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The dynamics of gravitational waves is investigated in (8 1)-dimensional numerical relativity, empha-
sizing the difficulties that one might encounter in numerical evolutions, particularly those arising from non-
linearities and gauge degrees of freedom. Using gravitational waves with amplitudes low enough that one has
a good understanding of the physics involved, but large enough to enable nonlinear effects to emerge, we study
the coupling between numerical errors, coordinate effects, and the nonlinearities of the theory. We discuss the
various strategies used in identifying specific features of the evolution. We show the importance of the
flexibility of being able to use different numerical schemes, different slicing conditions, different formulations
of the Einstein equatior{standard Arnowitt, Deser, and Misner vs first order hyperbotind different sets of
equationglinearized vs full Einstein equationsA nonlinear scalar field equation is presented which captures
some properties of the full Einstein equations, and has been useful in our understanding of the coupling
between finite differencing errors and nonlinearities. We present a set of monitoring devices which have been
crucial in our studying of the waves, including Riemann invariants, pseudo-energy-momentum tensor, Hamil-
tonian constraint violation, and Fourier spectrum analy§6556-282(97)05014-5

PACS numbe(s): 04.30.Nk, 04.25.Dm, 95.30.Sf

[. INTRODUCTION wave astronomy. A new generation of interferomefi®d
and bar detectorisl 0] should detect waves for the first time

This paper is the first in a series of papers in which wenear the turn of the century. Even though any observed
numerically study gravitational waves inr+3 dimensions. waves are expected to have weakened by the time they reach
The systems studied range from weak gravitational wavegarth, they are likely to have been generated in regions with
with various symmetries to fully general and highly nonlin- strong, highly dynamical, and nonlinear gravitational fields.
ear waves. We study the dynamical evolutions of the wave#t is, therefore, essential to be able to study waves accurately
and the interactions between waves. That is, we investigat@ both the strong and weak field regimes, as well as the long
the dynamics of spacetime in its pureacuum form, a sub- term secular behavior in the transitory intermediate regimes.
ject that is important for theoretical, observational, and techThe study of pure wave spacetimes will aid us in developing
nical reasons. This area of research is for the most part umumerical codes to study all three regimes with confidence in
charted territory due to its mathematical complexity and thehe numerical results.
need for large scale computational resources that have not These pure wave studies compliment our program to com-
been available previously. The general behavior of threepute the evolution and the radiation from the coalescence of
dimensional(3D) strong gravitational waves, including, for two black holes in decaying orbif26]. Because black hole
example, gravitational geons and the formation of singulari-and gravitational wave systems each presents its own set of
ties, is unknown. Previous analytic and numerical work ontechnical difficulties, we first study black holes and waves
pure gravitational wave spacetimes, done in one or two spaseparately, and then combine them after the problematics of
tial dimensions, has led to many interesting results, such asach system are identified and understood. In a separate pa-
the formation of singularities from colliding plane waves per [11] we have presented results for a pure single black
[1-5] or the formation of black holes by imploding axisym- hole spacetime(i.e., Schwarzschild evolved in three-
metric gravitational wavefs,7] and the existence of critical dimensional Cartesian coordinates, with essentially the same
behavior in such systeni8]. These discoveries raise inter- basic code as used here. In future papers we will present
esting questions about waves in more general 3D spacetimagsults from evolutions of distorted black holes, including
Yurtsever has proposed conjectures concerning the criteridoth gravitational waves and black holes.
for the formation of singularities from wave packets with  In this first paper we focus on examining the difficulties
finite extension in all three directiorfg,5]. These conjec- one encounters in evolving relatively low amplitude 3D
tures, together with the global structure and local behavior ofravitational waves in Cartesian coordinates, and on the
the singularities so formed, if indeed they can be formedstrategies we developed to solve those problems. We begin
remains to be investigated. These questions call for a full 3Qvith low amplitude waves, as one has better physical under-
study. standing of what should be happening in such cases. When

Gravitational waves are also about to open up a fundathe amplitude is very low, the evolution is linear and nothing
mentally new area of astronomical observation: gravitationalnteresting happens. What is more interesting is waves in the
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“near-linear” regime, the meaning of which will become weak plane wave packets. The focus here is on an effect
clearer throughout the paper. Basically, we mean wavesaused by a coupling between finite differencing errors and
which show some nonlinear transient or secular effects thahe nonlinearity of the evolution equations. It manifests itself
can be observed in our numerical study within the limit ofas a drifting of the metric function in a region where the
the accuracy and time scale of the evolution that we camvave packet has crossed. We discuss in detail how the cause
currently achieve. These effects could be duéaumerical  of this drift can be identified. We develop a scalar field equa-
errors (finite differencing errorscoupled with nonlinearity, tion which captures important features of the nonlinear evo-
(i) coordinate effects due to nonlinearity, @ii) nonlinear lution of the Einstein equations. Testbeds done with this
physics[Of course, there is also(a) that we have invested equation have been crucial in this analysis. We propose that
a lot of effort in making sure of its absen¢an effort which  this scalar equation be used as a standard testbed for the
is not discussed herenamely, coding errork.In this first ~numerical study of gravitational waves.

paper, our aim is to stud§) and(ii) instead offiii ). We find The third type of testbed is an imploding-exploding com-
that there are indeed cases for whithand (ii) give rise to  bination of quadrupole wave packdts5,16. In addition to
interesting features in the evolution, but have negligible nonanalyzing the accuracy of the numerical evolution, the focus
linear physical effects. here is on the coupling between the motion of the coordi-

It is nontrivial to distinguish whether a feature is due tonates and the nonlinearity of the Einstein equations. With
(i), (ii), or (iii). To make the distinction between these ef-geodesic slicing, this coupling manifests itself as a “dip-
fects, we have implemented many monitors of the evolutionPing” of some metric functions at the center of the symme-
e.g., Hamiltonian constraint, pseudo-energy-momentum terity, at a time long after the implode-explode process. We
sor, curvature components, and curvature invariants. Wetudy at what amplitude this phenomenon becomes observ-
have the options of using different gauge and slicing condiable. We report on the analysis carried out in confirming that
tions, and different boundary conditions, different finite dif- this behavior is due solely to coordinate motion instead of
ferencing schemes, with different orders of finite differenc-truly nonlinear physics.
ing. In addition to the codes that evolve the full 3D nonlinear  For all three types of testbeds, we have studied the evo-
Einstein equations, we have developed other evolution coddgtion of initial data sets which satisfy the constraint equa-
for Comparison’ e.g., codes that evolve the linearized EintiOl’]S to linear order, and for the third testbed, data that com-
stein equations, and codes that evolve a scalar field equatighetely satisfies the constraints, obtained through the York's
that captures important features of the full Einstein equaformalism[17]. We have checked that the two kinds of ini-
tions. Most noteworthy is that we have developed two comftial data basically lead to the same kinds of evolution for the
pletely independent codes that are based on two very diffetow amplitude waves studied in this paper, hence we do not
ent analytic formulations of the full Einstein evolution discuss the two cases separately unless otherwise mentioned.
equations. All simulations presented in this paper were rurf hroughout the paper we restrict ourselves to time symmet-
with both codes, and the results were compared in detail. It igiC initial data for simplicity when solving for the initial
important to point out that the two codes will not produce value problem, which is not our major concern in this paper.
identical results. One code is based on a particular gauge In this paper we use the convention [df8], in which
choice where that gauge condition is assumed in the evolls=1 and, as we are studying vacuum spacetirGedpes not
tion equations, whereas the other code has the evolutiognter. The system has no intrinsic length scales except those
equations in their completely general from. When a gauge i§et by the waves, e.g., wavelength.
chosen it can only be kept to numerical error. This paper is separated into the following sections: Sec-

The first of these fully nonlinear codes, which we call thetion Il reviews the two different codes we have developed,
“G” (for general code, is based on the standarét B Ar- which are based on the two different analytic formulations of
nowitt, Deser, and MisnefADM) [12] approach to numeri- the Einstein equations. We also discuss the numerical meth-
cal relativity. It has been written in a fully general way, 0ds used in these two codes. The different tests and compari-
without specializing the equations to any lapse or shift consons of our codes are presented in Secs. llI-VI. Section Ill is
dition, and without any restrictions on symmetry or initial On plane wave packets. Section IV is on colliding packets.
data. The second code, which we call the “Hfor har-  Section V discusses a nonlinear scalar field equation that is
monic) code, is based on the first order, flux-conservativeUseful in analyzing the nonlinearity of the Einstein evolution
hyperbolic formulation of the Einstein equations developedequations. Section VI is on imploding-exploding quadrupole
by Bona and Massfil3,14). Different finite differencing and Waves. Section VIl is a brief discussion and conclusion.
evolution schemes have been incorporated into both codes,
as well as linearized versions of both formulations. All these
different codes and options were essential in enabling us toll. BASIC FORMALISMS AND NUMERICAL METHODS
sort out the effectsi)—(iv) mentioned above.

We discuss three types of testbeds in this paper. The first
test we consider is a single plane symmetric wave packet, We have developed two independent 3D codes to solve
propagating in some arbitrary direction. This problem allowsthe fully nonlinear set of Einstein equations. As all tests pre-
us to compare the dispersive and dissipative properties of thgented in this paper are performed with both codes, this ap-
codes for waves propagating in different directions in the 3Dproach allows us to study systematically the effect of not
Cartesian grid, and the resolution needed for a given desireanly different numerical methods, of which we have tested
accuracy. several, but also different mathematical formulations of the

The second type of test we consider is the collision ofequations.

A. The fully nonlinear 3D codes
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1. The “G” code gauge, and this allows for the possibility that the gauge con-

The first code we present is the “G” code, where G dition may not be strictly satisfied after some evolution due

stands for general. This code uses the standarti DM [0 numerical errors. We view it as an important strength of

formulation of the Einstein equations. It is general in thethiS code, as it opens up the possibility of investigating the
sense that it can be used with arbitrary slicing and spatiatt@pility of various gauge choices.

coordinate conditions. The general spacetime metric is of the 1S code is sufficiently flexible that it allows different
form evolution schemes to be implemented easily, and we have

developed the following two numerical schemes that are sec-
ds?=(—a?+B;B)dt?+28,dx'dt+ gijdx‘dxj, ) ond order accurate in space and time: a staggered leapfrog
' with half-time step extrapolation, and a “MacCormack-like”

wherea and 8' are the lapse function and shift vector, re- predictor-corrector method. An essential difference between
spectively. Although the vacuum ADM equations are giventhem is that in the MacCormack scheme, all quantities are
in many papers, we again show them here so that one magentered on the same time slices at all times and, therefore,
compare them with a second formulation discussed below: no extrapolations or averages are needed to get quantities
that are properly centered. The leapfrog scheme has the

hGij= —2aK;; + Vi B+ VB, (2)  three-metric and extrinsic curvature variables offset by 1/2-
m . time slice, so that although the main time derivative terms
Kjj= = ViVja+ a(Rj +KKj; = 2K Kj") + BTV 1K are properly centered, a number of important terms in the
evolution equations require extrapolations or averaging in
+KimV; 8™+ Ky Vi 8™ 3) d q P ging

time. The details of these methods have been published else-
Here,V; is the spatial covariant derivativ;; is the spatial where(see, e.g., Ref.19]), and so we will not present them
Ricci tensor, andK is the trace of the extrinsic curvature. Nereé(however, see Sec. V where we apply these methods to
While the code admits arbitrary kinematic conditions for & simplified model problem
andg', in this paper we report only on results obtained with i
either geodesic slicingg=1), maximal slicing, or harmonic 2. The "H" code
slicing for the lapse function, and zero shift vector. The The second codé'H” ) is based on the work of Bona and
maximal slicing lapse Masso[14] that casts the Einstein equations in an explicitly
first order, flux-conservative, hyperbolic form. In this paper
V'Vna=aR (4 we present the first results of this new formulation to gravi-

: . . . tational wave spacetimes.
is derived by taking the trace of EG3) and setting e general metric is also of the fort) and spacetime
K=4;K=0. The harmonic slicing condition for the lapse is

i . . 4 " i coordinates are chosen such that the shift vector vanishes. It
derived imposing the harmonic condition on the time co0rya5 shown in Ref[14] that if one restricts the lapse to the
dinate, leading to the evolution equation harmonic slicing(5), one can write the Einstein evolution

_ 2 equations as a hyperbolic first order system of balance laws
dra=—a‘K, (5) . i
that in vacuum takes the form:
where the initial value for the lapse is completely arbitrary. sqi=0ll 7
It is also appropriate to introduce the Hamiltonian con- 97 =Q" @)
straint \/a
h=R+ K2 KK/l =0. ©) ﬁt[gQ”}—&k[a@(Dk”+gk'g’+gk’g')]
Although the evolution equations theoretically preserve the \/a . A
Hamiltonian constraint in time, this is not generally so in = —Q*Ql—2a\o[g¥'gl,+L'LI-g'g], (8)
numerically constructed spacetimes. Discretization effects @
accumulate over time, which can lead to violations of the - -
Hamiltonian constraint. The quantity defined in Eq.(6), a[Dg]-aQ"]=0, 9
therefore, offers a means of monitoring errors introduced in _ _ o
the numerical evolution. 39'= QL' —2Q|L! +g;, Q. (10)

Equations(2) and (3) are expanded in a 3D Cartesian B
coordinate system and codedriarRTRANusing MACSYMA  TheQ'! quantities are proportional to the extrinsic curvature.
scripts written originally by David Hobill. More details of Note that all the sourcg®n the right-hand sidéRHS)] ac-
this code are provided in Refl11], where it was applied to count for the nonlinear terms and that the three-dimensional
black hole spacetimes. Ricci does not appear as it has been split into its transport
An important point to stress is that the equations have nopart and its nonlinear source. The connection coefficients
been specialized in any way. All gauge degrees of freedong;, are constructed from the first derivatives of the metric
are left general, so that any shift and lapse conditions may - B
easily be imposed. On the other hand, this implies that if a D¢ =a,g". (11
particular gauge choice is used for the initial data., a
diagonal form of the metric or a traceless extrinsic curva-These derivatives are evolved using E%). Equation(11l) is
ture), the equations themselves are not specialized to thainly used in the initial slice. Similarly, the derivatives of the
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lapse are used on the initial slice to construtt J'lna and ~ Wheree<1 is the smallness parameter and the superscripts
to derive the initial values of the momentum constraint-(0) and (1) refer to the zeroth and first order solutions. As-

related variables: suming a Minkowski background spacetime such that
. N . (0) — g
gI:%gjlejk_Dtl_Ll. (12) g|] d|a§f1,1,1], (15)
K{P'=0, (16)

These variables are evolved using EtD) while Eq.(12) is

used to compute the' during the evolution. and a=1, the zeroth order equations are satisfied trivially

At present this code is restricted to use the harmonic lapsgnd the resulting linearized ADM equations become
condition with a vanishing shift, although recent wqggQ|

shows that the same first order, flux-conservative, hyperbolic ﬂtgng: -2 aKi(jl) ' (17)
form can be maintained with a wider class of slicing condi-
tions. Results from a code developed with this more recent f9tKi(jl):“Ri(j1)- (18)

formulation of the equations will be presented elsewhere.
_ Standard operator-splitting techniques allow for the prin-if yye make the further assumption of a diagonal three-metric
cipal part of the system to be treated as a flux-conservativgynich is a function only of the single coordinatgthe non-

first order system. This kind of system is well known in yanishing components of the Ricci curvature tensor are
computational fluid dynamic&CFD), where a wide choice of

modern and standard numerical methods has been devel- RD=_1gD (19
. . . XX ZgXX,ZZ’

oped. In this case a flux-conserving MacCormack method is

used for the principal part of the evolution system. Note that RW=_1gD (20)

this is atrue MacCormack method, developed for truly first vy 23yy.zz?

order systems of equations, and not the “MacCormack-like”
predictor-corrector method used in the “G” codagain see
Sec. V where we apply these methods to a simplified mod

R = —3(92 9020 (21)

XX,2Z

eIJ:'quations(17) and (18) then reduce to three equations for

problem). the diagonal metric components
B. The linearized 3D codes a9 = a9\, (22
The discussion above was centered on the two codes we 2 (1) 2.1
have developed to solve the fully nonlinear Einstein equa- 9t 9yy = @ Qyy,z2, (23
tions. In order to help sort out linear from nonlinear effects 2D 21 "
and physical from numerical effects, we have also developed T = (04 9y 1) (24)

linearized versions of both the “G” and “H” codes. Both

codes have been written in such a way that subroutine cali§he Hamiltonian constrain®) reduces to

can be made to solve either the full Einstein equations or the ” (1) D

linearized versions. In this way all numerical algorithms not R™=—(0xxzzT 9yy,22 =0- (29
associated with the expressions themselves are identical and ) _ _

we can be sure that effects we see are related only to thnalytic solutions to Eqs(22)—(25) are discussed in Sec.
linearization process, and not to slight differences in codind!l A-

or numerical techniques that might otherwise arise if differ-

ent codes were developed. Ill. CODE TEST ONE: SINGLE WAVE PACKET

The general linearized version of the ADM equati¢@s . . . _
and (3) are long and unwieldy to write out explicitly. The In thls.sectlon we present a set of code Fest;s mvolvmg the
task is simpler for the harmonic formulation, as it amounts toProPagation of plane wave packets traveling in one dimen-
linearizing the principal part and setting all the nonlinearSion- We evolve these plane wave packets with our full 3D
sources on the RHS of Eq)—(10) to zero. In any case, a codes to test wave propagation in all three orthogonal direc-
simplified set of linearized ADM equations results when wetlonS (x, ¥, andz) independently and to look for any asym-
set@=0 anda= const to second perturbative order. We metries in the evolution for det_)ugglng purposes. These re-
will present these equations here to provide a framework fopults can then be compared with the propagation of waves
obtaining analytic solutions to the Einstein equations at firs@/0Ng Some arbitrary oblique angle that is not parallel to any
perturbative order for weak waves. However, we stress that ffo0rdinate axis, which tests the accuracy of resolving arbi-
is the general form of the linearized equations that we solv&f@ry waves on our rectangular grid. Since for such waves we
numerically, and not the specialized equations presented b&&n Use fewer grid zones in the transverse directions than in
low. the longitudinal directions, this allows us to perform tests
The perturbation expansion can be written in the form without sev_erely being constrained by avallable_ computer
memory as in the full 3D case. We have checked in all cases
9 :gi<10>+ Egi(jl) , (13)  we have studied that for very low amplitudes, the evolutions
obtained by the full 3D nonlinear codes are indistinguishable

) 0 from those obtained by the linearized codes described in Sec.
Kij=Kijj" + eKji”, (14 11 above.
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A. Linearized solution
1.00001- () '

A solution to the perturbation evolution equatiof22)—
(24) that is consistent with the Hamiltonian constrai@b)
can be given by

ds?= —dt?+[1+f(t,2)]dx2+[1—f(t,2)]dy2+dZ,
(26)

»
o8 1.00000{—
with f(t,z) satisfying the linear wave equation

92 (t,2)= 92 (t,2) (27)

for linearized plane waves propagating in thedirecton | ... =3

[18]. Settingg(;)= —g{}) gives the transverse-traceldds)

Ax=0.025

gauge in which the wave amplitudes are purely spatial, trace- 0.99999 1 T T T
less and transverse to the propagation direction. The metric -5.0 -2.5 0.0 2.5 5.0
(26) describes gravitational waves with a single mode of po- z
larizatione, .

We will study the solutions of a Gaussian-shaped wave 1.00001+
packet with

21
f(t,z)= ARe[Z’T“Za)"’]zcos(T(z—t)>

+ALe_[27T(t+Z—a)/0']Zco{2)\_7T(2+t)

>
. (29 o8 1.00000

The parameter8z andA, represent the amplitudes of waves
traveling to the right and left, respectively, with a Gaussian
shape of widtho and centered at=+a att=0.\ isthe | " numerical solution
wavelength of the Gaussian-modulated oscillations. If analytic solution

o>\, Eq. (28) represents a pure sinusoidal mode and for 0.99999 T T '

o<<\, a pure Gaussian packet. By changing the metric func- -5.0 -4.0 -3.0 -2.0 -1.0
tions appropriately, it can just as easily describe a wave trav- z

eling along thex or y axes, or be generalized to a wave

traveling in some arbitrary direction. FIG. 1. The evolution of the metric functiay,, is shown for a

We note that the harmonic slicing conditié) is consis- plafe wave V_"ith shape parameters-2.0, A=1.0, A, =0.000 01,
tent with geodesic slicing= 1) to first order as long as the Ar=0.anda=3. This wave was evolved with 40 points per wave-
traceless gaugeK(=0) is maintained. Hence, the linearized length.(a) The numerically evolved wave is shown at tintes0,

solutions presented above apply to the hyperbolic formuIaE=3’ andt=6. (b) The numerically evolved wave #t=6 is com-

tion with no modifications pared with the analytic solution.

. both the “G” and “H” codes. The “G” code evolutions are
B. Convergence studies performed with the standard leapfrog scheme with half-step
In F|g 1 we show the evolution of the p|ane Symmetricextrapolation. A full MacCormack scheme is used in the

waves defined by Eq$26) and (28) with shape parameters “H” code. . _
0=2.0,A,=1.0,A, =0.000 01 Ag=0, anda=3. This run is At the coarser resolutions, the waves disperse due to nu-

typical of the resolution and time scales for most of ourmerical discretization effects. These effects are more evident

evolutions. The wave is shown &0, t=3, andt=6. The in the “H” code evolutions of Fig. 2a). At higher resolu-

evolution is withAx=Ay=Az=0.025. tions, the two codes yield comparable results that reproduce
In Fig. 2 we evolve the initial data above, but with-0 accurately the solutio(28), which is represented by the ini-

and periodic boundary conditions. This allows the waves tdial data att=0. _ _

continue to propagate through the computational domain, al- " Fig. 3 we plot the rms error, where the error is defined

lowing us to evolve the wave for much longer times, without&S

increasing the grid size. The waves are shown at three dif-

ferent timest=0, 10, and 20. Since the wave propagation E=

speed is unity and the outer grid boundaries are set at

z==*5, the displayed profiles correspond to the wave posi-

tioned at the grid center. At=20, the wave has propagated as a function of the grid resolutioax. Here, gy is the

across the extent of the entire grid twice. Data for the saménear analytic solution(28) andg{} is the numerical solu-

sequence of times are presented for three different spatigibn from the nonlinear codepAs the amplitude of the wave

resolutions with grid spacingdx=0.1, 0.05, and 0.025 for is low, the analytic solution to the linearized equati{@8) is

o -g

(a)

29
Oxx 29
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1.00001

(a) Ax=0.1

1.00001-

(d) Ax=0.1

%" 1.00000- 1.00000-
0.99999 0.99999
50 25 00 25 50 50 25 00 25 5.0
VA Z
1.000014 ® A4x=005 1.00001 (© Ax=0.05
- ;
5 1 00000 %" 1.000004
H code
0.99999+———— ——— 0.99999
50 25 00 25 50 50 25 00 25 5.0
Z Z
1.00001-{(® 2x=0:025 100001 (D Ax=0.025
4 e
1 00000- 1 00000
t=0 t=
H code g el G code boITTE
0.9999HH——————— 17— 0.9999+———+——+—————
50 25 00 25 50 50 25 00 25 5.0
Z VA

FIG. 2. The evolution of the metric functiog,, is shown for a plane wave with shape parameters2.0, A=1.0, A, =0.000 01,
Ar=0, anda=0. Periodic boundary conditions are applied to allow the wave to evolve for a long time. The evolajiefts are done
with the H code, and the evolution@)—(f) are done with the G code. The rms errors &a t=10 andt=20, respectively
(@ 2.59x10°°® and 2.3%10°¢, (b) 1.79x10 ® and 2.4x10°%, (c) 4.32x10 7 and 8.2X%10° 7, (d) 1.49x10°% and 2.1%10 7,
(€) 2.75x10 7 and 5.3%10 7, (f) 1.71x10 7 and 3.4% 10 ’. Here we see the effects of dispersion when insufficient resolution is used.

basically the same as the exact.nonli'near solution,Eamd  At=CAx, with C< 1/y/3 to satisfy the 3D Courant stability
Eq. (29 represents the error in this serisdhe boxes condition. We useC=0.2 for both codes in the calculations
(circles are the “G” (“H" ) code results. We find the error presented in this section. We find that in order to keep errors
scales aE~Ax“® with a~2 as expected for fully second below E<10™* att=10, it is necessary to resolve a wave-
order methods. In all our simulations, the time steps havéength with 20 grid points with the “G” code and 40 using
been chosen to be proportional to the grid spacinghe “H” code. For waves traveling along the diagonal, we
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-5.00 -6
O G code, m=1.99 20102
4 O Hcode, m=1.96
— 06254 1.0x10°™
5 =
; 5
< 750 5 00 -
& =
2 <
-8.75 - B 1.0x10°-
Py t=10
t=1 ., | Geode - = -t=20
-10.00 — -2.0x10 " T T T "
200 -1.75 -150 -125 -1.00 0 5 10 15
log Ax k
0-6
FIG. 3. The log of the rms error is plotted against the log of the 2.0x1 (b)

resolutionAx, to test the convergence of the code. Here the error
E is defined in the text with respect to the linear solution. Although .
we are evolving the solution with the full nonlinear equations, with 1.0x10 4
the small amplitudes used, we expect the wave to behave linearly.
Second order methods were applied throughout, so we expect the
slope of this grapim to be 2. 0.0 4
find the resolution needs to be increased by approximately
J/2 to get the same error as when the wave is traveling along "
an axis, as expected. -1.0x10 +
By looking at the solutions in Fourier space, we can see
numerical effects not clearly evident in Fig. 2. In Fig. 4 we .
plot the Fourier transform of,,— 1 at three different times -2.0x10 .
for the intermediate resolution case withx=0.05. The 0 5 10 15
wavelengthA =2x/k=1, corresponding to the dominant k
mode, is resolved with-20 grid cells at this resolution. We
find, in general, that amplitude errors due to numerical dis- FIG. 4. The real part of the Fourier transform of the metric
sipation dominate over phase errors for typical resolutionsfunctions plotted in Fig. @), and Fig. 2e) are shown to compare
and that the MacCormack method used in the “H” code isthe effects of dispersion and dissipation. The H code is found to be
significantly more dissipative and dispersive than the leapmore dissipative and dispersive than the G code.
frog method of the “G” code. Again, we stress that this is

what we expect from the mathematical properties of thei,je wave packets. In fact, it is known that when two plane

respective finite differencing operators. . symmetric waves collide when traveling through an other-
As another test of the code, we monitor the Riemann cur-

vature invariant$21]. The curvature invariants are computed wise flat background, a curvature singularity is generated in
. T . . the region where the waves cross due to the focusing effect
using the numerical technique described by Gunnagsexh. g 9

[22]. It is known[21] that spacetimes containing only plane- of the waveq1]. Such a singularity gets generated even for

fronted gravitational waves with parallel raysg waves are ?rtb'tr?r"y weak waves, only the singularity will emerge at a
of the Petrov classification typg¢ and have vanishing invari- ater time. h luti f
ants. We, therefore, expelat least to linear order at which In Figs. Ga)-6(e) we show an evolutionary sequence of a

the metric(26) satisfies Einstein’'s equatiohkoth curvature wave packet collision gt the_four times-0, 3.’ 6, and 9 for
invariantsl andJ to vanish. The invariaritis plotted in Fig. moderately resolved grids withx=0.05 for Figs. 62)—6(d)

5 at three different resolutions to see that it is indeed con@NdAx=0.025 for Fig. e). The initial data are of the form
verging to zero. of Eg. (28) with the same parameters as the single wave

packets in the previous section except n@aw3, and

A =Ar=0.025 so that the data set consists of two wave

packets centered a=*3. First the two waves approach
The propagation of plane symmetric waves discussed irach other from their initial configurationstat 0, collide at

the previous section allows many aspects of the codes to e=3, and propagate to their original-centered locations at

tested, including the dispersive and dissipative nature of the=6.

various numerical schemes. Here we consider the collision of Notice that in the “G” code after the collision there is a

two identical plane wave packets. In such cases one expeatemnant left behind the waves. This remnant, shown clearly

to find nonlinear effects, even for vanishingly small ampli-in Fig. 6(@), grows in time. For waves with smaller ampli-

Re(FFT of g(x—l)

IV. CODE TEST TWO: COLLIDING WAVES
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after the collision, whera. is the characteristic wavelength,
o is the characteristic width of the packet, aAdis the
characteristic amplitude of the packet. For the case here, with
A~1, 0~1, andA~10 2, we expect the singularity to ap-
pear att~ 250, which is far beyond any evolutions shown
here. In fact, it is well beyond any time we can accurately
evolve to with our present computer resources. It is tempting
to make the singularity appear earlier by increasing the am-
plitude of the waves, so that the onset of the singularity can
be studied. We have resisted the temptation to do this here,
mainly because such a study is out of the scope of this paper.
Another reason for not including this study in the paper is
. that, for a larger amplitude wave, one has to solve the initial
AN constraints to higher order. With the planar symmetry, the
' T T nonlinear effect of the wave will introduce a long length
20 -15 -1.0 05 0.0 scale variation in the metric, which causes a coordinate sin-
z gularity at some spatial location on the initial slice, and
hence requires special treatment.

6.0x10°

=1

4.0x10°

14

2.0x10°-

0.0

FIG. 5. The curvature invariantis plotted for plane wave evo-
lutions. To makel a nondimensional quantity, we scale it by a
typical wavelength. It is known that all curvature invariants are zero V. A MODEL NONLINEAR PROBLEM
for plane wave spacetimes, and in this figure welseenverging to

zero as we increase the resolution. To investigate the cause of the “remnant” in the nonlin-

ear evolutions, we have developed a simplified model prob-
tude, this remnant is smaller initially, but grows to a largelem containing a single scalar field that exhibits similar be-
value at late times. havior as the fully nonlinear Einstein equations.

To test if the remnant in Fig.(8) is a nonlinear effect, in We arrive at this nonlinear model by starting with the
particular, if it is related to the singularity due to the focusingmetric (26) used in the previous studies. However, now we
effect, we evolved the same initial data set usinglithear-  keep the nonlinear terms in the ADM evolution equatit®)s
ized evolution equations. With linear evolution, no focusing and(3). These lead to the evolution equation fdt,z)
is possible. The results are displayed in Figh)6There is no
remnant in the solutions for colliding linear plane waves. In a,f=1I, (31)
view of this, one might be tempted to conclude that the rem-
nant in casda) is due to nonlinear physics. In fact, we will

show this is not the case. oll=f +H2_(f,z)2 32)
In Fig. 6(c) we show results from a “G” code simulation t 2z 1-f?

using the same initial data and resolution but with the Mac-

Cormack scheme. The remnant is greatly reduced. We alsPogether, Eqs(31) and (32) become

show in Fig. &d) the equivalent simulation performed with

the “H” code. Here we see similar behavior as the waves ) )

approach and collide. However, after the collision we see o (f)°=(f ) 33

that the remnant is nearly nonexistent, and it does not grow 12

appreciably over the time scale of the run. Clearly, the dif-

ferent numerical methods produce different results in th&yhen the orderf? term on the RHS is negligible, E¢33)
evolution. Finally, in Fig. &) we show the same simulation oy ces to the standard wave equati2f). Our aim here is
with the fully nonlinear “G” code as before in Fig.(é), but to investigate the relation between this term and the nu-

now with twice the resolution. In this case all other featuresmerica| schemes used for the evolution. We note that the

are quite S|m|I.ar, but the remnant is now rEduced.S'gn'f"solution of Eq.(33) does not generate a solution of the Ein-
cantly in amplitude. If we again double the resolution we

i stein equations as the resulting metric does not satisfy the
will see the remnant reduced even further. We conclude tha&onstra?nt equations. g bt
the remnant observed_ln Fig@ is a nume_ncal art'ff_iCt de- We have investigated this model equation using several
pendent an the numerical method and grid resolution. different finite difference methods that closely parallel those

So, this remnant inotrelated to the singularity caused by

: used in the “G” and “H” codes. Here we will present re-
the focusing effect. On the other hand, we know that theresmtS for the two methods used in the “G” code; staggered

must be a singularity at a later time; how does it manifes‘ieapfrog with 1/2 time step extrapolaton and a

itself? We note that weaker the amplitude of the wave, g .cormack-like predictor-corrector scheme with no ex-
later in time the singularity will form. Based on the colliding trapolation

pa"cléet sltudy in Refsl4,5], we expect that the singularity — £o 5 full understanding of the effect, we give the com-
will develop at a ime plete discretized equations, first in the leapfrog scheme
)\2
v 2mZoAl (30) RS KA (34)
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FIG. 6. The metric functiorg,, is shown for two plane waves with the same parameters as the single wave packet, except a larger
amplitudeA = Az=0.025, and centered at= = 3. In (a) we show the evolution with the G code, and a fully nonlinear evolution. Note the
drifting that takes place in the region where the waves collidéb)rwe show the same initial data now evolved with the linear evolution
equations. No drifting is present when the linear evolution equations are uségl.vie show the same initial data evolved with the full

nonlinear evolution but now with a MacCormack-like finite differencing scheme. The drifting is now greatly redu¢ddwin evolve the

initial data with the H code, and the drifting is similar to that foundah In (e) we again use the nonlinear G code, but now with a higher
resolution compared to that i@). We find that the drifting decreases with resolution. In general, we find the drifting is a nonlinear effect,

that depends on the resolution and finite differencing scheme used.
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(I H2= (] )2 0.25
3/2_ +1/2 1 J J ]
TS T 25 (]5) ot 1—(f71)2 L, | (a) staggered leapfrog — t=0
........... t=3
35 .
39 0.20+ g0 T t=6
where the superscript denotes the time level, and subscript | i -—-—--t=9
j tracks the spatial positiorf. and its time derivativdl are i t=12
staggered by a half-step in time with respect to each other. 0.154
Note that in updating the auxiliary variabld from time |
n+1/2 ton+3/2, we needI"*?, but in the standard leap-
frog scheme this auxiliary variable only exists on the half- 0.104 I \
. . . . | )
time steps. We approximate this value by extrapolating data h o
from the previous two time steps h 0!
0.05 g '
Hn+1:§l—[n+ll2_%nn—ll2. (36) ,l | | l‘
| P ]
In the MacCormack scheme, we first solve the predictor 0.00 ,' ! i ! ‘\
: . T = . T ' T ' T ' T T 1
step for the intermediate variablésand 1 10 5 0 5 10
TP i=10+ 1AL, (37) z
0.0020
~ (I 2= ((f]) »)?
=1+ “?),zﬁfwfzz At, (39 | (b) staggered leapfrog T Eig
0.0016+ —
followed by the corrector step =12
1. ~
=S ) T A, (39) 0.0012+
~— 4 e 4]
1 - —~ 0.0008+
HJ”“:E e+ | (F77Y 4, OO
(ﬁJ[H-l)Z_ (('F]'H- l) 2)2 0.0004
+ =5 | At (40
1-(f] )?
0.0000 — . — ;
In this scheme, all variables are centered at the same time -1.0 -0.5 0.0 0.5 1.0

step at the completion of both predictor-corrector updates.
Results for the collision of two wave packets are shown in

Fig. 7(a). The initial data is given by Eq28) with param- FIG. 7. A scalar fieldf, evolved with a nonlinear wave equation
eterso=1, AL=Ag=0.1, anda=3. We also seh— SO  yjth nonlinear terms similar to those found in the Einstein equa-
that the initial data are a pure Gaussian wave packet withoufons is shown. The shape of the wave packets is similar to those
sinusoidal oscillations. All calculations presented here wergsed in the collision of two waves in the previous section. A stag-
run at the same grid resolution d&fx=0.05. Although the gered leapfrog scheme is used. (5 we show a blow up of the
leapfrog and MacCormack schemes both perform well on theegion of interaction to show the drifting.
standard linear wave equation, they behave quite differently
on this nonlinear test problem. In Fig(bj we zoom in on waves pass through each other and then plot the quantity
the flat central portions of the wake. Although, only the re- . : :

—1 time. The results for the two different numerical

sults from the leapfrog evolution are shown, we see a similal N B :
drift with the MacCormack-like evolution, although the drift methods_ are_shown in Fig. 8 fcﬁrx-O.QS, and indeed we
see straight lines. The constactsandc, in Eq. (42) can be

is orders of magnitude smaller. '
To understand these drifts, we note that under the apr_ead out from the slopes and intercepts of these curves. For

proximationf<1 andf ,=0, which are clearly appropriate this case, we find the MacCormack scheme has a much

z

in the region of the drift, Eq(33) reduces to smaller drift rate withc;=1.4x10"" andc,=1.0, as com-
pared to the leapfrog scheme with=—9.8x10"° and
fu=f3, (41)  ¢,=1.0. Just as in the full “G” code, the remnant amplitude
. . gets smaller as one goes to higher and higher resolution. We
which has a solution find that the drifting solution converges away with rates
f(t)=—In(cit+cy), (42) 3.86 and 3.49 for the leapfrog and MacCormack-like meth-

ods, respectively. Here we are just using the three values of
wherec; andc, are arbitrary constants. To verify that the ¢, at different resolutions to calculate the convergence rate
drifts are really of this form, we look at the origin after the «
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0.00010 To confirm that this is the same phenomenon as we ob-
| latataCatatabotebaraRabotatabote served in the Einstein equations, we have verified that the
drift in the wave remnants follows the forfd2). For similar
-0.00042+ 0 grid parameters we find similar values for the coefficients:
. DEI c,=—1.6x10"% and c,=1.0 for the leapfrog method and
— -0.00094- On €,;=7.9x10"7 and ¢,=1.0 for MacCormack-like method.
o Dl:l Again, the drifting solution is orders of magnitude smaller
= DD for the MacCormack-like method.
5 -0.00146 DD
O
0.00198 DDD VI. CODE TEST THREE: PURE QUADRUPOLE WAVES
L Il\fapfrog = The third test problem on the construction of general rela-
acCormack R . . .
tivistic spacetimes we discuss is the quadrupole waves
-0.00250 ' v ' ' ' l [15,16 with an imploding-exploding nature. We use the
5 10 15 20 quadrupole waves to test the 3D propagation of low ampli-

t tude waves in our 3D Cartesian codes. As these solutions

L i . . represent quadrupole waves, they provide standards against
FIG. 8. The quantiye '~ 1 is shown plotted against time for hich we can compare the codes’ ability to evolve waves
both the leapfrog and MacCormack-like schemes. This shows fhich do not conform to the rectangular geometry of Carte-
solution of the formf (t) = — In(c,t +c;) being excited by numerical sian grids. In the following two subsections, we study these

error. The constantsl_and C, are m(_aasured from the graph and waves first in linear settings and then with full nonlinearity.
depend on the resolution and numerical scheme used. The MacCor-

mack scheme has a much smaller drift rate witk= 1.4<10" 7 and

c,=1.0, as compared to the leapfrog scheme with=—9.8 A. Quadrupole waves satisfying the initial value problem
x10~° and ¢,=1.0. These results were obtained wikx=0.05. (IVP) to linear order
We see that with both these methods this solution converges away .
with increased resolution. Linearized quadrupole wave§Teukolsky wavep have
been given for both even and odd parity solutions and the
¢,(Ax=0.05—c;(Ax=0.025 independent azimuthal modes in RElf6]. Due to the length
_ _ 4 . - .
a CL(AX=0.025 — c,(Ax=0.0125 (43)  of these expressions, we do not write out the solutions here.

The axisymmetric version of these solutions has been used as

(We note that this unstable mode can also be excited by @ testbed for a number of axisymmetric evolution cote®,
single wave packet and appears in the tail after the wavér example, Ref[23]).
passes some region. In our first set of numerical tests, the initial data is taken
The drifts shown in this section for the evolution of Fig. to be essentially the form given §§£6], but modified to be
8, and in the previous section for the evolution of the full time symmetric and contain an ingoing and outgoing wave in
Einstein equations are now readily understood: The nonlinsuch a combination as to make them regular everywhere in
ear evolution equations contain unstable modes. We note thapacetime[15]. We note that as small amplitude waves on
this is not in contradiction to the expectation that the Einsteirthe Minkowski background, the constraint equations are
equations are stable for weak waveseak perturbations of trivially satisfied to first order, but violated to second order.
the flat spacetime |t is the constraint equations that rule out Quadrupole waves that satisfy the full constraint equations
these unstable modes. In our free evolution code the corwill be studied in the next section.
straint equations are not enforced. This allows the unstable We study the evolution of the waves using both the “G”
modes to develop after they are excited by the numerica@nd “H” codes. The G code is run with geodesic slicing, and
errors in the evolution. Exactly which mode will be excited the H code with harmonic slicing. We first look at runs with
most and the amount it is excited depends on the details ¢fven parity waves having an amplitude of £0and quadru-
the numerical scheme. Here we see that the leapfrog scheri@le number$=2 andm=0. Here the amplitude is the am-
as given by Eqg(31) and(32) is more prone to the excitation plitude given by the Eppley packgt5] which corresponds
of the unstable modes of the for(2). This is because the to a perturbation in the metric functiow,, of about
extrapolation(36) leads to inaccuracies that ruin the exact0.025%. For such low amplitude waves, the difference com-
cancellations on the RHS of E¢B3) in the trailing edge of ing from nonlinearities in the Einstein equations is negli-
the wave. We have further analyzed this pointystudying  gible. Initially, the wave is at the coordinate center and ex-
the unstable mode given by E@t2) for the case of a single pands outward as time increases. Figufa) Plots g,y at
wave packet, in which the same phenomena od@grusing  various times obtained by the “G” code and in FighPwe
a different extrapolation scheme in place of that given by Eqgblow up the region near the axis to show the wave in the
(36), e.g., one based on a second order Taylor expansiometric function that rapidly falls off.
and(iii) by reducing the Courant factor by a factor of 10. We By t=5, gy, evolves to become nearly unity everywhere.
find that increasing the accuracy of the extrapolation in EqComparing the profile at=5 to the linearized solution in
(36) leads to slightly better results as far as the unstable driff16], we find that the error iny,, is about 1.4 10 ®. Figure
is concerned, but none of the methods we tried comparé(c) shows the evolution with the “H” code. We see that the
favorably to the predictor-corrector schemes which requirgesults of the two codes are similar. The error in the “H”
no extrapolation. code att=5 is about 1.X 10 ’. If we require that the error



56 DYNAMICS OF GRAVITATIONAL WAVES IN 3D: ... 853

1.00025 5.4
(a) G code | 0O Gcode, m=1.95
| O Hcode, m=1.91
1.00013{ . _ 567
8
§ 5.8
& 1.00000+ ‘é’
t= & 6.0
----------- t=1 &
0.99988 el h _
=3 -6.2
—————— t=4
----- t=5 (@) t=1
0.99975 — T T T T T -6.4 T T T T T T T T
o 1 2 3 4 5 6 -140  -125 -1.10 -095 -0.80
z log Ax
1 00002 ..' 6.2X1 0'7
;: (b) G code, blow up *é 8 G code
| L3 H code
1.00001- g ) 5.0x10" X G code, linear evolution
) 5 3.8x107 -
& 1.00000 . g
%) ; o o
E 2.5x10 0
0.99999 % o
1.2x107 X
0 X
' _ (o) e
0.99998 . T . : , 0.0 (b) Ax=0.05
. I ' I ! T T T
0 1 2 3 4 5 1 2 3 4 5
z
1.00025

FIG. 10. (a) The log of the rms error is again plotted as in Fig.
3, to test the convergence of the code.tAtl we get a conver-
) gence rate of 1.95 for the G code, and 1.91 for the H ctgewe
1.000134 ™. 1 plot the rms error vs time for th&x=0.05 case. The increase in the
) error occurring in the late time evolution of the G code will be
described in the next section.

>
o 1.00000¢ remains<10 8, att="5 we see that we need 40 pointgbr
=0 the “G” code and 10 pointa/ for the “H.” The dispersive
----------- t=1 nature of the “H” code is probably biasing this result by
099984 , T t=2 allowing the waves to disperse out faster.
"""" t=3 In Fig. 10 we plot the error, as defined by HR9), in
o t=4 O«x as a function of grid resolution at tinte=1. Again, we
0.9997 5 |"-"| t|=5 observe a convergence rate with an exponent of nearly 2. We

0 1 5 3 4 5 6 have also compared other metric components and various
components of the Riemann tensor, and they all showed re-
z sults agreeing to high accuracy with the linear analytic solu-
tion.

FIG. 9. The metric functiom,, is shown for a small amplitude Next, we study a case of higher amp“tude per_turbatlons
Teukolsky wave with quadrupole numbers 0 andm=0. This ~ With A=10"* and g,,—1~10"3. The evolution using the
corresponds to a perturbation in the metric function of about'G” code with geodesic slicing, and resolution
0.025%. In(a) we show the evolution using the G code.() we =~ Ax=Ay=Az=0.1is shown for late times in Fig. {d). The
magnify the region near the axis showing the wave in the metrideature to note is thag,, develops a dip at the origin. To
function which rapidly drops off as the wave travels outwardidn  distinguish if the dipping is due to numerical or physical
we show the evolution with the H code. nonlinear effects coming from the increased amplitude, we
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FIG. 11. The metric functiom,, is shown for a moderate am-
plitude Teukolsky wave with azimuthal mode numime+ 0. This

corresponds to an initial perturbation in the metric function of about
0.5%. The early part of the evolution is virtually identical to Fig.
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FIG. 12. In(a) we show the conformal factor after using the
Teukolsky initial data and solving the IVP. Ifb) we show the
evolution of this initial data which now solves the constraint equa-
tion up to numerical error. We see that the evolution of this data is
virtually the same as in Fig. 14) and the dipping of the metric
function is still present.

ran the same initial data with the linear evolution equation
option of the code. The result is shown in Fig.(41 No
dipping is present whatsoever. This confirms thé & non-
linear effect. As we pointed out earlier, there can be three
types of nonlinear effectgi) numerical errors coupled with
nonlinearity, (i) coordinate effects due to nonlinearity, or
(i) nonlinear physics. We expect all three types to be
present in the evolution. The question is, which one is most
responsible for producing this dipping feature.

One might be tempted to identify this dip with the same
spurious drifting coming from the coupling of the finite dif-

9(a), but at late times, after the wave has dispersed out, we now sd€"encing error and the nonlinear term discussed in the pre-

a dipping in the metric function near the origin. (8) the initial

vious section, namely, effe¢t). Both the drift in the previ-

data is evolved with the full nonlinear equations using the G code@US section and the dip here are secular evolutions in the

and we clearly see the late time dipping.(b) we evolve with the
linear evolution equations and see no evidence of the dipping) In

region where the wave has passed. However, there is a major
difference. In this case, the dipping is not converging away

we again use the nonlinear evolution, but increase the resolutiowith higher resolution. In Fig. &) we show the same quan-

and find the dipping does not converge away.

tities now evolved withAx=Ay=Az=0.05. The dipping
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FIG. 13. The effect of slicing on the evolution of the quadrupole wavé/P initial data. In(a) we see the evolution of the metric
function g, with geodesic slicing. Ir{b) we showr,;, the stress-energy pseudotensor(dnwe show the curvature invariaht In (d) we
show the same initial data now evolved with maximal slicing. Note that there is no dipping in the metric functiehwi again show
7, and in(f) the curvature invariarit. Note that even though the evolution of the metric function differs with slicipgand! remain the
same which suggests that we are seeing a coordinate, rather than geometric, effpstielishow the lapse. Note thata is very close to
1. It is the shape of the lapse rather than its size, that keeps the metric function from dipping near the origin. We also note that the
pseudotensor and the invariants are not defined in the first boundary cells in our computational domain, and so we arbitrarily assign a value
of zero to the left-most point in the graphs.

becomes slightly worse with the resolution doubled. Wethe metricg,, in the conformal space in the York formalism

have carried this out at even higher resolutions with runs up; 7] As the linear data set is constructed to be time symmet-
to Ax=Ay=Az=0.025. We conclude that the dippingisnot . =~ . - _ . .
ric with K;;=0, the initial momentum constraint equations

due to finite differencing error. . L - .
At this point we want to investigate another possibility for are trivially satisfied and it is straightforward to solve the

the cause of the dipping, which is not included (iiii ) initial Hamiltonian constraint equation to .determine the con-
mentioned above. We note that the initial data set that wéormal ff"Ctor W needed for the physical space metric
have used satisfies the initial constraint equations to first org,,=¥“g,y. For the case where the amplitude is taken to be
der only. While we evolve the initial data with the full non- 10-4 (the @XX of which is given in Fig. 11, the conformal
Iineqr evolution equation, .is it possi_blg that there may be&gactor is shown in Fig. 1@). We note that¥ differs only
spurious effects due to this contradiction that leads t0 thg|ightly from 1, so that the initial data obtained through this
dipping? This is the subject of the next subsection. procedure describe basically the same spacetime as studied
in the previous subsection, except that now the initial data
B. Quadrupole waves satisfying the VP satisfy the constraint equation in full, and can be regarded as
To generate a set of initial data which is similar to what isrepresenting a physical spacetime as described by the Ein-
studied in the previous subsection, we take the linear data agein equations up to the finite differencing approximation.
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FIG. 13.(Continued.

The evolution of this initial data is shown in Fig. @  time. For simplicity, we assumgt,,=0 when evaluating
again using the G code with geodesic slicing, andgg.(44) numerically. We note that this,, is meaningless if
Ax=Ay=Az=0.05. We see that the time development isthe initial data satisfy the constraints only to the linear order.
basically the same as that of Fig. (&L In particular, the  For this reasorr,, is not used in the analysis of any of the
dipping at the origin at late times is not affected. linearized initial data in the previous section.

After verifying that the dipping is not due to numerical In Figs. 13a)—13(g) we compare the “G” code geodesic
truncation error(the effect does not decrease with resolu-SIiCing evolution to the maximal slicing case. Notice ttt

tion), and that it is mdepen(_je_r_]t_ of whether or not th_e IV.P 'Seven while the metric is dipping in the geodesic slicing case
solved, there are two possibilities left. The dipping is either . . .

- : . ; all the components of the Riemann tensor studied, the Rie-
due to (ii) nonlinear coordinate effects, diii) nonlinear

physics, as discussed and labeled in the Introduction. To di __arr]m Invariants, and, all rlema'f‘ small, algd arelcon5|s(tjent
tinguish which one is the main cause, we look at variabled"t r-eturmng to zero at late timefsee 'gS- @ an
that are representative of the actual geometry. We studietS(©)]; (2) in the maximal slicing case, there is no dipping of

various components of the four-dimensional Riemann tensofMetric componentgFig. 13d)]; (3) there is good agreement
€.0..M,4,s. the Riemann invariants andJ [21], and the N the Riemann tensor components, the Riemann invariants,

pseudo-energy-momentum ten$ad] and 7, between the geodesic and the maximal slicing cases
[Figs. 13e) and 13f)], although the metric functions behave
differently. In Fig. 13g), we show the evolution of lapse in
the maximal slicing case. We see that the lapse is very close
to 1 throughout the spacetime. This means that in terms of
Whereiﬁﬁfy) is the part of the four-dimensional Ricci tensor proper time evolved, the geodesic slicing case and the maxi-
that is linear in the deviation of the metric from flat space-mal slicing case are not that different.

T Ry~ 30,,R-RD+39,,RY), 49

iy



56 DYNAMICS OF GRAVITATIONAL WAVES IN 3D: ... 857

1.00 surface changes with respect to the four-geometry. This is
(a) enough to stop the secular motion of the coordinate lines in
this weak field case without having the lapse collapse in any
significant manner(This kind of gauge problem in evolving
with geodesic slicing is well noted in the literatuf5].)

=)
~J]
w
1
—
—

= From Eq.(3) we can compute the evolution &f for geode-
2 sic slicing, which, using the Hamiltonian constraint, reduces
5 050- [ to
=
= K=K K™, (45)
0.25-

The RHS of this equation is always non-negative. Therefore,
slope=-0.166 the convergencK of the geodesics tends to increase without
limit, resulting in a coordinate singularity on a free-fall time
0.00 — 1 1 T scale. See Ref25] for a full discussion. Here we found that
750 -625  -500 -3.75  -2.50 the dipping seen in Fig. 18) is due solely to this effect.
log(g,,(t=0)-1) By comparing the metric functions obtained from a linear
evolution to a nonlinear evolution, we can define a qualita-
2.000 tive measure of the time at which nonlinear coordinate ef-
(b) fgcts become present. We d_o this by defintg,gicm as the
time when the rms relative difference of the linear and non-
I linear evolutions disagree by 10%. Since this rms value is a
global measure, we expect our results to depend on the spe-
cific energy distribution of the wave model that we are
evolving. In Fig. 14a) we compare the critical time as a
function of the size of the initial metric function perturba-
tion. We see that the critical time scales roughly as a power
law. The error bars in the graph come from the fact that the
1.1754 I data is only a_nalyzed _in time int_ervals A¢=O.1. _
) I To determine the time at which nonlinear geometric ef-
I fects occur, we define a similar critical time, but now com-
paring the rms relative difference of the linear and nonlinear
0.900 — T T T T evolutions of the curvature invariait Again, we define
-7.50 -6.25 -500 -3.75 -2.50 teiical @S the time at which the two evolutions disagree by
log(g, (t=0)-1) 10%. The re_sults are ;hpyvn in Eig. (b .again plotte(_j
z against the size of the initial metric function perturbation.
The critical time for nonlinear geometric effects occurs at a
FIG. 14. We define a critical tim&,;co at which the rms rela-  later time than that of nonlinear coordinate effects for the
tive difference of the linear evolution disagrees with nonlinear evo-amplitudes considered here.
lution by 10%. In(a) we look attg;i.a for the metric function
Oxx. and compare it against the size of initial perturbation in the
metric functiong,,. Since the metrics show the coordinate dipping,

this is a measure of the onset of nonlinear coordinate effects. We oo . . ) .
find that there is an approximate power law dependende;gf, . In this first paper in the series, we studied various aspects

The error bars in this graph come from the fact that the data ar€f our 3D codes in evolving grz_ivitational waves. We show
only analyzed in time intervals aft=0.1. In (b) we do the same, how the accuracy of the evolution can be analyzed through

but for the curvature invariart Since the invariant is coordinate various monitors built into the codes. This includes violation

independent, it is a measure of nonlinear geometric effects. We finef the Hamiltonian constraint, Fourier spectrum analysis, as

that nonlinear geometric effects occur at a later time than nonlineawell as convergence tests. These studies are not only crucial

coordinate effects for the amplitudes considered here. for our using these codes in the future, but are also useful for
other groups who may want to build similar 3D codes.

This strongly suggests that the dipping should be attrib- We focused on the difficulties in evolving low to moder-
uted to nonlinear coordinate effects. The energy of the wavate amplitude gravitational waves. They have amplitudes low
initially sitting at the origin sets the coordinate lingghich  enough so that one has a good physical understanding of the
move normal to the slicing in the case of zero shifto a  physics involved, but at the same time large enough to en-
free fall towards the origin. As the wave moves outward, theable nonlinear effects to emerge. We studiedhe coupling
geometry near the origin returns to being flat. However, withbetween numerical errors and nonlinearity, did coordi-
geodesic slicing and no shift vector, there is nothing to stomate effects due to nonlinearity, with specific examples. We
the motion of coordinate lines. They keep drifting towardsdiscussed the strategies used in identifying the cause of the
the center where the wave was, causing the metric functionsonlinear effects. In this process we emphasize the impor-
to dip there. With maximal slicing, the motion of the coor- tance of the flexibility of being able to use different numeri-
dinate lines is changed as the normal of the constant timeal schemes, different choice of coordinate conditions, dif-

1.725+

-
n
m
T

1Og(tcritical )
|_|

VIl. CONCLUSION



858 ANNINOS, MASSO SEIDEL, SUEN, AND TOBIAS 56

ferent formulations of the Einstein equatio® and H ACKNOWLEDGMENTS

formulations, and different equationglinear vs nonlinear We thank Steve Brandt for coding up the Riemann-
equations This flexibility, and the availability of many invariant routines used in this paper. This work was sup-

“monitoring devices” in the codes, such as the scalar Rie'ported by NSF Grant Nos. PHY94-04788, 94-07882, and

mann invariants, pseudo-energy-momentum tensor, angs 00587, The calculations were performed at NCSA on the

Hamiltonian constraint, have been crucial in our understand-rhinking Machines CM-5 and at the Pittsburgh Supercom-

ing of the nonlinear effects. . puting Center on the Cray C-90. W.M.S. would like to thank
With these in hand, we are now proceeding to study thehe support of the Institute of Mathematical Sciences of the

collision of 3D wave packetgpackets finite in size in all Chinese University of Hong Kong. In the late stage of the

three spatial dimensionsWe consider this to be possibly preparation of this paper, a paper by Nakamatal. ap-

just next in importance in geometrodynamics to the collisionpeared(Ref. [26]), reporting on their numerical study of

of two black holes. The results will be reported in later pa-gravitational waves based on a code they developed indepen-

pers in the series. dently.

[1] K. Khan and R. Penrose, Natufeondon 229, 185(1971.
[2] F. Tipler, Phys. Rev. @22, 2929(1980.

[3] R. Matzner and F. Tipler, Phys. Rev.Z®, 1575(1984).
[4] U. Yurtsever, Phys. Rev. B7, 2790(1988.

[5] U. Yurtsever, Phys. Rev. B8, 1731(1988.

[18] C. W. Misner, K. S. Thorne, and J. A. Wheel&ravitation
(Freeman, San Francisco, 1973

[19] D. Bernstein, D. Hobill, and L. Smarr, irontiers in Numeri-
cal Relativity edited by C. Evans, L. Finn, and D. Hobill
(Cambridge University Press, Cambridge, England, 1989.

[6] A. Abrahams and C. Evans, Phys. Rev4B R4117(1992. 57—73.
[7] S. M. Miyama, Prog. Theor. Phy65, 894 (1981). [20] C. Bona, J. MasscE. Seidel, and J. Stela, Phys. Rev. L8,
[8] A. Abrahams and C. Evans, Phys. Rev. L&f, 2980(1993. 600 (1995.

[9] R. Vogt, in Sixth Marcel Grossman Meeting on General Rela- 21] M. MacCallum, D. Kramer, H. Stephani, and E. HeBixact
tivity, Proceedings, Kyoto, Japan, 1991, edited by H. Sato an(g ' ' ’

e ] Solutions of Einstein’s Field Equatiori€ambridge University
T. Nakamura(World Scientific, Singapore, 1992pp. 244—

Press, Cambridge, England, 1980

[10] \2/\6136W Johnson and S. M. Merkowitz, Phys. Rev. Let, [22] L. Gunnarsen, H. Shinkai, and K. Maeda, Class. Quantum
2367(1993 - » FIYS. Rev. Grav. 12, 133(1995.

[23] C. Evans, inDynamical Spacetimes and Numerical Relativity
edited by J. CentrelldCambridge University Press, Cam-
bridge, England, 1986 pp. 3—39.

[24] S. WeinbergGravitation and Cosmology: Principles and Ap-
plications of the General Theory of RelativitWiley, New

[11] P. Anninoset al, Phys. Rev. 062, 2059(1995.

[12] R. Arnowitt, S. Deser, and C. W. Misner, @ravitation: An
Introduction to Current Researcledited by L. WittenWiley,
New York, 1962.

[13] C. Bona and J. Mass®hys. Rev. D40, 1022(1989.

[14] C. Bona and J. Mass®hys. Rev. Lett68, 1097 (1992. York, 1972.

[15] K. Eppley, inSources of Gravitational Radiatioedited by L.~ [25] L. Smarr and J. York, Phys. Rev. D7, 2529(1978.

Smarr (Cambridge University Press, Cambridge, England,[26] Nakamuraet al. are also carrying out 3D gravitational wave
1979, p. 275. studies in an independent effort. See M. Shibata and T. Naka-
[16] S. Teukolsky, Phys. Rev. 26, 745 (1982. mura, Phys. Rev. B2, 5428(1995; T. Nakamureet al, Prog.

[17] J. York, in Sources of Gravitational Radiatipredited by L.
Smarr (Cambridge University Press, Cambridge, England,
1979.

Theor. Phys. SuppR0, 1 (1987; Prog. Theor. Physs5, 894
(1982.



