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We study axion-dilaton cosmologies derived from the low-energy string effective action. We present the
classical homogeneous Friedmann-Robertson-Walker solutions and derive the semiclassical perturbation spec-
tra in the dilaton, axion, and moduli fields in the pre-big-bang scenario. By constructing the unique
S-duality-invariant field perturbations for the axion and dilaton fields we deriveS-duality-invariant solutions,
valid when the axion field is time dependent as well as in a dilaton-vacuum cosmology. Whereas the dilaton
and moduli fields have steep blue perturbation spectra~with spectral indexn54) we find that the axion
spectrum depends upon the expansion rate of the internal dimensions (0.54,n<4) which allows scale-
invariant (n51) spectra. We note that forn<1 the metric is nonsingular in the conformal frame in which the
axion is minimally coupled.@S0556-2821~97!00514-6#

PACS number~s!: 04.50.1h, 98.80.Cq

I. INTRODUCTION

The dramatic progress that has been claimed in under-
standing black holes in the context of string theory@1,2# in
the past year focuses attention upon the implications that
strings might have for cosmology. The early universe pro-
vides a natural arena in which to seek observational evidence
for string theory as a fundamental theory. General relativity
describes all currently observed gravitational physics with
remarkable accuracy@3#, but its description of the very early
universe is expected to break down near the Planck scale,
and possibly at lower energies as well.

Most investigations of the cosmological consequences of
string theory have focused on the role of the dilaton field
w, which provides a varying effective gravitational constant.
In the absence of other matter, the low-energy action@4#
leads to an effective theory of gravity of the form proposed
by Brans and Dicke@5#. Although the predicted value of the
Brans-Dicke parameterv521 is incompatible with present
day post-Newtonian tests@3#, it may be that loop corrections
yield an experimentally acceptable general relativistic limit
@6,7#, or that the dilaton’s present day value may be fixed by
it acquiring a mass~for a detailed list of references see@8#!.

The pre-big-bang scenario@9# is a specific example of a
cosmological model based on string theory which differs
radically from that predicted by general relativity because of
the presence of the dilaton field. The weakly coupled, ex-
panding, ‘‘pre-big-bang’’ solutions have many similarities
with conventional inflation models@10#, most notably the
approach to flatness and homogeneity on large scales by
stretching the quantum vacuum state on small scales up to
large ~superhorizon! scales. Solutions derived from the low-
energy effective action run into a ‘‘big bang’’ singularity

@11–13# but the hope is that in the full string theory, includ-
ing higher-order terms, the pre-big-bang solution may be
smoothly connected to a solution describing an expanding,
‘‘post-big-bang’’ universe@14,15# and, ultimately, general
relativistic evolution.

Our intention in this paper is to draw attention to the
crucial role that the antisymmetric tensor field,Habc
[]@aBbc# , may have in cosmological scenarios based on the
low-energy limit of the superstring action. An antisymmetric
tensor inevitably appears, along with the graviton and dila-
ton, in the Neveu-Schwarz bosonic sector of the low-energy
string effective action:
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1

2kD
2 E dDxA2gDe

2wHRD1~¹w!22
1

12
H2J , ~1!

wherekD
2[8pGD , andGD is Newton’s constant inD di-

mensions. Previous studies@16–25# have considered the
classical evolution of the antisymmetric tensor field in
simple cosmologies. The role of the additional tensor fields
derived from the Ramond-Ramond sector of type-IIA and
type-IIB string theory has recently been considered in
@23,25#. In this paper we calculate the spectrum of perturba-
tions about the classical background field that may be pro-
duced due to vacuum fluctuations in the antisymmetric ten-
sor field.

We will consider spacetimes which contain a four-
dimensional homogeneous and isotropic external metric. In
four spacetime dimensions the antisymmetric tensor field has
only one degree of freedom which may be represented by a
pseudoscalar axion field,s. For a homogeneous and isotro-
pic metric we must have a homogeneous axion field,s
5s(t). This has been referred to as the solitonic anstaz due
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to the close connection with solitonicp-brane solutions@23#.
An alternative ansatz, analogous to elementaryp-brane solu-
tions @23#, taking the tensor potentialBmn(t) to be time de-
pendent leads to an inhomogeneous axion field and hence
will be incompatible with aD54 Friedmann-Robertson-
Walker ~FRW! cosmology@20#.

In Sec. II we review the classical evolution of FRW cos-
mologies both with and without an evolving axion, stressing
the important role of the axion when the scale factor in the
string frame becomes small. Incorporating the evolution of
the axion leads to a cosmology that is very different from the
classical pre-big-bang scenario where the axion field is fixed.
We explore the differences between the cosmological evolu-
tion as seen in different conformally related metrics in Sec.
III, drawing attention to the evolution in the axion frame
~where the axion field is minimally coupled!. Specifically,
we find that the singular evolution of the metric in the string
frame can be nonsingular in the axion frame. These axion-
dilaton solutions of the low-energy action can be related by a
duality transformation which reduces to a scale factor duality
in the absence of the axion field, as described in Sec. IV.

In Sec. V we set out our formalism for describing inho-
mogeneous linear perturbations about the homogeneous and
isotropic four-dimensional~4D! background solutions. Even
when the background axion field is set to zero, there will
inevitably be quantum fluctuations in the field. In Sec. VI we
calculate the spectrum of semiclassical axion perturbations
as well as dilaton and moduli perturbation spectra produced
in the pre-big-bang scenario. In Sec. VII we extend this cal-
culation to more general axion-dilaton cosmologies by con-
structingS-duality-invariant combinations of the field pertur-
bations that enable us to deriveS-duality-invariant solutions.
Moreover we demonstrate that the late-time dilaton and ax-
ion spectra turn out to be independent of the preceding evo-
lution along different butS-duality related classical solu-
tions. Importantly, the tilt of the axion spectrum can be
significantly different from the steep ‘‘blue’’ spectra of dila-
tons and gravitons predicted by the pre-big-bang scenario.

II. CLASSICAL AXION-DILATON COSMOLOGY

Here we consider cosmological solutions derived from the
low-energy string action where we take the full
D-dimensional spacetime to have a metric of the form

dsD
2 52dt21gi j dx

idxj1g IJdX
IdXJ. ~2!

i , j run from 1 to 3, andI , J run from 1 ton5D24. We
will allow for the variation of then compactified dimensions
by including a single modulus field, exp(nb), proportional to
the volume of this internal space, but neglect any curvature
or anisotropy so thatg IJ5e2bd IJ .

The effective dilaton in the four-dimensional external
spacetime is then

f[w2nb, ~3!

and the antisymmetric tensor field in four dimensions can be
written in terms of the pseudoscalar axion fields as

Habc[efeabcd¹ds, ~4!

where eabcd is the covariant antisymmetric four-form such
that¹ee

abcd50.
The low-energy string effective action, given in Eq.~1!,

then becomes

S5
1

2k2E d4xA2ge2fHR1~¹f!22n~¹b!2

2
1

2
e2f~¹s!2J , ~5!

where k2[8p/MPl
2 determines the effective value of the

Planck mass whenf50, andR is the Ricci scalar of the
four-dimensional external spacetime.

We assume the external four-dimensional spacetime is de-
scribed by a flat FRW metric with the line element

ds25a2~h!$2dh21d i j dx
idxj%, ~6!

wherea(h) is the scale factor. In addition, FRW solutions
with nonzero spatial curvature can also be found@19#. To be
compatible with a homogeneous and isotropic metric, all the
fields must be homogeneous and the action then reduces to
~up to a total derivative!

S5
1

2k2E d3xE dhe2fH 26a8216aa8f82a2f82

1na2b821
1

2
e2fa2s82J . ~7!

We refer to models with a constant axion field (s850) as
dilaton-vacuumsolutions. These are the well-known mono-
tonic power-law solutions1

ef5ef
*U h

h*
U r6

, ~8!

a5a* U h

h*
U~11r6!/2

, ~9!

eb5eb
*U h

h*
Us, ~10!

where the integration constantsr ands determine the rate of
change of the effective dilaton and internal volume, respec-
tively. Note that there is a constraint equation2 which re-
quires

r656A322ns2. ~11!

The dilaton-vacuum solutions are shown in Figs. 1–3.
If stable compactification has occurred and the volume of the
internal spaces is fixed (s50, or D54) we have r6

56A3.

1We shall not consider here the trivial flat spacetime solutionf8
5b85a850.
2See Eq.~29! in the next section.
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These dilaton-vacuum solutions can be expressed in terms
of the proper time,t[*adh, giving

ef5ef
*U tt* U

2r6 /~31r6!

, ~12!

a5a* U tt* U
~11r6!/~31r6!

, ~13!

eb5eb
*U tt* U

2s/~31r6!

. ~14!

All these solutions have semi-infinite proper lifetimes. Those
starting from a singularity att50 for t>0, are denoted the
(2) branch in Ref.@11#, while those which approach a sin-
gularity at t50 for t<0 are referred to as the (1) branch.

Our choice of origin for the time coordinate is arbitrary. A
more fundamental definition of the (1/2) branches may be
given by considering the evolution of the shifted dilaton
@26,17,13#

f̄[f23 ln~a!. ~15!

Its time derivative,

f̄852
31r6

2h
, ~16!

is always positive on the (1) branch~or h,0) due to the
constraint on the value ofr6 @Eq. ~11!#, and always negative
on the (2) branch~or h.0).

These (1/2) branches donot refer to the choice of sign
for r6 in Eq. ~11!. On either the (1) or (2) branches of the
dilaton-vacuum cosmologies we still have two distinct solu-
tions corresponding to the choice of the exponentr1 or
r2 , which determines whetherf goes to negative or posi-
tive infinity, respectively, ash→0.

The generalization of Eqs.~8!–~10! to the more general
axion-dilaton cosmology wheres8Þ0 is particularly simple
@19#:

FIG. 1. The string frame scale factor for the axion-dilaton solu-
tion ~solid line! given in Eq. ~18!. It approaches ther252r
dilaton-vacuum solution given in Eq.~9! ~dashed line! ash→0 and
the r151r dilaton-vacuum solution ~dot-dashed line! as
h→6`. The (1) and (2) branches are also labeled. The specific
parameters for the axion-dilaton solution area*51, r51.2, and
h*52.

FIG. 2. The dilaton,f, with f*50 and the same notation and
parameter values as in Fig. 1. The axion-dilaton solution@Eq. ~17!#
approaches ther2 dilaton-vacuum solution@Eq. ~8!# at small uhu
and ther1 solution at largeuhu.

FIG. 3. The modulus,b, with n56 and the same parameter
values as in Fig. 1 ands5A13/10. The evolution is the same, for
both the dilaton-vacuum in Eq.~10! and axion-dilaton solutions in
Eq. ~19!.
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eb5eb
*U h

h*
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s5s*6e2f
* H uh/h* u2r2uh/h* ur

uh/h* u2r1uh/h* ur J , ~20!

where the exponents are related viar5A322ns2. The time-
dependent axion solutions are plotted in Figs. 1–4. The pres-
ence of the axion places a lower bound on the value of the
dilaton, f>f* . In doing so it interpolates between two
dilaton-vacuum solutions with an asymptotically constant
axion field. Whenh→6` the solutions approach ther15
1r dilaton-vacuum solution and ash→0 the solution ap-
proaches ther252r dilaton-vacuum solution. We shall see
that the asymptotic approach to dilaton-vacuum solutions at
early and late times leads to a particularly simple form for
the semiclassical perturbation spectra, independent of the in-
termediate evolution.

The dynamical effect of the axion field is negligible ex-
cept nearh;h* , when it leads to a bounce in the dilaton,
f850. Lukaset al. @23# have recently drawn attention to the
connection between these cosmological solutions and solito-
nic p-brane solutions. Ifr.1 then this also leads to a bounce
of the scale factor,a850. However we still have the two
disconnected branches, as defined by Eq.~16!, corresponding
to an increasing shifted dilaton, approaching a singularity on
the (1) branch, or a decreasing shifted dilaton, on the (2)
branch.

III. CONFORMAL FRAMES

Thus far we have written all the solutions in terms of the
string frame. If stringy matter is minimally coupled in this
frame then stringy test particles will follow geodesics with
respect to this metric. However, in order to understand the
physical evolution in these models it is revealing to look at
conformally related metrics,gab→V2gab . If the conformal
factorV2 is itself homogeneous then the transformed metric
remains a FRW metric but with scale factora→Va.

This transformation of the scale factor can lead to some
ambiguities in the interpretation of the cosmological solu-
tions @10#. For instance inflation is often defined as acceler-
ated expansion (ä.0). However such a definition is depen-
dent upon the choice of conformal frame in which one
chooses to evaluate the acceleration.

Note that the proper time also changes under a conformal
transformation,t→*Vdt. One must not assume that a finite
proper time interval in one frame necessarily coincides with
a finite time in another frame and, in particular, we shall see
that what looks like a singular evolution in one frame may
appear nonsingular in another frame.

A. The Einstein frame

By choosing a conformal factorV25e2f we can work in
a frame3 g̃ab5V2gab where the dilaton is minimally
coupled to the external metric. Thus the gravitational part of
the action in Eq.~5! reduces to the Einstein-Hilbert action
@10,27#

S5
1

2k2E d4A2 g̃ H R̃2
1

2
~¹̃f!22n~¹̃b!22

1

2
e2f~¹̃s!2J ,

~21!

and hence this is known as the Einstein frame.4 Both the
dilaton and the moduli fields have standard kinetic terms in
this frame and thus moduli particles and dilatons~in a con-
stant axion field! would therefore follow geodesics in the
four-dimensional external spacetime of the Einstein frame.

The familiar field equations of general relativity

R̃ab2
1

2
g̃abR̃5k2T̃ab ~22!

apply in this frame. This may help one’s cosmological intu-
ition, which is rooted in four-dimensional general relativity,
but also assists mathematically by decoupling the equations
for the evolution of the metric from the value off. The
stress-energy tensor

3All quantities calculated with respect to the Einstein metric will
carry a tilde.
4Some authors refer to the frame where the fullD-dimensional

metric is minimally coupled to the dilaton as the Einstein frame.
This corresponds to a Kaluza-Klein gravity theory, which will not
in general coincide with Einstein gravity in the four-dimensional
external metric.

FIG. 4. The axion,s, of the axion-dilaton solution given in Eq.
~20!, with the same parameter values as in Fig. 1 ands*51.
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k2T̃ab5
1

2S g̃ac g̃bd2 1

2
g̃abg̃

cdD
3~f ,cf ,d12nb ,cb ,d1e2fs ,cs ,d! ~23!

for homogeneous fields reduces to that for a perfect fluid
with a stiff equation of state@28,29#, i.e., pressure equal to
density,

p̃5 r̃ 5
1

4k2 ~f8212nb821e2fs82!. ~24!

The evolution equations for homogeneous fields in an
FRW metric are then

f912 h̃f85e2fs82, ~25!

s912 h̃s8522f8s8, ~26!

b912 h̃b850, ~27!

h̃852
1

6
~f8212nb821e2fs82!, ~28!

plus the constraint

h̃25
1

12
~f8212nb821e2fs82!, ~29!

where h̃[ ã8/ ã .
From Eqs.~28! and~29! we see that in the general axion-

dilaton case where we allow the dilaton, axion, and/or
moduli fields to evolve, the expansion in the Einstein frame
always obeysh̃812 h̃250 leading to the simple solution for
the scale factor

ã[ae2f/25 ã* S h

h*
D 1/2. ~30!

The scalar field equations of motion, Eqs.~25!–~27!, can
then be integrated to give the solutions presented in Eqs.
~17!–~20!. Even in spatially curved FRW models the equa-
tions of motion remain integrable@19# despite the apparently
nontrivial couplings between the fields, because we can
make a conformal transformation to the Einstein frame
where all the fields are minimally coupled to the metric and,
so long as they are all homogeneous, their combined dy-
namical effect is no different from a single massless field
@29#.

Because there is no interaction potential for the fields, the
strong energy condition (p̃.0) is always satisfied@see Eq.
~24!# and the general relativistic singularity theorems must
hold. Thus we know there is no way to construct a nonsin-
gular evolution in the Einstein frame with these massless
fields.

In the string frame the usual general relativistic results do
not hold. Even without an interaction potential we can obtain
an accelerated expansion in Eq.~13! for the (1) dilaton-
vacuum branch (t,0) with r2,21 ~or r.1 in the axion-
dilaton solution!. However unlike conventional power-law

inflation, a}tp with p.1, we have ‘‘pole inflation’’ with
p,0, and we approach a curvature singularity witha→`
andR;t22 as t→0.

In the Einstein frame we see thath→0 on the (1) branch
always corresponds to a collapsing universe withã→0 ~see
Fig. 5!. However this still fulfills one definition of inflation,
namely, that the comoving Hubble length (ud ã/d t̃ u215

u ã / ã8u52uhu) decreases with time@10#. Thus a given co-
moving scale that starts arbitrarily far within the Hubble
scale in either conformal frame ath→2` inevitably be-
comes larger than the Hubble scale in that frame ash→0.
This allows one to produce perturbations in the dilaton,
moduli, and graviton fields on scales much larger than the
present Hubble scale from quantum fluctuations in flat space-
time at earlier times, as we shall discuss in more detail later.

In both the string frame and the Einstein frame we either
reach a curvature singularity in a finite proper time in the
future forh,0 or emerge from a curvature singularity at a
finite time in the past forh.0. The only exception to this is
the axion-dilaton solutions in the string frame whenr51
(s56A1/n) in Eqs.~17!–~20! which bounce at exactlyh50
@30#. However even in this case the dilaton and moduli be-
come infinite at a finite proper time.

B. The axion frame

Both the dilaton and moduli fields are minimally coupled
in the Einstein frame~i.e., they have standard kinetic terms!.
However the axion’s kinetic term retains a nonminimal cou-
pling to the dilaton. This can be removed by a conformal
transformation to another conformally related metric, the
‘‘axion frame,’’ given by ḡ ab5e22fgab and, hence,

ā[ef/2a[ef ã . ~31!

The axion field is a minimally coupled massless scalar field
in this frame and thus axionic test particles would follow
geodesics with respect to this metric. Although conformally
related to the string and Einstein frames, the metric the ax-
ions ‘‘see’’ may behave very differently from the metrics in
the string or Einstein frames.

FIG. 5. The Einstein frame scale factor,ã , plotted against
proper time in the Einstein frame for the dilaton-vacuum and axion-
dilaton solutions displayed in the previous figures.
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In terms of conformal time, the axionic scale factor for
the dilaton-vacuum solutions given by Eqs.~8! and~9! when
s850, evolves as

ā5 ā* S h

h*
D r61~1/2!

. ~32!

We see that the proper time in the axion frame is given by

t̄ [E ādh;uhur61~3/2!, ~33!

so it takes an infinite proper time to reachh50 for r2,
23/2 ~and thusns2,3/8) and the scalar curvature for the
axion metric,R̄; t̄ 22, vanishes ash→0. However, these
same dilaton-vacuum solutions then reachh→6` in a finite
proper time whereR̄ diverges. Because the conformal factor
diverges ash→0, it stretches out the curvature singularity in
the string metric into a nonsingular evolution in the axion
frame. But asV25ef→0 ash→6` the nonsingular evo-
lution in the string frame gets compressed into a curvature
singularity in the axion frame.

Similar behavior has previously been noted in the case of
black holes in the low-energy limit of string theory@31#.
Astronauts made of axionic matter falling into an axion-
dilaton black hole inD54 would take an infinite proper time
~measured by their axionic clocks! to fall into what appears,
in the Einstein frame, to be the singularity.

In terms of the proper timet̄ in the axion frame we have

ā5 ā* S t̄

t̄ *
D ~112r6!/~312r6!

. ~34!

For r2,23/2 we have conventional power-law inflation
~not pole inflation! with ā; t̄ p̄ with p̄511@2/(22r2

23)#.1. We shall see that this has important consequences
for the tilt of the power spectrum of semiclassical perturba-
tions in the axion field produced on large scales.

These dilaton-vacuum solutions still have a curvature sin-
gularity as t̄→0 so the solutions still have only a semi-
infinite lifetime in the axion frame,5 but for r2,23/2 this
now coincides withh→6`, so the identification of the~1!
and (2) branches as solutions approaching or leaving a sin-
gularity is interchanged for ther2 solution in the axion
frame whenr2,23/2.

However this implies that the axion-dilaton solutions with
a time-dependent axion field will be nonsingular in the axion
frame if r.3/2. Remember that the axion-dilaton solutions
with s8Þ0 match r252r dilaton-vacuum solutions at
h→0 onto r151r solutions asuhu→`. Thus for r.3/2,
the axion-dilaton solutions are nonsingular in the axion
frame ash→0 ~because2r,23/2) and nonsingular as
h→` ~because1r.23/2).

The general evolution for the axion-dilaton system, Eqs.
~17!–~20! is given in the axion frame by Eq.~31!, so

ā5
ā*
2 H U h

h*
U~1/2!2r

1U h

h*
U~1/2!1r J . ~35!

From this we can extract the proper timet̄ ,

t̄

t̄ *
5S 924r 2

12 D F 2

322rU h

h*
U~3/2!2r

1
2

312rU h

h*
U~3/2!1r G

~36!

which, as shown above, is semi-infinite (0< t̄ / t̄ *,`) for
r,3/2 but unbounded (2`, t̄ / t̄ *,`) for r>3/2. Equa-
tions ~35! and ~36! give us a parametric solution for the
axion frame scale factor in terms of the proper time in that
frame.

Representative examples showing the behavior ofā ( t̄ )
for different values ofr are given in Fig. 6. Note that the
scale factorā has a nonzero minimum value~i.e., a bounce!
wheneverr.1/2. Whenr.3/2, ā becomes infinite ast̄→
2`, passes through a nonzero minimum value and then ex-
pands indefinitely ast̄→`. In particular, if stable compac-
tification has occured so that the moduli field is fixed (s
50), or if D54 ~so thatn50), thenr5A3 and the axion-
dilaton solution isalways nonsingular in the axion frame.
When 1/2,r,3/2, ā does have a bounce but is singular,
since it becomes infinitely large in a finite proper time, as
t̄→0. Finally, when r,1/2, the solutions are monotonic
and there is a singularity whenā vanishes att̄ 50.

IV. DUALITY

A. Scale-factor duality

The constant axion solutions given in Eqs.~12!–~14! are
related by the scale factor duality transformation@26,32#

a→
1

a
, ef→

ef

a6
~37!

which corresponds to a change in the parameters

a*→
1

a*
, ef*→

ef*

a
*
6 , r6→2

312r6

21r6
, ~38!

in Eqs.~12!–~14!. This is a particular case of a more general
O(d,d) duality @32# where the axion field remains constant.
When we can neglect the evolution of the moduli fields
(s50 and hencer656A3) this coincides withr6→r7 .
Note that this scale factor duality doesnot take one from the
(1) to (2) branch or vice versa. This would require a time
reversal.

The pre-big-bang scenario postulates a nonsingular uni-
verse by linking the semi-infinite lifetime expanding (1)
branch,a;(2h)2p, starting ath52` to the semi-infinite
expanding (2) branch,a;hp, traveling off toh51` via a
scale factor duality transformation, plus time reversal near
the singularity ath'0.

The presence of a time-dependent axion fields(t) ~the
solitonic ansatz! breaks theO(d,d) invariance which re-
quires that it is the antisymmetric potentialBab which is

5The caser2523/2 is an exception as it corresponds to de Sitter

expansion withā;exp(H t̄ ).
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homogeneous~the elementary ansatz!. The elementary an-
satz is only compatible for a restricted class of metrics in
anisotropic 4D spacetimes@20,22#, or if the axion is con-
stant.

B. S duality

Solutions with a time-dependent axion field do respect
the invariance of the low-energy string action under the
SL~2,R! transformation:

l→
al1b

gl1d
, ~39!

wherea, b, g, andd are real constants subject toad2bg
51, andl is the complex dilaton field

l5s1 ie2f. ~40!

This leads to

ef→g2e2f1~d1gs!2ef, ~41!

efs→~b1as!~d1gs!ef1age2f. ~42!

In the underlying string theory this represents the modular
invariance of the complex dilaton@8#, but working only with

the classical fields in the low-energy action, it represents a
transformation between the dilaton and axion fields which
leaves invariant

dS2[e2fdldl*5df21e2fds2. ~43!

In terms off ands, or indeedl, it is not immediately
apparent thatdS2 should remain invariant under the transfor-
mation given in Eq.~39!. It is rather more transparent if we
define the matrix

N5S ef efs

efs e2f1efs2D , ~44!

which obeysNTJN5J, where

J5S 0 1

21 0D , ~45!

and thus is a member of SL(2,R). The particular SL(2,R)
transformation given in Eq.~39! is given by

N→QNQT, ~46!

where

Q5S d g

b a D , ~47!

FIG. 6. The axion frame scale factor,ā , plotted against proper time in the axion frame for axion-dilaton cosmologies~solid lines! with
three different values ofr , while the other constants are the same as in Fig. 1. The asymptotic dilaton-vacuum solutions withr252r
~dashed lines! and r151r ~dot-dashed lines! are also shown. Whenr>1.5 the semi-infinite interval inh is mapped onto an unbounded
interval for the proper time, so the (1) and (2) branch solutions are displayed separately in the two top figures.
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is also a member of SL(2,R). Then we can writedS2

5tr(JdNJdN)/2 and, noting thatQTJQ5J, it is straightfor-
ward to verify thatdS2 is invariant. We will also find this
notation particularly convenient later to construct explicitly
S-duality invariant dilaton and axion field perturbations.

The Lagrange density of the axion and dilaton fields in the
Einstein frame

2
1

4
tr~J¹mNJ¹

mN!52
1

2
~¹̃f!22

1

2
e2f~¹̃s!2 ~48!

is S-duality invariant and, because the dilaton and axion are
minimally coupled to the other fields in the Einstein frame,
the evolution of the moduli field,b, and scale factor,ã , are
unaffected by theS-duality transformation. However the
scale factor in the original string frame must transform and
will not remain invariant under a nontrivial transformation.

If we chooseg/d521/s* , whens5s*5const, the so-
lutions given in Eqs.~8!–~10! are mapped by the transforma-
tion in Eq. ~39! to

ef→g2e2f, ~49!

s→
a

g
, ~50!

a→ge2fa, ~51!

which leavess constant. In particular, forg251 we have
f→2f and hence this is a transformation between strong
and weak coupling. The form of the solutions given in Eqs.
~8!–~10! are unchanged, but the parameters

ef
*→e2f

* , a*→e2f
*a* , r6→r7 . ~52!

Comparing with Eq.~38!, we find that in the particular case
whenns250, and hencer656A3, this coincides with the
scale factor duality given in Eq.~37!.

The more generalS-duality transformations ofef ands
given in Eqs. ~41! and ~42! can be shown to relate the
dilaton-vacuum cosmologies, given in Eqs.~8!–~10!, to the
more general axion-dilaton cosmologies with a time-
dependent axion field, given in Eqs.~17!–~20!, with a fixed
value of r5ur6u. Thus theS-duality transformation allows
one to generate the general axion-dilaton solutions with a
given value ofr starting from only with the dilaton-vacuum
solution with r656r .

V. LINEAR PERTURBATIONS

Thus far we have considered only homogeneous classical
solutions to the equations of motion. In the next section we
will consider inhomogeneous perturbations that may be gen-
erated due to vacuum fluctuations. In order to follow their
evolution we will set up in this section the formalism re-
quired to describe linear perturbations about the homoge-
neous background metric.

We shall consider perturbations of the four-dimensional
metric in the spatially flat gauge6 ~or in more general FRW

models, the uniform spatial curvature gauge@34#!, using the
Einstein frame, so that to first order the perturbed line ele-
ment can be written as

d s̃25 ã2~h!$2~112Ã!dh212B̃,idhdxi

1@d i j1hi j #dx
idxj%, ~53!

where Ã and B̃ are the scalar metric perturbations~in the
notation of Ref.@35#! and hi j represents a transverse and
traceless tensor perturbation. Linear perturbations about the
homogeneous background fields can be decomposed as a
sum of Fourier modes with comoving wave numberk ~and in
the case of the tensor perturbations two independent polar-
izations! which evolve independently of other wave num-
bers.

A. Scalar metric perturbations

The advantage of splitting the metric perturbations into
scalar and tensor parts is that the scalar and tensor modes
evolve independently to first order with only the scalar per-
turbations being coupled to scalar field fluctuations@35#. In
the spatially flat gauge we have the added simplification that
the evolution equations for linear perturbations about homo-
geneous scalar fields are decoupled from the metric pertur-
bations, although they are still related by a constraint equa-
tion.

The field equations for the linearized scalar perturbations
are

df912 h̃df81k2df52e2fs82df12e2fs8ds8,
~54!

ds912 h̃ds81k2ds522~s8df81f8ds8!, ~55!

db912 h̃db81k2db50, ~56!

Ã912 h̃Ã81k2Ã50, ~57!

plus the constraints

Ã52~ B̃812 h̃B̃! ~58!

5
f8

4 h̃
df1

e2fs8

4 h̃
ds1

nb8

2 h̃
db.

~59!

Note that the scalar metric perturbations are not invariant
under a conformal transformation. Even the spatially flat na-
ture of the line element in Eq.~53! is not preserved under a
conformal transformation back to the string frame due to the
first-order perturbation in the conformal factoref5ef0(1
1df). However the tensor perturbation remains invariant
under both conformal transformations and gauge transforma-
tions h→h1dh.

The evolution equation for the scalar metric perturbations,
Eq. ~57!, is independent of the evolution of the different
scalar fields and is dependent only on the evolution of the
Einstein frame scale factorã(h) given by Eq.~30!. This in
turn is determined solely by the stiff fluid equation of state6Called the ‘‘off-diagonal gauge’’ in Ref.@33#.
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for the homogeneous fields in the Einstein frame, regardless
of the time dependence of the axion field. Equation~57! can
be integrated to give the general solution

Ã5@A1H0
~1!~2kh!1A2H0

~2!~2kh!#, ~60!

where Hn
(1)(z)[Jn(z)1 iYn(z) and Hn

(2)[Jn(z)2 iYn(z)
are Hankel functions of the first and second kind. Using the
recurrence relation between Bessel functions, we obtain from
Eqs.~58! and ~60!

B̃5
1

k
@A1H1

~1!~2kh!1A2H1
~2!~2kh!#. ~61!

Our scalar metric perturbations can be written in terms of
the gauge-invariant metric potentials@35,36#

Ã[F̃1C̃1S C̃

h̃
D 8
, ~62!

B̃[2
C̃

h̃
. ~63!

Note that the gauge transformation

h→h2
C̃

h̃
~64!

brings the metric of Eq.~53! into the more commonly used
longitudinal gauge@36# where

d s̃2→ ã2~h!$2~112F̃!dh21@~122C̃!d i j1hi j #dx
idxj%.

~65!

The curvature perturbation on uniform energy density hy-
persurfaces~askh→0) is commonly denoted byz @36# and
is given by

z[F̃2
h̃2

h̃82 h̃2
~F̃1 h̃21F̃8!, ~66!

and hence withh̃ given by Eq.~30! for the scale factor in the
Einstein frame, we have

z5
Ã

3
, ~67!

in any dilaton-vacuum or axion-dilaton cosmology.
z is a particularly useful quantity to calculate as it be-

comes constant on scales much larger than the Hubble scale
(ukhu!1) for purely adiabatic perturbations, even through
changes in the equation of state. In single-field inflation
models this allows one to compute the density perturbation at
late times, during the matter or radiation dominated eras, by
equatingz at ‘‘reentry’’ (k5 ãH̃) with that at horizon cross-
ing during inflation. Thus previous studies have calculated
the spectrum ofÃ, and hencez, in order to predict the den-
sity perturbations induced in the pre-big-bang scenario
@33,34#. However, the situation is not really so straightfor-
ward in the pre-big-bang scenario as in single-field inflation,

because in the full low-energy string effective action there
will be many fields present which can lead to nonadiabatic
perturbations. We must be aware of the fact that density
perturbations at late times may not be simply related toz
alone, but may also be dependent upon fluctuations in other
fields. One such field is the axion field, and we shall see that
it may have a markedly different spectrum fromz.

The scalar field perturbations themselves transform under
the gauge transformationh→h1dh giving dx→dx
2x8dh. Thus the scalar field perturbations in the longitudi-
nal gauge (dxl) are related to those in the spatially flat gauge
(dx) under the gauge transformation in Eq.~64! as

dx→dxl5dx1x8
C̃

h̃
. ~68!

B. Tensor metric perturbations

Fortunately, the gravitational wave perturbationshi j are
both gauge and conformally invariant. They decouple from
the scalar perturbations in the Einstein frame to give a simple
evolution equation for each Fourier mode

hk912 h̃hk81k2hk50. ~69!

The growing mode in the long wavelength (ukhu→0) limit
is hk; lnukhu. ~We have not considered gravitational waves
propagating in then internal dimensions. See Ref.@37#.! The
spectrum depends solely on the dynamics of the scale factor
in the Einstein frame given in Eq.~30!, which as we have
seen is the same regardless of the time dependence of the
moduli or axion fields. It leads to a spectrum of primordial
gravitational waves steeply growing on short scales, with a
spectral indexnT53 @9,33#. This is in contrast to conven-
tional inflation models which requirenT,0 @38#. The gravi-
ton spectrum appears to be a robust and distinctive prediction
of any pre-big-bang type evolution based upon the low-order
string effective action. This has been discussed extensively
elsewhere@9,33,39#, so we now turn to discuss in more detail
the spectra corresponding to scalar perturbations.

VI. PRE-BIG-BANG SPECTRA

While the solutions for the homogeneous dilaton, axion,
and scale factor in the different frames may lead to interest-
ing behavior in the early universe, the success of the standard
big-bang model suggests that the evolution should closely
approach the conventional general relativistic evolution at
least by the time of nucleosynthesis. If we are to see any
trace of the earlier evolution it will be in the primordial spec-
trum of inhomogeneities present on large scales that we ob-
serve today. Such a large-scale structure can only be gener-
ated by some unconventional physics, such as inflation,
topological defects, or a pre-big-bang epoch. During a period
of accelerated expansion the comoving Hubble length
ua/a8u decreases and vacuum fluctuations which are assumed
to start in the flat-spacetime vacuum state may be stretched
up to exponentially large scales. The precise form of the
spectrum depends on the expansion of the homogeneous
background and the couplings between the fields.

We have seen that the comoving Hubble length does in-

882 56E. J. COPELAND, RICHARD EASTHER, AND DAVID WANDS



deed decrease in the Einstein frame during the contracting
phase whenh,0. Because the dilaton, moduli fields and
graviton are minimally coupled to this metric, this ensures
that small-scale vacuum fluctuations will eventually be
stretched beyond the comoving Hubble scale during this ep-
och.

The production of scalar and tensor metric perturbations
in the pre-big-bang scenario has been studied by various au-
thors~see, for example,@33,34#!. As we remarked earlier, the
axion field is taken to be a constant in these solutions. How-
ever, while a constant axion field may be a consistent par-
ticular solution when describing the background classical
field, one cannot necessarily neglect quantum fluctuations in
this field. In this section we will consider the production of
axions during a pre-big-bang type evolution~where the back-
ground axion field is constant! and then go on to discuss the
perturbation spectrum in the more general case withs8Þ0.
We will also analyze the behavior of these cosmological
vacuum states to first order underS-duality transformations.

First of all, let us consider the perturbation spectra pro-
duced when the background axion field remains constant,
s850. The evolution of the homogeneous background fields
is given in Eqs.~8!–~10! and the dilaton and moduli fields
both evolve as minimally coupled massless fields in the Ein-
stein frame. In particular, the dilaton perturbations are decou-
pled from the axion perturbations and the equations of mo-
tion in the spatially flat gauge, Eqs.~54!–~56!, become

df912 h̃df81k2df50, ~70!

ds912 h̃ds81k2ds522f8ds8, ~71!

db912 h̃db81k2db50, ~72!

plus we have the constraint, Eq.~58!,

Ã5
f8

4 h̃
df1

nb8

2 h̃
db. ~73!

A. Dilaton and moduli perturbations

From Eq.~73! we see that, to first order, the metric per-
turbation Ã is determined solely by the dilaton and moduli
field perturbations. The canonically normalized field pertur-
bations are@40,33,37#

u[
1

A2k
ãdf, ~74!

w[
An
k
ãdb, ~75!

which, from Eqs.~70! and ~72!, obey the wave equations

u91S k22 ã9

ã
D u50, ~76!

w91S k22 ã9

ã
Dw50. ~77!

After inserting the simple solution for the Einstein frame
scale factor given in Eqs.~30! we find that these equations
give the general solutions

u5ukhu1/2@u1H0
~1!~ ukhu!1u2H0

~2!~ ukhu!#, ~78!

w5ukhu1/2@w1H0
~1!~ ukhu!1w2H0

~2!~ ukhu!#. ~79!

On the (1) branch, i.e., whenh,0, we can normalize
modes at early times,h→2`, where all the modes are far
inside the Hubble scale,k@uhu21, and can be assumed to be
in a flat-spacetime vacuum.7 Just as in conventional inflation,
this produces perturbations on scales far outside the horizon,
k!uhu21, at late times,h→0.

Conversely, the solution for the (2) branch withh.0 is
dependent upon the initial state of modes far outside the
horizon,k!uhu21, at early times whereh→0. The role of a
period of inflation, or of the pre-big-bang (1) branch, is
precisely to set up this initial state which otherwise appears
as a mysterious initial condition in the conventional~nonin-
flationary! big-bang model.

Allowing only positive frequency modes in the flat-
spacetime vacuum state at early times for the pre-big-bang
(1) branch requires@41# that, askh→2`,

u→
e2 ikh

A2k
, ~80!

and similarly forw, giving

u15w15eip/4
Ap

2Ak
, u25w250. ~81!

The power spectrum for perturbations is commonly de-
noted by

Pdx[
k3

2p2 udxu2, ~82!

and thus for modes far outside the horizon (kh→0) we have

Pdf→
4

p3k2H̃2~2kh!3@ ln~2kh!#2, ~83!

Pdb→
2

np3k2H̃2~2kh!3@ ln~2kh!#2, ~84!

where H̃[ ã8/ ã2 is the Hubble rate in the Einstein frame,
and recalln is the number of compact dimensions. The am-
plitude of the perturbations grows towards small scales, but
only becomes large for modes outside the horizon
(ukhu,1! whenk2H̃2;1, i.e., the Planck scale in the Ein-
stein frame. The spectral tilt of the perturbation spectra is
given by

7It is interesting to note that in conventional inflation we have to
assume that this result for a quantum field in a classical background
holds at the Planck scale. Here, however, the normalization is done
in the zero-curvature limit in the infinite past.
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nx21[
d lnPdx

d lnk
~85!

which from Eqs.~83! and ~84! givesnf5nb54 ~where we
neglect the logarithmic dependence!.

We need also to compute the amplitude of the scalar met-
ric perturbations, to check the validity of our linear pertur-
bation analysis. Normalizing the amplitude of the spectrum
for the metric perturbationÃ in Eq. ~60! from the constraint
Eq. ~59!, using Eqs.~9! and ~10! for the background fields
and Eqs.~83! and ~84! for their perturbations, we have

PÃ5
3

p3k
2H̃2~2kh!3@ ln~2kh!#2. ~86!

~Remember that we are adding independent random vari-
ables. The 3 comes fromr6

2 12ns253.! Note that this spec-
trum of scalar metric perturbations in entirely independent of
the integration constants that parameterize the solutions
given in Eqs.~9! and~10!. The scalar spectrum, just like the
spectrum of tensor perturbations, is a robust prediction of
any pre-big-bang scenario where the universe collapses in
the Einstein frame, and becomes dominated by homogeneous
scalar fields.

Just like the field perturbations, the scalar metric pertur-
bations have a steep blue spectrum,nÃ54, which becomes
large on superhorizon scalesukhu,1 only near the Planck
scale,k2H̃2;1. Note that Bardeen’s gauge-invariant pertur-
bations F̃ and C̃, defined in Eqs.~62! and ~63!, actually
become large much earlier@33#, but the fact that the pertur-
bations remain small in our choice of gauge implies that our
linear calculation is in fact valid up until the Planck epoch
@33#.

Unfortunately this leaves us with such a steeply tilted
spectrum of metric perturbations that there would be effec-
tively no primordial metric perturbations on large~superga-
lactic! scales in our present universe if the post-big-bang era
began close to the Planck scale. The metric fluctuations are
of order unity on the Planck scale (10233 cm! when T
;1032 K in the standard post-big-bang model. This corre-
sponds to a comoving scale of about 0.1 cm today~whenT
52.7 K!, about 10229 times the scale of perturbations ob-
served on the microwave background sky. Thus the micro-
wave background temperature anisotropies should be of or-
der 10287 rather than the observed 1025. However, it turns
out that the presence of the axion field could provide an
alternative spectrum of perturbations more suitable as a
source of large-scale structure.

B. Axion perturbations

While the dilaton and moduli fields evolve as massless
minimally coupled fields in the Einstein frame, the axion
evolves as a massless minimally coupled field in the axion
frame and the canonically normalized field perturbation is

v[
1

A2k
āds. ~87!

In this section we are considering the axion spectrum in
the pre-big-bang scenario where the background axion field
is constant. As a result density perturbations are only second
order in the axion perturbation and so we can neglect the
backreaction from the metric to linear order. The field per-
turbationds is gauge invariant whens850 @see Eq.~68!#
and in any gauge, the axion perturbation obeys the decoupled
wave equation given in Eq.~71! which can be rewritten in
terms ofv as

v91S k22 ā9

ā
D v50. ~88!

As we have just mentioned, whereas the dilaton and moduli
evolve as massless minimally coupled fields in the Einstein
frame, the axion is minimally coupled in the axion frame,
whose evolution given in Eq.~32! is significantly different.
In fact, substituting Eq.~32! in Eq. ~88! we have

v5ukhu1/2@v1Hr
~1!~ ukhu!1v2Hr

~2!~ ukhu!#, ~89!

where we have usedr[ur6u. Once again, we can only nor-
malize this using the flat spacetime vacuum state at early
times as2kh→` on the (1) branch, as in Eq.~80!, which
gives

v15ei ~2r11!p/4
Ap

2Ak
, v250. ~90!

and hence we have

ds5kAp

2k
ei ~2r11!p/4

A2kh

ā
Hr

~1!~2kh!. ~91!

At late times, as2kh→0, we find8

Pds52k2SC~r !

2p D 2k2
ā2

~2kh!122r , ~92!

where the numerical coefficient

C~r ![
2rG~r !

23/2G~3/2!
~93!

approaches unity forr53/2.
The expression for the axion power spectrum can be writ-

ten in terms of the field perturbation when each mode crosses
outside the horizon

Pdsc
52k2F C~r !

r61~1/2!G
2S H̄c

2p
D 2, ~94!

whereH̄c is the Hubble rate whenukhu51. This is the power
spectrum for a massless scalar field during power-law infla-

8When 2ns253 and r50 the dilaton remains constant and the
axion frame and Einstein frame coincide, up to a constant factor.
Thus the axion spectrum behaves like that for the dilaton and
moduli fields and the late time evolution in this case is that loga-
rithmic with respect to2kh, as given in Eqs.~83! and ~84!.
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tion which approaches the famous resultPds/2k2

5(H̄c/2p)2 as r2→23/2, and the expansion in the axion
frame becomes exponential.9

More importantly, the spectral index

ns5422r5422A322ns2 ~95!

depends crucially upon the value ofr5ur6u. The spectrum
becomes the classic scale-invariant Harrison-Zel’dovich
spectrum asr→3/2. The lowest possible value of the spectral
tilt ns is 422A3.0.54 which is obtained when stable com-
pactification has occurred and the moduli fieldb is fixed.
The more rapidly the internal dimensions evolve, the steeper
the resulting axion spectrum until for 2ns253 andr50 we
havens54 like the dilaton and moduli spectra. Note that the
condition for a negatively tilted spectrum coincides exactly
with the requirement for conventional power-law inflation,
rather than pole inflation, in the axion frame.

Of course, when the background axion field is constant
these perturbations, unlike the dilaton or moduli perturba-
tions, do not affect the scalar metric perturbations~i.e., these
are isocurvature perturbations!. However, if the axion field
does affect the energy density at late times~for instance, by
the axion field acquiring a mass! then the spectrum of den-
sity perturbations need not have a steeply tilted blue spec-
trum like the dilaton perturbations, but rather could have a
nearly scale-invariant spectrum as required for large-scale
structure formation@38#.

VII. PERTURBATION SPECTRA IN GENERAL AXION-
DILATON COSMOLOGIES

When we allow the background homogeneous axion field
to be time dependent we must allow for the interaction be-
tween the dilaton and axion field and the metric to first order.

In fact we have seen that in the spatially flat gauge the
evolution equations for both the scalar and tensor metric per-
turbations@Eqs.~57! and~69!# are independent of the evolu-
tion of the different scalar fields and are determined solely by
the evolution of the Einstein scale factor given in Eq.~30!.
Because the moduli field perturbations remain decoupled
from both the axion and dilaton, their evolution equation, Eq.
~72!, is also unaffected. Thus the spectral tilts of the scalar
and tensor metric perturbations and the moduli spectrum, Eq.
~84!, remain the same as in the pre-big-bang scenario.

We can understand this in terms of theS-duality transfor-
mations that relate the general axion-dilaton solutions to the
dilaton-vacuum solutions. These transformations leave the
Einstein frame metric and moduli field invariant and thus not
only the homogeneous fields, but also their perturbations, are
identical inS-duality related cosmologies. However the dila-
ton and axion fields and their perturbations will in general be
affected byS-duality transformations.

A. Axion and dilaton perturbations

The dilaton and axion perturbation field equations~54!
and~55! become coupled to first order whens8Þ0, and the

chances of obtaining analytic solutions might appear to be
remote. However, we can exploit theS-duality symmetry
which relates the general axion-dilaton cosmologies to the
much simpler dilaton-vacuum cosmologies in order to find
linear combinations of the axion and dilaton perturbations
which remain straightforward to integrate even in the more
general case.

We define two newS-duality invariant variables:

x[efS f8

h̃
ds2

s8

h̃
df D , ~96!

y[
f8

h̃
df1

e2fs8

h̃
ds. ~97!

In terms ofx andy the perturbation equations decouple and
the field equations~54! and ~55! then become

x912 h̃x81@k22~f821e2fs82!#x50, ~98!

y912 h̃y81k2y50. ~99!

It is far from obvious on first inspection that these vari-
ables should be invariant under theS-duality transformation
given in Eq. ~39!. However written in terms of the matrix
N defined in Eq.~44! we have

2 h̃x52tr~JNJN8JdN!, ~100!

2 h̃y5tr~JN8JdN!, ~101!

and we can see that these variables are the unique
S-duality invariant linear combinations of the axion and di-
laton perturbations. They reduce to the~decoupled! axion
and dilaton perturbations in the pure dilaton-vacuum back-
ground, ass8→0, where we have

x→
f8

h̃
efds52r6e

fds, ~102!

y→
f8

h̃
df52r6df. ~103!

Note thatx is not onlyS-duality invariant, but also gauge
invariant. That is, it does not matter which gauge we choose
to calculateds and df, the combination which definesx
remains unchanged. It is proportional to the axion perturba-
tion on uniform-dilaton hypersurfaces, dsuf[ds
2s8(df/f8). By symmetry, it is also proportional to the
dilaton perturbation on constant axion hypersurfaces, though
this perturbation diverges in the limit that the background
axion field becomes constant.

Having found S-duality-invariant variables, one can
verify that the evolution equations for these variables, Eqs.
~98! and ~99! are themselves invariant underS duality. Re-
membering that the general axion-dilaton cosmological solu-
tions can always be related to the dilaton-vacuum solutions
by anS-duality transform, we see that the evolution equa-
tions forx andy in an arbitrary axion-dilaton cosmology are
exactly the same as those for the axion and dilaton perturba-9The factor 2k2 arises due to our dimensionless definition ofs.
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tions in the dilaton-vacuum case. Just as in the constant ax-
ion case, we can define canonically normalized variables:

u[
1

2rA2k
ãy, ~104!

v[
1

2rA2k
ãx, ~105!

which coincide with the definitions given in Eqs.~74! and
~87! in the dilaton-vacuum case. In general,u obeys the
S-duality-invariant equation of motion given in Eq.~76! and
whose general solution is given by Eq.~78!. The equation of
motion for v given in Eq. ~88!, however, is not invariant
under an S-duality transformation. Instead the
S-duality-invariant version of the equation of motion is

v91S k22 r 221/4

h2 D v50, ~106!

which coincides with Eq.~88! whens850. The general so-
lution for v is thus still given by Eq.~89!.

We can still normalize cosmological vacuum perturba-
tions at early times on the (1) branch ash→2` because
we have seen that in this limit the general axion-dilaton so-
lution given in Eqs.~17!–~20! approach the constant axion
solutions withr151r . Thus the constantsu6 and v6 are
given by Eqs.~81! and ~90!. By picking S-duality-invariant
field perturbations we have been able to calculate the general
axion-dilaton cosmological perturbation spectra using the
pure dilaton-vacuum cosmological vacuum states. We have

Py→
16r 2

p3 k2H̃2~2kh!3@ ln~2kh!#2, ~107!

and the generalized axion perturbation spectrum is given by

Px→8r 2k2SC~r !

2p D 2k2
ã2

~2kh!122r . ~108!

To recover the actual~though gauge andS-duality depen-
dent! axion and dilaton perturbations we can invert Eqs.~96!
and ~97! to give

ds5
e2f

4r 2 S f8

h̃
x1

efs8

h̃
yD , ~109!

df5
1

4r 2S f8

h̃
y2

efs8

h̃
xD . ~110!

However, at late times on the (1) branch, ash→0 the
general axion-dilaton solutions approach dilaton-vacuum so-
lutions with r252r , and hence df→y/2r2 and
ds→e2fx/2r2 . Note that the change of sign fromr15
1r to r252r between the early- and late-time dilaton-
vacuum solutions leads to a phase shifteip with respect to
the late-time behavior of the pure dilaton-vacuum solutions.
But the final power spectrum for the dilaton and axion per-
turbations ash→0 in the general axion-dilaton cosmologies

is identical to that given in Eqs.~83! and ~92! for the
S-duality related dilaton-vacuum case. The tilt and amplitude
of the spectra are determined solely by the parameterr
5ur6u and are insensitive to the specific time dependence of
the axion field in different, butS-duality related, solutions.

The constraint equation forÃ, Eq. ~59!, includes onlyy
anddb;

Ã5
1

4
y1

nb8

2 h̃
db. ~111!

From Eqs.~107! and~84! we see that the spectrum of scalar
metric perturbations is unaffected by the time dependence of
the axion field and is the same as that obtained in the con-
stant axion case, given in Eq.~86!.

VIII. DISCUSSION

The low-energy limit of string theory, orM theory, con-
tains many different degrees of freedom. In this paper we
have considered a very simple model containing only aD
54 spatially flat FRW metric with a dilaton, a single mass-
less modulus field~representing the volume ofn internal
dimensions! and a pseudoscalar axion field derived from the
Neveu-Schwarz antisymmetric tensor potential. The axion-
dilaton solutions can be generated from the dilaton-vacuum
solutions by anS-duality transformation. They generalize the
power-law dilaton-vacuum solutions in a particularly simple
way, interpolating between two asymptotically dilaton-
vacuum regimes, which are themselves related by an
S-duality transformation.

Although the general axion-dilaton solutions do not alter
the singular nature of the cosmological solutions in the string
or Einstein frame, we draw attention to the fact that the evo-
lution in the conformally related axion frame~in which the
axion is minimally coupled! can become nonsingular when
the axion field is allowed to be time dependent. The world
lines of axionic observers can have an infinite proper lifetime
in this frame. There is no graceful exit@11# from the pre-big-
bang (1) branch to the post-big-bang (2) branch, but the
(1) or (2) branches themselves can have an infinite proper
lifetime.

The shrinking comoving Hubble length during a pre-big-
bang era generates a spectrum of perturbations about the ho-
mogeneous background fields from quantum fluctuations.
We have calculated the spectrum of large-scale perturbations
produced in the axion field. The axion spectral index can lie
anywhere in the range 0.54 to 4, which includes the possi-
bility of the nearly scale-invariant (n;1) spectrum required
for structure formation. This is in contrast to the dilaton and
moduli perturbations which have a steep blue spectrum with
an index ofn54, making them incapable of seeding large-
scale structure in our present universe. The actual value of
the axion spectral index depends on the rate of expansion of
the internal dimensions. If stable compactification has al-
ready occured, leading to an effective four-dimensional
spacetime, the spectral index isn50.54.

In the simplest case where the background axion field is
constant, the axion perturbations are isocurvature perturba-
tions during the pre-big-bang epoch. Whether these axion
perturbations are able to seed large-scale structure in the
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post-big-bang universe depends crucially on the coupling be-
tween the axion and the matter which dominates the universe
today. Nonetheless, it is intriguing that, in principle, the ax-
ion could give rise to a nearly scale-invariant spectrum and
that the tilt of that spectrum is dependent on the compactifi-
cation of the internal dimensions.

We have seen thatS duality is a powerful tool for calcu-
lating not only the classical background solutions in general
axion-dilaton cosmologies but also the semiclassical pertur-
bation spectra. By constructing explicitlyS-duality- invariant
field perturbations we are able to calculate the perturbation
spectra in the more general axion-dilaton cosmologies as
well as the dilaton-vacuum case. It is not surprising that by
taking S-duality-invariant field perturbations we can derive
S-duality-invariant solutions. More remarkably, however, the
late-time dilaton and axion spectra turn out to be independent
of the preceding evolution along different, butS-duality re-
lated, classical solutions. This results from the fact that
S-duality related axion-dilaton solutions all approach the
same dilaton-vacuum solution at late times. By contrast,
other symmetries present in the low-energy string action,
such as the symmetry which mixes the moduli field with the
dilaton and axion@24#, do not relate solutions with the same
late-time behavior and so will not leave the perturbation
spectra invariant.

Despite the well-known problems associated with achiev-

ing a graceful exit from the pre-big-bang era, it is worth
noting a couple of advantages that the pre-big-bang predic-
tions have over conventional~potential-dominated! inflation
models. First, the perturbations originate as vacuum fluctua-
tions at early times, where their amplitude is normalized in a
low-curvature, weakly coupled regime in the infinite past,
and not at arbitrarily small scales during the Planck epoch
when the correct vacuum state may be uncertain. Second,
one can give analytic expressions for the asymptotic pertur-
bations on large scales without having to invoke any slow-
roll-type approximations as must usually be done in conven-
tional inflation models. This is possible not only in the
presence of the dilaton alone, but also when one incorporates
the moduli and axion fields.
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