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The dynamics of gravitational waves is investigated in full~311!-dimensional numerical relativity, empha-
sizing the difficulties that one might encounter in numerical evolutions, particularly those arising from non-
linearities and gauge degrees of freedom. Using gravitational waves with amplitudes low enough that one has
a good understanding of the physics involved, but large enough to enable nonlinear effects to emerge, we study
the coupling between numerical errors, coordinate effects, and the nonlinearities of the theory. We discuss the
various strategies used in identifying specific features of the evolution. We show the importance of the
flexibility of being able to use different numerical schemes, different slicing conditions, different formulations
of the Einstein equations@standard Arnowitt, Deser, and Misner vs first order hyperbolic#, and different sets of
equations~linearized vs full Einstein equations!. A nonlinear scalar field equation is presented which captures
some properties of the full Einstein equations, and has been useful in our understanding of the coupling
between finite differencing errors and nonlinearities. We present a set of monitoring devices which have been
crucial in our studying of the waves, including Riemann invariants, pseudo-energy-momentum tensor, Hamil-
tonian constraint violation, and Fourier spectrum analysis.@S0556-2821~97!05014-5#

PACS number~s!: 04.30.Nk, 04.25.Dm, 95.30.Sf

I. INTRODUCTION

This paper is the first in a series of papers in which we
numerically study gravitational waves in 311 dimensions.
The systems studied range from weak gravitational waves
with various symmetries to fully general and highly nonlin-
ear waves. We study the dynamical evolutions of the waves
and the interactions between waves. That is, we investigate
the dynamics of spacetime in its pure~vacuum! form, a sub-
ject that is important for theoretical, observational, and tech-
nical reasons. This area of research is for the most part un-
charted territory due to its mathematical complexity and the
need for large scale computational resources that have not
been available previously. The general behavior of three-
dimensional~3D! strong gravitational waves, including, for
example, gravitational geons and the formation of singulari-
ties, is unknown. Previous analytic and numerical work on
pure gravitational wave spacetimes, done in one or two spa-
tial dimensions, has led to many interesting results, such as
the formation of singularities from colliding plane waves
@1–5# or the formation of black holes by imploding axisym-
metric gravitational waves@6,7# and the existence of critical
behavior in such systems@8#. These discoveries raise inter-
esting questions about waves in more general 3D spacetimes.
Yurtsever has proposed conjectures concerning the criteria
for the formation of singularities from wave packets with
finite extension in all three directions@4,5#. These conjec-
tures, together with the global structure and local behavior of
the singularities so formed, if indeed they can be formed,
remains to be investigated. These questions call for a full 3D
study.

Gravitational waves are also about to open up a funda-
mentally new area of astronomical observation: gravitational

wave astronomy. A new generation of interferometric@9#
and bar detectors@10# should detect waves for the first time
near the turn of the century. Even though any observed
waves are expected to have weakened by the time they reach
Earth, they are likely to have been generated in regions with
strong, highly dynamical, and nonlinear gravitational fields.
It is, therefore, essential to be able to study waves accurately
in both the strong and weak field regimes, as well as the long
term secular behavior in the transitory intermediate regimes.
The study of pure wave spacetimes will aid us in developing
numerical codes to study all three regimes with confidence in
the numerical results.

These pure wave studies compliment our program to com-
pute the evolution and the radiation from the coalescence of
two black holes in decaying orbits@26#. Because black hole
and gravitational wave systems each presents its own set of
technical difficulties, we first study black holes and waves
separately, and then combine them after the problematics of
each system are identified and understood. In a separate pa-
per @11# we have presented results for a pure single black
hole spacetime~i.e., Schwarzschild! evolved in three-
dimensional Cartesian coordinates, with essentially the same
basic code as used here. In future papers we will present
results from evolutions of distorted black holes, including
both gravitational waves and black holes.

In this first paper we focus on examining the difficulties
one encounters in evolving relatively low amplitude 3D
gravitational waves in Cartesian coordinates, and on the
strategies we developed to solve those problems. We begin
with low amplitude waves, as one has better physical under-
standing of what should be happening in such cases. When
the amplitude is very low, the evolution is linear and nothing
interesting happens. What is more interesting is waves in the
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‘‘near-linear’’ regime, the meaning of which will become
clearer throughout the paper. Basically, we mean waves
which show some nonlinear transient or secular effects that
can be observed in our numerical study within the limit of
the accuracy and time scale of the evolution that we can
currently achieve. These effects could be due to~i! numerical
errors ~finite differencing errors! coupled with nonlinearity,
~ii ! coordinate effects due to nonlinearity, or~iii ! nonlinear
physics.@Of course, there is also a~iv! that we have invested
a lot of effort in making sure of its absence~an effort which
is not discussed here!, namely, coding errors.# In this first
paper, our aim is to study~i! and~ii ! instead of~iii !. We find
that there are indeed cases for which~i! and ~ii ! give rise to
interesting features in the evolution, but have negligible non-
linear physical effects.

It is nontrivial to distinguish whether a feature is due to
~i!, ~ii !, or ~iii !. To make the distinction between these ef-
fects, we have implemented many monitors of the evolution,
e.g., Hamiltonian constraint, pseudo-energy-momentum ten-
sor, curvature components, and curvature invariants. We
have the options of using different gauge and slicing condi-
tions, and different boundary conditions, different finite dif-
ferencing schemes, with different orders of finite differenc-
ing. In addition to the codes that evolve the full 3D nonlinear
Einstein equations, we have developed other evolution codes
for comparison, e.g., codes that evolve the linearized Ein-
stein equations, and codes that evolve a scalar field equation
that captures important features of the full Einstein equa-
tions. Most noteworthy is that we have developed two com-
pletely independent codes that are based on two very differ-
ent analytic formulations of the full Einstein evolution
equations. All simulations presented in this paper were run
with both codes, and the results were compared in detail. It is
important to point out that the two codes will not produce
identical results. One code is based on a particular gauge
choice where that gauge condition is assumed in the evolu-
tion equations, whereas the other code has the evolution
equations in their completely general from. When a gauge is
chosen it can only be kept to numerical error.

The first of these fully nonlinear codes, which we call the
‘‘G’’ ~for general! code, is based on the standard 311 Ar-
nowitt, Deser, and Misner~ADM ! @12# approach to numeri-
cal relativity. It has been written in a fully general way,
without specializing the equations to any lapse or shift con-
dition, and without any restrictions on symmetry or initial
data. The second code, which we call the ‘‘H’’~for har-
monic! code, is based on the first order, flux-conservative,
hyperbolic formulation of the Einstein equations developed
by Bona and Masso´ @13,14#. Different finite differencing and
evolution schemes have been incorporated into both codes,
as well as linearized versions of both formulations. All these
different codes and options were essential in enabling us to
sort out the effects~i!–~iv! mentioned above.

We discuss three types of testbeds in this paper. The first
test we consider is a single plane symmetric wave packet,
propagating in some arbitrary direction. This problem allows
us to compare the dispersive and dissipative properties of the
codes for waves propagating in different directions in the 3D
Cartesian grid, and the resolution needed for a given desired
accuracy.

The second type of test we consider is the collision of

weak plane wave packets. The focus here is on an effect
caused by a coupling between finite differencing errors and
the nonlinearity of the evolution equations. It manifests itself
as a drifting of the metric function in a region where the
wave packet has crossed. We discuss in detail how the cause
of this drift can be identified. We develop a scalar field equa-
tion which captures important features of the nonlinear evo-
lution of the Einstein equations. Testbeds done with this
equation have been crucial in this analysis. We propose that
this scalar equation be used as a standard testbed for the
numerical study of gravitational waves.

The third type of testbed is an imploding-exploding com-
bination of quadrupole wave packets@15,16#. In addition to
analyzing the accuracy of the numerical evolution, the focus
here is on the coupling between the motion of the coordi-
nates and the nonlinearity of the Einstein equations. With
geodesic slicing, this coupling manifests itself as a ‘‘dip-
ping’’ of some metric functions at the center of the symme-
try, at a time long after the implode-explode process. We
study at what amplitude this phenomenon becomes observ-
able. We report on the analysis carried out in confirming that
this behavior is due solely to coordinate motion instead of
truly nonlinear physics.

For all three types of testbeds, we have studied the evo-
lution of initial data sets which satisfy the constraint equa-
tions to linear order, and for the third testbed, data that com-
pletely satisfies the constraints, obtained through the York’s
formalism @17#. We have checked that the two kinds of ini-
tial data basically lead to the same kinds of evolution for the
low amplitude waves studied in this paper, hence we do not
discuss the two cases separately unless otherwise mentioned.
Throughout the paper we restrict ourselves to time symmet-
ric initial data for simplicity when solving for the initial
value problem, which is not our major concern in this paper.

In this paper we use the convention of@18#, in which
c51 and, as we are studying vacuum spacetimes,G does not
enter. The system has no intrinsic length scales except those
set by the waves, e.g., wavelength.

This paper is separated into the following sections: Sec-
tion II reviews the two different codes we have developed,
which are based on the two different analytic formulations of
the Einstein equations. We also discuss the numerical meth-
ods used in these two codes. The different tests and compari-
sons of our codes are presented in Secs. III–VI. Section III is
on plane wave packets. Section IV is on colliding packets.
Section V discusses a nonlinear scalar field equation that is
useful in analyzing the nonlinearity of the Einstein evolution
equations. Section VI is on imploding-exploding quadrupole
waves. Section VII is a brief discussion and conclusion.

II. BASIC FORMALISMS AND NUMERICAL METHODS

A. The fully nonlinear 3D codes

We have developed two independent 3D codes to solve
the fully nonlinear set of Einstein equations. As all tests pre-
sented in this paper are performed with both codes, this ap-
proach allows us to study systematically the effect of not
only different numerical methods, of which we have tested
several, but also different mathematical formulations of the
equations.
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1. The ‘‘G’’ code

The first code we present is the ‘‘G’’ code, where G
stands for general. This code uses the standard 311 ADM
formulation of the Einstein equations. It is general in the
sense that it can be used with arbitrary slicing and spatial
coordinate conditions. The general spacetime metric is of the
form

ds25~2a21b ib
i !dt212b idx

idt1gi j dx
idxj , ~1!

wherea andb i are the lapse function and shift vector, re-
spectively. Although the vacuum ADM equations are given
in many papers, we again show them here so that one may
compare them with a second formulation discussed below:

] tgi j522aKi j1¹ ib j1¹ jb i , ~2!

] tKi j52¹ i¹ ja1a~Ri j1KKi j22KimK j
m!1bm¹mKi j

1Kim¹ jb
m1Kmj¹ ib

m. ~3!

Here,¹ i is the spatial covariant derivative,Ri j is the spatial
Ricci tensor, andK is the trace of the extrinsic curvature.
While the code admits arbitrary kinematic conditions fora
andb i , in this paper we report only on results obtained with
either geodesic slicing (a51), maximal slicing, or harmonic
slicing for the lapse function, and zero shift vector. The
maximal slicing lapse

¹m¹ma5aR ~4!

is derived by taking the trace of Eq.~3! and setting
K5] tK50. The harmonic slicing condition for the lapse is
derived imposing the harmonic condition on the time coor-
dinate, leading to the evolution equation

] ta52a2K, ~5!

where the initial value for the lapse is completely arbitrary.
It is also appropriate to introduce the Hamiltonian con-

straint

h5R1K22Ki jK
i j50. ~6!

Although the evolution equations theoretically preserve the
Hamiltonian constraint in time, this is not generally so in
numerically constructed spacetimes. Discretization effects
accumulate over time, which can lead to violations of the
Hamiltonian constraint. The quantityh defined in Eq.~6!,
therefore, offers a means of monitoring errors introduced in
the numerical evolution.

Equations~2! and ~3! are expanded in a 3D Cartesian
coordinate system and coded inFORTRANusing MACSYMA
scripts written originally by David Hobill. More details of
this code are provided in Ref.@11#, where it was applied to
black hole spacetimes.

An important point to stress is that the equations have not
been specialized in any way. All gauge degrees of freedom
are left general, so that any shift and lapse conditions may
easily be imposed. On the other hand, this implies that if a
particular gauge choice is used for the initial data~i.e., a
diagonal form of the metric or a traceless extrinsic curva-
ture!, the equations themselves are not specialized to that

gauge, and this allows for the possibility that the gauge con-
dition may not be strictly satisfied after some evolution due
to numerical errors. We view it as an important strength of
this code, as it opens up the possibility of investigating the
stability of various gauge choices.

This code is sufficiently flexible that it allows different
evolution schemes to be implemented easily, and we have
developed the following two numerical schemes that are sec-
ond order accurate in space and time: a staggered leapfrog
with half-time step extrapolation, and a ‘‘MacCormack-like’’
predictor-corrector method. An essential difference between
them is that in the MacCormack scheme, all quantities are
centered on the same time slices at all times and, therefore,
no extrapolations or averages are needed to get quantities
that are properly centered. The leapfrog scheme has the
three-metric and extrinsic curvature variables offset by 1/2-
time slice, so that although the main time derivative terms
are properly centered, a number of important terms in the
evolution equations require extrapolations or averaging in
time. The details of these methods have been published else-
where~see, e.g., Ref.@19#!, and so we will not present them
here~however, see Sec. V where we apply these methods to
a simplified model problem!.

2. The ‘‘H’’ code

The second code~‘‘H’’ ! is based on the work of Bona and
Massó@14# that casts the Einstein equations in an explicitly
first order, flux-conservative, hyperbolic form. In this paper
we present the first results of this new formulation to gravi-
tational wave spacetimes.

The general metric is also of the form~1! and spacetime
coordinates are chosen such that the shift vector vanishes. It
was shown in Ref.@14# that if one restricts the lapse to the
harmonic slicing~5!, one can write the Einstein evolution
equations as a hyperbolic first order system of balance laws
that in vacuum takes the form:

] tg
i j5Qi j , ~7!

] tFAga Qi j G2]k@aAg~Dki j1gkigj1gk jgi !#

5
Ag
a
QikQk

j 22aAg@giklgkl
j 1LiL j2gigj #, ~8!

] t@Dk
i j #2]k@Q

i j #50, ~9!

] tg
i5Qk

kLi22Qj
i L j1gjk

i Qjk. ~10!

TheQi j quantities are proportional to the extrinsic curvature.
Note that all the sources@on the right-hand side~RHS!# ac-
count for the nonlinear terms and that the three-dimensional
Ricci does not appear as it has been split into its transport
part and its nonlinear source. The connection coefficients
gjk
i are constructed from the first derivatives of the metric

Dk
i j5]kg

i j . ~11!

These derivatives are evolved using Eq.~9!. Equation~11! is
only used in the initial slice. Similarly, the derivatives of the
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lapse are used on the initial slice to constructLi5] i lna and
to derive the initial values of the momentum constraint-
related variables:

gi5 1
2gjkD

i jk2Dk
ki2Li . ~12!

These variables are evolved using Eq.~10! while Eq. ~12! is
used to compute theLi during the evolution.

At present this code is restricted to use the harmonic lapse
condition with a vanishing shift, although recent work@20#
shows that the same first order, flux-conservative, hyperbolic
form can be maintained with a wider class of slicing condi-
tions. Results from a code developed with this more recent
formulation of the equations will be presented elsewhere.

Standard operator-splitting techniques allow for the prin-
cipal part of the system to be treated as a flux-conservative,
first order system. This kind of system is well known in
computational fluid dynamics~CFD!, where a wide choice of
modern and standard numerical methods has been devel-
oped. In this case a flux-conserving MacCormack method is
used for the principal part of the evolution system. Note that
this is atrueMacCormack method, developed for truly first
order systems of equations, and not the ‘‘MacCormack-like’’
predictor-corrector method used in the ‘‘G’’ code~again see
Sec. V where we apply these methods to a simplified model
problem!.

B. The linearized 3D codes

The discussion above was centered on the two codes we
have developed to solve the fully nonlinear Einstein equa-
tions. In order to help sort out linear from nonlinear effects
and physical from numerical effects, we have also developed
linearized versions of both the ‘‘G’’ and ‘‘H’’ codes. Both
codes have been written in such a way that subroutine calls
can be made to solve either the full Einstein equations or the
linearized versions. In this way all numerical algorithms not
associated with the expressions themselves are identical and
we can be sure that effects we see are related only to the
linearization process, and not to slight differences in coding
or numerical techniques that might otherwise arise if differ-
ent codes were developed.

The general linearized version of the ADM equations~2!
and ~3! are long and unwieldy to write out explicitly. The
task is simpler for the harmonic formulation, as it amounts to
linearizing the principal part and setting all the nonlinear
sources on the RHS of Eqs.~7!–~10! to zero. In any case, a
simplified set of linearized ADM equations results when we
set b i50 anda5 const to second perturbative order. We
will present these equations here to provide a framework for
obtaining analytic solutions to the Einstein equations at first
perturbative order for weak waves. However, we stress that it
is the general form of the linearized equations that we solve
numerically, and not the specialized equations presented be-
low.

The perturbation expansion can be written in the form

gi j5gi j
~0!1egi j

~1! , ~13!

Ki j5Ki j
~0!1eKi j

~1! , ~14!

wheree!1 is the smallness parameter and the superscripts
~0! and ~1! refer to the zeroth and first order solutions. As-
suming a Minkowski background spacetime such that

gi j
~0!5diag@1,1,1#, ~15!

Ki j
~0!50, ~16!

and a51, the zeroth order equations are satisfied trivially
and the resulting linearized ADM equations become

] tgi j
~1!522aKi j

~1! , ~17!

] tKi j
~1!5aRi j

~1! . ~18!

If we make the further assumption of a diagonal three-metric
which is a function only of the single coordinatez, the non-
vanishing components of the Ricci curvature tensor are

Rxx
~1!52 1

2gxx,zz
~1! , ~19!

Ryy
~1!52 1

2gyy,zz
~1! , ~20!

Rzz
~1!52 1

2 ~gxx,zz
~1! 1gyy,zz

~1! !. ~21!

Equations~17! and ~18! then reduce to three equations for
the diagonal metric components

] t
2gxx

~1!5a2gxx,zz
~1! , ~22!

] t
2gyy

~1!5a2gyy,zz
~1! , ~23!

] t
2gzz

~1!5a2~gxx,zz
~1! 1gyy,zz

~1! !. ~24!

The Hamiltonian constraint~6! reduces to

R~1!52~gxx,zz
~1! 1gyy,zz

~1! !50. ~25!

Analytic solutions to Eqs.~22!–~25! are discussed in Sec.
III A.

III. CODE TEST ONE: SINGLE WAVE PACKET

In this section we present a set of code tests involving the
propagation of plane wave packets traveling in one dimen-
sion. We evolve these plane wave packets with our full 3D
codes to test wave propagation in all three orthogonal direc-
tions (x, y, andz) independently and to look for any asym-
metries in the evolution for debugging purposes. These re-
sults can then be compared with the propagation of waves
along some arbitrary oblique angle that is not parallel to any
coordinate axis, which tests the accuracy of resolving arbi-
trary waves on our rectangular grid. Since for such waves we
can use fewer grid zones in the transverse directions than in
the longitudinal directions, this allows us to perform tests
without severely being constrained by available computer
memory as in the full 3D case. We have checked in all cases
we have studied that for very low amplitudes, the evolutions
obtained by the full 3D nonlinear codes are indistinguishable
from those obtained by the linearized codes described in Sec.
II above.
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A. Linearized solution

A solution to the perturbation evolution equations~22!–
~24! that is consistent with the Hamiltonian constraint~25!
can be given by

ds252dt21@11 f ~ t,z!#dx21@12 f ~ t,z!#dy21dz2,
~26!

with f (t,z) satisfying the linear wave equation

] t
2f ~ t,z!5]z

2f ~ t,z! ~27!

for linearized plane waves propagating in thez direction
@18#. Settinggxx

(1)52gyy
(1) gives the transverse-traceless~TT!

gauge in which the wave amplitudes are purely spatial, trace-
less and transverse to the propagation direction. The metric
~26! describes gravitational waves with a single mode of po-
larizatione1 .

We will study the solutions of a Gaussian-shaped wave
packet with

f ~ t,z!5FARe
2[2p~ t2z2a!/s] 2cosS 2p

l
~z2t ! D

1ALe
2[2p~ t1z2a!/s] 2cosS 2p

l
~z1t ! D G . ~28!

The parametersAR andAL represent the amplitudes of waves
traveling to the right and left, respectively, with a Gaussian
shape of widths and centered atz56a at t50. l is the
wavelength of the Gaussian-modulated oscillations. If
s@l, Eq. ~28! represents a pure sinusoidal mode and for
s!l, a pure Gaussian packet. By changing the metric func-
tions appropriately, it can just as easily describe a wave trav-
eling along thex or y axes, or be generalized to a wave
traveling in some arbitrary direction.

We note that the harmonic slicing condition~5! is consis-
tent with geodesic slicing (a51) to first order as long as the
traceless gauge (K50) is maintained. Hence, the linearized
solutions presented above apply to the hyperbolic formula-
tion with no modifications.

B. Convergence studies

In Fig. 1 we show the evolution of the plane symmetric
waves defined by Eqs.~26! and ~28! with shape parameters
s52.0,l51.0,AL50.000 01,AR50, anda53. This run is
typical of the resolution and time scales for most of our
evolutions. The wave is shown att50, t53, andt56. The
evolution is withDx5Dy5Dz50.025.

In Fig. 2 we evolve the initial data above, but witha50
and periodic boundary conditions. This allows the waves to
continue to propagate through the computational domain, al-
lowing us to evolve the wave for much longer times, without
increasing the grid size. The waves are shown at three dif-
ferent timest50, 10, and 20. Since the wave propagation
speed is unity and the outer grid boundaries are set at
z565, the displayed profiles correspond to the wave posi-
tioned at the grid center. Att520, the wave has propagated
across the extent of the entire grid twice. Data for the same
sequence of times are presented for three different spatial
resolutions with grid spacingDx50.1, 0.05, and 0.025 for

both the ‘‘G’’ and ‘‘H’’ codes. The ‘‘G’’ code evolutions are
performed with the standard leapfrog scheme with half-step
extrapolation. A full MacCormack scheme is used in the
‘‘H’’ code.

At the coarser resolutions, the waves disperse due to nu-
merical discretization effects. These effects are more evident
in the ‘‘H’’ code evolutions of Fig. 2~a!. At higher resolu-
tions, the two codes yield comparable results that reproduce
accurately the solution~28!, which is represented by the ini-
tial data att50.

In Fig. 3 we plot the rms error, where the error is defined
as

E5Ugxx~a!2gxx
~n!

gxx
~a! U ~29!

as a function of the grid resolutionDx. Here, gxx
(a) is the

linear analytic solution~28! andgxx
(n) is the numerical solu-

tion from the nonlinear codes.@As the amplitude of the wave
is low, the analytic solution to the linearized equation~28! is

FIG. 1. The evolution of the metric functiongxx is shown for a
plane wave with shape parameterss52.0, l51.0, AL50.000 01,
AR50, anda53. This wave was evolved with 40 points per wave-
length. ~a! The numerically evolved wave is shown at timest50,
t53, andt56. ~b! The numerically evolved wave att56 is com-
pared with the analytic solution.
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basically the same as the exact nonlinear solution, andE in
Eq. ~29! represents the error in this sense.# The boxes
~circles! are the ‘‘G’’ ~‘‘H’’ ! code results. We find the error
scales asE;Dxa with a;2 as expected for fully second
order methods. In all our simulations, the time steps have
been chosen to be proportional to the grid spacing

Dt5CDx, with C,1/A3 to satisfy the 3D Courant stability
condition. We useC50.2 for both codes in the calculations
presented in this section. We find that in order to keep errors
belowE,1024 at t510, it is necessary to resolve a wave-
length with 20 grid points with the ‘‘G’’ code and 40 using
the ‘‘H’’ code. For waves traveling along the diagonal, we

FIG. 2. The evolution of the metric functiongxx is shown for a plane wave with shape parameterss52.0, l51.0, AL50.000 01,
AR50 , anda50. Periodic boundary conditions are applied to allow the wave to evolve for a long time. The evolutions~a!–~c! are done
with the H code, and the evolutions~d!–~f! are done with the G code. The rms errors are~at t510 and t520, respectively!:
~a! 2.5931026 and 2.3831026, ~b! 1.7931026 and 2.4031026, ~c! 4.3231027 and 8.2231027, ~d! 1.4931026 and 2.1531027,
~e! 2.7531027 and 5.3931027, ~f! 1.7131027 and 3.4331027. Here we see the effects of dispersion when insufficient resolution is used.
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find the resolution needs to be increased by approximately
A2 to get the same error as when the wave is traveling along
an axis, as expected.

By looking at the solutions in Fourier space, we can see
numerical effects not clearly evident in Fig. 2. In Fig. 4 we
plot the Fourier transform ofgxx21 at three different times
for the intermediate resolution case withDx50.05. The
wavelengthl52p/k51, corresponding to the dominant
mode, is resolved with;20 grid cells at this resolution. We
find, in general, that amplitude errors due to numerical dis-
sipation dominate over phase errors for typical resolutions,
and that the MacCormack method used in the ‘‘H’’ code is
significantly more dissipative and dispersive than the leap-
frog method of the ‘‘G’’ code. Again, we stress that this is
what we expect from the mathematical properties of their
respective finite differencing operators.

As another test of the code, we monitor the Riemann cur-
vature invariants@21#. The curvature invariants are computed
using the numerical technique described by Gunnarsenet al.
@22#. It is known@21# that spacetimes containing only plane-
fronted gravitational waves with parallel rays (pp waves! are
of the Petrov classification typeN and have vanishing invari-
ants. We, therefore, expect@at least to linear order at which
the metric~26! satisfies Einstein’s equations# both curvature
invariantsI andJ to vanish. The invariantI is plotted in Fig.
5 at three different resolutions to see that it is indeed con-
verging to zero.

IV. CODE TEST TWO: COLLIDING WAVES

The propagation of plane symmetric waves discussed in
the previous section allows many aspects of the codes to be
tested, including the dispersive and dissipative nature of the
various numerical schemes. Here we consider the collision of
two identical plane wave packets. In such cases one expects
to find nonlinear effects, even for vanishingly small ampli-

tude wave packets. In fact, it is known that when two plane
symmetric waves collide when traveling through an other-
wise flat background, a curvature singularity is generated in
the region where the waves cross due to the focusing effect
of the waves@1#. Such a singularity gets generated even for
arbitrarily weak waves, only the singularity will emerge at a
later time.

In Figs. 6~a!–6~e! we show an evolutionary sequence of a
wave packet collision at the four timest50, 3, 6, and 9 for
moderately resolved grids withDx50.05 for Figs. 6~a!–6~d!
andDx50.025 for Fig. 6~e!. The initial data are of the form
of Eq. ~28! with the same parameters as the single wave
packets in the previous section except nowa53, and
AL5AR50.025 so that the data set consists of two wave
packets centered atz563. First the two waves approach
each other from their initial configurations att50, collide at
t53, and propagate to their original-centered locations at
t56.

Notice that in the ‘‘G’’ code after the collision there is a
remnant left behind the waves. This remnant, shown clearly
in Fig. 6~a!, grows in time. For waves with smaller ampli-

FIG. 3. The log of the rms error is plotted against the log of the
resolutionDx, to test the convergence of the code. Here the error
E is defined in the text with respect to the linear solution. Although
we are evolving the solution with the full nonlinear equations, with
the small amplitudes used, we expect the wave to behave linearly.
Second order methods were applied throughout, so we expect the
slope of this graphm to be 2.

FIG. 4. The real part of the Fourier transform of the metric
functions plotted in Fig. 2~b!, and Fig. 2~e! are shown to compare
the effects of dispersion and dissipation. The H code is found to be
more dissipative and dispersive than the G code.
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tude, this remnant is smaller initially, but grows to a large
value at late times.

To test if the remnant in Fig. 6~a! is a nonlinear effect, in
particular, if it is related to the singularity due to the focusing
effect, we evolved the same initial data set using thelinear-
izedevolution equations. With linear evolution, no focusing
is possible. The results are displayed in Fig. 6~b!. There is no
remnant in the solutions for colliding linear plane waves. In
view of this, one might be tempted to conclude that the rem-
nant in case~a! is due to nonlinear physics. In fact, we will
show this is not the case.

In Fig. 6~c! we show results from a ‘‘G’’ code simulation
using the same initial data and resolution but with the Mac-
Cormack scheme. The remnant is greatly reduced. We also
show in Fig. 6~d! the equivalent simulation performed with
the ‘‘H’’ code. Here we see similar behavior as the waves
approach and collide. However, after the collision we see
that the remnant is nearly nonexistent, and it does not grow
appreciably over the time scale of the run. Clearly, the dif-
ferent numerical methods produce different results in the
evolution. Finally, in Fig. 6~e! we show the same simulation
with the fully nonlinear ‘‘G’’ code as before in Fig. 6~a!, but
now with twice the resolution. In this case all other features
are quite similar, but the remnant is now reduced signifi-
cantly in amplitude. If we again double the resolution we
will see the remnant reduced even further. We conclude that
the remnant observed in Fig. 6~a! is a numerical artifact de-
pendent on the numerical method and grid resolution.

So, this remnant isnot related to the singularity caused by
the focusing effect. On the other hand, we know that there
must be a singularity at a later time; how does it manifest
itself? We note that weaker the amplitude of the wave, the
later in time the singularity will form. Based on the colliding
packet study in Refs.@4,5#, we expect that the singularity
will develop at a time

t;
l2

~2p!2sA2 ~30!

after the collision, wherel is the characteristic wavelength,
s is the characteristic width of the packet, andA is the
characteristic amplitude of the packet. For the case here, with
l;1, s;1, andA;1022, we expect the singularity to ap-
pear att;250, which is far beyond any evolutions shown
here. In fact, it is well beyond any time we can accurately
evolve to with our present computer resources. It is tempting
to make the singularity appear earlier by increasing the am-
plitude of the waves, so that the onset of the singularity can
be studied. We have resisted the temptation to do this here,
mainly because such a study is out of the scope of this paper.
Another reason for not including this study in the paper is
that, for a larger amplitude wave, one has to solve the initial
constraints to higher order. With the planar symmetry, the
nonlinear effect of the wave will introduce a long length
scale variation in the metric, which causes a coordinate sin-
gularity at some spatial location on the initial slice, and
hence requires special treatment.

V. A MODEL NONLINEAR PROBLEM

To investigate the cause of the ‘‘remnant’’ in the nonlin-
ear evolutions, we have developed a simplified model prob-
lem containing a single scalar field that exhibits similar be-
havior as the fully nonlinear Einstein equations.

We arrive at this nonlinear model by starting with the
metric ~26! used in the previous studies. However, now we
keep the nonlinear terms in the ADM evolution equations~2!
and ~3!. These lead to the evolution equation forf (t,z)

] t f5P, ~31!

] tP5 f ,zz1
P22~ f ,z!

2

12 f 2
. ~32!

Together, Eqs.~31! and ~32! become

f ,tt2 f ,zz5
~ f ,t!

22~ f ,z!
2

12 f 2
. ~33!

When the orderf 2 term on the RHS is negligible, Eq.~33!
reduces to the standard wave equation~27!. Our aim here is
to investigate the relation between thisf 2 term and the nu-
merical schemes used for the evolution. We note that the
solution of Eq.~33! does not generate a solution of the Ein-
stein equations as the resulting metric does not satisfy the
constraint equations.

We have investigated this model equation using several
different finite difference methods that closely parallel those
used in the ‘‘G’’ and ‘‘H’’ codes. Here we will present re-
sults for the two methods used in the ‘‘G’’ code; staggered
leapfrog with 1/2 time step extrapolation and a
MacCormack-like predictor-corrector scheme with no ex-
trapolation.

For a full understanding of the effect, we give the com-
plete discretized equations, first in the leapfrog scheme

f j
n115 f j

n1P j
n11/2Dt, ~34!

FIG. 5. The curvature invariantI is plotted for plane wave evo-
lutions. To makeI a nondimensional quantity, we scale it by a
typical wavelength. It is known that all curvature invariants are zero
for plane wave spacetimes, and in this figure we seeI converging to
zero as we increase the resolution.
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FIG. 6. The metric functiongxx is shown for two plane waves with the same parameters as the single wave packet, except a larger
amplitudeAL5AR50.025, and centered atz563. In ~a! we show the evolution with the G code, and a fully nonlinear evolution. Note the
drifting that takes place in the region where the waves collide. In~b! we show the same initial data now evolved with the linear evolution
equations. No drifting is present when the linear evolution equations are used. In~c! we show the same initial data evolved with the full
nonlinear evolution but now with a MacCormack-like finite differencing scheme. The drifting is now greatly reduced. In~d! we evolve the
initial data with the H code, and the drifting is similar to that found in~c!. In ~e! we again use the nonlinear G code, but now with a higher
resolution compared to that in~a!. We find that the drifting decreases with resolution. In general, we find the drifting is a nonlinear effect,
that depends on the resolution and finite differencing scheme used.
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P j
n13/25P j

n11/21F ~ f j
n11! ,zz1

~P j
n11!22„~ f j

n11! ,z…
2

12~ f j
n11!2 GDt,

~35!

where the superscriptn denotes the time level, and subscript
j tracks the spatial position.f and its time derivativeP are
staggered by a half-step in time with respect to each other.
Note that in updating the auxiliary variableP from time
n11/2 to n13/2, we needPn11, but in the standard leap-
frog scheme this auxiliary variable only exists on the half-
time steps. We approximate this value by extrapolating data
from the previous two time steps

Pn115 3
2Pn11/22 1

2Pn21/2. ~36!

In the MacCormack scheme, we first solve the predictor
step for the intermediate variablesf̃ andP̃

f̃ j
n115 f j

n1P j
nDt, ~37!

P̃ j
n115P j

n1F ~ f j
n! ,zz1

~P j
n!22„~ f j

n! ,z…
2

12~ f j
n!2 GDt, ~38!

followed by the corrector step

f j
n115

1

2
@ f̃ j

n111 f j
n1P̃ j

n11Dt#, ~39!

P j
n115

1

2F P̃ j
n111P j

n1S ~ f̃ j
n11! ,zz

1
~P̃ j

n11!22„~ f̃ j
n11! ,z…

2

12~ f̃ j
n11!2

D DtG . ~40!

In this scheme, all variables are centered at the same time
step at the completion of both predictor-corrector updates.

Results for the collision of two wave packets are shown in
Fig. 7~a!. The initial data is given by Eq.~28! with param-
eterss51, AL5AR50.1, anda53. We also setl→` so
that the initial data are a pure Gaussian wave packet without
sinusoidal oscillations. All calculations presented here were
run at the same grid resolution ofDx50.05. Although the
leapfrog and MacCormack schemes both perform well on the
standard linear wave equation, they behave quite differently
on this nonlinear test problem. In Fig. 7~b! we zoom in on
the flat central portions of the wake. Although, only the re-
sults from the leapfrog evolution are shown, we see a similar
drift with the MacCormack-like evolution, although the drift
is orders of magnitude smaller.

To understand these drifts, we note that under the ap-
proximation f!1 and f ,z50, which are clearly appropriate
in the region of the drift, Eq.~33! reduces to

f ,tt5 f ,t
2 , ~41!

which has a solution

f ~ t !52 ln~c1t1c2!, ~42!

wherec1 and c2 are arbitrary constants. To verify that the
drifts are really of this form, we look at the origin after the

waves pass through each other and then plot the quantity
e2 f21 time. The results for the two different numerical
methods are shown in Fig. 8 forDx50.05, and indeed we
see straight lines. The constantsc1 andc2 in Eq. ~42! can be
read out from the slopes and intercepts of these curves. For
this case, we find the MacCormack scheme has a much
smaller drift rate withc151.431027 and c251.0, as com-
pared to the leapfrog scheme withc1529.831025 and
c251.0. Just as in the full ‘‘G’’ code, the remnant amplitude
gets smaller as one goes to higher and higher resolution. We
find that the drifting solution converges away with rates
3.86 and 3.49 for the leapfrog and MacCormack-like meth-
ods, respectively. Here we are just using the three values of
c1 at different resolutions to calculate the convergence rate
a

FIG. 7. A scalar fieldf , evolved with a nonlinear wave equation
with nonlinear terms similar to those found in the Einstein equa-
tions is shown. The shape of the wave packets is similar to those
used in the collision of two waves in the previous section. A stag-
gered leapfrog scheme is used. In~b! we show a blow up of the
region of interaction to show the drifting.

56 851DYNAMICS OF GRAVITATIONAL WAVES IN 3D: . . .



a5
c1~Dx50.05!2c1~Dx50.025!

c1~Dx50.025!2c1~Dx50.0125!
. ~43!

~We note that this unstable mode can also be excited by a
single wave packet and appears in the tail after the wave
passes some region.!

The drifts shown in this section for the evolution of Fig.
8, and in the previous section for the evolution of the full
Einstein equations are now readily understood: The nonlin-
ear evolution equations contain unstable modes. We note that
this is not in contradiction to the expectation that the Einstein
equations are stable for weak waves~weak perturbations of
the flat spacetime!. It is the constraint equations that rule out
these unstable modes. In our free evolution code the con-
straint equations are not enforced. This allows the unstable
modes to develop after they are excited by the numerical
errors in the evolution. Exactly which mode will be excited
most and the amount it is excited depends on the details of
the numerical scheme. Here we see that the leapfrog scheme
as given by Eqs.~31! and~32! is more prone to the excitation
of the unstable modes of the form~42!. This is because the
extrapolation~36! leads to inaccuracies that ruin the exact
cancellations on the RHS of Eq.~33! in the trailing edge of
the wave. We have further analyzed this point by~i! studying
the unstable mode given by Eq.~42! for the case of a single
wave packet, in which the same phenomena occur;~ii ! using
a different extrapolation scheme in place of that given by Eq.
~36!, e.g., one based on a second order Taylor expansion;
and~iii ! by reducing the Courant factor by a factor of 10. We
find that increasing the accuracy of the extrapolation in Eq.
~36! leads to slightly better results as far as the unstable drift
is concerned, but none of the methods we tried compare
favorably to the predictor-corrector schemes which require
no extrapolation.

To confirm that this is the same phenomenon as we ob-
served in the Einstein equations, we have verified that the
drift in the wave remnants follows the form~42!. For similar
grid parameters we find similar values for the coefficients:
c1521.631024 and c251.0 for the leapfrog method and
c157.931027 and c251.0 for MacCormack-like method.
Again, the drifting solution is orders of magnitude smaller
for the MacCormack-like method.

VI. CODE TEST THREE: PURE QUADRUPOLE WAVES

The third test problem on the construction of general rela-
tivistic spacetimes we discuss is the quadrupole waves
@15,16# with an imploding-exploding nature. We use the
quadrupole waves to test the 3D propagation of low ampli-
tude waves in our 3D Cartesian codes. As these solutions
represent quadrupole waves, they provide standards against
which we can compare the codes’ ability to evolve waves
which do not conform to the rectangular geometry of Carte-
sian grids. In the following two subsections, we study these
waves first in linear settings and then with full nonlinearity.

A. Quadrupole waves satisfying the initial value problem
„IVP … to linear order

Linearized quadrupole waves~Teukolsky waves! have
been given for both even and odd parity solutions and the
independent azimuthal modes in Ref.@16#. Due to the length
of these expressions, we do not write out the solutions here.
The axisymmetric version of these solutions has been used as
a testbed for a number of axisymmetric evolution codes~see,
for example, Ref.@23#!.

In our first set of numerical tests, the initial data is taken
to be essentially the form given by@16#, but modified to be
time symmetric and contain an ingoing and outgoing wave in
such a combination as to make them regular everywhere in
spacetime@15#. We note that as small amplitude waves on
the Minkowski background, the constraint equations are
trivially satisfied to first order, but violated to second order.
Quadrupole waves that satisfy the full constraint equations
will be studied in the next section.

We study the evolution of the waves using both the ‘‘G’’
and ‘‘H’’ codes. The G code is run with geodesic slicing, and
the H code with harmonic slicing. We first look at runs with
even parity waves having an amplitude of 1025 and quadru-
pole numbersl52 andm50. Here the amplitude is the am-
plitude given by the Eppley packet@15# which corresponds
to a perturbation in the metric functiongxx of about
0.025%. For such low amplitude waves, the difference com-
ing from nonlinearities in the Einstein equations is negli-
gible. Initially, the wave is at the coordinate center and ex-
pands outward as time increases. Figure 9~a! plots gxx at
various times obtained by the ‘‘G’’ code and in Fig. 9~b! we
blow up the region near the axis to show the wave in the
metric function that rapidly falls off.

By t55, gxx evolves to become nearly unity everywhere.
Comparing the profile att55 to the linearized solution in
@16#, we find that the error ingxx is about 1.431026. Figure
9~c! shows the evolution with the ‘‘H’’ code. We see that the
results of the two codes are similar. The error in the ‘‘H’’
code att55 is about 1.131027. If we require that the error

FIG. 8. The quantitye2 f21 is shown plotted against time for
both the leapfrog and MacCormack-like schemes. This shows a
solution of the formf (t)52 ln(c1t1c2) being excited by numerical
error. The constantsc1 and c2 are measured from the graph and
depend on the resolution and numerical scheme used. The MacCor-
mack scheme has a much smaller drift rate withc151.431027 and
c251.0, as compared to the leapfrog scheme withc1529.8
31025 and c251.0. These results were obtained withDx50.05.
We see that with both these methods this solution converges away
with increased resolution.
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remains,1026, at t55 we see that we need 40 points/l for
the ‘‘G’’ code and 10 points/l for the ‘‘H.’’ The dispersive
nature of the ‘‘H’’ code is probably biasing this result by
allowing the waves to disperse out faster.

In Fig. 10 we plot the error, as defined by Eq.~29!, in
gxx as a function of grid resolution at timet51. Again, we
observe a convergence rate with an exponent of nearly 2. We
have also compared other metric components and various
components of the Riemann tensor, and they all showed re-
sults agreeing to high accuracy with the linear analytic solu-
tion.

Next, we study a case of higher amplitude perturbations
with A51024 and gxx21;1023. The evolution using the
‘‘G’’ code with geodesic slicing, and resolution
Dx5Dy5Dz50.1 is shown for late times in Fig. 11~a!. The
feature to note is thatgxx develops a dip at the origin. To
distinguish if the dipping is due to numerical or physical
nonlinear effects coming from the increased amplitude, we

FIG. 9. The metric functiongxx is shown for a small amplitude
Teukolsky wave with quadrupole numbersl50 andm50. This
corresponds to a perturbation in the metric function of about
0.025%. In~a! we show the evolution using the G code. In~b! we
magnify the region near the axis showing the wave in the metric
function which rapidly drops off as the wave travels outward. In~c!
we show the evolution with the H code.

FIG. 10. ~a! The log of the rms error is again plotted as in Fig.
3, to test the convergence of the code. Att51 we get a conver-
gence rate of 1.95 for the G code, and 1.91 for the H code.~b! We
plot the rms error vs time for theDx50.05 case. The increase in the
error occurring in the late time evolution of the G code will be
described in the next section.

56 853DYNAMICS OF GRAVITATIONAL WAVES IN 3D: . . .



ran the same initial data with the linear evolution equation
option of the code. The result is shown in Fig. 11~b!. No
dipping is present whatsoever. This confirms that itis a non-
linear effect. As we pointed out earlier, there can be three
types of nonlinear effects:~i! numerical errors coupled with
nonlinearity, ~ii ! coordinate effects due to nonlinearity, or
~iii ! nonlinear physics. We expect all three types to be
present in the evolution. The question is, which one is most
responsible for producing this dipping feature.

One might be tempted to identify this dip with the same
spurious drifting coming from the coupling of the finite dif-
ferencing error and the nonlinear term discussed in the pre-
vious section, namely, effect~i!. Both the drift in the previ-
ous section and the dip here are secular evolutions in the
region where the wave has passed. However, there is a major
difference. In this case, the dipping is not converging away
with higher resolution. In Fig. 11~c! we show the same quan-
tities now evolved withDx5Dy5Dz50.05. The dipping

FIG. 11. The metric functiongxx is shown for a moderate am-
plitude Teukolsky wave with azimuthal mode numberm50. This
corresponds to an initial perturbation in the metric function of about
0.5%. The early part of the evolution is virtually identical to Fig.
9~a!, but at late times, after the wave has dispersed out, we now see
a dipping in the metric function near the origin. In~a! the initial
data is evolved with the full nonlinear equations using the G code,
and we clearly see the late time dipping. In~b! we evolve with the
linear evolution equations and see no evidence of the dipping. In~c!
we again use the nonlinear evolution, but increase the resolution
and find the dipping does not converge away.

FIG. 12. In ~a! we show the conformal factor after using the
Teukolsky initial data and solving the IVP. In~b! we show the
evolution of this initial data which now solves the constraint equa-
tion up to numerical error. We see that the evolution of this data is
virtually the same as in Fig. 11~a! and the dipping of the metric
function is still present.
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becomes slightly worse with the resolution doubled. We
have carried this out at even higher resolutions with runs up
to Dx5Dy5Dz50.025. We conclude that the dipping is not
due to finite differencing error.

At this point we want to investigate another possibility for
the cause of the dipping, which is not included in~i!–~iii !
mentioned above. We note that the initial data set that we
have used satisfies the initial constraint equations to first or-
der only. While we evolve the initial data with the full non-
linear evolution equation, is it possible that there may be
spurious effects due to this contradiction that leads to the
dipping? This is the subject of the next subsection.

B. Quadrupole waves satisfying the IVP

To generate a set of initial data which is similar to what is
studied in the previous subsection, we take the linear data as

the metricĝxx in the conformal space in the York formalism
@17#. As the linear data set is constructed to be time symmet-

ric with K̂ i j50, the initial momentum constraint equations
are trivially satisfied and it is straightforward to solve the
initial Hamiltonian constraint equation to determine the con-
formal factor C needed for the physical space metric

gxx5C4ĝxx . For the case where the amplitude is taken to be

1024 ~the ĝxx of which is given in Fig. 11!, the conformal
factor is shown in Fig. 12~a!. We note thatC differs only
slightly from 1, so that the initial data obtained through this
procedure describe basically the same spacetime as studied
in the previous subsection, except that now the initial data
satisfy the constraint equation in full, and can be regarded as
representing a physical spacetime as described by the Ein-
stein equations up to the finite differencing approximation.

FIG. 13. The effect of slicing on the evolution of the quadrupole wave1 IVP initial data. In ~a! we see the evolution of the metric
functiongxx with geodesic slicing. In~b! we showt tt , the stress-energy pseudotensor. In~c! we show the curvature invariantI . In ~d! we
show the same initial data now evolved with maximal slicing. Note that there is no dipping in the metric function. In~e! we again show
t tt , and in~f! the curvature invariantI . Note that even though the evolution of the metric function differs with slicing,t tt andI remain the
same which suggests that we are seeing a coordinate, rather than geometric, effect. In~g! we show the lapsea. Note thata is very close to
1. It is the shape of the lapse rather than its size, that keeps the metric function from dipping near the origin. We also note that the
pseudotensor and the invariants are not defined in the first boundary cells in our computational domain, and so we arbitrarily assign a value
of zero to the left-most point in the graphs.
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The evolution of this initial data is shown in Fig. 12~b!
again using the G code with geodesic slicing, and
Dx5Dy5Dz50.05. We see that the time development is
basically the same as that of Fig. 11~a!. In particular, the
dipping at the origin at late times is not affected.

After verifying that the dipping is not due to numerical
truncation error~the effect does not decrease with resolu-
tion!, and that it is independent of whether or not the IVP is
solved, there are two possibilities left. The dipping is either
due to ~ii ! nonlinear coordinate effects, or~iii ! nonlinear
physics, as discussed and labeled in the Introduction. To dis-
tinguish which one is the main cause, we look at variables
that are representative of the actual geometry. We studied
various components of the four-dimensional Riemann tensor,
e.g.,Rabgd , the Riemann invariantsI and J @21#, and the
pseudo-energy-momentum tensor@24#

tmn5
1

8pG
~Rmn2 1

2gmnR2Rmn
~1!1 1

2hmnR
~1!!, ~44!

whereRmn
(1) is the part of the four-dimensional Ricci tensor

that is linear in the deviation of the metric from flat space-

time. For simplicity, we assumeRmn50 when evaluating
Eq. ~44! numerically. We note that thistmn is meaningless if
the initial data satisfy the constraints only to the linear order.
For this reasontmn is not used in the analysis of any of the
linearized initial data in the previous section.

In Figs. 13~a!–13~g! we compare the ‘‘G’’ code geodesic
slicing evolution to the maximal slicing case. Notice that~1!
even while the metric is dipping in the geodesic slicing case
all the components of the Riemann tensor studied, the Rie-
mann invariants, andt tt , all remain small, and are consistent
with returning to zero at late times@see Figs. 13~b! and
13~c!#; ~2! in the maximal slicing case, there is no dipping of
metric components@Fig. 13~d!#; ~3! there is good agreement
in the Riemann tensor components, the Riemann invariants,
andt tt between the geodesic and the maximal slicing cases
@Figs. 13~e! and 13~f!#, although the metric functions behave
differently. In Fig. 13~g!, we show the evolution of lapse in
the maximal slicing case. We see that the lapse is very close
to 1 throughout the spacetime. This means that in terms of
proper time evolved, the geodesic slicing case and the maxi-
mal slicing case are not that different.

FIG. 13. ~Continued!.
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This strongly suggests that the dipping should be attrib-
uted to nonlinear coordinate effects. The energy of the wave
initially sitting at the origin sets the coordinate lines~which
move normal to the slicing in the case of zero shift! into a
free fall towards the origin. As the wave moves outward, the
geometry near the origin returns to being flat. However, with
geodesic slicing and no shift vector, there is nothing to stop
the motion of coordinate lines. They keep drifting towards
the center where the wave was, causing the metric functions
to dip there. With maximal slicing, the motion of the coor-
dinate lines is changed as the normal of the constant time

surface changes with respect to the four-geometry. This is
enough to stop the secular motion of the coordinate lines in
this weak field case without having the lapse collapse in any
significant manner.~This kind of gauge problem in evolving
with geodesic slicing is well noted in the literature@25#.!
From Eq.~3! we can compute the evolution ofK for geode-
sic slicing, which, using the Hamiltonian constraint, reduces
to

] tK5KmnK
mn. ~45!

The RHS of this equation is always non-negative. Therefore,
the convergenceK of the geodesics tends to increase without
limit, resulting in a coordinate singularity on a free-fall time
scale. See Ref.@25# for a full discussion. Here we found that
the dipping seen in Fig. 13~a! is due solely to this effect.

By comparing the metric functions obtained from a linear
evolution to a nonlinear evolution, we can define a qualita-
tive measure of the time at which nonlinear coordinate ef-
fects become present. We do this by definingtcritical as the
time when the rms relative difference of the linear and non-
linear evolutions disagree by 10%. Since this rms value is a
global measure, we expect our results to depend on the spe-
cific energy distribution of the wave model that we are
evolving. In Fig. 14~a! we compare the critical time as a
function of the size of the initial metric function perturba-
tion. We see that the critical time scales roughly as a power
law. The error bars in the graph come from the fact that the
data is only analyzed in time intervals ofDt50.1.

To determine the time at which nonlinear geometric ef-
fects occur, we define a similar critical time, but now com-
paring the rms relative difference of the linear and nonlinear
evolutions of the curvature invariantI . Again, we define
tcritical as the time at which the two evolutions disagree by
10%. The results are shown in Fig. 14~b!, again plotted
against the size of the initial metric function perturbation.
The critical time for nonlinear geometric effects occurs at a
later time than that of nonlinear coordinate effects for the
amplitudes considered here.

VII. CONCLUSION

In this first paper in the series, we studied various aspects
of our 3D codes in evolving gravitational waves. We show
how the accuracy of the evolution can be analyzed through
various monitors built into the codes. This includes violation
of the Hamiltonian constraint, Fourier spectrum analysis, as
well as convergence tests. These studies are not only crucial
for our using these codes in the future, but are also useful for
other groups who may want to build similar 3D codes.

We focused on the difficulties in evolving low to moder-
ate amplitude gravitational waves. They have amplitudes low
enough so that one has a good physical understanding of the
physics involved, but at the same time large enough to en-
able nonlinear effects to emerge. We studied~i! the coupling
between numerical errors and nonlinearity, and~ii ! coordi-
nate effects due to nonlinearity, with specific examples. We
discussed the strategies used in identifying the cause of the
nonlinear effects. In this process we emphasize the impor-
tance of the flexibility of being able to use different numeri-
cal schemes, different choice of coordinate conditions, dif-

FIG. 14. We define a critical timetcritical at which the rms rela-
tive difference of the linear evolution disagrees with nonlinear evo-
lution by 10%. In ~a! we look at tcritical for the metric function
gxx , and compare it against the size of initial perturbation in the
metric functiongzz. Since the metrics show the coordinate dipping,
this is a measure of the onset of nonlinear coordinate effects. We
find that there is an approximate power law dependence oftcritical .
The error bars in this graph come from the fact that the data are
only analyzed in time intervals ofDt50.1. In ~b! we do the same,
but for the curvature invariantI . Since the invariant is coordinate
independent, it is a measure of nonlinear geometric effects. We find
that nonlinear geometric effects occur at a later time than nonlinear
coordinate effects for the amplitudes considered here.
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ferent formulations of the Einstein equations~G and H
formulations!, and different equations~linear vs nonlinear
equations!. This flexibility, and the availability of many
‘‘monitoring devices’’ in the codes, such as the scalar Rie-
mann invariants, pseudo-energy-momentum tensor, and
Hamiltonian constraint, have been crucial in our understand-
ing of the nonlinear effects.

With these in hand, we are now proceeding to study the
collision of 3D wave packets~packets finite in size in all
three spatial dimensions!. We consider this to be possibly
just next in importance in geometrodynamics to the collision
of two black holes. The results will be reported in later pa-
pers in the series.
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