2(z2z8) f (z8)dS825 f (z) for all spin
weight12 functionsf ~see@9# for the treatment ofd func-
tions in the context of spin-s spherical harmonics!. These are
the fundamental commutation relations for the data onI1.
Since all the other operators are constructed via their func-
tional dependence on the data, these commutation relations
are critical to obtaining the commutation relations between
the interesting geometrical operators.

B. Quantum hypersurfaces

We now present a construction that extends the quantiza-
tion available atI1 into the interior of the spacetime. In a
rather nonstandard fashion, we proceed to the quantization of
hypersurfaces and spacetime points, instead of the more tra-
ditional approach of quantizing the metric fields or connec-
tions. This construction is based on the null-surface formu-
lation of GR and a~classical! dynamical prescriptionto
specify a location in the interior manifold. In Sec. II, we had
two dynamical prescriptions, with different meanings: Eq.
~4!, u i5u i(xa,z,@s#), which for givenxa,z, ands define
four null-geodesic quantities; or Eq.~5!, xa5xa(u i ,z,@s#),
which for given values ofu i and z ~fixed s) locates an
interior spacetime point.

Both alternatives require the explicit expression for the
function Z(xa,z,@s#), obtained in Sec. II@Eq. ~14!#. Z can
be viewed as describing null hypersurfaces of the spacetime

by settingZ(xa,z,@s#)5const. Therefore, we will first de-
velop the formal quantization ofZ(xa,z,@s#), without at-
tempting to give it a meaning immediately.

We define the operatorẐ by simple substitution, in Eq.
~14!, of the classical variabless with their quantum ana-
loguesŝ: i.e.,

Ẑ~xa,z![Z~xa,z,@ŝ# !5Z0~x
a,z!1̂

1E
S2

$Zh
2G~z,h!ŝ„Z0~x

a,h!,h…

1Zh
2G~z,h!ŝ̄„Z0~x

a,h!,h…%d2Sh . ~17!

The operatorẐ is manifestly linear in the free dataŝ. The
free-data commutation relation~16! implies the following
integral representation of the commutation relations forẐ:

@ Ẑ,Ẑ8#[@ Ẑ~xa,z!,Ẑ~x8a,z8!#

522p i\E
S2

@Zh
2G~z,h!Zh

2G~z8,h!

1Zh
2G~z,h!Zh

2G~z8,h!#D@y•l ~h!#d2Sh1̂,

~18!

where we use the notationv•w[vahabw
bfor vectorsva and

wa on Minkowski space,ya[xa2x8a, and the vectorl a was
introduced in Eq.~10!.

The commutator@ Ẑ,Ẑ8# is symmetric under interchange
of only z with z8 and antisymmetric under interchange of
only xa with x8a. The latter antisymmetry implies that

@ Ẑ,Ẑ# and itsz derivatives vanish identically, a property that
has important consequences in the following two subsec-
tions.

The evaluation of the commutator~18! in closed form is a
cumbersome calculation. In the case oftimelike ya the
closed-form commutator is

@ Ẑ,Ẑ8#522p i\@ l •l 8ln~ l •l 8!1 1
32 1

6 l •l 8#

3D~x02x80!1̂, ~19!

wherex0 and x80 are the time components ofxa and x8a,
respectively. The calculation follows essentially the same
steps as in the analogous case of Maxwell fields, which we
include in Appendix A 4. This calculation is considerably
simpler than the case of spacelike separation because, in the
timelike case, the step functionD(y•l ) takes a constant
value on the sphere~11

2 if y
a is future pointing, or2 1

2 if
ya is past pointing!. If the step function changes sign on the
sphere, as in the spacelike case, there is a nonvanishing line
integration on the boundary where the sign change takes
place. This line integral becomes lengthy and cumbersome
~though straightforward! to evaluate~see Appendix A 4 for a
very similar calculation in the case of Maxwell fields!.
Though this calculation has not yet been completed, it is not
clear that the closed form will shed light on the discussion
that follows.
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In the remainder of this section, we turn our attention to
the interpretations of two of the several alternate quantum
descriptions which arise from the fact thatZ is quantized.

C. Quantum light cone cuts and associated geometric
quantities

Consider Eqs.~3!. At the classical level, they define four
geometric quantities associated with null surfaces~see Sec.
II !. In the linearization, they are explicitly given by

u5Z01Z15xal a1Z1~x
a,z,@s#!, ~20!

v5ZZ01ZZ15xama1ZZ1~x
a,z,@s#!, ~21!

v̄5ZZ01ZZ15xam̄a1ZZ1~x
a,z,@s#!, ~22!

R5ZZZ01ZZZ15xa~na2l a!1ZZZ1~x
a,z,@s#!,

~23!

wherema[Zl a , m̄a[Zl a , andna[ZZl a1l a , or

u i5xala
i ~z!1u1

i ~xa,z,@s#!, ~24!

where u1
i (xa,z,@s#)[(Z1 ,ZZ1 ,ZZ1 ,ZZZ1) and la

i (z)

[(l a ,ma ,m̄a ,na2l a). For future reference we recall that
the four vectorsl a ,ma ,m̄a , andna satisfy l an

a52mam̄
a

51, while the remaining scalar products among any two of
them are zero. Furthermore,na1l a5A2d0

a .
We now define a set of quantum operators:

û i~xa,z![u i~xa,z,@ŝ# ! . ~25!

Explicit expressions of these in terms of the data can be
obtained from Eqs.~24! and ~14!: namely,

û[xal a~z! 1̂1Z1~x
a,z,@ŝ# !, ~26!

v̂[xama~z! 1̂1ZZ1~x
a,z,@ŝ# !, ~27!

v̂̄[xam̄a~z! 1̂1ZZ1~x
a,z,@ŝ# !, ~28!

R̂[xa@na~z!2l a~z!# 1̂1ZZZ1~x
a,z,@ŝ# !. ~29!

They are manifestly linear inŝ.
û i(xa,z) constitute a set of four quantum operators de-

pending on (xa,z). Therefore, in this picture, the interior
pointsxa are considered asc numbers, whereasû i , the geo-
metric structures atI1, are quantum variables, subject to
possible fluctuations.

The commutator@ û,û8#[@ û(xa,z),û(x8a,z8)# is simply

@ Ẑ,Ẑ8#, obtained earlier; i.e., Eq.~18!. The other commuta-
tors @ û i ,û8 j #[@û i(xa,z),û j (x8a,z8)# can be obtained by dif-
ferentiation of@ Ẑ,Ẑ8#:

@ û,û8#5@ Ẑ,Ẑ8#,

@ û,v̂8#5Z8@ Ẑ,Ẑ8#,

@ û,v̂̄8#5Z8@ Ẑ,Ẑ8#,

@ û,R̂8#5Z8Z8@ Ẑ,Ẑ8#,

@v̂,v̂8#5ZZ8@ Ẑ,Ẑ8#,

@v̂,v̂̄8#5ZZ8@ Ẑ,Ẑ8#,

@v̂,R̂8#5ZZ8Z8@ Ẑ,Ẑ8#,

@ v̂̄,v̂̄8#5ZZ8@ Ẑ,Ẑ8#,

@ v̂̄,R̂8#5ZZ8Z8@ Ẑ,Ẑ8#,

@R̂,R̂8#5ZZZ8Z8@ Ẑ,Ẑ8#. ~30!

It can be inferred from Eq.~18! that these commutators are,
generically, nonvanishing functions ofxa, x8a, z, andz8 ~the
closed forms are lengthy and complicated!. The immediate
consequence of the nonvanishing of the commutators is that
the four geometric operatorsu i do not have a complete set of
common eigenstates. Furthermore, since a generic state is
not an eigenstate of any of the four operators, in a generic
state, all four geometric quantities will fail to have well-
defined values. In this sense, the light cone cut (u), its cur-
vature (R), and the angle of emittance (v) of the null geo-
desics atI1 are ‘‘fuzzy.’’

D. Quantum spacetime points

We now consider the ‘‘dual’’ picture, which arises from
the inversion~5!. Classically, thexa represent an interior
spacetime point which can be reached fromI1 by specifying
the values of~i! the observation point (u,z) at I1, ~ii ! the
anglev of the null geodesic emitted inwardly from (u,z),
aimed atxa, and~iii ! the focusing distanceR along the null
geodesic (u,z,v) at which the pointxa is located. The lin-
earized version of Eq.~5! can be obtained from Eq.~24! in
the form

xa~uk,z,@s#!5l i
a~z!u i2l i

a~z!u1
i
„l j

a~z!u j ,z,@s#…,
~31!

where by l i
a(z) we denote the inverse matrix tola

i (z),
namely,l j

a(z)la
i (z)5d j

i , explicitly given by

l i
a~z!5~l0

a ,l1
a ,l2

a ,l1
a!5~na1l a,2m̄a,2ma,l a!.

~32!

We now define the operators associated with the space-
time pointsxa as

x̂a~u i ,z![xa~u i ,z,@ŝ# !

5l i
a~z!u i 1̂2l i

a~z!u1
i
„l j

a~z!u j ,z,@ŝ#… ~33!

and obtain a quantized description of the interior spacetime
pointsxa. Now the surface quantitiesu i remainc numbers.
x̂a(u i ,z) constitute a set of four operators dependent on the
six parameters (u i ,z).

Since the spacetime-point operatorsx̂a are functions of
the fundamental operatorsŝ, they also are subject to com-
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mutation relations@ x̂a,x̂8b#[@ x̂a(u i ,z),x̂b(u8 i ,z8)# which can be derived from@ŝ, ŝ̄8#. The commutators are

@ x̂a,x̂8b#5l i
al j8

b
†u1

i ~lk
cuk,z,@ŝ# !,u1

j ~lk8
cu8k,z8,@ŝ8# !‡, ~34!

where the commutators†u1
i (lk

cuk,z,@ŝ#),u1
j (lk8

cu8k,z8,@ŝ8#)‡ are found from Eq.~18! by using Eq.~30!. Explicitly,

@ x̂a,x̂8b#52d0
ad0

b@ Ẑ,Ẑ8#1A2d0
al 8bZ8Z8@ Ẑ,Ẑ8#2A2d0

am̄8bZ8@ Ẑ,Ẑ8#2A2d0
am8bZ8@ Ẑ,Ẑ8#1A2l ad0

bZZ@ Ẑ,Ẑ8#

1l al 8bZZZ8Z8@ Ẑ,Ẑ8#2l am̄8bZZZ8@ Ẑ,Ẑ8#2l am8bZZZ8@ Ẑ,Ẑ8#2A2m̄ad0
bZ@ Ẑ,Ẑ8#2m̄al 8bZZ8Z8@ Ẑ,Ẑ8#

1m̄am̄8bZZ8@ Ẑ,Ẑ8#1m̄am8bZZ8@ Ẑ,Ẑ8#2A2mad0
bZ@ Ẑ,Ẑ8#2mal 8bZZ8Z8@ Ẑ,Ẑ8#1mam̄8bZZ8@ Ẑ,Ẑ8#

1mam8bZZ8@ Ẑ,Ẑ8#, ~35!

where @ Ẑ,Ẑ8# is given by Eq.~18! evaluated atxa5lk
auk

5u(na1l a)1Rl a2vm̄a2v̄ma and x8a5lk8
auk5u8(n8a

1l 8a)1R8l 8a2v8m̄8a2v̄8m8a. We have thus obtained
nontrivial commutators for operators which correspond to
the coordinates of spacetime points. A series of conceptual
issues arise from the existence of the nontrivial commutators.
In this quantum picture, we would like to define the notion of
spacetime point. Classically, a spacetime point can be speci-
fied by giving a 4-tuple of numbers, the values of the coor-
dinatesxa on a four manifold. In the quantum description,
however, an operatorx̂a ~fixed a) takes a well-defined value
only when acting on an eigenstate and a set of operators~all
x̂a) have a complete set of simultaneous eigenstates if and
only if all pairs mutually commute. Let us explore what kind
of an analogue of a spacetime point we can construct.

Let us fix the values of the classical parameters (u i ;z).
Classically, these define the spacetime point whose coordi-
nates arexcl

a5xa(u i ;z) @see Eq.~5!#. An important question
at this juncture is whether the set of four operators
x̂a(u i ;z) form a commuting set. It can be checked by inspec-
tion, settingu8k5uk and z85z in Eq. ~35!, that all four
operatorsx̂a(u i ;z) do commute with one another, as a con-
sequence of the vanishing of@ Ẑ,Ẑ# and all itsz derivatives
@see the discussion after Eq.~18!#. Therefore, we can define
the quantum analogue of a spacetime point as a common
eigenstate of the four coordinatesx̂a. Let us denote this
eigenstate byuxu i ;z

a &. Now note that the eigenvalues of the

operatorsx̂a(u i ;z), which are denoted byxu i ;z
a , can in gen-

eral take a wide range of values and need not be equal to
xcl
a . Thus, in any state of quantum gravity, there is a ‘‘prob-
ability of finding’’ the spacetime point defined by (u i ;z) at
values other than the classical valuexcl

a5xa(u i ;z).
Next let us consider whether all spacetime points can si-

multaneously be assigned values. This would require that the
right-hand side of Eq.~35! vanish identically. However, if
u8kÞuk and z8Þz the commutator between two separate
spacetime-point operatorsx̂a and x̂8b is generically nonvan-
ishing. Thus there are no common eigenstates of all the dis-
tinct spacetime points, and as a consequence, we have no
candidate for a quantum analogue of the spacetime manifold.
Another way to see this is that in a common eigenstate of a
particular spacetime-point set of operators, only that one

point in the manifold is well defined, while the rest of the
manifold becomes ‘‘fuzzed’’ out. In our second quantum
picture, then, the interior spacetime is lost as a distinct clas-
sical manifold.

On the technical side, the commutators~35! display a sin-
gular behavior at the pointsz5z8, which makes the explo-
ration of the ideas in the preceding paragraph a complicated
task. Removal of theS2’s degrees of freedom from the com-
mutators has been tried by means of double integration on
the sphere, with the unsatisfactory result that the commuta-
tors ~35! vanishupon integration.

IV. REMARKS

In this final section we will summarize our results and
discuss their relevance to the issues of quantum spacetime.

By combining Ashtekar’s asymptotic quantization of the
gravitational field with the null-surface formulation of GR
we have~in the linear version! constructed certain nonstan-
dard operators on the quantum state space. The classical vari-
ables~to which these operators correspond! are not, in any
conventional sense, the usual or standard field variables: they
are families of point sets, specifically, families of three-
dimensional surfaces. Though the surfaces are described by
functions, it is the surfaces themselves which are fundamen-
tally important, not the numerical values associated with
them. Thus, it is not important if the functions that describe
the surfaces are ‘‘large,’’ or ‘‘small,’’ or even whether they
‘‘vanish.’’ From knowledge of these surfaces, all null geo-
desics, light cones, and the conformal structure of a space-
time can be constructed. By analyzing the intersections of
these surfaces one could even ‘‘pick out’’ or choose space-
time points@4#. It is possible to even think of these surfaces
as being the primitive elements of the theory with the space-
time points and light cones as derived concepts. One thus
sees that the associated operators are not, in any obvious
fashion, standard field operators. Instead, we have operators
that correspond to null surfaces, null geodesics, and field
‘‘points.’’ The novelty of this approach to quantum gravity
lies in this feature. It appears to be saying that it is the space-
time itself, i.e., the manifold structure, that is undergoing the
quantization process and not, as in the more standard ap-
proaches, some metric or connection field.

More specifically, the first and most important of our op-
erators isẐ(xa,z), defined in Eq.~17!. The classical ana-
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logue Z(xa,z) determines the characteristic surfaces in the
NSF. In the ‘‘presumed’’ quantum theory, only the average
position of the surfaces~whatever interpretation one might
give to that! is determined for any given quantum state, by
the expectation value of the operator. The ‘‘observed’’ posi-
tion can be predicted only probabilistically.

The other operators of the setû i , i.e., Eqs.~27!–~29!, for
asymptotically flat spaces, correspond to simple classical
geometric objects, angles atI1 labeling null geodesics~di-
rections of sight! and curvatures of light cone cuts~focus
distances! at I1. Once again, as quantum operators they are
nonconventional; nevertheless, ‘‘observed’’ values are
probabilistically determined.

The third, and perhaps most interesting, family of opera-

tors is given by the ‘‘spacetime-point’’ operatorsx̂a(u i ;z),
defined in Eq.~33!. Let us discuss an aspect of their classical
physical meaning. In order to fix ideas physically, imagine
that we wish to describe a gravitational phenomenon local-
ized in a certain spacetime regionR, which we consider to
be small. Consider the classical quantitiesxa(u i ;z)
5xa(u,v,R;z;@data#). The three independent variablesu,z
determine a point on future~null! infinity I1. Recall thatz
coordinates the celestial sphere, andu the Bondi time. One
may think ofu,z as labeling asymptotic observers. Imagine
that these observers look into the regionR. Each of them can
vary the direction of sight, labeled by the independent vari-
able v. Finally, using a focusing distance labeled by the
variableR, each of them can determine the distance to a
point inR. Thus, the set (u,v,R;z) determines the locations
of observers and the direction of sight and focus distance of
their observations, looking intoR from a surrounding re-
gion. Now, since the trajectories of light rays are determined
by the gravitational field, the actual pointxa seen by the
observer at (u,z) looking at a distanceR in the directionv
depends on the gravitational field. For a given spacetime, the
quantitiesxa(u,v,R;z;@data#) determine this point.

It is a rather remarkable fact that these quantities,
xa5xa(u,v,R;z;@data#), specify the conformal spacetime
geometry uniquely. Let us describe them in slightly more
detail before returning to the quantum case. Consider the
six-dimensional ‘‘observation space’’ defined by the three
coordinates (u,z) of an observer’s position onI1, the two
angles of observation,v, and the focus distanceR. On this
observation space consider a four-parameter family of two-
dimensional surfaces, topologicallyS2, each two-surface will
be referred to as a leaf and the leaves foliate the observation
space. Our equationsxa5xa(u,v,R;z) are precisely of this
form, i.e., each spacetime pointxa is equivalent to a leaf.
@Notice furthermore, that it is the family of leaves that de-
fines the spacetime points geometrically even if we change
the gauge arbitrarily toya5 f a(xb).# Physically, this amounts
to saying that a spacetime point can be viewed as the collec-
tion of points in observation space, i.e., locations, directions
of sight, focus-distances, from which surrounding observers
see it. Remarkably, this foliation by the equivalence classes
of points in the observation space that ‘‘see’’ the same space-
time point is equivalent to giving the conformal pseudo-
Riemannian geometry@8#.

In the quantum domain, it is worth asking what validity
this picture might have even when the spacetime geometry

undergoes ‘‘quantum fluctuations.’’ The equations that de-
fine the leaves become operator equations, i.e.,

x̂a5xa(u,v,R;z;@data#ˆ ). Now imagine that we are in the
realm of quantum gravity. Then it is difficult to imagine how
we could identify points physically insideR. However, the
construction partially survives. The ‘‘observation space’’ re-
mains classical and hence we still have a family of observers
surroundingR and looking in; specifically, the observers’
locations, their directions of sight, and focus distances are
still labeled by the classical parameters (u,v,R;z). What
changes is that for a fixed quantum state, we will not have a

sharply defined value for the operatorx̂a ~the leaf!—except
when it is in an eigenstate—but only a probability distribu-
tion of values. We are thus led to associate a ‘‘fuzzy’’ nature
to quantum spacetime points by this asymptotic construction.
Note thus that the question of whether two observations
(u,v,R;z) and (u8,v8,R8;z8) ‘‘see’’ the same point can
only be determined probabilistically.

As we just mentioned, there are equivalence classes~to-
pological two-spheres! of observation points, i.e., points in
the six-dimensional observation space, which correspond to
the samespacetimepoint. In the quantum theory, we could
raise the following question: Are there sets of observation
points which are equivalent in the above sense, i.e., define
the ‘‘same’’ x̂a? While we have no conclusive answers yet,
there are possible directions in which to explore this ques-
tion. For example, we could consider a collection of obser-
vation points to be ‘‘equivalent’’ if the corresponding
spacetime-point operators mutually commute. Weaker alter-
natives would be to look for sets of (u,v,R;z) such that the
x̂a5xa(u,v,R;z;@datâ#) possesssomecommon eigenstates
with the same eigenvalues, or the same expectation values in
some quantum states. These are only some of the questions
that remain to be thought about and explored.

Finally, the algebraic structure of the ‘‘quantum space-
time’’ defined in this way is characterized by the commuta-
tion relations between the spacetime-point operators. These
are given in Eq.~35!. We suspect that some relevant physical
or mathematical result is hidden in these relations; but we
have not been able, so far, to get to a fully convincing un-
derstanding of them. Two ideas may be relevant in this con-
text. First, as the classical dynamics of a particle is fully
determined by its gravitational interactions, one is tempted to
speculate that its quantum properties can be derived from
quantum geometry as well and, therefore, might be hidden in
Eq. ~35!. Second, the commutation relations~35! could be
relevant to the present efforts towards understanding quan-
tum spacetime in terms of noncommutative geometry@13#.
In that context, the commutative algebra of smooth functions
over the manifolds is replaced by some noncommutative al-
gebra, but it is difficult to find guidelines for guessing this
noncommutative algebra. The commutation relations~35!
define a noncommutative algebra that,if the Planck constant
goes to zero, is equivalent to the commutative algebra of
smooth functions over the manifold. Notice that this non-
commutative algebraic structure is not assumed here, rather,
it is derived from quantum general relativity. We leave the
analysis of these suggestions for future investigations.

Notice that the picture of quantum gravity presented here
is very far from conventional local quantum field theory
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where one assumes that physical points and the spacetime
manifold are well defined to start with. It is, therefore, also
very far from any approach to quantum gravity based on
conventional quantum field theoretical ideas.
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APPENDIX A: ASHTEKAR’S ASYMPTOTIC
QUANTIZATION OF THE FREE MAXWELL FIELD

AND APPLICATIONS

In the main text, we are interested in the asymptotic quan-
tization of linearized GR. Since the asymptotic phase spaces
of GR and the free Maxwell theory are very similar, in this
appendix we describe the asymptotic quantization of the free
Maxwell field. The quantization follows very closely the
usual construction of the Maxwell Fock space for initial data
on a Cauchy surface@14#. Our aim here is to derive the
standard covariant commutation relations between the Max-
well tensor in the interior at two different spacetime points,
from the commutation relations on the asymptotic fields,
which themselves are represented on a Hilbert space. Our
description of linearized GR in the main text is completely
analogous to this.~In fact, in the absence of IR sectors, we
simply make the substitutionA↔s andE↔N.!

The material in the following Secs.1 and2 is quite well
known and is simply Ashtekar’s asymptotic quantization of
the Maxwell field and GR@6#. We present it here for the sake
of completeness. We differ from@6# in one notable detail,
namely, the definitions of the distributional field operators
~A21! and ~A22!. Finally, in Secs.3 and 4 we construct,
respectively, an integral representation and then the closed
form of the covariant commutation relations for the Maxwell
field.

1. Phase space and algebra of observables

Let ga denote the connection field in the interior of
Minkowski space. The Maxwell tensor is then obtained
by Fab52¹ [agb] . On I1, with null generators na,
we define Aa :5ga←

as the restriction ofga to I1,

andEa :5]Aa /]u5£nAa , the electric field onI1.
The space of solutions to Maxwell’s equations is a linear

phase spaceG, and we can introduce as coordinates onG the
electric fieldsEa(u,z) on I1. Note thatEa(u,z) is a gauge
invariant quantity, and it is normal to the null generators of
I1, namely,Ea(u,z)n

a50. ThusEa(u,z) is completely de-
fined by the complex scalarE(u,z)52maEa(u,z); i.e.,
Ea(u,z)5Em̄a1 Ēma .

For the purposes of easing later calculations, let
us introduce some new notation@15#. Let a,b, . . .
be infinite-dimensional abstract indices onG which
take values in the continuous set (u,z)PI1. Thus,

$„d/dE(u,z)…a,„d/d Ē(u,z)…a% @$daE(u,z),daĒ(u,z)%# is a
complex vector~covector! coordinate basis onG ~sinceG is
a linear space, we do not make a distinction betwenG and its
tangent space at a point!. Thus, for example, a complex sca-
lar field on I1 is a vectorVa in G, with ‘‘components’’

„V(u,z),V̄(u,z)…. In the index notation we have introduced,
a vector is represented byVa5*I1du dS2$V(u,z)
„d/dE(u,z)…a1 V̄(u,z)„d/d Ē(u,z)…a%.We follow the
abstract index ‘‘summation’’ convention, which, in
our case, since the index takes a continuum of values,
leads to an integral. The action of a covectorWa

5*I1du dS2@W(u,z)daE(u,z)1W̄(u,z)daĒ(u,z)# on a
vectorVa is given by

WaV
a5E

I
1
du dS2@V~u,z!W~u,z!1 V̄~u,z!W̄~u,z!#.

~A1!

In this notation, the symplectic structure on the phase
space@6# is given by

Vab5
1

2pE E
I

1
dudS2du8 dS28d2~z2z8!

3D~u2u8!daE~u,z!`dbĒ~u8,z8!, ~A2!

whereD(u)5 1
2 sgn(u) is the skew-symmetric antiderivative

of d(u), so thatd(u)5]D(u)/]u. Note that the symplectic
structure is aconstantreal two-form onG, and its action
V(V,W) on two vectorsVa andWa is given by

VabV
aWb5

1

2pE E
I

1
dudS2du8dS28d2~z2z8!D~u2u8!

3@V~u,z!W̄~u8,z8!2 V̄~u8,z8!W~u,z!#.

~A3!

There are two other naturally defined constant tensors on
G which are useful. Since the electric fields onI1 are or-
thogonal to the null generators ofI1, the~degenerate! metric
on I1 defines a nondegenerate metric tensor onG itself:

Qab5E E
I

1
du dS2du8dS28d2~z2z8!

3d~u2u8!@daE~u,z!dbĒ~u8,z8!

1daĒ~u,z!dbE~u8,z8!#

52E
I

1
dudS2 d~aE~u,z! db)Ē~u,z!, ~A4!

whose action on two vectorsVa andWa is given by

QabV
aWb5E

I
1
dudS2@V~u,z!W̄~u,z!1 V̄~u,z!W~u,z!#.

~A5!

Next, consider the linear operator corresponding to theu

derivative of fields onI1: V̇(u,z)[]V(u,z)/]u. This is a
(1,1) tensor, defined by

Ta
bV

b:5V̇a[E
I

1
dudS2$V̇~u,z!„d/dE~u,z!…a

1 V̇̄~u,z!„d/d Ē~u,z!…a%. ~A6!
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It is straightforward to check that theu derivative operator
satisfying Eq.~A6! can be written as

Ta
b5E E

I
1
dudS2du8dS28 d2~z2z8!

]

]u
d~u2u8!

3F S d

dE~u,z! D
a

dbE~u8,z8!

1S d

d Ē~u,z!
D a

dbĒ~u8,z8!G . ~A7!

In relation to the analogy with the linearized NSF of GR,
we are interested in considering the connections as charac-
teristic free data onI1, rather than the electric fields. The
connections are now determined, with respect to the electric
fields, as the corresponding elements Aa

5*I1dudS2$A(u,z)„d/dE(u,z)…a1 Ā(u,z)„d/d Ē(u,z)…a%
of G such that

Ea5Ta
bA

b. ~A8!

Defined in this way, the connections are completely deter-
mined by a single complex scalar fieldA(u,z). This single
complex scalar is related to the standard realAa ~introduced
earlier! by A52maAa and represents the two degrees of
freedom of the Maxwell fields. In order to stay away from
infrared sectors, the remaining component ofAa is chosen to
vanish, namely,Aan

a50 ~in this gauge, the Maxwell con-
nection is equivalently represented by eitherAa or A). Note
that Ta

b is degenerate, since it annihilates fields which do
not depend onu; thus, it has no unique inverse. However, the
ambiguity in definingAa by Eq. ~A8! is precisely the re-
maining gauge freedom, that of an additive field which de-
pends only onz.

The three tensorsVab ,Qab ,T
a

b on G are not all inde-
pendent. In order to derive the relation between them, note
first that the inverseVab of the symplectic structure, defined
by VabVbg5 1a

g , is given by

Vab54pE E
I

1
dudS2du8dS28d2~z2z8!

]

]u
d~u2u8!

3S d

dE~u,z! D
[aS d

d Ē~u8,z8!
D b]

~A9!

and that the inverse of the metric~A4! is given by

Qab52E
I

1
dudS2S d

dE~u,z! D
~aS d

d Ē~u,z!
D b)

.

~A10!

Now, combining Eqs.~A7!, ~A9!, and~A10!, a short calcu-
lation shows that

Vab52pTa
gQ

bg. ~A11!

This relationship will be useful later for defining distribu-
tional operators corresponding to the connections.

We now want to construct the Poisson bracket algebra of
elementary functions on the phase space, which are to be
represented in the quantum theory by quantum operators.
Since the phase space is a linear space, it will be most con-
venient to consider the space of all~sufficiently smooth! lin-
ear functions onG, together with the constant functions. This
space can be parametrized in the following manner. Let
S,G be the space of complex covector test fields onI1. Let
VaPS, and define a functionFV on G, whose value, evalu-
ated at the pointEaPG, is given by

FV@E#:5VabE
aVb. ~A12!

This is a linear function onG. Its gradient is given by
¹aFV5VabV

b. The Poisson brackets between any two such
functions is

$FV@E#,FW@E#%[Vab¹aFV¹bFW52VabV
aWb,

~A13!

whereVab is the inverse of the symplectic structure, defined
in Eq. ~A9!. Since the function on the right-hand side of Eq.
~A13! is independent ofEa, the algebra is closed under Pois-
son brackets. This defines the algebra of elementary classical
functions.

From the linear functions~A12!, the classical distribu-
tional electric fields can be obtained via

Ea52Vab
d

dVbFV@E#522pTa
gQ

bg
d

dVbFV@E#,

~A14!

where we have used Eq.~A11!. Comparing Eq.~A14! with
Eq. ~A8!, and making the same gauge choice for the connec-
tion as before, we see that the distributional connection field
is given by

Aa522pQba
d

dVbFV@E#. ~A15!

From ~A13! and the definition~A15! of the classical distri-
butional connection field onI1, we can obtain the funda-
mental Poisson brackets between two connections:

$Aa,Ab%54p2QgaQdb
d

dVg

d

dWd $FV@E#,FW@E#%

54p2QgaQdbVdg

524pE E
I

1
dudS2du8dS28d2~z2z8!

3D~u2u8!S d

dE~u,z! D
[aS d

d Ē~u8,z8!
D b]

.

~A16!

On the other hand, in terms of components we have
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$Aa,Ab%5E E
I

1
dudS2du8dS28$A~u,z!,A~u8,z8!%

3S d

dE~u,z! D
aS d

dE~u8,z8! D
b

1$Ā~u,z!,Ā~u8,z8!%

3S d

d Ē~u,z!
D aS d

d Ē~u8,z8!
D b

12$A~u,z!,Ā~u8,z8!%

3S d

dE~u,z! D
[aS d

d Ē~u8,z8!
D b]

. ~A17!

By comparing Eqs.~A16! and ~A17! ~or more directly!, we
obtain

$A~u,z!,Ā~u8,z8!%522pD~u2u8!d2~z2z8!
~A18a!

and

$A~u,z!,A~u8,z8!%5$Ā~u,z!,Ā~u8,z8!%50.
~A18b!

These are the fundamental distributional Poisson brackets on
the data onI1.

Let us summarize what we have done so far. First, we
have shown that the linear space of free data of the Maxwell
field can be parametrized by the characteristic dataA(u,z)
on I1. The data satisfy the Poisson brackets relations~A18!.
From the characteristic dataA(u,z), we can obtain the Max-
well fields in the interior of the spacetime~see Sec. A 3!, and
their corresponding Poisson brackets. From the point of view
of quantization, the characteristic data are not convenient
elementary observables, since they correspond to distribu-
tions onG and cannot be directly represented on a Hilbert
space as bounded self-adjoint operators. However, since the
phase space is linear, we introduced the space of linear func-
tionals onG in a particularly convenient way, as the space of
smeared electric fieldsFV@E# @Eq. ~A12!#. These smeared
fields satisfy the elementary Poisson brackets relations
~A13!. From the smeared electric fieldsFV@E#, the charac-
teristic dataA(u,z) can be reobtained by the functional de-
rivative with respect to the test fields, via Eq.~A15!.

Now in the quantum theory, the elementary operator al-
gebra that one works with corresponds to the Poisson brack-
ets algebra of the smeared fields. Following Ashtekar@6#, in
the next subsection we construct a representation of this al-
gebra on an asymptotic Fock space. We are primarily inter-
ested in the distributional connections onI1, and these can
be obtained from the smeared electric field operators via the
quantum analogue of Eq.~A15!. The distributional operators
corresponding to the Maxwell fields in the interior can be
constructed from the distributional connections by analogy
with the classical construction~Sec. A 3!.

Hence, to begin with, let us construct the algebra of el-
ementary operators which we wish to represent in the quan-
tum theory. We want to construct operatorsÊ(V) corre-

sponding to the classical functionsFV@E#. These smeared
field operators are defined to satisfy the standard commuta-
tion relations corresponding to the Poisson brackets~A13!

@Ê~V!,Ê~W!#5 i\$FV@E#,FŴ@E#%52 i\VabV
aWb1̂.

~A19!

As we noted, we are primarily interested in operator-valued
distributions corresponding to the electric fields and the con-
nections at a point onI1. Thus, in analogy with the classical
fields @see Eq.~A14!#, let us define an operator-valued dis-

tributional electric fieldÊa[„Ê(u,z), Ê̄(u,z)… by

Êa52Vab
d

dVbÊ~V!. ~A20!

By contracting Eq.~A20! with VgaV
g, one can see that the

smeared field operators are obtained from the distributional
operators in the same manner as the linear functions are
smeared with the test fields:

Ê~V!5:VabÊ
aVb. ~A21!

@Compare Eq.~A21! with Eq. ~A12!.#
Similarly, in analogy with Eq.~A15!, we define an

operator-valued distribution corresponding to the connection
fields as follows:

Âa522pQba
d

dVbÊ~V!. ~A22!

Using this definition and the commutator~A19!, we compute
the commutator between the connection operators

@Âa,Âb#54p2 QgaQdb
d

dVg

d

dWd @Ê~V!,Ê~W!#

54p2i\1̂QgaQdbVdg . ~A23!

Evaluating the components ofQgaQdbVdg , as in the classi-
cal case, finally leads to

@Â~u,z!, Â̄~u8,z8!#522p i\D~u2u8!d2~z2z8!1̂
~A24a!

and

@Â~u,z!,Â~u8,z8!#5@ Â̄~u,z!, Â̄~u8,z8!#50.
~A24b!

These are the fundamental free-data commutators@16#, on
which the commutators for the interior fields are based. They
will be of use in Sec. A 4. In the following subsection we
describe the space of states on which the operators act.

2. Asymptotic Fock space

We are going to construct the~standard! antiholomorphic
representation@6# of the free data onI1 for the free Maxwell
field. LetS,G be the Schwartz space of complex spin-1 test
fields onI1. For anyV(u,z)PS, define the Fourier trans-
form
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V~v!5
1

A2p
E

2`

`

duV~u!eivu, ~A25!

and the positive frequency part ofV

1V~u!5
1

A2p
E
0

`

dvV~v!e2 ivu, ~A26!

where the dependence on (z, z̄ ) is understood. OnS ~or
S1), the symplectic structure~A2! can be expressed as

Vab5
1

2pE d2SE
2`

`

dv
1

iv
daE~v,z!`db Ē~2v,z!.

~A27!

On S1, define a Hermitian inner product

^ 1V u 1W &:52
i

\
V~ 1V,1W!

5
1

2p\E d2SE
0

`dv

v
V~v,z!W~v,z!.

~A28!

By inspection, this is positive definite. Note that it can be
written in the more familiar form@17#:

^ 1V u 1W &:5m~V,W!2
i

2\
V~V,W!, ~A29!

wherem(V,W)5(1/\)Im V( 1V,1W) is a real inner prod-
uct onS.

Let us take the Cauchy completion ofS1 under this inner
product; denote itH5S1. As we will see,H is the one-
particle Hilbert space. The inner product~A28! defines a
Hermitian metric onH:

Gāa
1Vā1Wa:5^ 1V u 1W &. ~A30!

The introduction of this metric will be useful in what fol-
lows.

Consider the spaceF5 % n51
`

^ SHn
%C, where^ S stands

for the symmetric tensor product. This consists of kets of the
form uT &:

uT &5u T0 ,T1
a1 , . . . ,Tn

a1•••an , . . . &, ~A31!

where T0PC and Tn
a1•••an5Tn

(a1•••an)P ^ SHn5H
^ S•••(n times)̂ SH is an element of the symmetric tensor
product ofn copies ofH.2

On this space of statesF there is the inner product ob-
tained by extending the inner product onH:

^T uW &5T̄0W01(
n51

`

Gā1a1
•••Gānan

T̄n
ā1••• ānWn

a1•••an .

~A33!

The Cauchy completion ofF defines the desired asymptotic
Fock space.

Now that we have the space of states, let us define the
creation and annihilation operatorsĉ(1V) and â(1V), re-
spectively. Given an element1VPS1, define

ĉ~1V!+u T &:5u 0,1VaT0 , . . . ,An111V(aTn
a1•••an) , . . .

~A34!

and

â~1V!+u T &:

5u Gāa
1VāT1

a , . . . ,AnGāan
1VāTn

a1•••an , . . . &.

~A35!

Using Eq.~A30!, a straightforward calculation shows that
these operators satisfy the commutation relations

@ â~1V1!,ĉ~1V2!#5^ 1V1 u 1V2 &1̂, ~A36!

all other commutators vanishing. One can show that these
operators are Hermitian adjoints of each other, i.e.,

â†~1V!5 ĉ~1V!. ~A37!

In this representation, let us define the smeared electric
field operators

Ê~V!:5\@ ĉ~1V!1â~1V!#. ~A38!

From the commutator~A36!, we easily see that

@Ê~V!,Ê~W!#52i\2Im^ 1V u 1W &1̂, ~A39!

where we have used the form of the inner product~A29!. It
follows that the operators we have defined above in Eq.
~A38! satisfy the desired commutation relations~A19!. Fur-
thermore, from the Hermiticity relations~A37! between the
creation and annihilation operators, we see that the electric
field operators~A38! are themselves Hermitian.

Thus, we have constructed a Hermitian representation of
the smeared electric field operators defined in Appendix A 1.
From these, via Eq.~A22! we can obtain the distributional
connection operatorsÂ(u,z), which satisfy the commutation
relations~A24!. Recall that the connectionsA(u,z) on I1

serve as data for the Maxwell fields in the interior of the
spacetime. In the next subsection, we will use the commuta-
tion relations~A24! between the distributional connection
field operators onI1 to compute the commutation relations
between the field operators in the interior of the spacetime.

3. Integral representations of the covariant
commutation relations

The fields in the interior of the spacetime can be recon-
structed from knowledge of the fields atI1. The following is

2The antiholomorphic representation can be easily constructed.
For example, the one-particle state is represented by

cT1
@Z#:5^ Z u T &5Gāa Z̄

āTa, ~A32!

whereZa:51Ea.
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a reconstruction of the Maxwell fields based on the null-
surface formulation of the background Minkowski spacetime
@18#.

In Minkowski space, the intersection of the future light
cone of an interior pointxa with I1 is a topological sphere
S2(xa), denoted as the light cone cut ofxa. In coordinates
(u,z), the light cone cut of a fixed pointxa is a two-surface
u5u(xa,z) in I1 given by

u5Z0~x
a,z!5xal a~z!5xahabl

b, ~A40!

where l b(z) is a constant null vector in Minkowski space
@see ~Eq. 10!#. At any fixed point,l b(z) defines the null
cone by varyingz. Z0 denotes theZ function for Minkowski
space.

If the ~otherwise free! dataA(u,z) is restricted to the light
cone cut of a particular pointxa, it defines a function of six
variables denotedAR(x

a,z)[A„Z0(x
a,z),z…. By giving

asymptotic dataAR on a light cone cut, the Maxwell field
and connection at the interior pointxa can be found, essen-
tially by differentiation, from the knowledge of a real nonlo-
cal superpotentialF(xa,z) which satisfies the following dif-
ferential equation on the sphere:

ZZpF5ZĀR~xa,z!1ZpAR~xa,z![DM~xa,z!@A#.
~A41!

Regular solutions to this equation from given data can be
found in integral form

F~xa,z; @A# !5E
S2
dSh

2GM~z,h!DM~xa,h!@A#,

~A42!

where dSh
2522idh`dh̄ /(11hh̄ )2 is the area form for

S2, @A# indicates the functional dependence of the solution
on the free data, andGM(z,h) is a known Green’s function
@19#, given by

GM~z,h!5
1

4p
lnS ~z2h!~ z̄ 2 h̄ !

~11z z̄ !~11hh̄ !
D

5
1

4p
ln@ l a~z!l a~h!#. ~A43!

Note that any function of onlyxa can be added to Eq.~A42!
to obtain another solution of Eq.~A41! with the same data.
This gauge freedom of the solutions to Eq.~A41! is equiva-
lent to leaving free thel50 term in their spherical-harmonic
expansion. The Green’s function~A43! has the property that
if F is given by Eq.~A42!, then*S2F50, henceF has no
l50 term in an expansion in spherical harmonics. Equation
~A42! thus gives an integral representation of the superpo-
tentialF(xa,z) in the l50 gauge.

In a general gauge, the Maxwell connectionga(x
c) is

related toF(xa,z) by

l a~z!¹aF~xc,z!5l a~z!ga~x
c!. ~A44!

By differentiation of Eq.~A44! with respect toz and by
algebraic procedures we can reconstructga(x

c), and
Fab52¹ [agb] . Explicitly,

ga5g ila
i ~A45!

and

Fab52l [b
i ¹a]g i , ~A46!

where, by definition,

g1[l
a¹aF, ~A47!

g1[2ma¹aF2l a¹aZF52Z~ l a¹aF !, ~A48!

g2[2m̄a¹aF2l a¹aZF52Z~ l a¹aF !, ~A49!

g0[1~na2l a!¹aF1ma¹aZF1l a¹aZZF5ZZ~ l a¹aF !,
~A50!

and la
i (z)[(l a ,ma ,m̄a ,na2l a), i50,1,2,1. If F(xa,z)

satisfies Eq.~A41!, thenFab(x
c) is automatically a solution

to the Maxwell equations¹aFab50. It is worth noticing that
our l50 gauge implies that the connectionga is fixed in the
Coulomb gauge, being explicitly given by

ga5E
S2
dSh

2$ Ǡ„xbl b~h!,h…ma~h!

1Ȧ„xbl b~h!,h…m̄a~h!%. ~A51!

We return to the gauge issue at the end of this subsection.
In the quantization, we define the operators simply by

replacing the classical variables with their quantum versions,
i.e.,3

F̂~xa,z; @A# !5E
S2
dSh

2GM~z,h!DM~xa,h!@Â#.

~A52!

In the following, we find integral representations of the
commutation relations ofF̂, ĝa , andF̂ab at different values
of their arguments. These follow from the fundamental com-
mutators~A24! for the free data.

Using the notation@ F̂,F̂8#[@ F̂(xa,z),F̂(x8a,z8)#, from
Eqs.~A52! and ~A24! we obtain

@ F̂,F̂8#522E E
S2

@ZhGM~z,h! Zph8GM~z8,h8!

1ZphGM~z,h! Zh8GM~z8,h8!#

3$Â„xal a~h!,h…, Â̄„x8al a~h8!,h8…%d2Shd
2Sh8

54p i\E
S2

@ZhGM~z,h!ZphGM~z8,h!

1ZphGM~z,h!ZhGM~z8,h!#D@y•l ~h!#d2Sh1̂,

~A53!

3We assume, as appears to be done for evolution from Cauchy
data, that the operators corresponding to the restrictions of the con-
nections onI1 to the cuts ofxa exist on the Fock space.
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where y•l (h)[yal a(h) and y
a[xa2x8a. To obtain this

result we used the explicit expression of the Green’s func-
tion, Eq. ~A43!, and the method for the evaluation of inte-
grals on the sphere described in@20#. Withma[Zl a @see the
definition of the null tetrad (l a,ma,m̄a,na), Eq. ~23!#, Eq.
~A53! takes the compact form

@ F̂,F̂8#58p i\E
S2

l a~z!l b~z8!m~am̄b)

l ~z!•l l ~z8!•l
D~y•l !d2S1̂.

~A54!

Here and in the following, we omit the explicit dependence
on a dummy variable, such as the integration variable in Eq.
~A54!.

In order to find the commutator ofĝa , we take two gra-
dients¹a¹b8 in the spacetime arguments of Eq.~A54! and
then contract withl a(z)l b(z8) since

l al 8b¹a¹b8@ F̂,F̂8#5@ l a¹aF̂,l 8b¹b8F̂8#5@ l aĝa,l 8bĝb8#

5l al 8b@ ĝa,ĝb8#. ~A55!

Using Eq.~A54!, we have

l al 8b¹a¹b8@ F̂,F̂8#

528p i\l al 8bE
S2
m~am̄b)ḋ~y•l !d2S 1̂, ~A56!

where we use the notationḟ (x)[d f(x)/dx. Since the inte-
gral in the right-hand side of Eq.~A56! is not a function of
(z,z8), then, from Eqs.~A55! and ~A56!, it follows that

@ ĝa,ĝb8#528p i\E
S2
m~am̄b)ḋ~y•l !d2S 1̂. ~A57!

This is an integral representation of the commutator ofĝa at
two different points, in the interior of the spacetime. The
reason why it does not resemble the standard commutators
for the Maxwell connection is that we have not made the
standard gauge choice, namely, the Lorentz gauge,
¹aga50. Instead, by choosing the superpotentialF as in Eq.
~A42! we have picked the Coulomb gauge, i.e,¹aga50 and
g050. Interestingly, these gauge conditions are consistent
with Eq. ~A57!. Namely, if the operatorsĝa are constrained
by ¹aĝa50 and ĝ050, then it should also be true that

@¹aĝa,ĝb8#50 and@ ĝ0,ĝb8#50. By taking a gradient¹a and
observing thatm•l 50, it is straightforward to see that Eq.
~A57! implies @¹aĝa,ĝb8#50, whereas@ ĝ0,ĝb8#50 holds
trivially, sincema has a vanishing timelike component@cf.
Eq. ~A86!#.

4. Closed-form commutators

In this section we evaluate in closed form the integral
representation of the commutator of the nonlocal potential
F(xa,z), Eq. ~A53!.

In the first place, we rewrite the integrand into two terms
~by ‘‘flipping’’ an Zh derivative from the Green’s functions
over to the step functionD while keeping the so-called
boundary terms!:

~ZhGZphG81ZhG8ZphG!D~y•l !5Zh@~GZphG81G8ZphG

1R̄1R̄8!D~y•l !#2~GZphG81G8ZphG1R̄1R̄8!

3y•md~y•l !, ~A58!

where R̄ and R̄8 are assumed to satisfyZhG5R̄ and
ZhG85R̄8, respectively (R̄ and R̄8 are not unique!. The in-
tegration variable on the sphere ish. The other parameters
(ya,z,z8), are fixed. With the integrand written in this way,
the integral in Eq.~A53! splits into two terms:

@F,F8#522p i\E
S2

Zh@~GZphG81G8ZphG1R̄1R̄8!

3D~y• l̂ !#dŜ22E
S2

~GZphG81G8ZphG1R̄1R̄8!

3y•m̂d~y• l̂ !d2S. ~A59!

The first term is a volume integral on the sphere which can
be evaluated by a method that combines Stokes’s theorem
and the theorem of residues for a complex variable@20#. The
second term in Eq.~A59! either vanishes~if y•l Þ0) or is a
line integral, since the integrand has support only on the line
defined byy•l 50. These two distinctions correspond to
ya being timelike or spacelike, respectively.

For timelike future-pointing ya the step function
D(y•l ) takes the constant value11/2. We will first evaluate
Eq. ~A53! in this case, and then extend the result to timelike
past-pointingya by simply multiplying by an overall minus
sign.

The commutator~A53! is reduced to

@F,F8#52p i\E
S2

Zh~GZphG81G8ZphG1R̄1R̄8!d2S.

~A60!

From Eq.~A43! the following are obtained:

R̄~z,h!5
1

4p

l ~z!•l ~h!

l ~z!•m~h!
$ ln@ l ~z!•l ~h!#21%

~A61!

and

ZphG8[ZphG~z8,h!5
1

4p

l ~z8!•m̄~h!

l ~z8!•l ~h!
. ~A62!

Notice thatG, R̄, andZphG8 are singular at certain values of
(h,h̄ ). This implies that the integral in Eq.~A60! must be
defined by a limiting process; the integral is performed on a
domainD5S22B that excludes small neighborhoods of the
singular points, which are eventually shrunk to zero. By
Stokes’s theorem, the integral~A60! onD can be converted
into contour integrations around the singular points. Further-
more, due to the theorem of residues~with an overall minus
sign!, the contour integrals can finally be evaluated by com-
puting the residues at the simple poles insideB (B consists
of a disjoint union of neighborhoods around singular points!
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@F,F8#522p i\ R
]B

~GZphG81G8ZphG1R̄1R̄8!
2 id h̄

11hh̄

58p2i\(
k

ResSGZphG81G8ZphG1R̄1R̄8

3
1

11hh̄
D U

h̄5h̄k

. ~A63!

In the evaluation by residues, the variables (h,h̄ ) are con-
sidered independent of each other, the singular points that
affect the integration being those on the variableh̄ . We are
thus interested in accounting for all the singular points
h̄5 h̄ k which are simple poles, while the variableh is con-
sidered fixed, taking the limiting valueh5hk . Using the
explicit expressions of the scalar products betweenl a and
ma @18#,

l ~z!•l ~h!5
~h2z!~ h̄2 z̄ !

~11z z̄ !~11hh̄ !
,

l ~z!•m~h!5
~ h̄2 z̄ !~11zh̄ !

~11z z̄ !~11hh̄ !
, ~A64!

we see that the integrand in Eq.~A63! is singular at
h̄5 z̄ , z̄ 8,21/z,21/z8. These are simple poles.~The appar-
ent pole ath̄521/h is ignored, since it does not affect the
value of the integral.! A careful calculation gives only the
nonzero residues

ResSGZphG8

11hh̄
D U

h̄5z8

5 ResSG8ZphG

11hh̄
D U

h̄5z

5
1

4p
ln~ l •l 8!

~A65!

and

ResS R̄

11hh̄
D U

h̄521/z

5 ResS R̄8

11hh̄
D U

h̄521/z8

5
1

4p
.

~A66!

Therefore, the commutator for the nonlocal potentialF for
future-pointing timelike separationya in closed form is

@F,F8#52p i\~ ln@ l •l 8!11#. ~A67!

Likewise, the commutator for the nonlocal potentialF for
past-pointing timelike separationya in closed form is

@F,F8#522p i\@ ln~ l •l 8!11#. ~A68!

For spacelike separationya, the conditiony•l 50 defines
a closed contour on the sphere. This has two immediate con-
sequences. On one hand, the step functionD(y• l̂ ) changes
sign across the contour, which implies that, in the evaluation
by residues, there will be some likely cancellations, depend-
ing on whether the poles are all located on the same side or
are scattered on both sides of the contour. On the other hand,

there is a nonvanishing contour term that needs to be evalu-
ated explicitly, in addition to the contribution of the residues.

We will first evaluate Eq.~A59! for spacelike separation
of the form

ya5~ t,0,0,z!. ~A69!

This has the considerable advantage of orienting the contour
y•l (h)50 around thez axis; i.e., the contour is a horizontal
circle on the sphere, not necessarily at the equator. Once we
obtain the result, we will generalize it to an arbitrary space-
like ya by means of a general three-dimensional rotation.

The first term in Eq.~A59! consists of a combination of
the residues~A65! and~A66!, with appropriate signs depend-
ing on whether the pole is above or below the contour. The
step functionD is negative above the contour. The second
term in Eq.~A59! requires a cumbersome calculation, which
we outline in the following.

Using standard spherical coordinates (u,f) on S2, with
u50 at the north pole, the stereographic coordinates are
given by h5cot(u/2)eif, and the conditiony•l (h)50
reads

t2zcosû50, ~A70!

defining a circle at a latitudeu0 given by cosu05t/z. The
second term in Eq.~A59! takes the form

E
S2

~GZphG81G8ZphG1R̄1R̄8!y•md~y•l !d2S

52E
0

2p

~GZphG81G8ZphG1R̄1R̄8!
2r0

~11r
0

2!
e2 ifdf,

~A71!

where we have used the notationr0[cot(u0/2). Notice that
r0 increases from 0 at the south pole to` at the north pole,
taking the value of 1 at the equator. The line integral in Eq.
~A71! can be written as the following contour integral
around the unit circle in the complex plane:

E
0

2p

~GZphG81G8ZphG1R̄1R̄8!
2r0

~11r
0

2!
e2 ifdf

5 R
uvu51

~GZphG81G8ZphG1R̄1R̄8!
2r0

~11r
0

2!

dv
iv2

[I ,

~A72!

where

GZphG85
1

4p
lnF ~r0v2z!~r0 /v2 z̄ !

~11r
0

2!~11z z̄ ! G ~11 z̄ 8r0v !

~r0 /v2 z̄ 8!

~A73!

and

R̄5
1

4p

~r0v2z!

~11r0z/v !S lnF ~r0v2z!~r0 /v2 z̄ !

~11r
0

2!~11z z̄ ! G21D .
~A74!
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With Eqs.~A73! and ~A74!, the contour integralI is explicitly

I5
r0

2p i ~11r
0

2!
R

uvu51
lnF ~r0v2z!~r0 /v2 z̄ !

~11r
0

2!~11z z̄ ! G ~11r
0

2!~11z z̄ 8!

~r02v z̄ 8!~v1r0z!
2

~r0v2z!

~v1r0z!v

1 lnF ~r0v2z8!~r0 /v2 z̄ 8!

~11r
0

2!~11z8 z̄ 8! G ~11r
0

2!~11z8 z̄ !

~r02v z̄ !~v1r0z8!
2

~r0v2z8!

~v1r0z8!v
dv. ~A75!

Technically, the contour integralI , Eq. ~A75!, cannot be evaluated by residues as it stands, because of the branch cut of the
logarithm atv50. One can rewrite the integrand as a rational function by introducing a parametert in the argument of the
logarithm, and then differentiating with respect tot, in the following fashion:

I5J~t51!5E
0

1dJ~t!

dt
dt1J~t50!, ~A76!

whereJ(t) is a generalization ofI defined by introducingt, for convenience, as

J~t![
r0

2p i ~11r
0

2!
R

uvu51
lnF ~tr0v2z!~tr0 /v2 z̄ !

~11r
0

2!~11z z̄ ! G ~11r
0

2!~11z z̄ 8!

~r02v z̄ 8!~v1r0z!
2

~r0v2z!

~v1r0z!v

1 lnF ~tr0v2z8!~tr0 /v2 z̄ 8!

~11r
0

2!~11z8 z̄ 8! G ~11r
0

2!~11z8 z̄ !

~r02v z̄ !~v1r0z8!
2

~r0v2z8!

~v1r0z8!v
dv. ~A77!

Notice that Eq.~A77! is equal to Eq.~A72! if t is set equal to 1. On the other hand, ift is set equal to zero then thev
dependence of the logarithm in the integrand ofJ disappears; consequently, the termJ(t50) in Eq. ~A76! can be integrated
by residues.

The derivativedJ/dt is

dJ

dt
5

r
0

2

2p i ~11r
0

2!
R

uvu51
S v

~tr0v2z!
1

1

~tr02 z̄ v !
D ~11r

0

2!~11z z̄ 8!

~r02v z̄ 8!~v1r0z!

1S v
~tr0v2z8!

1
1

~tr02 z̄ 8v !
D ~11r

0

2!~11z8 z̄ !

~r02v z̄ !~v1r0z8!
dv. ~A78!

The simple poles that are relevant to the evaluation ofdJ/
dt as a function oft are

v5
r0

z̄ 8
,

r0

z̄
,

z

tr0
,

z8

tr0
,

tr0

z̄
,

tr0

z̄ 8
, 2r0z, 2r0z8. ~A79!

Care must be taken to correctly account for the simple poles
that are inside the unit circle at different values oft.

After the evaluation by residues,dJ/dt can be seen to be
an explicit linear combination of terms of the form
1/(a1bt), which can be integrated int immediately as a
logarithmic function. The procedure is rather lengthy but en-
tirely straightforward.

In this way, we have given an outline of the main techni-
cal steps necessary to the evaluation of the second term in
Eq. ~A59!. By combining the results obtained separately
from the first and second terms in Eq.~A59!, the final ex-

pression for the commutator of the nonlocal potentialF at
spacelike separationya of the form~A69! is obtained, which
we present split into four different cases.

If z andz8 are both above the contour, then

@F,F8#522p i\H ln~ l •l 8!2 lnF ~r
0

22z z̄ 8!~r
0

22z8 z̄ !

~11r
0

2!2z z̄ z8 z̄ 8
G

1
~12r

0

2!

~11r
0

2!J . ~A80!

If z is above andz8 is below the contour, then

@F,F8#522p i\H lnF ~11z8 z̄ 8!z z̄

~11z z̄ !
G1

~12r
0

2!

~11r
0

2!J .
~A81!

If z is below andz8 is above the contour, then
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@F,F8#522p i\H lnF z8 z̄ 8~11z z̄ !

~11z8 z̄ 8!
G1

~12r
0

2!

~11r
0

2!J .
~A82!

If z andz8 are both below the contour, then

@F,F8#522p i\H 2 ln~ l •l 8!1 lnF ~r
0

22z z̄ 8!~r
0

22z8 z̄ !

~11r
0

2!2 G
1

~12r
0

2!

~11r
0

2!J . ~A83!

The results~A80! and~A83! have a regular limit as the con-
tour is shrunk to zero@unlike Eqs.~A81! and~A82!, in which
one of the pointsz or z8 would disappear as the contour is
shrunk to zero#. The contour is shrunk to zero by taking the
limits r0→0 ~in which case the contour flies off the sphere
at the south pole!, and r0→` ~in which case the contour
flies off the sphere at the north pole!. The limiting values
r050,̀ correspond tot51z,2z, i.e., the null boundaries
between the timelike and spacelike regions. Therefore, it is
expected that Eq.~A80! has Eq. ~A68! for a limit as
r0→0, whereas Eq.~A83! should have Eq.~A67! for a limit
as r0→`. This is actually the case, as can be verified by
inspection of Eqs.~A80! and ~A83!.

In order to generalize to an arbitrary spacelike separation
ya, in the following we rewrite the relevant quantities as
invariants under general spatial rotations, keeping the time
axis fixed.

We define the unit timelike vector

Ta[~1,0,0,0!, ~A84!

which is invariant under spatial rotations. We also have at
our disposal the vectorsl a andma given by

l a5
1

A2S 1, z1 z̄

11z z̄
,2 i

z2 z̄

11z z̄
,
211z z̄

11z z̄
D , ~A85!

ma[Zl a5
1

A2S 0,12 z̄ 2

11z z̄
,2 i

11 z̄ 2

11z z̄
,
2 z̄

11z z̄
D .

~A86!

In terms of these vectors, the relevant quantities in Eqs.
~A80!–~A83! take the form

t5y•T,

z5A~y•T!22y•y,

11z z̄ 5
2z

z2y•T1A2y•l
,

r
0

25
z1y•T

z2y•T
,

~r
0

22z8 z̄ !~r
0

22z z̄ 8!

~11r
0

2!2

5
2y•yl •l 812y•l y•l 8

~z2y•T1A2y•l !~z2y•T1A2 y•l 8!
,

~A87!

where every scalar product is invariant with respect to spatial
rotations. By substituting Eq.~A87! into Eqs.~A80!–~A83!,
the commutators are generalized to an arbitrary spacelike
separationya.

APPENDIX B: EVALUATION OF THE NULL-SURFACE
COMMUTATOR IN THE CASE OF TIMELIKE

SEPARATION

In this appendix we evaluate Eq.~18! in closed form for a
special range of the parametersya. As a first step, however,
we rewrite Eq.~18! in the form

@ Ẑ,Ẑ8#522p i\E
S2

Zh~VD!2VZhDd2Sh , ~B1!

whereV5V(h,z,z8) is given by

V5ZhG8Zph
2G1ZhGZph

2G82G8ZhZph
2G2GZhZph

2G8

1Q8Zh
2Zph

2G1QZh
2Zph

2G82R8Zh
3Zph

2G2RZh
3Zph

2G8

~B2!

and the functionsQ andR are ~nonunique! first and second
primitives ofG, respectively, in the sense thatG5ZhQ and
G5Zh

2R. A choice of the functionsQ and R is given in
Appendix C.

If ya is timelike and future pointing, theny•l .0 and
thus D(y•l )51 1

2, constant on the sphere, whereas
ZhD(y•l )5d(y•l )Zh(y•l )50 everywhere on the sphere.
Therefore, for this range of the parametersya the commuta-
tor reduces to

@ Ẑ,Ẑ8#522p i\E
S2

ZhS 12VDd2Sh , ~B3!

which can be evaluated by residues~see@20#!:

@ Ẑ,Ẑ8#54p\(
j

R
j

1

2

V

~11hh̄ !
dh̄

58p2i\(
j

ResS 12 V

~11hh̄ !
D U

h̄5 h̄ j

. ~B4!

The polesh̄ j are z̄ , z̄ 8 ,(z)21, and (z8)21. This can be
deduced by inspection of the explicit expression ofV which
is obtained from the information about the Green’s function
that we give in Appendix C. The evaluation of the residues at
these poles is straightforward, and gives the final expression

@ Ẑ,Ẑ8#522p i\F l •l 8ln~ l •l 8!2
1

6
l •l 81

1

3G .
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APPENDIX C: PROPERTIES OF THE GREEN’S
FUNCTION

The function~13! gives solutions to the following differ-
ential equation for functionsF of spin weight zero on the
sphere, with given spin-weight-0 sourceJ:

Z2Zp2F5J. ~C1!

One of the properties of this Green’s function is that, aside
from possible distributional behaviors atz5h, it is annihi-
lated by application of the operationZ4Z2 for all values of
zÞh:

ZphG~z,h!5
1

4p
l ~z!•m̄~h!$ ln@ l ~z!•l ~h!#11%,

Zph
2G~z,h!5

1

4p

@ l ~z!•m̄~h!#2

l ~z!•l ~h!
,

ZhZph
2G~z,h!5

1

4p
l ~z!•m̄~h!S 1

l ~z!•l ~h!
23D ,

Zh
2Zph

2G~z,h!5
1

2p
@3l ~z!•l ~h!22#,

Zh
3Zph

2G~z,h!5
3

2p
l ~z!•m~h!,

Zh
4Zph

2G~z,h!50. ~C2!

This property allows for the rewriting of~18! in the form
~B1! in Appendix B.

Another useful property of the Green’s function is that, up
to free constants of integration, its primitivesQ(n) defined by
Zh
nQ(n)5G can be found recursively. In general,

Q~n!~z,h!5
H ~n!@ l ~z!•l ~h!#

@ l ~z!•m~h!#n
, ~C3!

whereH (n)(x) satisfies

dnH ~n!

dxn
~x!5H ~0!~x!5

1

4p
x lnx

or

dH~n!

dx
~x!5H ~n21!~x!. ~C4!

Equation~C4! can be solved by making the ansatz

H ~n!~x!5xn11~Cnlnx2Bn!. ~C5!

By imposing Eq.~C4! we find that the parametersCn and
Bn need to satisfy

Cn215~n11!Cn ,

Bn215~n11!Bn2Cn , ~C6!

which are solved by

Cn5
C0

~n11!!
,

Bn5
C0

~n11!!(i50

n21
1

~n112 i !
, ~C7!

whereC051/4p. In this way, we have found a choice of the
generic primitive ofG to any desired order~note that the
primitives are not unique!.

Here we show explicitly the first and second primitives:

Q~1!~z,h!5
1

8p

@ l ~z!•l ~h!#2

l ~z!•m~h!
$ ln@ l ~z!•l ~h!#2 1

2 %,

~C8!

Q~2!~z,h!5
1

24p

@ l ~z!•l ~h!#3

@ l ~z!•m~h!#2
$ ln@ l ~z!•l ~h!#2 5

6 %.

~C9!

In Appendix B, we have used the notationQ[Q(1) and
R[Q(2) .

A third and essential property of the Green’s function can
be stated in terms of the solutions of Eq.~C1!. A solution to
Eq. ~C1! can be found by

FP5E
S2
G~zh!J~h!d2Sh ~C10!

~any other solution can be found by adding toFP a solution
to the homogeneous equationZ2Zp2F50). It can be shown
that FP has no l50,1 terms in an expansion in spherical
harmonics. Thusthe Green’s function~13! provides a de-
composition of a generic solution into its l50,1 part and its
l>2 part. This third property holds as a consequence of the
kernel exclusion propertyof the Green’s functions forZn

acting on spin-weight-s functions; namely, they yield no
spherical harmonics of orderlP$s, . . . ,s1n21% upon in-
tegration on the sphere against a given source@19#.
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