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Quantization of the null-surface formulation of general relativity
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We define and discuss various quantum operators that describe the geometry of spacetime in quantum
general relativity. These are obtained by combining the null-surface formulation of general relativity, recently
developed, with asymptotic quantization. One of the operators defined describes a “fuzzy” quantum light cone
structure. Others, denoted “spacetime-point operators,” characterize geometrically defined physical points.
We discuss the interpretation of these operators. This seems to suggest a picture of quantum spacetime as made
of “fuzzy” physical points. We derive the commutation algebra of the quantum spacetime-point operators in
the linearization around flat spad&0556-282(97)02414-4

PACS numbd(s): 04.60.Ds, 04.20.Gz, 04.20.Ha

I. INTRODUCTION to as the null surface formulatiofNSFH of GR. It appears
that no other physically relevant field theory can be stated as
The problem of finding and understanding the relationshigsuch a theory of surfaces.
between quantum theory and gravitation is an extremely dif- Here, we study the quantization of the linearized version
ficult one (that has defied solution for close to 70 yeaaed  of this approach. From this quantization of the NSF, we ap-
is simultaneously such a profound problem that it has atpear to be led to new ideas and results on the form a quantum
tracted a great deal of attention. Its resolution could easily béheory of gravity might take. The new view essentially says
a major stepping stone to a more complete understanding dfiat the null surfaces become operators that obey commuta-
our physical world. The difficulties, however, are such thattion relations. Furthermore, since there is a prescription for
we might well need radical changes in our views or com-locating points of spacetime using foliations by families of
pletely new ideas before the problem can be solgs@, for null surfaces, the spacetime points themselves become op-
instance[1]). Even if this is the case, this does not mean thaterators.
we should necessarily abandon the exploration of more tra- Roughly speaking, our formalism is a union between the
ditional approaches, since even if they fail, they could indi-Ashtekar asymptotic quantizatiof6] of the gravitational
cate possible directions to explore in the search for the unifield and the NSF. In our formalism, the free Bondi data at
fication of gravity with quantum theory. future null infinity Z* play a very important role. They enter
In this paper we present an approach to this issue whichgs a source in the NSF field equations. Thus, for each data
although based on many of the standard ideas, differs frorset, the solution to our classical equations represents a regu-
other approaches in several substantial ways. In some senkse radiative spacetime. On the other hand, the formalism
our formulation lies between the conventional and noncondeveloped by Ashtekar gives a kinematic quantization of the
ventional approach€g2]. radiative degrees of freedom of the gravitational field at
The first issue we discuss is our view towards classicall*. By promoting the classical Bondi data to quantum op-
general relativit GR). At the classical level, a clear distinc- erators and introducing a Fock space of asymptotic states
tion can be made between GR and other field theories. Onlgmodulo technical difficulties addressed in detail by Ash-
in GR does the geometry play dynamicalrole. Though tekan, one is left with the “in” (or “out” ) states of quantum
often noted, this distinction has been re-emphasized in a reheory. What is missing in the Ashtekar approach is the dy-
cent series of papers by presenting GR as a theory of chanamical part of the quantum theory, which would relate the
acteristichypersurface$3—-5] rather than as a theory of the asymptotic states to the geometry of the interior of space-
metric field. From this point of view the spacetime metric time.
and associated connection are derived concepts: the basic In this paper we adopt Ashtekar’s asymptotic quantization
variables are families of three-surfaces and a scalar functioim its simplest form(avoiding infrared issugsy promoting
(a conformal factorfrom which a metric can be derived. The the free Bondi data to quantum operators. The solutions to
surfaces are automatically the characteristic surfaces of thihe classical NSF equations determine families of null sur-
metric and the metric automatically satisfies the Einsteirfaces in terms of these free data. It follows that in the “quan-
field equations. This reformulation of GR has been referredum theory” the null surfaces become operator functions of
the operator data. Furthermore, since the spacetime points
are themselves determined by the intersections of the null

*Electronic address: simo@artemis.phyast.pitt.edu surfaces(and are expressible in terms of the surfacésey
"Electronic address: kozameh@fis.uncor.edu can also be thought of as operator functions of the data, with
*Electronic address: newman@vms.cis.pitt.edu implied nontrivial commutation relations. We emphasize that
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propriate commutation relations for the operator data aréocal coordinates on the manifod*, while the{ is a com-
given onZ*, and the information about the dynamigs.,  plex stereographic coordinate on the sph&teand[datd is

the full spacetimgis implicitly determined by the NSF equa- the Bondi sheafo,o]. We will have little further use here
tions. We emphasize that we are not discussing a field theoryr () (x2,¢). Of fundamental importance to us are the fami-

on spacetime; our variables are not fields, they are surfacegs of surfaces given as solutions to our equations, with
composed of spacetime points. The surfaces and associatgfecific free data. They take the form

points become the operators.
We point out that there is no Hamiltonian for a Schro Z(x®,¢,[datd)=u=const. )
dinger evolution; rather the operator “evolution” is given by

the NSF equations. The formalism is most closely tied to g-or fixed valuef (u,{) the above is a single function of the

Heisenberg representation. four coordinatesx? and thus describes a particular three-
In Sec. Il we will review some relevant aspects of thegyrface. As the value ofi varies (for fixed {) we have a
NSF of GR.[Note that we use signaturer(—,—,—).] In  gne-parameter foliatiofiof a local region by the surfaces.

Sec. Il we discuss what happens when we implement thghe / then labels a sphere’s worth of these foliations, i.e., a
Ashtekar quantization procedure. In Sec. IV we summariz&phere’s worth of surfaces passes through each spacetime
our main results and discuss possible meanings and ram'fboint. Assuming that theZ satisfies the NSF differential
cations of these ideas. An outline of our results and a morgquations, one can then, in a simple and straightforward

detailed discussion of their physical interpretation have apfashion,obtain a conformal metric in terms of B&]. Sym-
peared in[7]. We relegate many of the technical details, polically, we thus have

which can become complicated, to appendixes. In Appendix

A, as an example, we apply our methods to the quantization Jap( X3, [datd) = gu[Z(X3, ¢, [datd) ],
of the Maxwell theory, obtaining the standard quantization in ap Jab
the Coulomb gauge. whereg,,, is a conformal metric, undetermined by an overall

conformal factor. Note that whil&€ is a function ofZ, the
metric g,;, is independent of .
The details of this construction are not of importance
In this section we review a new formulation, the null- here. What is important is that automatically there ig@n-
surface formulation of classical general relativitg—5,8, formal) metric, g2°(x?) such that
where the emphasis has been shifted away from more stan-
dard type of field variablémetric, connection, holonomy, gabZ,aZ,b=0 2
curvature, etg.to, instead, families of three-dimensional sur-
faces on a four-manifolM*. (These surfaces eventually turn for all {; i.e., the surfaceZ=const, are characteristic sur-
out to be the characteristic surfaces of a metron the faces of this metric. For simplicity, we can then chosea
sphere bundle ovem*, topologicallyM*x S?, with no fur-  natural fashion a special member of the conformal class
ther structure, there are given differential equations for theyielding an explicit metric in terms of. [The “naturalness”
determination of these surfaces. From the surfaces thenarises from the fact that a simple functisee belowof Z is
selves, by differentiation and algebraic manipulatiofg@n-  an affine parameter for this special member of the conformal
formal) metric tensor can be obtained. These surfaces, whichlass] We emphasize that all conformal information about
play the role of the basic geometric quantities, are then authe spacetime is contained in knowledgeZgik?, ).
tomatically the characteristic surfaces of this conformal met- For each fixed value of the level surfaces o describe
ric. Furthermore, the equations allow for a choice of confor-a foliation by(null) surfaces: Treating simply as a sphere’s
mal factor that makes the conformal metric into a metricworth of scalar functions omM*, we can construct other
which automatically satisfies the vacuum Einstein equationsscalar functions by differentiating several times in both the

In other words the vacuum Einstein equations are formulateg¢ and ¢ directions and then holding constant afterwards.
as equations for families of surfaces and a singlealay  Pparticularly useful to us are the two first derivatives and the

conformal factor. All geometric quantities, the metric, the mixed second derivative. Together with tE¢x?,{), these
connection, spin coefficients, Weyl and Ricci tensors, can bgre the four functions:

expressed in terms of the surfaces and the conformal factor.

II. NULL-SURFACE FORMULATION OF GR

In our present discussion we will be mainly concerned with u=2z(x3¢,[datd), (33
these characteristic surfacéise., the conformal structuye
though of course in the full theory the conformal factor plays w=3Z(x3,¢,[datd), (3b)
an essential role.

Since the details of the differential equations are relatively — %o.a
complicated 3—5,8 and we do not need them for the present w=08Z(x%¢,[datd), (30)
work, we will adopt the following strategy. We will assume _
that the differential equations for the surfa¢aad conformal R=006Z(x3¢,[datd), (3d)

facton have been solved explicitly and then attempt to un-

derstand the meaning of the solutions and what can be de=—

rived from them. INote that differentiatingZ with respect to/ is equivalent to
First of all, we have the explicit expression for the con-finding the intersections of adjacent null surfaces. For a detailed

formal factor Q=Q(x?¢,[datd), where thex® are some discussion, sef].
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whered and are (essentially the ¢ andg_derivatives[9]. study of asymptotically flat vacuum spacetimes. In this case

With the definitions the geometrical meanings of the various quantities become
clearer. We begin with the fact that null infini/" exists. It
0'=(6%6",0",00)=(u,0,0,R), can be coordinatized by a Bondi coordinate system,
we have -
(u.g, %), 6
0'=6'(x2,{,[datd). (4

with u the Bondi retarded time, and (¢) e S° labeling the
null generators of *. With this notation we can give a pre-
cise meaning to the null surfaces described by
u=Z(x?¢,[datd); they are the past null cones of the points

(u,¢,¢) of T+, With this meaning toZ we have a dual
interpretation ofZ(x?,{) =u, namely, if the spacetime point
s e . x2is held constant but the/(¢) is varied overS?, we obtain
=0Z(x",¢,[datd) =const choose a null geodesic on that, yyo-surface(topologically S?) on Z*, the so-called light
surface. ) cone cut ofZ*, defined as the intersection of the future light
(3) 6'=R=088Z(x?,¢,[datd) parametrizes points on that cone of the poink?® with Z*. It consists of all points of ™
null geodesic(In factR is an affine parameter along the null reached by null geodesics frori. Z is then referred to as
geodesics for the special member of our conformal clasghe light cone cut function.
mentioned earliey. The four @', for fixed ¢, thus locate We have a geometric interpretation, not only of
spacetime points. They define a sphere’s worth of null coorz(x2,7,[datd), but also of w=3Z(x?¢,[datd) and
Qinate systems, and E@) gives the_coordinate transforma- R=056Z(x%,¢,[datd). o is the “stereographic angle” that
tion _betweer; thed' andx? for'each fixedZ. ' the light cone cuts make with the Bonak= const cutgi.e., it
_ SinceZ(x%,¢,[datd) contains all the conformal informa-  |ape|s the backward direction of the null geodesics from the
tion of the spacetime, so do tie. o point (u,{) e Z" to x?]. R is a measure of the curvature of
_An important conceptual issue is that B4) can, in prin- e cyt, and thus a measure of the “affine distance” from
ciple, be(locally) algebraically inverted into the form T* to x? along the null geodesic.
a_ya e The four functions6'(x?,{,[datd), which are defined
XF=xA(u, e, Ry datd). © geometrically onZ*, describe the interior of the spacetime.
Since Eq.(5) is equivalent to Eq(3), it too contains the full  They can be invertefisee Eq(5)], leading to
information about the solutions to the conformal Einstein
equations; i.e., from knowledge of E¢(p), a metric confor-
mal to an Einstein metric can be obtained analytica8y.
The information about the conformal Einstein space is coded . ) ) ) ) .
into the functional dependence on the data. which gives _the Ioca_ltlon of spacetime p0|ints in terms of
The information about the conformal structure of space{9eometrical information onZ", namely, thef'.
time, originally encoded irZ, can now be extracted in an L
alternate manner from E@5); a manner that is, at the mo- Linearization of the NSF
ment, of direct interest to us. If values of the,{,{) are With this asymptotically flat point of view, we now con-
chosen arbitrarily but kept constant alRds allowed to vary, sider the linearization of the null-surface formulation of the
Eq. (5) is the description of aull geodesiof the spacetime. Einstein equations. The coordinates used here and subse-
The five-dimensional space of null geodesics is coordinaguently are the standard Cartesian coordinatésof the
tized by the (1,w,{), with (w,{) complex, whileR param-  background Minkowski spacetime. We will make extensive
etrizes the individual geodesics. The conformal structure izise of this later. In this case the conformal factor can be
determined by the knowledge of all null geodesics throughaken as one: i.e.,
each spacetime point, and the dependence of these on the
[datgd encodes the particular spacetime. Note the dual role
Egs.(4) and(5) play; Eq.(4) describes null surfaces, its null Q(x%¢,[datd) =1, (8)
geodesics, and points on the geodesics in terms of some
“standard” coordinatex?, while Eg.(5) describes, in para- and the differential equation fat becomes
metric form, all the null geodesics of the space. Though at
first they appeared to describe the coordinate transformations _ _ —
between some null coordinates and an arbitrary set of coor- ~ §°3°Z=80 (x*,{) + &0 (x*,{)=D(x*{,[a]). (9)
dinatesx?, they now have a coordinate-independent mean-
ing. We return to Eq(5) later.

These four scalar function§parametrized byl) have a
simple geometric meaning.

(1) °=u=2Z(x3,¢,[datd)=const, for fixed, describes
a null surface. Changing leads to a one-parameter foliation
of M* by null surfaces.

(2) 0 =w=08Z(x3 ¢ [datd)=const and 6 =w

X2=x3(6'; ;[ datd), @

The data are given by a complex-valued spin-weight-2 func-
tion on Z*, namely, o(u,¢) [and its complex conjugate
o(u,?)] which can be given freely. The data are then re-

Before we proceed further, we make the specializatiorstricted to the Minkowski light cone c®(x?), described by
from a description of anylocal) Einstein spacetime to the (see[10])

Asymptotically flat vacuum spacetimes
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U(d)=Zo(x3,0)=x3/4(%), B_y differentiation (with respect to?) of.E_q. (12 it is a
simple matter to construct the full set 6, i.e., Eqs.(3a—
, ) / ) (3d), and invert them explicitly to obtain E¢p). The explicit
A0 A D=na/ OO =/A(O/XD=0, (10 jinearized inversion is gFi)ven )i/n Sec. Il D.(]6 P
o - - . — Simply for completeness, we mention that the fetkac)
where /2= (1N2)@, ¢+ oI+ 55)’_ '_(ff $)) set of Einstein equations are a generalization of Egjsand
(A+20),(=1+L0)I(1+)) satisfies 6°/2=0°/2=0  (9); Eq. (8) for the conformal factor becomes more compli-
and Zo(x*,{) =Z(x%,£,[0]), i.e., Zq is the Minkowski light  cated, while Eq.(9), the equation forZ, retains the same
cone cut function satisfying Eq9) with zero data. Note that form; it has an additional, rather complicated, term added to

the components of® (and henceZ,) are simple combina-  the right-hand side that does depend onhg11].
tions of the first four spherical harmonics. Equatidg), in

turn, leads to the restriction, to the light cone cuts, of the data
o(u,0):ie, Ill. QUANTIZATION OF LINEARIZED GR

aR(xa,g)za(ZO(xa,g),g). (11 In the previous section we described how the classical
data onZ* can be used to reconstruct various geometrical
(Note thataR can be viewed in two different ways. It is the Structures in the interior of the spacetime: null surfaces, null
pullback or restriction ofr to a cut ofZ* labeled by the ~980desics, and the locations of spacetime points in a given
spacetime points?, but it can also be directly viewed as a !0Cal chart. In this section, by analogy, we begin with an
function on the sphere bundle over spacetirEjuationg8) ~ aSymptotic quantum theory t" [6], and subsequently ex-
and (9) are equivalent to the linearized vacuum Einsteint€nd it into the interior of the spacetime. We implement this
equations. The general regular solution to Ey.is obtained idea by constructing quantum operators corresponding to the

as the sum of a particular solution plus the general solutioff&10US geometrical entities described in the previous sec-
Z, to the homogeneous equation: i.e. tion. We finally compute various physically interesting com-

mutation relations obtained from the free-field commutation
relations on the data &t".
Z(x3,¢,[datd) =Zo(x*,§) + f 26(5,77)D(Xa,77,[0])d32, While most of our calculations are formal, all quantities
S (12)  (in the linearized cagecan be defined rigorously on the
asymptotic Fock space. Alternatively, we can think of all
where de] is the volume element on the two-sphere andquantities as abstract operators subject to nontrivial commu-
G(¢,7) is a simple Green’s function of the opera@fd?,  tation relations.
given by In the first subsection we briefly introduce the asymptotic
guantum theorydone in detail for the free Maxwell field in
1 ‘ Appendix A 1), essentially the quantization of the character-
G(g’”):ﬂ/(g)'/( ) In[7(0)-7(m]. (13 stic free data atZ*, and describe the construction of the
asymptotic Fock spacéhe details are given in Appendix
We want to point out and emphasize an important aspect ok 2). We describe Ashtekar’'s asymptotic quantizat[@i,
the solution(12). Zy(x?,{) consists only of combinations of differing only in notational details. In addition, we ignore
|=0,1 spherical harmonics; the second teftime particular infrared sectors.
solution) has been chosen so that its spherical harmonic ex- The remaining subsections contain the construction of the
pansion contains nb=0,1 harmonics. One could have cho- new quantum operators. Since all of them have a functional
sen other particular solutionsith I=0 or =1 harmonics dependence on the data through Ehéunction, our first re-
having as coefficients four arbitrary functions of tk@&. sult is the quantization of the null surfaces, in Sec. Ill B. The
These four functions would constitute an arbitrary gaugecommutator for theZ function at two different points is,
transformation in the linear theory. Our choice for them tothen, of fundamental importance to the remainder of the sec-
vanish is equivalent to a particular gauge chditg]. The tion, in which we construct the quantum analogues of the
implied gauge is the equivalent of the Coulomb gauge ofvarious geometrical quantitiegSec. IllC) and quantum
Maxwell theory, namely, forg?®=72+h3® we have Spacetime pointgSec. Ill D).
h%=0. The analogous gauge choice for Maxwell theory is
described in Appendix A 3. _
For later use, Eq(12) can be rewritten as A. Asymptotic quantum theory
As is well known, the radiative degrees of freedom of the
a _ a 2 a gravitational field are specified by the characteristic initial
2L =200+ L,Z[é”G(g’ MoX ) data onZ". The space of characteristic initial data is a phase
space coordinatized by either the Bondi sheag(u,?)
=o(u,{)mymy+ o(u,{)mymy, or the complex Bondi news
=Zo(x3,0)+Z,(x3 ¢ [o]). (14) Nap=N(u,)mymy+N(u,{)mym,. The complex Bondi
sheara(u,{) serves as a potential for the complex Bondi
This expression is obtained from Ed2) by using properties newsN=do/du. The action of the symplectic form on two-
of the Green’s functioi(Z, ) (see Appendix ¢ and from  vectors(infinitesimal news scalaysN; and N, tangent to
the assumption thattR is a regular function on the sphere. the phase space of characteristic datgbis

+82G(¢, ) o (4, 7)]dS,
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1 2 @ ) by settingZ(x?,{,[ o]) =const. Therefore, we will first de-
Q(5N1’5N2):EJ I+d“ d$ du’ dS* 8%({—¢") velop the formal quantization oZ(x?,¢,[o]), without at-
L tempting to give it a meaning immediately.
XA(u—u")[6Ny(u,{) dN,(u’, ") We define the operataf by simple substitution, in Eq.
(14), of the classical variables with their quantum ana-
= ONp(u,0) SN, (u", )], (19 logueso: i.e.,

whereA (u) = 3 sgn(u) is the skew-symmetric antiderivative

of &(u), so that S(u)=dA(u)/du (as distributions and 20G,0=204[0]) =2 D)1

du d$=—2idu/ dZAd¢/(1+¢¢)? is the volume ele- - ~ a

ment onZ*. Note that this phase space is analogous to the + Lz{éne(g, Mo (Zo(X%,7),7)

phase space for source-free Maxwell theory, vatiN play- .

ing the roles ofA,E, respectively. Thus the asymptotic as- +6%G(§,77)a(zo(xa, n),n)}dzs,]. a7

pects of the quantization are identical to the construction
detailed in Appendix A.

Consider the spacg of C* spin-weight-2 complex scalar
fieldsN onZ*, all of whose components in a{¢) chart and
all their derivatives fall off faster than [L|" for any n, for
large values ofu|. On the positive frequencfwith respect . . .
to u) subspaceS* of news functions, one can introduce a  [£,2']=[Z(x%),Z(x"%,{")]

Hermitian inner product analogous to E@28). One can

then Cauchy complete this space to obtain the one particle = —zwihj [3ZG(§,7;)6ZG(§’,77)
Hilbert space, on which one constructs the asymptotic Fock 7 7

space of the characteristic data for the radiative modes of 2 ) , 2c 3
GR. In a fashion analogous to that for the free Maxwell field, +8,G(£,7)8,G(¢ ALY/ (m)]d°S,1,
one then constructs operator-valued distributions correspond- (19
ing to the Bondi news, and the Bondi shegfu,(). These

operator-valued distributions satisf@] the formal commu- where we use the notatian w=uv?7,,wfor vectorsv? and

The operatoiZ is manifestly linear in the free dat@. The
free-data commutation relatiofl6) implies the following

integral representation of the commutation relationsZor

tation relations given by w? on Minkowski spacey®=x?—x’2, and the vector® was
introduced in Eq(10).
[o(u,0),o(u’,")]=—2mikA(u—u’) 84— )1, The commutatofZ,Z’] is symmetric under interchange

(16) of only ¢ with ¢’ and antisymmetric under interchange of

, _ . . _ _ only x with x'2. The latter antisymmetry implies that
Wht_areﬁ (£—1¢') has szpln weight 2 id aznd—2 ing’, and_ls [Z,Z] and its¢ derivatives vanish identically, a property that
defined such thaf>6°({— ") f({")dS *=1(¢) for all spin  hag important consequences in the following two subsec-
weight +2 functionsf (see[9] for the treatment of func-  {igns.
tions in the context of spis-spherical harmonigsThese are The evaluation of the commutat(¥8) in closed form is a
the fundamental commutation relations for the dataZon cumbersome calculation. In the case tifelike y? the
Since all the other operators are constructed via their funcgjgsed-form commutator is
tional dependence on the data, these commutation relations
are critical to obtaining the commutation relations between

5 S H i i 1_ 1, o
the interesting geometrical operators. (2,2 ==2mik[/-/'In(/-/")V+ 53— %/-/"]

X A(X°—x'9)1, (19
B. Quantum hypersurfaces

We now present a construction that extends the quantizavherex® and x’° are the time components af and x’?2,
tion available atZ* into the interior of the spacetime. In a respectively. The calculation follows essentially the same
rather nonstandard fashion, we proceed to the quantization steps as in the analogous case of Maxwell fields, which we
hypersurfaces and spacetime points, instead of the more traclude in Appendix A 4. This calculation is considerably
ditional approach of quantizing the metric fields or connecsimpler than the case of spacelike separation because, in the
tions. This construction is based on the null-surface formutimelike case, the step functiof(y-/) takes a constant
lation of GR and a(classical dynamical prescriptionto  value on the spheré+3 if y2 is future pointing, or—3 if
specify a location in the interior manifold. In Sec. Il, we had y? is past pointing If the step function changes sign on the
two dynamical prescriptions, with different meanings: Eq.sphere, as in the spacelike case, there is a nonvanishing line
(4), 6'=06'(x*¢,[a]), which for givenx?,/, and o define integration on the boundary where the sign change takes
four null-geodesic quantities; or E¢), x*=x3(6",{,[o]), place. This line integral becomes lengthy and cumbersome
which for given values off' and { (fixed o) locates an (though straightforwarndto evaluatgsee Appendix A 4 for a
interior spacetime point. very similar calculation in the case of Maxwell fiejds

Both alternatives require the explicit expression for theThough this calculation has not yet been completed, it is not
function Z(x3,¢,[ o]), obtained in Sec. I[Eq. (14)]. Z can  clear that the closed form will shed light on the discussion
be viewed as describing null hypersurfaces of the spacetimiat follows.
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In the remainder of this section, we turn our attention to

, , [0,R=8'8'[2,2'],
the interpretations of two of the several alternate quantum

descriptions which arise from the fact thatis quantized.

C. Quantum light cone cuts and associated geometric
guantities

Consider Egs(3). At the classical level, they define four

geometric quantities associated with null surfate=e Sec.
II). In the linearization, they are explicitly given by

U=Zg+2Z,=x3/ 3+ Z,(x*¢{ [ o]), (20
0=08Zo+8Z,=Xem,+8Z,(x@ £, [ 1), (21)
W0=0Zy+8Z,=x*my+3Z,(x2, ¢ [o]), (22)

R=088Zo+ 3082, =x3(Ny— /5) +30Z,(x2, ¢, [ o]),
(23
wherem,=8/,, m,=dl,, andn,=83/,+/ 5, Or
6'=x\5(O) + 613, ¢ [o]), (24)
where 61(x2,Z,[0])=(Z1,0Z,,86Z,,806Z;) and \.L(2)

E(/’a,ma,ﬁa,na—/a). For future reference we recall that

the four vectors”,,m,,m,, andn, satisfy /,n®=—mym?

[0,0']=88'[2,2'],
[@,0'1=86[2,2'],
[0,R']=85'3'[2,2'],
[0,0']=0808'[2,2'],
[0,R']=808"[2,2'],

[R,R']=0680"8'[Z,2']. (30)

It can be inferred from Eq18) that these commutators are,
generically, nonvanishing functions »f, x'?, £, and{’ (the
closed forms are lengthy and complicate@he immediate
consequence of the nonvanishing of the commutators is that
the four geometric operator# do not have a complete set of
common eigenstates. Furthermore, since a generic state is
not an eigenstate of any of the four operators, in a generic
state, all four geometric quantities will fail to have well-
defined values. In this sense, the light cone at {ts cur-
vature R), and the angle of emittancev] of the null geo-
desics atZ* are “fuzzy.”

=1, while the remaining scalar products among any two of

them are zero. Furthermore®+ /2= \/253.
We now define a set of quantum operators:

(x3,0)=6'(x2¢[a]). (25)

D. Quantum spacetime points

We now consider the “dual” picture, which arises from
the inversion(5). Classically, thex? represent an interior
spacetime point which can be reached frémby specifying

Explicit expressions of these in terms of the data can béhe values of(i) the observation pointu,{) at Z*, (ii) the

obtained from Eqs(24) and (14): namely,

0=x2/5(0) 1+Z,(.¢,[0)), (26)
O=xm,({) 1+0Z,(x3,¢,[0]), 27
w=x"my(0) 14321 ¢,[5]), (28)
R=Xx[Na(0)~ /()] 1+80Z,(x% L, [a]). (29

They are manifestly linear ior.

6'(x3,¢) constitute a set of four quantum operators de-
pending on %&¢). Therefore, in this picture, the interior

pointsx? are considered as numbers, whereag, the geo-

metric structures af ', are quantum variables, subject to

possible fluctuations.

The commutatof u,u’ ]=[u(x,¢),u(x',¢')] is simply
[2,Z'], obtained earlier; i.e., E18). The other commuta-
tors[8',6'1]=[6'(x2,£),6'(x'2,¢')] can be obtained by dif-
ferentiation of{ Z,Z']:

[uu']=[22"],
[U,0']1=08'[2,2'],

N

[0,0']=8'[2,2'],

angle w of the null geodesic emitted inwardly fronu,¢),
aimed atx?, and(iii) the focusing distanc® along the null
geodesic (,/,w) at which the pointx? is located. The lin-
earized version of Eq5) can be obtained from E@24) in
the form

X305, [a) =N 0 =N LD 0,4, [ o)),
(31)

where by )\?(g) we denote the inverse matrix tb‘a(g),
namely, \?({)\5(¢) = 6;, explicitly given by

M) =G AL AL D =(nP+ /3 —md —m?, /9,
(32)

We now define the operators associated with the space-
time pointsx? as

X3(6,0)=x3(6',¢,[a])
=N\ O1-N(D OO L [o]) (33

and obtain a quantized description of the interior spacetime
pointsx®. Now the surface quantitie8 remainc numbers.

x3(6',7) constitute a set of four operators dependent on the
six parameters{,{).

Since the spacetime-point operat® are functions of
the fundamental operators, they also are subject to com-
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mutation relationgx?,x'*]=[X2(6',¢),x2(6",¢')] which can be derived frorfior, o ]. The commutators are
[x2.%"P1= NN PO ONEO%, 2. [0 D), (N 07,0 [0 D)), (34)
where the commutatof@ (\$65,¢,[ o), 0L (A °0"%,¢" [ o'])] are found from Eq(18) by using Eq.(30). Explicitly,
[X3,X'P]1=28360 2,21+ 282/ '°8'8'[2,2' ]~ \253m'*8' [ 2,2 - \283m' P8/ [ 2,2/ 1+ \2/26568[ 2,2 ]
+/2/79688'8'[2,2' 1~ /°2m'P568'[2,2' 1— /°m' 568 [2,2' ]~ 2mBe3e[ 2,2 1 - mP/ P65 8/[ 2,2 ]
+mPm’ P88’ [ 2,2 ]+ mPm’ %83’ [ 2,2/ ]~ \2mAs80[ 2,2’ 1— mP/ "85’ 8'[ 2,2 1+ mPm 85/ [ 2,2 ]

+mPm'P88'[Z,2'], (35

where[Z,2'] is given by Eq.(18) evaluated ax?=\26 point in the manifold is well defined, while the rest of the
—u(na+/'a)+R/'a—wFa—w_ma and x'a=)/2¢k=u’(n’? manifold becomes “fuzzed” out. In our second quantum
- Z 4 = k =

, , — ] picture, then, the interior spacetime is lost as a distinct clas-
+/"+R' /"% —w'm?—w'm’'® We have thus obtained gjc3| manifold.

nontrivial commutators for operators which correspond to o, the technical side, the commutat¢ds) display a sin-

the coordinates of spacetime points. A series of Conceptuz@mar behavior at the points=¢’, which makes the explo-
issues arise from the existence of the nontrivial commutatorsation of the ideas in the preceding paragraph a complicated
In this quantum picture, we would like to define the notion of ;3ck Removal of th&2's degrees of freedom from the com-
spacetime point. Classically, a spacetime point can be speglytators has been tried by means of double integration on

fied by giving a 4-tuple of numbers, the values of the coor-he gphere, with the unsatisfactory result that the commuta-
dinatesx® on a four manifold. In the quantum description, o (35) vanishupon integration.

however, an operatd«a (fixed a) takes a well-defined value
only when acting on an eigenstate and a set of operéatirs IV. REMARKS

§<a) have a complete set of simultaneous eigenstates if and
only if all pairs mutually commute. Let us explore what kind
of an analogue of a spacetime point we can construct.

Let us fix the values of the classical parametefs ().
Classically, these define the spacetime point whose coord
nates arexg=x2(6';¢) [see Eq(5)]. An important question

at this juncture is whether the set of four operators X .

Ny i, ) ) ables(to which these operators correspprade not, in any

X (60 fprm akconlzmutlng set. !t can be checked by inspeconyentional sense, the usual or standard field variables: they
tion, setting §'"=¢" and {'=¢ in Eq. (39), that all four  gre families of point sets, specifically, families of three-
operatorsx®(¢';{) do commute with one another, as a con-dimensional surfaces. Though the surfaces are described by
sequence of the vanishing pZ,Z] and all its¢ derivatives ~ functions, it is the surfaces themselves which are fundamen-
[see the discussion after Ed.8)]. Therefore, we can define tally important, not the numerical values associated with
the quantum analogue of a spacetime point as a commadhem. Thus, it is not important if the functions that describe

eigenstate of the four coordinate. Let us denote this the surfaces are “large,” or “small,” or even whether they

eigenstate b)fxzi. ). Now note that the eigenvalues of the vamsh.. From knowledge of these surfaces, all null geo-
L desics, light cones, and the conformal structure of a space-

operators<®(6';¢), which are denoted by, can in gen-  time can be constructed. By analyzing the intersections of
eral take a wide range of values and need not be equal t#ese surfaces one could even “pick out” or choose space-
xg . Thus, in any state of quantum gravity, there is a “prob-time points[4]. It is possible to even think of these surfaces
ability of finding” the spacetime point defined by'({) at  as being the primitive elements of the theory with the space-
values other than the classical valf=x2(6';¢). time points and light cones as derived concepts. One thus
Next let us consider whether all spacetime points can sisees that the associated operators are not, in any obvious
multaneously be assigned values. This would require that thiashion, standard field operators. Instead, we have operators
right-hand side of Eq(35) vanish identically. However, if that correspond to null surfaces, null geodesics, and field
0'%+# 6% and ¢’ # ¢ the commutator between two separate‘points.” The novelty of this approach to quantum gravity

spacetime-point operatord andX'® is generically nonvan- lies in this feature. It appears to be saying that it is the space-
ishing. Thus there are no common eigenstates of all the digime itself, i.e., the manifold structure, that is undergoing the
tinct spacetime points, and as a consequence, we have fgantization process.and not, as In the more standard ap-
candidate for a quantum analogue of the spacetime manifol@roaches, some metric or connection field.

Another way to see this is that in a common eigenstate of a More specifically, the first and most important of our op-
particular spacetime-point set of operators, only that onerators isZ(x?¢{), defined in Eq.(17). The classical ana-

In this final section we will summarize our results and
discuss their relevance to the issues of quantum spacetime.
By combining Ashtekar’s asymptotic quantization of the

gravitational field with the null-surface formulation of GR
we have(in the linear versionconstructed certain nonstan-
dard operators on the quantum state space. The classical vari-
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logue Z(x?,¢) determines the characteristic surfaces in theundergoes “quantum fluctuations.” The equations that de-
NSF. In the “presumed” quantum theory, only the averagefine the leaves become operator equations, i.e.,

position of the surfaceéwhatever interpretation one might x2=x3(u,w,R;{;[datd). Now imagine that we are in the
give to thaj is determined for any given quantum state, byrealm of quantum gravity. Then it is difficult to imagine how
the eXpeCtation value of the Operator. The “observed” pOSi'\Ne could |dent|fy points phys|ca||y insid®. However, the
tion can be predicted only probabilistically. construction partially survives. The “observation space” re-
The other operators of the sét i.e., Egs.(27)—(29), for mains classical and hence we still have a family of observers
asymptotically flat spaces, correspond to simple classicaurroundingR and looking in; specifically, the observers’
geometric objects, angles @t labeling null geodesic&di- locations, their directions of sight, and focus distances are
rections of sight and curvatures of light cone cuffocus  still labeled by the classical parametens,,R;?). What
distancesat Z*. Once again, as quantum operators they arehanges is that for a fixed quantum state, we will not have a

nonconventional; nevertheless, ‘“observed” values aresharply defined value for the operaix? (the leaj—except
probabilistically determined. when it is in an eigenstate—but only a probability distribu-

The third, and perhaps most interesting, family of operation of values. We are thus led to associate a “fuzzy” nature
tors is given by the “spacetime-point” operatoxd(¢':¢),  to quantum spacetime points by this asymptotic construction.
defined in Eq(33). Let us discuss an aspect of their classicalNote thus that the question of whether two observations
physical meaning. In order to fix ideas physically, imagine(U,®,R;{) and @',0’,R";{") “see” the same point can
that we wish to describe a gravitational phenomenon localonly be determined probabilistically.
ized in a certain spacetime regid@®, which we consider to As we just mentioned, there are equivalence clagges
be small. Consider the classical quantitie€(6';¢) pological two-sphergsof observation points, i.e., points in
=x%(u,w,R;{;[datd). The three independent variables’ the six-dimensional observation space, which correspond to
determine a point on futureull) infinity Z+. Recall thaty ~ the samespacetimepoint. In the quantum theory, we could
coordinates the celestial sphere, anthe Bondi time. One raise the following question: Are there sets of observation
may think ofu,¢ as labeling asymptotic observers. |maginepoints whichA are equivalent in the above sense, i.e., define
that these observers look into the regi®nEach of them can the “same” x®? While we have no conclusive answers yet,
vary the direction of sight, labeled by the independent varithere are possible directions in which to explore this ques-
able w. Finally, using a focusing distance labeled by thetion. For example, we could consider a collection of obser-
variable R, each of them can determine the distance to avation points to be “equivalent” if the corresponding
point in R. Thus, the sety,w,R;) determines the locations Spacetime-point operators mutually commute. Weaker alter-
of observers and the direction of sight and focus distance dfiatives would be to look for sets ofi(w,R;{) such that the
their observations, looking int® from a surrounding re- x2=x?(u,w,R:¢;[datd) possessomecommon eigenstates
gion. Now, since the trajectories of light rays are determinedyith the same eigenvalues, or the same expectation values in
by the gravitational field, the actual poinf seen by the some quantum states. These are only some of the questions
observer at§,{) looking at a distanc® in the directionw  that remain to be thought about and explored.
depends on the gravitational field. For a given spacetime, the Finally, the algebraic structure of the “quantum space-
guantitiesx®(u,w,R; ;[ datd) determine this point. time” defined in this way is characterized by the commuta-

It is a rather remarkable fact that these quantitiestion relations between the spacetime-point operators. These
x*=x*u,w,R;¢;[datd), specify the conformal spacetime are given in Eq(35). We suspect that some relevant physical
geometry uniquely. Let us describe them in slightly moreor mathematical result is hidden in these relations; but we
detail before returning to the quantum case. Consider theave not been able, so far, to get to a fully convincing un-
six-dimensional “observation space” defined by the threederstanding of them. Two ideas may be relevant in this con-
coordinates ,{) of an observer's position ofi*, the two  text. First, as the classical dynamics of a particle is fully
angles of observationy, and the focus distand®. On this  determined by its gravitational interactions, one is tempted to
observation space consider a four-parameter family of twospeculate that its quantum properties can be derived from
dimensional surfaces, topological7, each two-surface will quantum geometry as well and, therefore, might be hidden in
be referred to as a leaf and the leaves foliate the observatidag. (35). Second, the commutation relatiof35) could be
space. Our equation§'=x*(u,w,R;{) are precisely of this relevant to the present efforts towards understanding quan-
form, i.e., each spacetime poirf is equivalent to a leaf. tum spacetime in terms of noncommutative geométr3i.
[Notice furthermore, that it is the family of leaves that de- In that context, the commutative algebra of smooth functions
fines the spacetime points geometrically even if we changever the manifolds is replaced by some noncommutative al-
the gauge arbitrarily tg?= f3(x").] Physically, this amounts gebra, but it is difficult to find guidelines for guessing this
to saying that a spacetime point can be viewed as the collecvoncommutative algebra. The commutation relatid8$)
tion of points in observation space, i.e., locations, directionslefine a noncommutative algebra ththe Planck constant
of sight, focus-distances, from which surrounding observergioes to zero, is equivalent to the commutative algebra of
see it. Remarkably, this foliation by the equivalence classesmooth functions over the manifold. Notice that this non-
of points in the observation space that “see” the same spacesommutative algebraic structure is not assumed here, rather,
time point is equivalent to giving the conformal pseudo-it is derivedfrom quantum general relativity. We leave the
Riemannian geometr8]. analysis of these suggestions for future investigations.

In the quantum domain, it is worth asking what validity =~ Notice that the picture of quantum gravity presented here
this picture might have even when the spacetime geometrig very far from conventional local quantum field theory
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whe(e one assumes_that physical points_ and the spacetir@g(u’g),v—(u’g))_ In the index notation we have introduced,
manifold are well defined to start with. It is, therefore, also, "\ qcior s represented  byVe=[,du dS{V(u,?)

very far from any approach to quantum gravity based on

conventional quantum field theoretical ideas. (01 6E(u,0))*+V(u,0) (61 6E(u,{))“}.We  follow  the
abstract index ‘“summation” convention, which, in
ACKNOWLEDGMENTS our case, since the index takes a continuum of values,
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APPENDIX A: ASHTEKAR'S ASYMPTOTIC WaV= L*du dSTV(U,HW(.0) +V(u,HW(U.0)].

QUANTIZATION OF THE FREE MAXWELL FIELD (A1)

AND APPLICATIONS ) ) _
In this notation, the symplectic structure on the phase

In the main text, we are interested in the asymptotic quanspace 6] is given by
tization of linearized GR. Since the asymptotic phase spaces

of GR and the free Maxwell theory are very similar, in this 1 )

appendix we describe the asymptotic quantization of the free Qa;;:z—J j ,dudSdu’ dS* §%(¢-¢")
Maxwell field. The quantization follows very closely the . z

usual construction of the Maxwell Fock space for initial data XA(u—u’)aﬂaE(u,g)/\dlBE_(u’,g’), (A2)

on a Cauchy surfacgl4]. Our aim here is to derive the

standard covariant commutation relations between the MaXzhere A(u)=1sgn@) is the skew-symmetric antiderivative

well tensor in the interior at two different spacetime points, ¢ 8(u), so thats(u)= A (u)/du. Note that the symplectic
from the commutation relations on the asymptotic fieldS.gycyre s aconstantreal two-form onT’, and its action
which themselves are represented on a Hilbert space. Olﬁ(v W) on two vectors/® andW¢ is given by

description of linearized GR in the main text is completely
analogous to this(In fact, in the absence of IR sectors, we

1 ,
simply make the substitutioA— o andE—N.) Qaﬁvawﬁzz—f J'+dud52du’ds2 S(L—¢")A(u—u’)
The material in the following Sec4.and 2 is quite well K
known and is simply Ashtekar's asymptotic quantization of <[V W' £ =Vu' ¢ YW
the Maxwell field and GR6]. We present it here for the sake [V, WU, E) = VW', ZIW(U, O]
of completeness. We differ frorf6] in one notable detalil, (A3)

namely, the definitions of the distributional field operators  Tpere are two other naturally defined constant tensors on
(A21) and (A22). Finally, in Secs.3 and 4 we construct, 1 \which are useful. Since the electric fields h are or-

respectively, an integral repregentatior) and then the closqﬂogonm to the null generators 6t , the (degeneraemetric
form of the covariant commutation relations for the Maxwell ;, 7+ gefines a nondegenerate metric tensof ditself:

field.
1. Phase space and algebra of observables QaB:J f*du dgdu/dSZ’gZ(g_g/)
A

Let y, denote the connection field in the interior of .
Minkowski space. The Maxwell tensor is then obtained X S(u—u")[d,E(u,0)dgE(U’, ")
by Fap=2Viayp . On Z", with null generators n?, _
we define A,:=v, as the restriction ofy, to 7, +d,E(u,{)dgE(U’,{")]

—

andE,:=0dA,/du=£,A,, the electric field orf™". _

The space of solutions to Maxwell’s equations is a linear :2J1+dUd§ d.E(u,0) dgE(u,0),  (A4)

phase spacE, and we can introduce as coordinatesothe

electric fieldsE,(u,¢) onZ*. Note thatE,(u,{) is a gauge  whose action on two vectolé® and W is given by
invariant quantity, and it is normal to the null generators of

Z*, namely,E, (u,Z)n®=0. ThusE,(u,{) is completely de- _ _

fined by the complex scalaE(u,¢)=—mPE,(u,Q); ie.,  QapV W= L+dUd52[V(U1§)W(U,§)+V(U,§)W(U,§)]-

E.(u,0)=Em,+Em,. (A5)
For the purposes of easing later calculations, let
us introduce some new notatiofl5]. Let «,8, ... Next, consider the linear operator corresponding to uhe

be infinite-dimensional abstract indices of which  derivative of fields onZ*: V(u,{)=4dV(u,£)/du. This is a
take values in the continuous sew,{)eZ". Thus, (1,1) tensor, defined by

{(815E(u,))*,(81 SE(u,£))*} [{daE(u,0),dE(u,0)}] s a

complex vectorcovectoj coordinate basis oh (sincel is @ \B- —\Je— f : @

a linear space, we do not make a distinction betiveand its TogVii=V fdudSZ{V(u,g)(a/ SE(u.0)
tangent space at a pojniThus, for example, a complex sca- . _

lar field onZ" is a vectorV® in T', with “components” +V(u,£) (81 5E(u,{))*}. (A6)
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It is straightforward to check that the derivative operator This relationship will be useful later for defining distribu-
satisfying Eq.(A6) can be written as tional operators corresponding to the connections.
We now want to construct the Poisson bracket algebra of
P elementary functions on the phase space, which are to be
TaB:f f+dud82du'd82' 82(¢—¢")—S(u—u') represented in the quantum theory by quantum operators.
I au Since the phase space is a linear space, it will be most con-
venient to consider the space of @Ulfficiently smooth lin-

y ( é )“d E(u’.Z') ear functions oll’, together with the constant functions. This
SE(u,g)) *# ’ space can be parametrized in the following manner. Let
N SCT be the space of complex covector test fieldsZon Let
0 — V¢«e S, and define a functiotFy, onI', whose value, evalu-
SE(.0) dgE(U",¢") |- (A7) ated at the poinE®e T, is given by
In relation to the analogy with the linearized NSF of GR, FILE]: ZQQBE“VB. (A12)

we are interested in considering the connections as charac-

teristic free data orf", rather than the electric fields. The This is a linear function orl’. Its gradient is given by
connections are now determined, with respect to the eIectri&a]-"V=Qa5Vﬁ. The Poisson brackets between any two such
fields, as the  corresponding  elements A*  functions is

= [ dudS{A(u,) (81 5E(u,{))*+ A(u,) (8 SE(u, )%}

of ' such that {FUELFMEL=QPV )V s Fy= — Q sV WP,
(A13)
EaZTaBA'B- (A8)  \whereQ®# is the inverse of the symplectic structure, defined

) ) ) ] in Eq. (A9). Since the function on the right-hand side of Eq.
D(_eflned in thl_s way, the connectmns are complletelly deter(A13) is independent oE¢, the algebra is closed under Pois-
mined by a single complex scalar fiek{u,¢). This single 5o prackets. This defines the algebra of elementary classical
complex scalar is related to the standard #alintroduced  f,nctions.
earliey by A=-m?A, and represents the two degrees of  From the linear functiongA12), the classical distribu-
freedom of the Maxwell fields. In order to stay away from tjonal electric fields can be obtained via
infrared sectors, the remaining componenfgfis chosen to
vanish, namelyA,n?=0 (in this gauge, the Maxwell con- s s
nection is equivalently represented by eitiAgror A). Note Ee=_ QB F[El=— 27T 0P"—— F[E
that T, is degenerate, since it annihilates fields which do svA/VIE] TR sve VEL
not depend ow; thus, it has no unique inverse. However, the (A14)
ambiguity in definingA“ by Eq. (A8) is precisely the re- . .
maining gauge freedom, that of an additive field which de-Where we have used E¢A11). Comparing Eq(A14) with
pends only ory. Eqg. (A8), and making the same gauge choice for the connec-

The three tensor€) ,5,Q.z,T5 on I are not all inde- tion as before, we see that the distributional connection field

pendent. In order to derive the relation between them, not! 91Ven by
first that the invers€)“# of the symplectic structure, defined

by Q*PQ , = 1%, is given by )
pro A*=—2mQP* s R [E]. (A15)
Qaﬁz4wf f+dud§dU’dSZ SX(¢—¢)—8(u—u') From (A13) and the definition(A15) of the classical distri-
T au butional connection field o, we can obtain the funda-
S [a S Al mental Poisson brackets between two connections:
X — A9
(5E(u,§)> 6E(u’,§’)) (A9) PR
{Aa,Aﬁ}:472QV“Q5ﬁW Syt PVEL FWlET}
and that the inverse of the metii84) is given by
:47TZQyHQ§BQ,Sy
p § S (a S )B)
“=2f+dud( ) _ _ _ ff )@ 2 p
(A10)
, s |\l s \7
Now, combining Eqs(A7), (A9), and(A10), a short calcu- XA(u—u’) SE(u,?) 5E_(u’,§’) '

lation shows that
(A16)

Q“ﬁ=2wT“yQBV. (Al11) On the other hand, in terms of components we have
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sponding to the classical functiori5,[E]. These smeared
field operators are defined to satisfy the standard commuta-
tion relations corresponding to the Poisson brackAfis3)

{Aa,Aﬁ}=f deud§du’d§’{A(u,§),A(U’,é’)}

) @ ) B
X(&E(u,g)) <5E(u’,§’)) [E(V),E(W)]=i#{ AJ[E],FWE]} = — /0 VWA

— _ (A19)
+HA(WU,0),AU", )} o :
As we noted, we are primarily interested in operator-valued
) “ ) “ distributions corresponding to the electric fields and the con-
X SE(U.0) nections at a point of* . Thus, in analogy with the classical

SE(U', ") fields [see Eq.(A14)], let us define an operator-valued dis-
+2{A(u,§),A_(u’,§’)} tributional electric fieldE*= (E(u,¢),E(u,{)) by
s \lef s P R 50
X — . Al7 E¢=-Q%—2E(V). (A20)
SE(U,0)) \ sE(u’,¢") (AL7) PV
By comparing Eqs(A16) and (A17) (or more directly, we ~ BY contracting Eq(A20) with 1,,V?, one can see that the
obtain smeared field operators are obtained from the distributional
operators in the same manner as the linear functions are
{AU,0),A(U", 2 =—2mA(u—u") 84— {") smeared with the test fields:
(A189 - R
E(V)=:Q,4E°VA. (A21)
and

[Compare Eq(A21) with Eq. (A12).]
{A(U,0),AU", ) ={A(U,2),A(u’, ")} =0. Similarly, in analogy with Eg.(Al15), we define an
(A18b) operator-valued distribution corresponding to the connection
fields as follows:

These are the fundamental distributional Poisson brackets on 5
the data orZ™". . W 0 -

Let us summarize what we have done so far. First, we At=-2mQP svAE(Y)- (A22)
have shown that the linear space of free data of the Maxwell
field can be parametrized by the characteristic d¥(ta, ) Using this definition and the commutat@19), we compute
onZ*'. The data satisfy the Poisson brackets relatigds3).  the commutator between the connection operators
From the characteristic daf&(u, (), we can obtain the Max- s s
well fields in the interior of the spacetinisee Sec. A B and A ABT A D NS - -
their corresponding Poisson brackets. From the point of view [A®AP]=47" Q7Q BW swolEV).EW)]
of quantization, the characteristic data are not convenient .
elementary observables, since they correspond to distribu- =47%11Q"*Q%Q5,, . (A23)
tions onI" and cannot be directly represented on a Hilbert ) s ] ]
space as bounded self-adjoint operators. However, since ttfevaluating the components Qf*“Q $Q5,, as in the classi-
phase space is linear, we introduced the space of linear funé@! case, finally leads to
tionals onlI” in a particularly convenient way, as the space of ~ - .
smeared electric field$,[E] [Eq. (A12)]. These smeared [A(U,0),A(U’,{")]=—2mhA(u—u")6*({— )1
fields satisfy the elementary Poisson brackets relations (A243)
(A13). From the smeared electric field5,[E], the charac-

teristic dataA(u,{) can be reobtained by the functional de- and
rivative with respect to the test fields, via E&15). . . - -

Now in the quantum theory, the elementary operator al- [ACu,0),A(u",{")]=[A(u,{),A(u’",{")]=0.
gebra that one works with corresponds to the Poisson brack- (A24b)

T £ et 1 QESe e he undamental e data commt on
) . ..~ ~which the commutators for the interior fields are based. They

gebra on an qsyr_nptphc Fock space. We are primarily Inter\'/viII be of use in Sec. A 4. In the following subsection we

ested n the distributional connections @rﬁ’ and these can gescribe the space of states on which the operators act.

be obtained from the smeared electric field operators via the

guantum analogue of EA15). The distributional operators .

corresponding to the Maxwell fields in the interior can be 2. Asymptotic Fock space

constructed from the distributional connections by analogy We are going to construct thgtandard antiholomorphic

with the classical constructiofBec. A 3. representatiof6] of the free data off™ for the free Maxwell
Hence, to begin with, let us construct the algebra of elfield. LetSCT be the Schwartz space of complex spin-1 test

ementary operators which we wish to represent in the quarfields onZ". For anyV(u,¢) € S, define the Fourier trans-

tum theory. We want to construct 0peratcE:$V) corre-  form
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1 (=
Nw)=—=

V2]

and the positive frequency part of

duV(u)e'“Y, (A25)

TV(u)= doV(w)e 'Y, (A26)

7=h

where the dependence org,ﬁ is understood. Or§ (or
S*), the symplectic structuréA2) can be expressed as

1 ) 1 J—
Q=g | @S] dor 1, L0 ONE 0.0,
(A27)

On S*, define a Hermitian inner product
JR—
(V] W >:=—%Q(+V,+W)

1

B dzsfxdw—
=onh . ZV(w,é)W(w,é)-

(A28)
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oo

(TIW)=ToWo+ >, G
n=1

.. G;nan'rgl' : 'anwzl' Tl
(A33)

ajay’

The Cauchy completion of defines the desired asymptotic
Fock space.
Now that we have the space of states, let us define the

creation and annihilation operatoc§*V) and a(*V), re-
spectively. Given an elementV e S*, define

At Lylerar e

c("V)o| T ):=]0,"VT, ... .
(A34)

and
a(*V)e| T):
=| G;Cﬁ_V”TTf, e ,\/ﬁGajnTV‘TT;'l”'“”, )
(A35)

Using Eq.(A30), a straightforward calculation shows that
these operators satisfy the commutation relations

[a(*Vy),c("V)]=( "V, | *V,)1,  (A36)

By inspection, this is positive definite. Note that it can beall other commutators vanishing. One can show that these

written in the more familiar form17]:
i
(V| W)= (VW)= Q(V,W), - (A29)

whereu(V,W)=(1/2)Im Q(*V,"W) is a real inner prod-
uct onS.

Let us take the Cauchy completion 8t under this inner
product; denote itH=S". As we will see,H is the one-
particle Hilbert space. The inner produ@28) defines a
Hermitian metric orH:

G, VErWa=( *V | TW ). (A30)

The introduction of this metric will be useful in what fol-

lows.
Consider the spac&=®;_,® sH"®C, where® g stands

for the symmetric tensor product. This consists of kets of th

form |T ):

T y=] To, TL, ... TO0 " ),

n

(A31)

where TyeC and Tsl"'“”=Tﬁ“1"'“”)e®s "=H

®g - -(ntimes)®¢H is an element of the symmetric tensor

product ofn copies ofH.?

On this space of stateg there is the inner product ob-

tained by extending the inner product &h

operators are Hermitian adjoints of each other, i.e.,
a'("V)=c(*v). (A37)

In this representation, let us define the smeared electric
field operators

E(V):=a[c(TV)+a(*V)]. (A38)
From the commutatofA36), we easily see that
[E(V),E(W)]=2i#2Im( "V | TW)1,  (A39)

where we have used the form of the inner prod#@9). It
follows that the operators we have defined above in Eg.
(A38) satisfy the desired commutation relatio#sl9). Fur-
thermore, from the Hermiticity relation@®37) between the

&reation and annihilation operators, we see that the electric

field operatordA38) are themselves Hermitian.

Thus, we have constructed a Hermitian representation of
the smeared electric field operators defined in Appendix A 1.
From these, via Eq(A22) we can obtain the distributional

connection operator&(u, ), which satisfy the commutation
relations (A24). Recall that the connection&(u,¢) on Z*
serve as data for the Maxwell fields in the interior of the
spacetime. In the next subsection, we will use the commuta-
tion relations(A24) between the distributional connection
field operators orf" to compute the commutation relations
between the field operators in the interior of the spacetime.

2The antiholomorphic representation can be easily constructed.

For example, the one-particle state is represented by

Y [Z1=(Z| T)=GoZ°T", (A32)

wherez®: = "TE®.

3. Integral representations of the covariant
commutation relations

The fields in the interior of the spacetime can be recon-
structed from knowledge of the fields&t. The following is
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QUANTIZATION OF THE

a reconstruction of the Maxwell fields based on the null-

surface formulation of the background Minkowski spacetime

[18].

In Minkowski space, the intersection of the future light
cone of an interior poink? with Z* is a topological sphere
S?(x?), denoted as the light cone cut gf. In coordinates
(u,?), the light cone cut of a fixed poin® is a two-surface
u=u(x?{) in Z+ given by

U=Zo(X* ) =X/ a(§) =X 70/, (A40)
where /°(¢) is a constant null vector in Minkowski space
[see(Eq. 10]. At any fixed point,/®(¢) defines the null
cone by varyingl. Z, denotes th& function for Minkowski
space.

If the (otherwise fregdataA(u, ) is restricted to the light
cone cut of a particular poind, it defines a function of six
variables denotedAg(x?,¢)=A(Zy(x?,),{). By giving
asymptotic dataAg on a light cone cut, the Maxwell field
and connection at the interior poirt can be found, essen-
tially by differentiation, from the knowledge of a real nonlo-
cal superpotentidF (x?,¢) which satisfies the following dif-
ferential equation on the sphere:

O8F =BAR(X%,{) +8AR(X%,{) =Dy (X H)[A].

(A41)

Regular solutions to this equation from given data can be

found in integral form

FOC,Z: [AD)= | dS,Gu( mDuGe, AL
(A42)

where dS2=—2id p/\d5/(1+ 57)? is the area form for

S?, [A] indicates the functional dependence of the solution

on the free data, anG@y,({, ) is a known Green’s function
[19], given by

Note that any function of onlx? can be added to E4A42)
to obtain another solution of E¢A41) with the same data.
This gauge freedom of the solutions to E441) is equiva-
lent to leaving free thé=0 term in their spherical-harmonic
expansion. The Green'’s functi@A43) has the property that
if F is given by Eq.(A42), then [<F=0, henceF has no

<§—n_><§_—_)_
(1+¢0)(A+nn)

4

GM(g,’Y])

1 a
= 2L/ ()], (A43)

=0 term in an expansion in spherical harmonics. Equation
(A42) thus gives an integral representation of the superpo-

tential F(x2,¢) in thel =0 gauge.
In a general gauge, the Maxwell connectigg(x°®) is
related toF (x?,7) by

CHOVF (X0 =730 va(X°).

By differentiation of Eq.(A44) with respect to{ and by
algebraic procedures we can reconstrugf(x®), and
Fab= 2V[a7b] . EXpI|C|tIy,

(A44)
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Ya=Yi\h (A45)
and

Fab=2NpVa Vi, (A46)

where, by definition,
y1=/2VF, (A47)
y.=—miV, F—/2V 0F=—08(/2V,F), (A48)
y_=—miV F—/2V 8F=—8(/2V,F), (A49)

Yo=+(NP— /B V F + M2V OF + /2V ,33F = 56(/ 2V ,F),
(A50)

and\,(O)=(/a,my,my,n,—7 ), i=0,+,—,1. If F(x%,{)
satisfies Eq(A41), thenF,(x°) is automatically a solution
to the Maxwell equation¥ 2F ,,=0. It is worth noticing that
our | =0 gauge implies that the connectigq is fixed in the
Coulomb gauge, being explicitly given by

Ya= f 24 S{AKC/ y(7), mIma(7)

+AX/p(7), MMa( 1)}

We return to the gauge issue at the end of this subsection.
In the quantization, we define the operators simply by

replacing the classical variables with their quantum versions,

H 3

ie.,

(A51)

BOc,: [AD)= |_dS,Gu(6 mDue, nIAL
(A52)

In the following, we find integral representations of the

commutation relations df, y,, andF,;, at different values
of their arguments. These follow from the fundamental com-
mutators(A24) for the free data.

Using the notatior[ F,F']=[F(x2,¢),F(x'2,¢")], from
Egs.(A52) and(A24) we obtain

[ﬁﬁ']=—2f fsz[a,,emz,n) 8, Gu(¢' ")

+67]GM(§17]) 67]’GM(§’177’)]

X{AGR/ o(), 1), A o(7'),7')}d?S,d%S,,
=4mih fsz[énGM(ga n)énGM(g, ’ 7])

+8,Gum(£,m8,Gu(¢", mIALY-/()]d?S,1,
(A53)

3We assume, as appears to be done for evolution from Cauchy
data, that the operators corresponding to the restrictions of the con-
nections oriZ* to the cuts ofx® exist on the Fock space.
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Wherey//(ﬂ)zya//a(ﬂ) andyaEXa_X,a. To obtain this (6 G5.G' +5.G'8 G)A(y/):6 [(66 G +G'8.G
result we used the explicit expression of the Green’s func- = 7 7 T 7 K 7

tion, Eq. (A43), and the method for the evaluation of inte- +R+R)A(y-/)]-(G8,G'+G'8,G+R+R’)
grals on the sphere described 20]. ﬂith m,=08/", [see the
definition of the null tetrad £2,m#® m?,n?), Eq. (23], Eq. Xy-mé(y-/), (AS8)

(A53) takes the compact form _ _ _ _
L where R and R’ are assumed to satisf$,G=R and
. ) /’a(g)/b(g“’)m(amb) s 3,G'= R/, respectively R andR’ are not unique The in-
[F.F ]:Sw'hfsz 2077/ A(y-/)d"SL. tegrat|on varlable on the sphereqs The other parameters
(A54) (y3,2,¢"), are fixed. With the integrand written in this way,

the integral in Eq(A53) splits into two terms:
Here and in the following, we omit the explicit dependence

on a dummy variable, such as the integration variable in Eq. _ _ _
(A54). [F,F’]=—27-rihf26,,[(66,7(3’+G’6,,G+R+R’)
- S
In order to find the commutator of,, we take two gra-
dientsV,V| in the spacetime arguments of E@54) and XA(V-7)1dS2— G5 G +G'8§ GAR+R’
then contract with"3(¢)/°(¢') since y-7)] 32( 7 K )
/3 VBB =[/2V E /O E 1= [/ Ya /P Y] xy-ma(y-/)d’S. (A59)
:/a//b[a,a,%]_ (A55) The first term is a volume integral on the sphere which can
be evaluated by a method that combines Stokes’s theorem
Using Eq.(A54), we have and the theorem of residues for a complex varigB@. The
o second term in EqA59) either vanishesif y-/#0) oris a
AR AN line integral, since the integrand has support only on the line
defined byy-/=0. These two distinctions correspond to
= _877iﬁ/a/’bJ m(aﬁ,)'é(y-/)dzs 1, (A56)  Y? being timelike or spacelike, respectively.
s For timelike future-pointing y2 the step function

A(y- /) takes the constant valugl/2. We will first evaluate
Eqg. (A53) in this case, and then extend the result to timelike
past-pointingy? by simply multiplying by an overall minus
sign.

The commutatofA53) is reduced to

where we use the notatidr(x)zdf(x)/dx. Since the inte-
gral in the right-hand side of EqA56) is not a function of
(£,Z"), then, from Egs(A55) and (A56), it follows that

[Yar¥i]=—8mit f LMoy S(y-/)d*S1. (A57)
A [F,F’]=—wiﬁf ,0,(G3,G'+G'8,G+R+R")d’S.

This is an integral representation of the commutatoy ot S (ABO)
two different points, in the interior of the spacetime. The
reason why it does not resemble the standard commutato ; P
for the Maxwell connection is that we have not made therfsrom Eq.(A43) the following are obtained:
standard gauge choice, namely, the Lorentz gauge, A0)-/
V2y,=0. Instead, by choosing the superpoterfiias in Eq. R(g n)=-—— —{| n[/(&)-/(ng)]—1}
(A42) we have picked the Coulomb gauge, Wéy,=0 and 4 /({)-m(7)
vo=0. Interestingly, these gauge conditions are consistent
with Eq. (A57). Namely, if the operatory, are constrained

by V&y,=0 and y,=0, then it should also be true that
[V3Y.,751=0 and[ y,,74]=0. By taking a gradien¥? and i i 1 /(¢ -m(n)

observing tham- /=0, it is straightforward to see that Eq. 6,G'=0,G(¢" m) =7~ -2 (A62)
(A57) implies [V?y,,y,]=0, whereas[y,,v,]=0 holds
trivially, since m, has a vanishing timelike componefmf.
Eq. (A86)].

(A61)

and

Notice thatG, E,andé,,G’ are singular at certain values of

(7, 7m). This implies that the integral in EGA60) must be
defined by a limiting process; the integral is performed on a
4. Closed-form commutators domainD= S?— 1 that excludes small neighborhoods of the
In this section we evaluate in closed form the integralsingular points, which are eventually shrunk to zero. By
representation of the commutator of the nonlocal potentiaStokes’s theorem, the integréd60) on D can be converted
F(x3¢), Eq. (A53). into contour integrations around the singular points. Further-
In the first place, we rewrite the integrand into two termsmore, due to the theorem of residug@sth an overall minus
(by “flipping” an &, derivative from the Green’s functions sign), the contour integrals can finally be evaluated by com-
over to the step functiol\ while keeping the so-called puting the residues at the simple poles insi&lé consists
boundary terms of a disjoint union of neighborhoods around singular pgints
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: . — — —idy
[F.F']=—2mih ¢ (G8,G'+G'8,G+RHR)——0b
B 1+

:swziﬁ; Res( G3,G'+G'8,G+R+R’

1+ 97y "FTI(.

In the evaluation by residues, the variableﬁﬁ are con-

X (AB3)

903

there is a nonvanishing contour term that needs to be evalu-

ated explicitly, in addition to the contribution of the residues.
We will first evaluate Eq(A59) for spacelike separation

of the form

y2=(t,0,02). (A69)

This has the considerable advantage of orienting the contour
y-/(75)=0 around the axis; i.e., the contour is a horizontal
circle on the sphere, not necessarily at the equator. Once we
obtain the result, we will generalize it to an arbitrary space-
like y® by means of a general three-dimensional rotation.

sidered independent of each other, the singular points that The first term in Eq(A59) consists of a combination of

affect the integration being those on the variaﬁeWe are

the residue$A65) and(A66), with appropriate signs depend-

thus interested in accounting for all the singular pointsiNd on whether the pole is above or below the contour. The

n= 7, Which are simple poles, while the variabigis con-
sidered fixed, taking the limiting value= 7, . Using the
explicit expressions of the scalar products betwg@nand
m? [18],

(=0 (n—10)
) -/ ()= —T 25
N e ST
| (7= D1+ {7)
/ -m = — —, Ab64
o TE B (A

we see that the integrand in E@A63) is singular at
n=1{_, g’,—_l/g,— 1/¢'. These are simple pole§The appar-

ent pole aty= —1/7 is ignored, since it does not affect the
value of the integral. A careful calculation gives only the

nonzero residues

G3,G’ G'8,G 1 ,‘
Re = Re =4—In(/-/’)
/N Ttgn)l—, 7 -
and
R R’ 1
Ttmn)l -y Tty .

Therefore, the commutator for the nonlocal potenEafor
future-pointing timelike separatioyf in closed form is
[F,F']=2miA(In[/-/")+1]. (AB7)

Likewise, the commutator for the nonlocal potentialfor
past-pointing timelike separatigrf in closed form is
[F.F'l==2#i#[In(/-/")+1]. (A68)

For spacelike separatigr?, the conditiony - /=0 defines

step functionA is negative above the contour. The second
term in Eq.(A59) requires a cumbersome calculation, which
we outline in the following.

Using standard spherical coordinates ) on S?, with
6=0 at the north pole, the stereographic coordinates are
given by p=cot(@/2)e'4, and the conditiony-/(7%)=0
reads

t—zcos9=0, (A70)
defining a circle at a latitud#@, given by co#,=t/z. The
second term in EqLA59) takes the form

Lz(ea's,,e’ +G'3,G+R+R")y-md(y-/)d?s

2po

— —__ei¢
@+

2 _ . -

=—| (G8,6'+G'5,6+R+R)
0

(A71)

where we have used the notatipp=cot(fy/2). Notice that

po increases from 0 at the south polectoat the north pole,
taking the value of 1 at the equator. The line integral in Eq.
(A71) can be written as the following contour integral
around the unit circle in the complex plane:

2m 2p0

X ’ ¥ pPLR’ —i¢
, (68,6 +C8,GRIR) T e o

2p0 dU
(1+pD) iv

- jﬁl ‘ l(GénG’+G’6,,G+?+W)
ol=

where

(1+?Pov)

(polv—1¢")
(A73)

(pov—o(po/v—_B
(1+p2)(1+£0)

< 1
Go,G'=-—1In

7 4

a closed contour on the sphere. This has two immediate cone 4

sequences. On one hand, the step funcfi¢n- /) changes

sign across the contour, which implies that, in the evaluation
by residues, there will be some likely cancellations, depend-
ing on whether the poles are all located on the same side or
are scattered on both sides of the contour. On the other hand,

=1 (-0 [

47 (1+ potlv) | n

(1+pD)(L+{0)

(pov—§)<po/v—5]_l)

(A74)
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With Eqgs.(A73) and (A74), the contour integral is explicitly

(1+p2(1+LL) (pgu—20)
(po—v ) v+pel) (LFpodv

(pov =0 (polv—{)
(1+p2)(1+£0)

__ P
2mi(1+p5) Jipj-1

A+pD)A+LD) (pw—¢)
(po—0 (v +pol’) (@ Fpol v "

(PoU_Z )(polv—1¢")
(1+P2)(1+§ 7"

Technically, the contour integral Eq. (A75), cannot be evaluated by residues as it stands, because of the branch cut of the
logarithm atv =0. One can rewrite the integrand as a rational function by introducing a paramigi¢he argument of the
logarithm, and then differentiating with respect#pin the following fashion:

Tl)J'

whereJ(7) is a generalization of defined by introducing-, for convenience, as

(A75)

dT+J (r=0), (A76)

(Tpov—§)(7po/v_—5
(1+p§)(1+§£)

___Po n
2mi(1+p3) Juj-1

(1+pD)(A+LL)  (pw—10)

J(7)= . _
7 (po—v ) v+pol) (vFpodv

(Tpov—é )(mpolv—1¢")
(1+p2)(1+§ )

Notice that Eq.(A77) is equal to Eq(A72) if 7 is set equal to 1. On the other hand,rifis set equal to zero then the
dependence of the logarithm in the integrand afisappears; consequently, the te¥(r=0) in Eq.(A76) can be integrated
by residues.

The derivativedJ/d 7 is

(LHp)A+LD) (pw—{')
(po—v D (w+pol’) WFpol o "

(A77)

dJ p? ( v 1 (1+pA)(1+£L)
lv]=1

dr_2mi(1+pD) (rpov—o+<rpo—5>)<po—v7><v+f’°5)

(1+P W1+ 5)
(po— UZ)(U+P0§)

(A78)

+( v N 1
(tpov=&")  (7po—¢'v)

The simple poles that are relevant to the evaluationl®df  pression for the commutator of the nonlocal potenkaht
dr as a function ofr are spacelike separatioyf of the form(A69) is obtained, which
we present split into four different cases.

If £ and{’ are both above the contour, then

O T B S S
? T TP’ TP0' g"_ — —
F = —2mind (-1 (P2=¢8N(P2= 1 D)
JF'l==2mik{In(/-7")—In —
%, —pols  —pol’. (A79) (1+pD)2 Ll ¢
_ (1 p)
Care must be taken to correctly account for the simple poles T (A80)
that are inside the unit circle at different valuesof ( Po o

After the evaluation by residued,)/d~ can be seen to be
an explicit linear combination of terms of the form If ¢ is above and’ is below the contour, then
logarithmic function. The procedure is rather lengthy but en-

tirely straightforward. [F.F']=—2mi h{

cal steps necessary to the evaluation of the second term in (A81)
Eq. (A59). By combining the results obtained separately

1/(a+b7), which can be integrated i immediately as a
2
1+¢'7 >ﬂ+<1—r’o>]
In this way, we have given an outline of the main techni- (1+490) (1+p7)]
from the first and second terms in E@\59), the final ex- If £ is below and{’ is above the contour, then
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A+ L0)
(1+¢'¢")

L) (2= (P>~ 1)
A+eg)] 1+
(A82)

[F,F’]z—Zwih{ln

_ —y-y/ -l +2y-ry-
(z=y-T+\2y-/)(z=y-T+\2y-/")’
(P2=LL)(P2=L"0) (A87)
(1+ p§)2 where every scalar product is invariant with respect to spatial

rotations. By substituting EqA87) into Egs.(A80)—(A83),
(1_p§)] the commutators are generalized to an arbitrary spacelike

If £ and{’ are both below the contour, then

[F,F’]=—27Tih[ ~In(#-7")+In

+ A83 separationy?.
179D (A83)
APPENDIX B: EVALUATION OF THE NULL-SURFACE
The result4A80) and(A83) have a regular limit as the con- COMMUTATOR IN THE CASE OF TIMELIKE
tour is shrunk to zerfunlike Egs.(A81) and(A82), in which SEPARATION

one of the pointg or ¢’ would disappear as the contour is ) ) .
shrunk to zer The contour is shrunk to zero by taking the [N this appendix we evaluate E(.8) in closed form for a
limits po— 0 (in which case the contour flies off the sphere SPecial range of the parameter As a first step, however,
at the south pole and py—c (in which case the contour We rewrite Eq.(18) in the form
flies off the sphere at the north paleThe limiting values
po=0.° correspond td=+2z,—z, i.e., the null boundaries [2,2/]= —zwiﬁf 6,,(VA)—V6,,AdZS,7, (B1)
between the timelike and spacelike regions. Therefore, it is §
expected that Eq(A80) has Eq.(A68) for a limit as
po— 0, whereas EqA83) should have EqA67) for a limit
as pg—*. This is actually the case, as can be verified by \/_5 G'52G+5 G52G'—G'5.52G— G5 852G’
inspection of Eqs(A80) and (A83). K K K K

In order to generalize to an arbitrary spacelike separation +Q’6f](;)f]G+ Qé%}éie’ — R’fjf]f'jf]G— Réf’léf]G’
y?, in the following we rewrite the relevant quantities as
invariants under general spatial rotations, keeping the time (B2)
axis fixed.

We define the unit timelike vector

whereV=V(75,{,{") is given by

and the function®) andR are (nonuniqug first and second
primitives of G, respectively, in the sense th@at=9,Q and
G=637R. A choice of the function®Q and R is given in
Appendix C.

S . . . If y2 is timelike and future pointing, theg-/>0 and
wh|ch is invariant underaspatlalaro.tatlons. We also have athus A(y-/)=+3, constant on the sphere, whereas
our disposal the vectors? andm? given by 8,A(y-7)=8(y-/)3,(y-/)=0 everywhere on the sphere.
Therefore, for this range of the parametgfsthe commuta-

T3=(1,0,0,0, (A84)

a_ L 1 (+¢ i (- —1+§Z) (Ag5) tor reduces to
2\ "1l v 1+ ) 1
[2,2']= —27Tiﬁf 2as,,(zv)dzsﬂ, (B3)
1 1= 1+ 2 °
mazé/azﬁ "1+ g?’_' 14+ 1+ gg ' which can be evaluated by residusge[20]):

(A86)

A a 1 Vv —
. [22']=4mh 2 fﬁ———dn
In terms of these vectors, the relevant quantities in Egs. ] i2 (1+7ny)

(A80)—(A83) take the form

1 Y,
B =87 >, Re§;——=— B4)
t=y-T, 2 {2(1“171) _—
7= 7j
— 2__ - [
z=\N(y-T*=y-y, The polesy; are { , ¢’ ,(£)"%, and ')~ % This can be
deduced by inspection of the explicit expressionvofvhich
1477 2z is obtained from the information about the Green'’s function
+ = . . . . .
¥4 1y T+ \/§y~ / that we give in Appendix C. The evaluation of the residues at

these poles is straightforward, and gives the final expression

. 1 1
pi=—"o, [2,2')==2mit| /-/'In(/ /") =/ /" + 5.
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APPENDIX C: PROPERTIES OF THE GREEN'S Equation(C4) can be solved by making the ansatz

FUNCTION
Hn(X)=x""1(CyInx—B,,). (C5)
The function(13) gives solutions to the following differ- _ _ _

ential equation for function§ of spin weight zero on the By imposing Eq.(C4) we find that the parameteG, and
sphere, with given spin-weight-0 sourde B, need to satisfy

5252F =1, (CD) Cr-1=(n+1)C,y,
One of the properties of this Green’s function is that, aside Br-1=(n+1)B,—C,, (C6)
from possible distributional behaviors &t 7, it is annihi-  \yhich are solved by
lated by application of the operatiafd? for all values of

{F . _ Co
L RANTESE
8,G(&,m=7—/(0)-m(n{In[/({)- 7 (m)]+1}, coonig
By=——’ ()

P S (n+D1EL (n+1-i)’
22 1 [Z()-m(m]?
6,6 m=7— (0 -/ () whereCy=1/4. In this way, we have found a choice of the
generic primitive ofG to any desired ordefnote that the
o 1 — 1 primitives are not unique
06,07,G(¢, 77)—@/(5) -m( n)(m 3)1 Here we show explicitly the first and second primitives:

1 Q¢ ):i—[/’(4,’)~/(77)]2{|n[/(§)./( )]- 4
63;6376(5177)25[3/(5)-/(77)—2], W\e =g Z(0)-m(7) ’ Ay 25

(c8)
< 3 1 [Z0)-Z(n)]?
838,64 m=5—/(0)-m(7), Q& =54~ %{In[/m/( m]- &}
(C9)

4 X2 —
8,8,G(¢,m)=0. (€2 In Appendix B, we have used the notati@=Q;, and

This property allows for the rewriting of18) in the form R=Q(2). _ _
(B1) in Appendix B. A third and essential property of the Green’s function can

Another useful property of the Green’s function is that, upPe stated in terms of the solutions of EG.1). A solution to
to free constants of integration, its primitivek,, defined by ~ Ed. (C1) can be found by
6;‘,Q(n):G can be found recursively. In general,

(L ):H<n)[/(§)-/(77)] ©3
AT mp T (any other solution can be found by addingRp a solution

to the homogeneous equatididF=0). It can be shown
that Fp has nol=0,1 terms in an expansion in spherical

Fp= JSZG(ZV)J(n)dZS,, (C10

whereH ,(x) satisfies

"Hn 1 harmonics. Thughe Green’s function13) provides a de-
o (x)= H<0)(X):EX Inx composition of a generic solution into its=D,1 part and its
| =2 part. This third property holds as a consequence of the
or kernel exclusion propertpf the Green's functions fod"
acting on spin-weighs functions; namely, they yield no
dHn) spherical harmonics of ordére {s s+n—1} upon in-
—(X)=H(n_1)(x). (C4) . . o
dx tegration on the sphere against a given so(it&.
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