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Perturbative finite-temperature results and Padeapproximants
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Padeapproximants are used to improve the convergence behavior of perturbative results in massless scalar
and gauge field theories at finite temperati&0556-282(97)03924-4

PACS numbgs): 11.10.Wx, 05.70.Ce, 12.38.Bx, 12.38.Mh

In recent years, computational methods have been deveheed the one-loop coefficient @f;. The reason is tha8,
oped to analytically tackle three-loop vacuum diagrams an@¢ontains only even powers df, Bg=ﬁog4+ ,3196+ o
higher-order contributions of diagrams with less loops insince we renormalize as at zero temperature. Therefore, from
massless field theories at finite temperatlte5]. Conse- the viewpoint of the renormalization group, tigé and g°
quently, the free energy densiyat zero chemical potential terms inF are the first corrections to thg? andg® terms,
could be computed analytically at tigé level in both mass- respectively. Numerically, the difference between usihg
lessg?¢* theory[3] (the pressure given there is the negativetq gne or two loops is insignificant for the examples in non-
of the free energy densiyand in massless gauge theories zpejian gauge theories below, but keeping the two-loop cor-

EE’G]' In I[t5_7]’ ipecialiéaftions_ to QII-Z_D”can be fouln(f:i, WhEre rction turns out to improve the behavior of the resummation
€ result was known before in partiafly numerica OFe. in ¢* theory. The reason why it suffices to use the two-loop
However, for interesting values of the coupling constant

in non-Abelian . . 0[?' function in the examples in this work is that bad behavior
- gauge theories, the convergence behavior

the perturbative series is not convincifig6]. In this Brief

Report, we note that the use of Paxmproximants drastically

improves this behavior in botk* and gauge theories. For

the use of Padapproximants and other resummation tech-

niques in other contexts in perturbative field theory and sta- 0.99926 le———
tistical physics, see, e.d8], and references therein. 0.99924} === T _
Let us first review those features of the resultd3b,6] F(g) 0.99922} —-——— through ¢®
which are essential for our analysis here. The perturbative F(0) .., —— - throughg®
series for the free energy density in both scalar and gauge — through ¢*
theories has the structufeee the Appendix for detajls 0.99918 through ¢°
0.99916 =TT
F=T*co+Co0?+C30°+ (Calng+Cgp) g* 0.99014 =~
-4 2 0 2 4
5 6
+(Csalng +C55)9°+ O(g°Ing) ], (o (@) log,o /T
whereT is the temperature arg}, C,, C3, C45, Cs5 are con- 0.99926
stants, whilec,, andcs, have a logarithmic dependence on 0.99924} e o= T
In(w/T), whereu is the renormalization scale in the modified  F(g) . 590200
minimal subtraction scheme (MSIn ¢* theory, c,,=0, F(0) | 500
while in gauge theoriess,=0. D osersl " Hum
h L : — — Fayg
As in [5], we use the renormalization group to maie _
running: 0.99916 Fla/3), Flz/3)
g:
0.99914
1 1 /-L_ Bl 5 M -4 -2 0 2 4
—~——Bo In=+ —In| 1-Beg7in=|, (2 ) log,o i/T
o’(n) % T Bo T N

FIG. 1. (@) shows the perturbative series for the free energy
density in units of the ideal gas rest{g=0) for six-flavor QCD

the beta functiorﬁg of 92 (see the Appendix for details on w_lth a(T)=0.001 for a ran_ge of choices of renormalization §C§Ie
. The short-dashed, medium-dashed, long-dashed, and solid lines

Bo and ), andgr is the coupling constant at temperature J° o\ 't including terms through ordeg?, g, g* and

T. Theng in Eq. (1) is replaced byy(x). In this way we get o5 respectively (b) shows Pad@pproximants instead: Thg? re-
an idea of the dependence of our result on the choice Q3ult has been dropped, while the result throgdtirom (a) has been
renormalization scale. We could subsequently expnd  replaced byF(;,, the result throughy* by Fp, and the result
powers ofgt to check thaF becomes explicitly independent through g° by F{,3 (solid line with pol¢ and F—[m] (solid line
of w through g?. For this purpose, we would really only without pole.

where B, and B, are the one- and two-loop coefficients of
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of both the perturbative result and Paajgproximants sets in  +c3g°+c,g*+ csg5+ -1. ¢, andcs have different values

for values ofg? where the two-loogs function is still a good  for each choice ofe both through their direct dependence on

approximation. . . In(,u/T) and through the running cg(,u) in Ing. Using the

Now we use Padapproximants to reexpre$s For this  5phroximants[1/2], [2/2], and [2/3] to rewrite F through
purpose we pretend that,=cCjalng+cy and cs=csalng  ordersg®, g*, andg® (there is no approximarit/1], sinceF
+Cs, are constants in a Taylor serigs=T%[co+C,g°  contains no term linear ig) gives

2 2
C5C2— C5C30
Frg=T'——— 72 (©)
CoCo—CpC3g—C20

2 3 2
, C0€2— CoCaCag+(C5+ CoC3— CoC2C4) 02
Froa=T 2 2 > : (4
C5—CyC30+(C3—C2Ca)0

Frog=T"
ColC3+CoC5—CoCaCa) + Col — C5C3— CCaCy+ CoCoCs) g+ (C5+2CoCoC5— 2CoC5C, +C5C; — C5C3Cs) g
(C3+CoC5—CoCaCa) + (— C5C3— CoCaCat CoCaCs) g+ (CoC3— C3C4+CoCl— CoCaCs)g? + (— C§+2€,CaCs—C5C5)g° (5)
|
Define scales in finite-temperature non-Abelian gauge theories. Note
also the relative independence from the renormalization
o(T)= g}/ (4m) ®

Now turn to the other QCD example ifb], namely,

a(T)=0.1 with the other parameters being the same as in
and let us look at some specific examples. Our first case isur first case. The result is plotted in Fig. 3. Again, there is
the small-coupling QCD example frof®] with d,=8, Cp much improvement compared to the pure perturbative series
=3,n¢=6, de=18, Sy=3, S;r=4, anda(T)=0.001. As  aroundu=T~gT, where higher approximants give subse-
argued in5] and as can be seen in Figal, the perturbative quently smaller corrections to their predecessors.
series forF throughg® is well behaved in this case, with As our final example in non-Abelian gauge theories, con-
respect to both convergence for a given renormalization scalsider three-flavor QCD, i.ed,=8, C,=3, n;=3, de=9

 and to the growinngindependence of towards higher Sr=3/2, S;r=2 with a(27T)=1/3 [note that we have to

orders. The PadapproxmantsF[l 7y andF, 5 are close to T

the g® andg* results within the expected accuragyven by \

the magnitude of thegy* and g° corrections, respectively L

However,F, 5 has a pole, as seen in Figbl. This pole F(g) \‘_5\_ __________
comes about through a zero of the denominator in &j. F(0) ©-°° +~

- ==

which, in turn, due to the smallness @{T), is caused by a
zero of the first term in the denominator of E€), c3
+CoC3— CCyC4. We know that the full result foF is inde-

pendent ofu and that consequently this pole is an artifact of

the resummation scheme. We therefore determine its posi- 4 -2 0 2 4 6 8
tion and residue, explicitly remove it and call the resulting @ logio /T

function F[z 3- The curve in Fig. () for F[z 3 is virtually 1.01

identical to theg® result in the perturbative series in Fig. )

1(a. '

Now let us turn to cases where the pure perturbative series F(g)
needs improvement. Figurg& represents the perturbative F(0) ©-°° R
series for the pure S) example from[5] with dp,=3, C, —
=2,n;=dg=S=S,=0, anda(T)=0.03, while Fig. 2b) 0-98r -7
shows the Padapproximants. Again, we have removed the

pole from Fp, 4 to defineF_[zyg] and show both functions. 0

Clearly, the convergence behavior of the sefigs;, F(2 2, 4 -2 o 2 4 6 8

F(2,3 is drastically improved compared to the purely pertur- ~ ® logio /T

batlve serles particularly around natural chmcewofsuch FIG. 2. The same as Fig. 1, but for pure @Utheory with

as,u T or,u gT, which up tog® order are the only mass «(T)=0.03.
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FIG. 3. The same as Fig. 1, but with(T) =0.1.

replaceT— 2= T in Egs.(2) and(6) accordingly. Up to the
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FIG. 5. The same as Fig. 1, but in scalar theory witfil)
=0.75.

fact that we neglect the strange-quark mass and that we havéth a(T)=0.75. Note how, at least for not too bjg, the
set all chemical potentials to zero, this is close to the case d?adeapprommants fluctuate much less in subsequent orders
the quark-gluon plasma to be produced at the BNL Relativthan their purely perturbative counterparts. The fact that we

istic Heavy-lon Collide(RHIC). The result is plotted in Fig.

can go to larger couplings in scalar theory than in non-

4. There seems to be no useful improvement over the pertuAbelian gauge theory is easily explained. For example, for
bative series, although the range of manifestly bad behavidhe case of no fermions, the effective expansion parameter in

is shifted towards smaller values pf ) !
In Fig. 5, we present an example in scalar theory, namel;?f freedom leads to stronger corrections to the ideal gas re-

F(g
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FIG. 4. The same as Fig. 1, but for only three fermion flavors

logyo /T

and witha(27T)=1/3.

F is seen to b& ,a(T). That is, a larger number of degrees

sult (unless we try to make fermionic and bosonic contribu-
tions cancel

Let us make two final remark§) The use of the approxi-
mants[2/1] and[3/2] instead of{1/2] and[2/3] gives results
very similar to those presented here, while approximants
[m/n] with |[m—n|>1 give typically less improvementii)
Starting atg® order, another physical scat¢T enters the
calculation ofF in non-Abelian gauge theorig®]. There-
fore, it would be interesting to see how inclusion of e
term changes our results. Unfortunately, computation of this
term is difficult and requires a combination of perturbative
and nonperturbative techniqug 10].

| am grateful to G. Jikia for helpful comments and to E.
Braaten for pointing out an error in the original manuscript.
This work was supported by the Deutsche Forschungsge-
meinschaftDFG).

APPENDIX

Here we give the results ¢8] and([5,6].
With the Euclidean Lagrange density
1 g2
— 2 4
L£=5(0,8)%+ 37 6% (A1)

the free energy density in the M&heme is
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~ "5\ slan] ~@a el |3
F=" 9 |10 8las) T Blaxr) "\2a) |8
wo 1¢(=3) 1{(-1) 1 59
Tt 1w 2 a-n 8" 120
(Q)S\F 3|;T (-1 1 5
axn) V2| 72"t - 27 3
Q\F 6
+2InE 3 +0(g°Ing), (A2)

where we have translated the MS resul{®finto MS using

,uz—e‘/EF/(Mr) and where{ is Riemann’s zeta function
and y¢ is the Euler-Mascheroni constant. The one- and two-
loop coefficients in34 are
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where theT? are the generators of the group in the fermion

representation. Letl, and C, be the dimension and qua-

dratic Casimir invariant of the adjoint representation, with
8%=d,, faPef9P°=C,5%. (A5)

Let dg be the dimension of the total fermion representation

(e.g., 18 for six-flavor QCI) and defineSg andS,¢ in terms
of the generator3? for the total fermion representation as

L 1 22
SF:d_Atr(T ), SZF:d_Atr[(T )71, (A6)

whereT?=TaT2, For SUN) with ng fermions in the funda-
mental representation, the standard normalization of the cou-
pling gives

Bo=3/(4m)?, PBi=—17/3(4m)*. (A3) da=N2-1, Ca=N, de=Nng,
In gauge theory with fermions with a single, simple Lie 1 N2_1
group consider the Euclidean Lagrange density SFZEnFa SZF:WHF- (A7)
L=y,(d,—igA2T) y+ § (9,A%—3,A%+gfaPADAC)2, o
(Ad4)  The free energy density is given by
|
w1 7de) [ g)\? 5 g |3 CatSe| 32 g g /CA+SF)
F=dAT4§{—§(1+4—dA 47_‘_) Cat 28,:) 48(@) 3 48( ) Ca(CatSk) In 2— 3
g u 38{(-3) 148{'(-1) 64 47 p  1(=3) 744'(—1>
(4_) ( T 3 ae 3 an ETE +CASF( T3 e 3D
1759 37 o 20w 8{(-3) 16{'(-1) 1
T8t oty Mttt i o 3 - st )
105 9 \%CatS:\ ¥, M s
+Sop| = +24 |n2) —(E —3 | |CA| 176 Iny_= +176yg—24n° 494+ 264 In2
“ - of o m - -
+CASF(112 Iny— +112yg+72-128 In2) + SF| —64 In;— — 64yg+32- 128 In2| ~ 1445, +O(g6)}. (A8)
The one- and two-loop coefficients gy, are
71(22C8) 71(68C240CS8)
BO*W 3 A+§SF ' Bl*W 7 Cat z Caset Sor |- (A9)
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