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We study axion-dilaton cosmologies derived from the low-energy string effective action. We present the
classical homogeneous Friedmann-Robertson-Walker solutions and derive the semiclassical perturbation spec-
tra in the dilaton, axion, and moduli fields in the pre-big-bang scenario. By constructing the unique
S-duality-invariant field perturbations for the axion and dilaton fields we desrdriality-invariant solutions,
valid when the axion field is time dependent as well as in a dilaton-vacuum cosmology. Whereas the dilaton
and moduli fields have steep blue perturbation spe@tith spectral indexn=4) we find that the axion
spectrum depends upon the expansion rate of the internal dimensions<(G5%) which allows scale-
invariant (h=1) spectra. We note that for<1 the metric is nonsingular in the conformal frame in which the
axion is minimally coupled[S0556-282(197)00514-9

PACS numbdis): 04.50:+h, 98.80.Cq

I. INTRODUCTION [11-13 but the hope is that in the full string theory, includ-
ing higher-order terms, the pre-big-bang solution may be
The dramatic progress that has been claimed in undesmoothly connected to a solution describing an expanding,
standing black holes in the context of string thepty?] in ~ “post-big-bang” universe[14,15 and, ultimately, general
the past year focuses attention upon the implications thd€lativistic evolution. . .
strings might have for cosmology. The early universe pro- Our intention in this paper is to draw attention to the
vides a natural arena in which to seek observational evidencgucial role that the antisymmetric tensor fieltay.
for string theory as a fundamental theory. General relativity=¢[asbg» May have in cosmological scenarios based on the
describes all currently observed gravitational physics withow-energy limit of the superstring action. An antisymmetric
remarkable accurad], but its description of the very early tensor inevitably appears, along with the graviton and dila-
universe is expected to break down near the Planck scalén, in the Neveu-Schwarz bosonic sector of the low-energy
and possibly at lower energies as well. string effective action:
Most investigations of the cosmological consequences of
string.theory have focu;ed on thg role o_f the dilaton field S= izf dDX\/_—gDew
¢, which provides a varying effective gravitational constant. 2kp
In the absence of other matter, the low-energy acfibh
leads to an effective theory of gravity of the form proposedwhere k3=87Gp, andGp is Newton’s constant iD di-
by Brans and Dick¢5]. Although the predicted value of the mensions. Previous studigd6—-25 have considered the
Brans-Dicke parametes= — 1 is incompatible with present classical evolution of the antisymmetric tensor field in
day post-Newtonian tesf8], it may be that loop corrections simple cosmologies. The role of the additional tensor fields
yield an experimentally acceptable general relativistic limitderived from the Ramond-Ramond sector of type-llA and
[6,7], or that the dilaton’s present day value may be fixed bytype-lIB string theory has recently been considered in
it acquiring a massfor a detailed list of references sg#). [23,25. In this paper we calculate the spectrum of perturba-
The pre-big-bang scenar[®] is a specific example of a tions about the classical background field that may be pro-
cosmological model based on string theory which differsduced due to vacuum fluctuations in the antisymmetric ten-
radically from that predicted by general relativity because ofsor field.
the presence of the dilaton field. The weakly coupled, ex- We will consider spacetimes which contain a four-
panding, “pre-big-bang” solutions have many similarities dimensional homogeneous and isotropic external metric. In
with conventional inflation model§10], most notably the four spacetime dimensions the antisymmetric tensor field has
approach to flatness and homogeneity on large scales nly one degree of freedom which may be represented by a
stretching the quantum vacuum state on small scales up feseudoscalar axion field;. For a homogeneous and isotro-
large (superhorizoh scales. Solutions derived from the low- pic metric we must have a homogeneous axion fietd,
energy effective action run into a “big bang” singularity =a(t). This has been referred to as the solitonic anstaz due

2_i 2
Ro+(Ve)2-5H2(, (1)
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to the close connection with solitonpebrane solution§23].  where €2°°? is the covariant antisymmetric four-form such

An alternative ansatz, analogous to elemenfatyrane solu-  that V,e2*¢%=0.
tions[23], taking the tensor potentid,,,(t) to be time de- The low-energy string effective action, given in Ha),
pendent leads to an inhomogeneous axion field and hendben becomes

will be incompatible with aD=4 Friedmann-Robertson- 1

Walker (FRW) cosmology{20]. S= 2_K2f d*x\—ge ¢

2_ 2
In Sec. Il we review the classical evolution of FRW cos- R+ (V$)"=n(VA)

mologies both with and without an evolving axion, stressing

the important role of the axion when the scale factor in the _ Eezlp(va)z} (5)
string frame becomes small. Incorporating the evolution of 2 '

the axion leads to a cosmology that is very different from the ) ) ) )

classical pre-big-bang scenario where the axion field is fixedVhere k“=87/Mp, determines the effective value of the
We explore the differences between the cosmological evoluPlanck mass wheg=0, andR is the Ricci scalar of the
tion as seen in different conformally related metrics in Secfour-dimensional external spacetime.

I, drawing attention to the evolution in the axion frame We assume the external four-dimensional spacetime is de-
(where the axion field is minimally coupledSpecifically, ~ scribed by a flat FRW metric with the line element

we find that the singular evolution of the metric in the strin i

frame can be nonsgi]ngular in the axion frame. These axio%- ds*=a’(y){—dn*+ gdxdx}, )
dilaton solutions of the low-energy action can be related by §herea(4) is the scale factor. In addition, FRW solutions
_duallty transformation Wh_lch r_educes toa s_cale factor dualityyith nonzero spatial curvature can also be fofib@]. To be

in the absence of the axion field, as described in Sec. IV. compaible with a homogeneous and isotropic metric, all the

In Sec. V we set out our formalism for describing inho- fie|qs must be homogeneous and the action then reduces to
mogeneous linear perturbations about the homogeneous amip to a total derivative

isotropic four-dimensional4D) background solutions. Even

when the background axion field is set to zero, there will

inevitably be quantum fluctuations in the field. In Sec. VI we 1

calculate the spectrum of semiclassical axion perturbations S= Wf dgxf dﬂe"’[ —6a’?+6aa’ ¢’ —a’¢'?

as well as dilaton and moduli perturbation spectra produced

in the pre-big-bang scenario. In Sec. VII we extend this cal- 9 1o 26.2 12

culation to more general axion-dilaton cosmologies by con- +na’g'+ peate . Y
structingS-duality-invariant combinations of the field pertur-

bations that enable us to derieduality-invariant solutions.

Moreover we demonstrate that the late-time dilaton and ax- We refer to models with a constant axion field' < 0) as
ion spectra turn out to be independent of the preceding evadilaton-vacuumsolutions. These are the well-known mono-
lution along different butS-duality related classical solu- tonic power-law solutiorls

tions. Importantly, the tilt of the axion spectrum can be

significantly different from the steep “blue” spectra of dila- b_ b =
tons and gravitons predicted by the pre-big-bang scenario. er=ew PR ®)
(1+r4)2
Il. CLASSICAL AXION-DILATON COSMOLOGY a=a Y 9)
=a,|— ,
Here we consider cosmological solutions derived from the T
low-energy string action where we take the full s
D-dimensional spacetime to have a metric of the form ef=ehx|—| | (10)
N

A2 A A Ay PRV
dsZD dt*+ g dx dx'+ 7,dX'd X", 2 where the integration constant@ands determine the rate of

change of the effective dilaton and internal volume, respec-
tively. Note that there is a constraint equafiomhich re-
quires

i, jrunfrom 1 to 3, and, J run from 1 ton=D—-4. We
will allow for the variation of then compactified dimensions
by including a single modulus field, exyf), proportional to
the volume of this internal space, but neglect any curvature r.==+3-2ns. (12)
or anisotropy so thay,;=e?#45,;. B

The effective dilaton in the four-dimensional external The dilaton-vacuum solutions are shown in Figs. 1-3.

spacetime is then If stable compactification has occurred and the volume of the
internal spaces is fixeds&0, or D=4) we haver.
$p=¢—ng, (3 ==3.
and the antisymmetric tensor field in four dimensions can be——
written in terms of the pseudoscalar axion fietcas We shall not consider here the trivial flat spacetime solutidn
= B’ =a’'=0.

Habe=g?eabCdy (o, (4) See EQ(29) in the next section.
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String Frame scale factor a(n)

FIG. 1. The string frame scale factor for the axion-dilaton solu-

tion (solid line) given in Eq. (18). It approaches the = —r
dilaton-vacuum solution given in EQ) (dashed lingas »—0 and
the r,.=+r dilaton-vacuum solution (dot-dashed ling as

n— *o. The (+) and (—) branches are also labeled. The specific

parameters for the axion-dilaton solution axg=1, r=1.2, and
N =2.
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Modulus £(n)
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FIG. 3. The modulusB, with n=6 and the same parameter
values as in Fig. 1 and=/13/10. The evolution is the same, for
both the dilaton-vacuum in Eq10) and axion-dilaton solutions in
Eq. (19).

(1+r)/(3+r4)

: (13

t

a=a, t_
*

These dilaton-vacuum solutions can be expressed in terms

of the proper timet= fadz, giving

t]2r+ /(3+r4)

el=e%|— : (12)

*

Dilaton #(n)

2t

-4 W
]
A (+? ': (-)
-4 -2 0 2 4

FIG. 2. The dilatong, with ¢, =0 and the same notation and
parameter values as in Fig. 1. The axion-dilaton solufttea (17)]
approaches the_ dilaton-vacuum solutiofiEq. (8)] at small| 7|
and ther , solution at largd 7|.

t 2S/(3+rt)

ef=efx|— (14)

*

All these solutions have semi-infinite proper lifetimes. Those
starting from a singularity at=0 for t=0, are denoted the
(—) branch in Ref[11], while those which approach a sin-
gularity att=0 for t<0 are referred to as theH) branch.

Our choice of origin for the time coordinate is arbitrary. A
more fundamental definition of theH/—) branches may be
given by considering the evolution of the shifted dilaton
[26,17,13

p=¢—3In(a). (15)
Its time derivative,
—  3Fr. 16

is always positive on the+) branch(or »<0) due to the
constraint on the value of. [Eq.(11)], and always negative
on the (—) branch(or »>0).

These (+/—) branches dmot refer to the choice of sign
for r. in Eq.(11). On either the {) or (=) branches of the
dilaton-vacuum cosmologies we still have two distinct solu-
tions corresponding to the choice of the exponentor
r _, which determines whethep goes to negative or posi-
tive infinity, respectively, as;—0.

The generalization of Eq$8)—(10) to the more general
axion-dilaton cosmology where' # 0 is particularly simple
[19]:
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Axion 0’("7) [ll. CONFORMAL FRAMES

2 Thus far we have written all the solutions in terms of the
string frame. If stringy matter is minimally coupled in this
frame then stringy test particles will follow geodesics with
respect to this metric. However, in order to understand the
1.5 physical evolution in these models it is revealing to look at
conformally related metricsy,,— Q2g,p. If the conformal
factor QO is itself homogeneous then the transformed metric
remains a FRW metric but with scale fac@r Qa.

This transformation of the scale factor can lead to some
ambiguities in the interpretation of the cosmological solu-
tions[10]. For instance inflation is often defined as acceler-

ated expansiona(>0). However such a definition is depen-
dent upon the choice of conformal frame in which one
chooses to evaluate the acceleration.

Note that the proper time also changes under a conformal
transformationf— [ dt. One must not assume that a finite
(+) (-) proper time interval in one frame necessarily coincides with
0 a finite time in another frame and, in particular, we shall see

-4 -2 0 2 4 that what looks like a singular evolution in one frame may
appear nonsingular in another frame.

FIG. 4. The axiong, of the axion-dilaton solution given in Eq.
(20), with the same parameter values as in Fig. 1 ape=1.
A. The Einstein frame

e (| n|™" | | By choosing a conformal factd2®=e~ ¢ we can work in
et= — — (17 ~ . . -
2 || 14 Nyl |’ a framé g,,=0%g,, where the dilaton is minimally
coupled to the external metric. Thus the gravitational part of
a2 g 1T | g T the action in Eq.5) reduces to the Einstein-Hilbert action
a2=—*( — 4| ] (1  [10,27
2 (|74 N+
1 4 =5 1< 2 v 2)2 1 2607 )2
; S=53| dV-G{R-5(V#)’ (VB> 5e*(Vo)?|,
ef=ebx rl (19 (21)
*
Ly [ 9|~ — | 9l py | and hence this is known as the Einstein freivioth the
o=o,%e 7 PR LR (20 dilaton and the moduli fields have standard kinetic terms in
* *

this frame and thus moduli particles and dilatdimtsa con-

h h | . J—sz he ti stant axion fieldd would therefore follow geodesics in the
where the exponents are related viay3—2ns”. The time- ¢4, gimensional external spacetime of the Einstein frame.

dependent axion solutions are plotted in Figs. 1-4. The pres- 1nq tamiliar field equations of general relativity
ence of the axion places a lower bound on the value of the

dilaton, ¢=¢, . In doing so it interpolates between two

dilaton-vacuum solutions with an asymptotically constant - 1. - =

axion field. Whenyn— = the solutions approach thre = Rab~ 59abR=K"Tap (22
+r dilaton-vacuum solution and as—0 the solution ap-

proaches the _= —r dilaton-vacuum solution. We shall see

that the asymptotic approach to dilaton-vacuum solutions aapply in this frame. This may help one’s cosmological intu-

early and late times leads to a particularly simple form forition, which is rooted in four-dimensional general relativity,

the semiclassical perturbation spectra, independent of the ifbut also assists mathematically by decoupling the equations

termediate evolution. for the evolution of the metric from the value @. The
The dynamical effect of the axion field is negligible ex- stress-energy tensor

cept nearp~ 7, , when it leads to a bounce in the dilaton,

¢’ =0. Lukaset al.[23] have recently drawn attention to the

connection between these cosmological solutions and solito-All quantities calculated with respect to the Einstein metric will

nic p-brane solutions. If >1 then this also leads to a bounce carry a tilde.

of the scale factora’=0. However we still have the two  “Some authors refer to the frame where the flidimensional

disconnected branches, as defined by(E6), corresponding metric is minimally coupled to the dilaton as the Einstein frame.

to an increasing shifted dilaton, approaching a singularity orThis corresponds to a Kaluza-Klein gravity theory, which will not

the (+) branch, or a decreasing shifted dilaton, on the€) (  in general coincide with Einstein gravity in the four-dimensional

branch. external metric.
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~ 1/ 1. _ . . N
K2Tab:§ 3cgi- 920 cd) Einstein Frame scale factor a(t)
1.5
X(bohat2nBepatelo oy 23
for homogeneous fields reduces to that for a perfect fluid 1
with a stiff equation of stat¢28,29, i.e., pressure equal to
density, 0.75
~ ~ 1 0.5
p=p=72(¢'?+2np2+e*0’?). (24)
4k 0.25
_ _ - (+) (-)
The evolution equations for homogeneous fields in an 0
FRW metric are then -4 -2 0 2 4
"R Al — a2, 12 FIG. 5. The Einstein frame scale factca, plotted against
¢"+2h¢’=e"o"", (25 proper time in the Einstein frame for the dilaton-vacuum and axion-
— dilaton solutions displayed in the previous figures.
d"+2ho’'=-2¢'0’, (26)
o, inflation, actP with p>1, we have “pole inflation” with
B"+2hB’ =0, (27) p<0, and we approach a curvature singularity wéth- c
L andR~t"? ast—0.
Rr'=—2(¢'2+2n8"2+e2%0'2), (28) In the Einstein frame we see thaao .on the gt) branch
6 always corresponds to a collapsing universe vaith-0 (see
lus th traint Fig. 5. However this still fulfills one definition of inflation,
pius the constrain namely, that the comoving Hubble lengthd@/dt| =
- 1 oy s |a/a’|=2|7|) decreases with timgl0]. Thus a given co-
h®=1(¢'"+2np""+e $a'?), (29 moving scale that starts arbitrarily far within the Hubble

scale in either conformal frame aj— —oo inevitably be-
comes larger than the Hubble scale in that frameyas0.
This allows one to produce perturbations in the dilaton,

dilaton case where we allow the dilaton, axion, and/ormOdu“’ and graviton fields on scales much larger than the

- S ; i epresent Hubble scale from quantum fluctuations in flat space-
moduli fields to evolve, the expansion in the Einstein frame,. S . . ;
=, | oy ) ) ) time at earlier times, as we shall discuss in more detail later.
always obeys$’' +2h<“=0 leading to the simple solution for

In both the string frame and the Einstein frame we either
the scale factor reach a curvature singularity in a finite proper time in the
future for <O or emerge from a curvature singularity at a
finite time in the past fom>0. The only exception to this is
the axion-dilaton solutions in the string frame whes 1
(s= = /1/n) in Egs.(17)—(20) which bounce at exactly=0

The scalar field equations of motion, Eq25—(27), can  3q) However even in this case the dilaton and moduli be-
then be integrated to give the solutions presented in Edgome infinite at a finite proper time.

(17)—(20). Even in spatially curved FRW models the equa-
tions of motion remain integrabld 9] despite the apparently
nontrivial couplings between the fields, because we can

make a confqrmal tran;fo_rmatlon to the Elnsteln_frame Both the dilaton and moduli fields are minimally coupled
where all the fields are minimally coupled to .the metpc and'in the Einstein framéi.e., they have standard kinetic tenms

SO ang as they are qll homogeneous.’ their comblned' dyI'-|owever the axion’s kinetic term retains a nonminimal cou-
ang]mcal effect is no different from a single massless fleldpling to the dilaton. This can be removed by a conformal

. . . . . transformation to another conformally related metric, the
Because there is no interaction potential for the fields, the y

T H "o A2

strong energy conditionf(>0) is always satisfiefisee Eq. 00" frame,” given by gay=e™*’gay and, hence,
(24)] and the general relativistic singularity theorems must
hold. Thus we know there is no way to construct a nonsin-
gular evolution in the Einstein frame with these massless
fields. The axion field is a minimally coupled massless scalar field

In the string frame the usual general relativistic results ddn this frame and thus axionic test particles would follow
not hold. Even without an interaction potential we can obtaingeodesics with respect to this metric. Although conformally

whereh=2a'/a.
From Egs.(28) and(29) we see that in the general axion-

(30

1/2
~ _ ~ 7
a=ae %?=3, —) .

Nx

B. The axion frame

a=e??a=¢e?%a. (31)

an accelerated expansion in E4.3) for the (+) dilaton-
vacuum brancht&0) withr_<—1 (orr>1 in the axion-
dilaton solution. However unlike conventional power-law

related to the string and Einstein frames, the metric the ax-
ions “see” may behave very differently from the metrics in
the string or Einstein frames.
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In terms of conformal time, the axionic scale factor for L
the dilaton-vacuum solutions given by E@8) and(9) when =
o'=0, evolves as

7 (12)—r

yp

7

a,
2 N+

(39

(1/2)+r}

Y

)ri+(l/2) From this we can extract the proper tinte
N+

(32

:a*

(312 —r 2
3+2r

2 (312)+r

3—-2r

7
N+

o
N+

. 9—4r?
12

t
We see that the proper time in the axion frame is given by t_*
(36)

tEf adn~|ny|"=*32, (33 which, as shown above, is semi-infinite<@ / t, <=) for
r<3/2 but unbounded{ < t/t, <) for r=3/2. Equa-

so it takes an infinite proper time to reaeh=0 for r _< tions (35 and (36) give us a parametric solution for the
—3/2 (and thusns?<3/8) and the scalar curvature for the axion frame scale factor in terms of the proper time in that
axion metric,R~t ~2, vanishes as;—0. However, these frame. o
same dilaton-vacuum solutions then reagh = oo in a finite Representative examples showing the behavioa Ef)
proper time whereR diverges. Because the conformal factor for different values ofr are given in Fig. 6. Note that the
diverges ag;— 0, it stretches out the curvature singularity in scale factora has a nonzero minimum valdge., a bounck
the string metric into a nonsingular evolution in the axionwhenever>1/2. Whenr>3/2, a becomes infinite ag —
frame. But as)?=e?—0 asy— + the nonsingular evo- _c passes through a nonzero minimum value and then ex-
lution in the string frame gets compressed into a curvatur%ands indefinitely ag . In particular, if stable compac-

singularity in the axion frame. . ffication has occured so that the moduli field is fixesl (
Similar behavior has previously been noted in the case 0=0) or if D=4 (so thatn=0), thenr =3 and the axion-

black holes in the low-energy limit of string theof$1]. dilaton solution isalways nonsingular in the axion frame
Astronauts made of axionic matter falling into an axion- Y 9 '

dilaton black hole irD = 4 would take an infinite proper time When 1/2<r<3/2, a does have a bounce but is singular,
(measured by their axionic clock® fall into what appears, SINce It becomes infinitely large in a finite proper time, as

in the Einstein frame, to be the singularity. 't —0. Finally, whenr<1/2, the solutions are monotonic
In terms of the proper timé in the axion frame we have and there is a singularity whea vanishes att =0.
I B R IV. DUALITY
a=a,|=— (34
* A. Scale-factor duality

The constant axion solutions given in Eq$2)—(14) are

For r_<—3/2 we have conventional power-law inflation o ey by the scale factor duality transformatj@6,32]

(not pole inflation with a~tP with p=1+[2/(—2r_
—3)]>1. We shall see that this has important consequences 1 4 e?

for the tilt of the power spectrum of semiclassical perturba- a— a’ e — ab (37)
tions in the axion field produced on large scales.

These dilaton-vacuum solutions still have a curvature sinwhich corresponds to a change in the parameters

gularity ast —0 so the solutions still have only a semi-

infinite lifetime in the axion fram&,but for r _<—3/2 this 1 . e 3+2r.

now coincides withy— =, so the identification of thé+) & a,’ e _i ==~ 2+r. ]

and (—) branches as solutions approaching or leaving a sin-

gularity is interchanged for the_ solution in the axion in Eqgs.(12)—(14). This is a particular case of a more general

frame whenr _ < —3/2. 0O(d,d) duality [32] where the axion field remains constant.
However this implies that the axion-dilaton solutions with When we can neglect the evolution of the moduli fields

a time-dependent axion field will be nonsingular in the axion(s=0 and hence . =+ /3) this coincides withr . —r- .

frame if r>3/2. Remember that the axion-dilaton solutionsNote that this scale factor duality doset take one from the

with ¢’#0 matchr_=—r dilaton-vacuum solutions at (+) to (—) branch or vice versa. This would require a time

n—0 ontor ,=+r solutions agy|—. Thus forr>3/2, reversal.

the axion-dilaton solutions are nonsingular in the axion The pre-big-bang scenario postulates a nonsingular uni-

frame as»—0 (because—r<—3/2) and nonsingular as verse by linking the semi-infinite lifetime expanding-

(38)

n—o (becausetr>—3/2). branch,a~(— ) P, starting atp=— to the semi-infinite
The general evolution for the axion-dilaton system, Eqsexpanding ¢) branch,a~ 7P, traveling off top= + via a
(17)—(20) is given in the axion frame by E@31), so scale factor duality transformation, plus time reversal near

the singularity aty~0.
The presence of a time-dependent axion field) (the
5The case _=—3/2 is an exception as it corresponds to de Sittersolitonic ansaty breaks theO(d,d) invariance which re-
expansion witha~expH ). quires that it is the antisymmetric potentiBl;, which is
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a(t)-r=1.6

a(t) -r =16

FIG. 6. The axion frame scale facta, plotted against proper time in the axion frame for axion-dilaton cosmoldgasl lines with
three different values of, while the other constants are the same as in Fig. 1. The asymptotic dilaton-vacuum solutions =wittr
(dashed lingsandr , = +r (dot-dashed lingsare also shown. When=1.5 the semi-infinite interval iy is mapped onto an unbounded
interval for the proper time, so thet() and (—) branch solutions are displayed separately in the two top figures.

homogeneougthe elementary ansatzThe elementary an- the classical fields in the low-energy action, it represents a
satz is only compatible for a restricted class of metrics intransformation between the dilaton and axion fields which
anisotropic 4D spacetimg®0,22], or if the axion is con- leaves invariant

stant.
dS=e??drd\* =d¢p?+ e??do?. (43

B. S duality In terms of ¢ and o, or indeed\, it is not immediately
Solutions with a time-dependent axion field do respectapparent_thad_sz should remain invariant under the transfor-
the invariance of the low-energy string action under themation given in Eq(39). It is rather more transparent if we

SL(2,R) transformation:

a\+ B

A— m, (39

wherea, B, v, and § are real constants subject &5— By
=1, and\ is the complex dilaton field

A=c+ie ?. (40)

This leads to
e?— y?e ¢+ (5+ yo)2e?, (41
e?o—(B+ ao)(6+ yo)et+aye ?. (42)

In the underlying string theory this represents the modular
invariance of the complex dilatdi8], but working only with

define the matrix

e? ela
N= et e ¢+e%q?)’ (44)

which obeysNTIN=J, where

0o 1
J:(_l o)’ (45)

and thus is a member of SLE),. The particular SL(R)
transformation given in Eq.39) is given by

N—ONOT, (46)

where

) y)
0= ,
(,3 N 47
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is also a member of SL(R). Then we can writedS>  models, the uniform spatial curvature gauigd]), using the
=tr(JdNJdN/2 and, noting tha®TJ® =1, it is straightfor-  Einstein frame, so that to first order the perturbed line ele-
ward to verify thatdS’ is invariant. We will also find this ment can be written as

notation particularly convenient later to construct explicitly

S-duality invariant dilaton and axion field perturbations. d's?=a%(n){—(1+2A)d5?+ 2B ;dndx

The Lagrange density of the axion and dilaton fields in the Do
Einstein frame +[ & +hiJdxdx}, (53

- 1 ~ whereA and B are the scalar metric perturbatiofia the

(Vo)?— §e2¢(VU)2 (48 notation of Ref.[35]) and h;; represents a transverse and
traceless tensor perturbation. Linear perturbations about the

is S-duality invariant and, because the dilaton and axion arddomogeneous background fields can be decomposed as a

minimally coupled to the other fields in the Einstein frame,sum of Fourier modes with comoving wave numkeand in

the evolution of the moduli field3, and scale factora, are fthe_case of_the tensor _perturbations two independent polar-

unaffected by theS-duality transformation. However the izations which evolve independently of other wave num-

scale factor in the original string frame must transform and®€rs

will not remain invariant under a nontrivial transformation.

1
~ ZUQV,NIVEN) =~

N| -

If we choosey/ 6= —1/o, , wheno= o, =const, the so- A. Scalar metric perturbations
lutions given in Eqs(8)—(10) are mapped by the transforma-  The advantage of splitting the metric perturbations into
tion in Eq. (39 to scalar and tensor parts is that the scalar and tensor modes
e’ y2e 9, (49) evolve independently to first order with only the scalar per-

turbations being coupled to scalar field fluctuatip®s]. In
the spatially flat gauge we have the added simplification that

o— E, (500  the evolution equations for linear perturbations about homo-

Y geneous scalar fields are decoupled from the metric pertur-

_ bations, although they are still related by a constraint equa-
a—ye %a, 51 fion.

which leaveso constant. In particular, foy?=1 we have The field equations for the linearized scalar perturbations

¢— — ¢ and hence this is a transformation between strongElre
and weak coupling. The form of the solutions given in Egs.

" Y ’ 2 —9a2¢ 12 2¢ 1 ’
(8)—(10) are unchanged, but the parameters 0¢"+2ho¢" +k*0¢p=2e""0""0¢+2e 0" 50",

(54)
et e %, a,—e %a,, r.—r-. (52 ~

80"+ 2héc’ +k?60=—2(a' 6¢'+ @' 6a'), (55
Comparing with Eq(38), we find that in the particular case

whenns?=0, and hence .. = = /3, this coincides with the SB"+2hsp +k?88=0, (56)
scale factor duality given in Eq37).
The more generas-duality transformations 0é? and o A+ 2hA +k?A=0, (57)

given in Egs.(41) and (42) can be shown to relate the
dilaton-vacuum cosmologies, given in E¢8)—(10), to the  plus the constraints
more general axion-dilaton cosmologies with a time-

dependent axion field, given in Eqe.7)—(20), with a fixed A=—(B'+2hB) (58)
value ofr=|r.|. Thus theS-duality transformation allows

one to generate the general axion-dilaton solutions with a &’ 026 ng’

given value ofr starting from only with the dilaton-vacuum =—=06¢p+—=56c+—=95pB.
solution withr , = *r. 4h 4h h

(59

V. LINEAR PERTURBATIONS Note that the scalar metric perturbations are not invariant

Thus far we have considered On|y homogeneous C|assic§|nder a conformal transformation. Even the Spatlally flat na-
solutions to the equations of motion. In the next section weure of the line element in E453) is not preserved under a
will consider inhomogeneous perturbations that may be gerponformal transformation back to the String frame due to the
erated due to vacuum fluctuations. In order to follow theirfirst-order perturbation in the conformal factef=e?o(1
evolution we will set up in this section the formalism re- +J¢). However the tensor perturbation remains invariant
quired to describe linear perturbations about the homogeu.nder both conformal transformations and gauge transforma-
neous background metric. tions 7— n+ 67.

We shall consider perturbations of the four-dimensional The evolution equation for the scalar metric perturbations,
metric in the spatially flat gaufeor in more general FRW Ed. (57), is independent of the evolution of the different

scalar fields and is dependent only on the evolution of the
Einstein frame scale facta@(7) given by Eq.(30). This in
bCalled the “off-diagonal gauge” in Ref33]. turn is determined solely by the stiff fluid equation of state
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for the homogeneous fields in the Einstein frame, regardledsecause in the full low-energy string effective action there
of the time dependence of the axion field. Equaiip® can  will be many fields present which can lead to nonadiabatic

be integrated to give the general solution perturbations. We must be aware of the fact that density
_ perturbations at late times may not be simply related to
A=[A HM(—kn)+A_HP (—kn)], (600 alone, but may also be dependent upon fluctuations in other

fields. One such field is the axion field, and we shall see that
where H(V(2)=J,(2)+iY ,(2) and H®=J,(2)~iY,(2) it may have a markedly different spectrum frgm
are Hankel functions of the first and second kind. Using the The scalar field perturbations themselves transform under
recurrence relation between Bessel functions, we obtain frothe gauge transformationp— 5+ 87 giving 8x— 6x

Egs.(58) and(60) —x' 7. Thus the scalar field perturbations in the longitudi-
1 nal gauge §x,) are related to those in the spatially flat gauge
B= E[A+H(11)(_k77)+AfH(12)(_ kn)]. (61 (&%) under the gauge transformation in £@4) as
Our scalar metric perturbations can be written in terms of SX— 8% = SX+X' 3 (68)
the gauge-invariant metric potentid35,36| h
A : .
A=+ T+ | = (62) B. Tensor metric perturbations
h Fortunately, the gravitational wave perturbatidns are
~ both gauge and conformally invariant. They decouple from
B=_ E 63) the scalar perturbations in the Einstein frame to give a simple
h evolution equation for each Fourier mode
Note that the gauge transformation Kt 2hh, +k?h,=0. (69
7 The growing mode in the long wavelengtfk | —0) limit
U = (64 s h~In|ky|. (We have not considered gravitational waves

propagating in tha internal dimensions. See R¢87].) The
brings the metric of Eq(53) into the more commonly used spectrum depends soIeI_y on _the dynamic_s of the scale factor
longitudinal gaugd36] where in the_Emsteln frame given in Ed30), .WhICh as we have
seen is the same regardless of the time dependence of the
ds?2—a%(p){—(1+2®)d7n>+[(1—2T) &+ h;;]dx dx}. moduli or axion fields. It leads to a spectrum of primordial
(65) gravitational waves steeply growing on short scales, with a
spectral indexnt=3 [9,33]. This is in contrast to conven-
The curvature perturbation on uniform energy density hy-ional inflation models which requine;<0 [38]. The gravi-
persurfacegaskz— 0) is commonly denoted by [36] and  ton spectrum appears to be a robust and distinctive prediction
is given by of any pre-big-bang type evolution based upon the low-order
_ string effective action. This has been discussed extensively
hz = 1=, elsewherg9,33,39, so we now turn to discuss in more detail
R _’ﬁz(qH' h==®7), 66 the spectra corresponding to scalar perturbations.

(=0-

and hence witfh given by Eq.(30) for the scale factor in the VI. PRE-BIG-BANG SPECTRA

Einstein frame, we have While the solutions for the homogeneous dilaton, axion,

and scale factor in the different frames may lead to interest-
, (67) ing behavior in the early universe, the success of the standard
big-bang model suggests that the evolution should closely
approach the conventional general relativistic evolution at
least by the time of nucleosynthesis. If we are to see any
ace of the earlier evolution it will be in the primordial spec-
m of inhomogeneities present on large scales that we ob-

in any dilaton-vacuum or axion-dilaton cosmology.
{ is a particularly useful quantity to calculate as it be-
comes constant on scales much larger than the Hubble sc

(Ikn|<1) for purely adiabatic perturbations, even throughserve today. Such a large-scale structure can only be gener-

changes ?n the equation of state. In single-field infl"?‘ﬂonated by some unconventional physics, such as inflation,
modgls this aII(_)ws one to compute t_he_ den3|ty_perturbat|on %pological defects, or a pre-big-bang epoch. During a period
late times, during the matt(irBr radiation dominated eras, by)f accelerated expansion the comoving Hubble length
equatingl at “reentry” (k= aH) with that at horizon cross- Cia/a’| decreases and vacuum fluctuations which are assumed
ing during inflation. Thus previous studies have calculateqo start in the flat-spacetime vacuum state may be stretched
the spectrum oA\, and hence, in order to predict the den- up to exponentially large scales. The precise form of the
sity perturbations induced in the pre-big-bang scenarispectrum depends on the expansion of the homogeneous
[33,34]. However, the situation is not really so straightfor- background and the couplings between the fields.

ward in the pre-big-bang scenario as in single-field inflation, We have seen that the comoving Hubble length does in-
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deed decrease in the Einstein frame during the contractingfter inserting the simple solution for the Einstein frame
phase whenp<0. Because the dilaton, moduli fields and scale factor given in Eqg30) we find that these equations

graviton are minimally coupled to this metric, this ensuresgive the general solutions
that small-scale vacuum fluctuations will eventually be

stretched beyond the comoving Hubble scale during this ep- u=|ky|*u, H (kg +u_HP (|k5))], (78
och.
The production of scalar and tensor metric perturbations w=kg|Yw, HY (k7)) +w_HP (|k7])]. (79

in the pre-big-bang scenario has been studied by various au-

thors(see, for exampld33,34]). As we remarked earlier, the On the (+) branch, i.e., whery<<0, we can normalize

axion field is taken to be a constant in these solutions. Howmodes at early timesy— —o0, where all the modes are far

ever, while a constant axion field may be a consistent parinside the Hubble scalé&>|7| %, and can be assumed to be

ticular solution when describing the background classicaln a flat-spacetime vacuufmlust as in conventional inflation,

field, one cannot necessarily neglect quantum fluctuations ithis produces perturbations on scales far outside the horizon,

this field. In this section we will consider the production of k<|7| "%, at late times»—0.

axions during a pre-big-bang type evolutigvhere the back- Conversely, the solution for the<) branch withn>0 is

ground axion field is constanand then go on to discuss the dependent upon the initial state of modes far outside the

perturbation spectrum in the more general case witk 0.  horizon,k<|7| ™%, at early times wherg— 0. The role of a

We will also analyze the behavior of these cosmologicalperiod of inflation, or of the pre-big-bang+() branch, is

vacuum states to first order undgduality transformations. precisely to set up this initial state which otherwise appears
First of all, let us consider the perturbation spectra pro-as a mysterious initial condition in the conventiog@abnin-

duced when the background axion field remains constanflationary) big-bang model.

o’ =0. The evolution of the homogeneous background fields Allowing only positive frequency modes in the flat-

is given in Egs.(8)—(10) and the dilaton and moduli fields spacetime vacuum state at early times for the pre-big-bang

both evolve as minimally coupled massless fields in the Ein{+) branch require$41] that, asknp— —,

stein frame. In particular, the dilaton perturbations are decou-

pled from the axion perturbations and the equations of mo- e k7
tion in the spatially flat gauge, Eq&4)—(56), become u— 2K (80)
” g ’ 2 —
6¢"+2h5¢" +k"64=0, (70) and similarly forw, giving
So"+2hda’ +k260=—2¢' 5a”’, (71 N
u+=w+=e'”’42—\/E, u_=w_=0. (81)
5B"+2héB’ +k?8B=0, (72
olus we have the constraint, EGS), nog&ebsower spectrum for perturbations is commonly de-
= ¢, n,B’ k3

A. Dilaton and moduli perturbations and thus for modes far outside the horizémy(~0) we have

From Eq.(73) we see that, to first order, the metric per- 4 5 5
turbationA is determined solely by the dilaton and moduli Psp— axHA(=kn)TIn(=kn)]%, (83
field perturbations. The canonically normalized field pertur-
bations arg40,33,37 2
Psg— —3x*H*(—kn)°[In(—kn)1?, (84)
1 _ n
=-—ad¢, (74 o
2k whereH=a’/a? is the Hubble rate in the Einstein frame,
and recalln is the number of compact dimensions. The am-
Jn_ plitude of the perturbations grows towards small scales, but
= 7a5,8, (79) only becomes large for modes outside the horizon

. _ (|kn|<1) when k*H?~1, i.e., the Planck scale in the Ein-
which, from Egs.(70) and(72), obey the wave equations  stein frame. The spectral tilt of the perturbation spectra is

_ given by
al!
u’ + k2_ T)UZO, (76)
a
"It is interesting to note that in conventional inflation we have to
3 assume that this result for a quantum field in a classical background
w'+| k?— —|w=0. (77) holds at the Planck scale. Here, however, the normalization is done
a in the zero-curvature limit in the infinite past.
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dInPs, In this section we are considering the axion spectrum in

dink (85  the pre-big-bang scenario where the background axion field
is constant. As a result density perturbations are only second
order in the axion perturbation and so we can neglect the

which from Egs.(83) and(84) givesn,=nsz=4 (where we  Dbackreaction from the metric to linear order. The field per-

neglect the logarithmic dependence turbation 5o is gauge invariant when’ =0 [see Eq.(68)]

We need also to compute the amplitude of the scalar metand in any gauge, the axion perturbation obeys the decoupled
ric perturbations, to check the validity of our linear pertur- wave equation given in E¢71) which can be rewritten in
bation analysis. Normalizing the amplitude of the spectrumerms ofv as

for the metric perturbatiod in Eq. (60) from the constraint

n,—1=

Eqg. (59), using Egs.(9) and (10) for the background fields vyl 2 a” o -
and Eqgs.(83) and(84) for their perturbations, we have viE| KT a v=>y. (88)
3 As we have just mentioned, whereas the dilaton and moduli
Pa=—3c?H?(—kn)*[In(—kn)1?. (86)  evolve as massless minimally coupled fields in the Einstein
v

frame, the axion is minimally coupled in the axion frame,
whose evolution given in Eq32) is significantly different.
(Remember that we are adding independent random varln fact, substituting Eq(32) in Eq. (88) we have
ables. The 3 comes fronf +2ns>=3.) Note that this spec- _ 1 1) )
trum of scalar metric perturbations in entirely independent of v=Ikn|" v HV (kgD +v_HZ(|kn))], (89
the integration constants that parameterize the solutio
given in Egs.(9) and(10). The scalar spectrum, just like the
spectrum _of tensor pertqrbaﬂons, is a rqbust prediction Ofimes as—kz— on the (+) branch, as in Eq80), which
any pre-big-bang scenario where the universe collapses i ves
the Einstein frame, and becomes dominated by homogeneous

NFhere we have used=|r.|. Once again, we can only nor-
alize this using the flat spacetime vacuum state at early

scalar fields. _ Jr
Just like the field perturbations, the scalar metric pertur- =gl —_—_ = 3 =0, (90)
bations have a steep blue spectruma=4, which becomes 2\k

large on superhorizon scal@isn|<1 only near the Planck
scale,x®?H%~ 1. Note that Bardeen’s gauge-invariant pertur-
bations® and ¥, defined in Eqs(62) and (63), actually oz e ]| i(2r+1)7,4\/—k77H(1) v o1
become large much earligB3], but the fact that the pertur- o=k 2—e 2 " (—kn). 91
bations remain small in our choice of gauge implies that our
linear calculation is in fact valid up until the Planck epoch At late times, as—k#—0, we find
[33].

Unfortunately this leaves us with such a steeply tilted o[ C(r))?k? 1o
spectrum of metric perturbations that there would be effec- e ?(—kﬂ) : (92
tively no primordial metric perturbations on largsuperga-
lactic) scales in our present universe if the post-big-bang erg;nere the numerical coefficient
began close to the Planck scale. The metric fluctuations are

and hence we have

of order unity on the Planck scale (1% cm) when T 2'T(r)
~10% K in the standard post-big-bang model. This corre- C(=33 T(302) (93

sponds to a comoving scale of about 0.1 cm to@alyenT
=2.7 K), about 10%° times the scale of perturbations ob- approaches unity for=3/2.
served on the microwave background sky. Thus the micro- The expression for the axion power spectrum can be writ-

wave background temperature anisotropies should be of oten in terms of the field perturbation when each mode crosses
der 10 8" rather than the observed 10 However, it turns  outside the horizon
out that the presence of the axion field could provide an

alternative spectrum of perturbations more suitable as a ) C(r) 1? |-|_C 2
- =2k ——| | = 4
source of large-scale structure. Psg,.=2kK 12| \2a) (94
B. Axion perturbations whereH_, is the Hubble rate whek | = 1. This is the power

. . - spectrum for a massless scalar field during power-law infla-
While the dilaton and moduli fields evolve as massless

minimally coupled fields in the Einstein frame, the axion
evolves as a massless minimally coupled field in the axion g, .. 3 2_3 andr=

. . . . 0 the dilaton remains constant and the
frame and the canonically normalized field perturbation is

axion frame and Einstein frame coincide, up to a constant factor.
1 Thus the axion spectrum behaves like that for the dilaton and
—— _ado. (87)  moduli fields and the late time evolution in this case is that loga-
\/EK rithmic with respect to—k#, as given in Eqs(83) and (84).

v
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tion which approaches the famous resuTP(;gIZKZ chances of obtaining analytic solutions might appear to be
=(HJ2m)? asr_——3/2, and the expansion in the axion remote. However, we can exploit tH&duality symmetry

frame becomes exponentfal. which relates the general axion-dilaton cosmologies to the
More importantly, the spectral index much simpler dilaton-vacuum cosmologies in order to find

’ linear combinations of the axion and dilaton perturbations
n,=4—2r=4—2.3-2ns (95) which remain straightforward to integrate even in the more

general case.

depends crucially upon the value of|r.|. The spectrum We define two news-duality invariant variables:

becomes the classic scale-invariant Harrison-Zel'dovich &' o

spectrum as— 3/2. The lowest possible value of the spectral XEe¢( L So— — 5¢) , (96)
tilt n,, is 4—2/3=0.54 which is obtained when stable com- h h

pactification has occurred and the moduli figddis fixed.

The more rapidly the internal dimensions evolve, the steeper

the resulting axion spectrum until fon2>=3 andr=0 we y
haven,=4 like the dilaton and moduli spectra. Note that the

condition for a negatively tilted spectrum coincides exactly|n terms ofx andy the perturbation equations decouple and
with the requirement for conventional power-law inflation, the field equation$54) and (55) then become

rather than pole inflation, in the axion frame.

e?tqg’
S+ —=— 0. 97)

:‘l|@:

Of course, when the background axion field is constant X"+ 2hx' +[k?—(¢'2+€*?0'?)]x=0, (98)
these perturbations, unlike the dilaton or moduli perturba-
tions, do not affect the scalar metric perturbatidires., these y"+2hy’ +k%y=0. (99
are isocurvature perturbationdHowever, if the axion field
does affect the energy density at late tinffes instance, by It is far from obvious on first inspection that these vari-

the axion field acquiring a masthen the spectrum of den- ables should be invariant under tBeduality transformation
sity perturbations need not have a steeply tilted blue spedgiven in Eq.(39). However written in terms of the matrix
trum like the dilaton perturbations, but rather could have a\ defined in Eq.(44) we have

nearly scale-invariant spectrum as required for large-scale _

structure formatiori38]. 2hx=—tr(JNJN' JSN), (100

VIl. PERTURBATION SPECTRA IN GENERAL AXION- 2hy=tr(IN'J8N), (101

DILATON COSMOLOGIES and we can see that these variables are the unique

When we allow the background homogeneous axion fields-duality invariant linear combinations of the axion and di-
to be time dependent we must allow for the interaction belaton perturbations. They reduce to tf@ecoupled axion
tween the dilaton and axion field and the metric to first orderand dilaton perturbations in the pure dilaton-vacuum back-

In fact we have seen that in the spatially flat gauge theground, ass’—0, where we have
evolution equations for both the scalar and tensor metric per-
turbationg Eqgs.(57) and(69)] are independent of the evolu-
tion of the different scalar fields and are determined solely by
the evolution of the Einstein scale factor given in E80).
Because the moduli field perturbations remain decoupled &’
from both the axion and dilaton, their evolution equation, Eq. y— —8¢p=2r.5¢. (103
(72), is also unaffected. Thus the spectral tilts of the scalar h
and tensor metric perturbations and the moduli spectrum, Eckl . o .

(84), remain the same as in the pre-big-bang scenario. _ ote_thatx is not .only S-duality invariant, but also gauge

We can understand this in terms of tBeluality transfor- ~ invariant. That is, it does not maitter w_hlch gauge we choose
mations that relate the general axion-dilaton solutions to thé&® calculateéo and 5¢, the combination which defines
dilaton-vacuum solutions. These transformations leave thE8Mains unchanged. It is proportional to the axion perturba-
Einstein frame metric and moduli field invariant and thus notion  on  uniform-dilaton  hypersurfaces, do|,= o
only the homogeneous fields, but also their perturbations, are o' (6¢/¢"). By symmetry, it is also proportional to the
identical inS-duality related cosmologies. However the dila- dilaton perturbation on constant axion hypersurfaces, though
ton and axion fields and their perturbations will in general bethis perturbation diverges in the limit that the background

affected byS-duality transformations. axion field becomes constant. _
Having found S-duality-invariant variables, one can

verify that the evolution equations for these variables, Egs.
(98) and (99) are themselves invariant und8rduality. Re-
The dilaton and axion perturbation field equaticis€) membering that the general axion-dilaton cosmological solu-
and(55) become coupled to first order wheri #0, and the tions can always be related to the dilaton-vacuum solutions
by an S-duality transform, we see that the evolution equa-
tions forx andy in an arbitrary axion-dilaton cosmology are
9The factor 2?2 arises due to our dimensionless definitioncof ~ exactly the same as those for the axion and dilaton perturba-

!

X— %ed’&)': 2r.e?so, (102

A. Axion and dilaton perturbations
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tions in the dilaton-vacuum case. Just as in the constant axs identical to that given in Eqgs(83) and (92) for the
ion case, we can define canonically normalized variables: S-duality related dilaton-vacuum case. The tilt and amplitude

of the spectra are determined solely by the parameter
1 - =|r.| and are insensitive to the specific time dependence of

u= 2r\/§f<ay’ (104 the axion field in different, bus-duality related, solutions.
The constraint equation fok, Eq. (59), includes onlyy
1 _ and 6B;
v=——aXx, (105
2rv2x A L ne 5B (112
=—-y+—=0p.
27" 5h

which coincide with the definitions given in Eq&/4) and
(87) in the dilaton-vacuum case. In general,obeys the
S-duality-invariant equation of motion given in E/6) and
whose general solution is given by E@8). The equation of
motion for v given in Eq.(88), however, is not invariant
under an S-duality transformation. Instead the
S-duality-invariant version of the equation of motion is

From Eqgs.(107) and(84) we see that the spectrum of scalar
metric perturbations is unaffected by the time dependence of
the axion field and is the same as that obtained in the con-
stant axion case, given in E¢86).

VIIl. DISCUSSION

(106) .The Iow—en_ergy limit of string theory, avi theqry, con-
tains many different degrees of freedom. In this paper we
_ o ) , have considered a very simple model containing onlp a
which coincides with Eq(88) wheno' =0. The general S0-  _ 4 gpatially flat FRW metric with a dilaton, a single mass-
lution for v is thus still given by Eq(89). less modulus fieldrepresenting the volume af internal
~ We can still normalize cosmological vacuum perturba-gimensions and a pseudoscalar axion field derived from the
tions at early times on thek() branch asy— —c because Neyey-Schwarz antisymmetric tensor potential. The axion-
we have seen that in this limit the general axion-dilaton soyjjaton solutions can be generated from the dilaton-vacuum
lution given in Eqs.(17)—(20) approach the constant axion gq|,tions by ars-duality transformation. They generalize the

solutions withr . =+r. Thus the constants.. andv. are  ,,yer |aw dilaton-vacuum solutions in a particularly simple

given by Eqs.(81) and (90). By picking S-duality-invariant 5y~ interpolating between two asymptotically dilaton-

field perturbations we have been able to calculate the genergl . ,um regimes, which are themselves related by an

axion-dilaton cosmological perturbation spectra using th%duality transforr’nation.

pure dilaton-vacuum cosmological vacuum states. We have  ajthough the general axion-dilaton solutions do not alter
162 the singular nature of the cosmological solutions in the string

Py— — k?H3(—k7)%[In(—kn) 1%, (107  or Einstein frame, we draw attention to the fact that the evo-

™ lution in the conformally related axion fram@ which the

, =14
U”+ k - 772 U:0,

) : , L axion is minimally coupleflcan become nonsingular when
and the generalized axion perturbation spectrum is given by, avion field is allowed to be time dependent. The world
212 lines of axionic observers can have an infinite proper lifetime
ir)) k_(_ kzp)L=2r (108 in this frame. There is no graceful exit1] from the pre-big-
27 | 2 K ' bang (+) branch to the post-big-bang-() branch, but the
(+) or (=) branches themselves can have an infinite proper
To recover the actudthough gauge an8-duality depen- lifetime.

P,—8r2x?

deny axion and dilaton perturbations we can invert E§$) The shrinking comoving Hubble length during a pre-big-
and(97) to give bang era generates a spectrum of perturbations about the ho-
mogeneous background fields from quantum fluctuations.
e ? ¢ eto’ We have calculated the spectrum of large-scale perturbations
do= ar2 fX”LTy ' (109 produced in the axion field. The axion spectral index can lie
anywhere in the range 0.54 to 4, which includes the possi-
, b bility of the nearly scale-invarianin(~1) spectrum required
Sp= i(‘i g ) for structure formation. This is in contrast to the dilaton and
5| =y——=—X (110 X X . .
4r°\ | h moduli perturbations which have a steep blue spectrum with

an index ofn=4, making them incapable of seeding large-
However, at late times on theH) branch, asp—0 the scale structure in our present universe. The actual value of
general axion-dilaton solutions approach dilaton-vacuum sothe axion spectral index depends on the rate of expansion of

lutions with r_=-—r, and hence d¢p—y/2r_ and the internal dimensions. If stable compactification has al-
So—e~ ?x/2r _. Note that the change of sign from, = ready occured, leading to an effective four-dimensional
+r to r_=—r between the early- and late-time dilaton- spacetime, the spectral indexris=0.54.

vacuum solutions leads to a phase shift with respect to In the simplest case where the background axion field is

the late-time behavior of the pure dilaton-vacuum solutionsconstant, the axion perturbations are isocurvature perturba-
But the final power spectrum for the dilaton and axion per-tions during the pre-big-bang epoch. Whether these axion
turbations asy— 0 in the general axion-dilaton cosmologies perturbations are able to seed large-scale structure in the
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post-big-bang universe depends crucially on the coupling being a graceful exit from the pre-big-bang era, it is worth
tween the axion and the matter which dominates the universeoting a couple of advantages that the pre-big-bang predic-
today. Nonetheless, it is intriguing that, in principle, the ax-tions have over conventiongbotential-dominatedinflation
ion could give rise to a nearly scale-invariant spectrum angnodels. First, the perturbations originate as vacuum fluctua-
that the tilt of that spectrum is dependent on the compactifitions at early times, where their amplitude is normalized in a
cation of the internal dimensions. low-curvature, weakly coupled regime in the infinite past,
We have seen tha duality is a powerful tool for calcu-  ang not at arbitrarily small scales during the Planck epoch
lating not only the classical background solutions in generajyhen the correct vacuum state may be uncertain. Second,
axion-dilaton cosmologies but also the semiclassical perturgpe can give analytic expressions for the asymptotic pertur-
bation spectra. By constructing explicitBrduality- invariant  pations on large scales without having to invoke any slow-
field perturbations we are able to calculate the perturbatiog||-type approximations as must usually be done in conven-
spectra in the more general axion-dilaton cosmologies agonal inflation models. This is possible not only in the

well as the dilaton-vacuum case. It is not surprising that bysresence of the dilaton alone, but also when one incorporates
taking S-duality-invariant field perturbations we can derive the moduli and axion fields.

S-duality-invariant solutions. More remarkably, however, the

late-time dilaton and axion spectra turn out to be independent
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