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Padéapproximants are used to improve the convergence behavior of perturbative results in massless scalar
and gauge field theories at finite temperature.@S0556-2821~97!03924-6#
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In recent years, computational methods have been devel-
oped to analytically tackle three-loop vacuum diagrams and
higher-order contributions of diagrams with less loops in
massless field theories at finite temperature@1–5#. Conse-
quently, the free energy densityF at zero chemical potential
could be computed analytically at theg5 level in both mass-
lessg2f4 theory@3# ~the pressure given there is the negative
of the free energy density! and in massless gauge theories
@5,6#. In @5–7#, specializations to QED can be found, where
the result was known before in partially numerical form@2#.

However, for interesting values of the coupling constant
in non-Abelian gauge theories, the convergence behavior of
the perturbative series is not convincing@5,6#. In this Brief
Report, we note that the use of Pade´ approximants drastically
improves this behavior in bothf4 and gauge theories. For
the use of Pade´ approximants and other resummation tech-
niques in other contexts in perturbative field theory and sta-
tistical physics, see, e.g.,@8#, and references therein.

Let us first review those features of the results of@3,5,6#
which are essential for our analysis here. The perturbative
series for the free energy density in both scalar and gauge
theories has the structure~see the Appendix for details!

F5T4@c01c2g21c3g31~c4alng1c4b!g4

1~c5alng1c5b!g51O~g6lng!#, ~1!

whereT is the temperature andc0, c2, c3, c4a , c5a are con-
stants, whilec4b andc5b have a logarithmic dependence on
ln(m̄/T), wherem̄ is the renormalization scale in the modified
minimal subtraction scheme (MS̄). In f4 theory, c4a50,
while in gauge theoriesc5a50.

As in @5#, we use the renormalization group to makeg2
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whereb0 and b1 are the one- and two-loop coefficients of
the beta functionbg of g2 ~see the Appendix for details on
b0 andb1), andgT is the coupling constant at temperature
T. Theng in Eq. ~1! is replaced byg(m̄). In this way we get
an idea of the dependence of our result on the choice of
renormalization scale. We could subsequently expandF in
powers ofgT to check thatF becomes explicitly independent
of m̄ through gT

5 . For this purpose, we would really only

need the one-loop coefficient ofbg . The reason is thatbg

contains only even powers ofg, bg5b0g41b1g61•••,
since we renormalize as at zero temperature. Therefore, from
the viewpoint of the renormalization group, theg4 and g5

terms inF are the first corrections to theg2 and g3 terms,
respectively. Numerically, the difference between usingbg

to one or two loops is insignificant for the examples in non-
Abelian gauge theories below, but keeping the two-loop cor-
rection turns out to improve the behavior of the resummation
in f4 theory. The reason why it suffices to use the two-loop
b function in the examples in this work is that bad behavior

FIG. 1. ~a! shows the perturbative series for the free energy
density in units of the ideal gas resultF(g50) for six-flavor QCD
with a(T)50.001 for a range of choices of renormalization scale

m̄. The short-dashed, medium-dashed, long-dashed, and solid lines
are the results forF including terms through ordersg2, g3, g4 and
g5, respectively.~b! shows Pade´ approximants instead: Theg2 re-
sult has been dropped, while the result throughg3 from ~a! has been
replaced byF @1/2# , the result throughg4 by F @2/2# and the result

through g5 by F @2/3# ~solid line with pole! and F̄ @2/3# ~solid line
without pole!.
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of both the perturbative result and Pade´ approximants sets in
for values ofg2 where the two-loopb function is still a good
approximation.

Now we use Pade´ approximants to reexpressF. For this
purpose we pretend thatc4[c4alng1c4b and c5[c5alng
1c5b are constants in a Taylor seriesF5T4@c01c2g2

1c3g31c4g41c5g51•••]. c4 andc5 have different values
for each choice ofm̄ both through their direct dependence on
ln(m̄/T) and through the running ofg(m̄) in lng. Using the
approximants@1/2#, @2/2#, and @2/3# to rewrite F through
ordersg3, g4, andg5 ~there is no approximant@1/1#, sinceF
contains no term linear ing) gives

F @1,2#5T4
c0

2c22c0
2c3g

c0c22c0c3g2c2
2g2

, ~3!
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~5!

Define

a~T!5gT
2/~4p! ~6!

and let us look at some specific examples. Our first case is
the small-coupling QCD example from@5# with dA58, CA
53, nf56, dF518, SF53, S2F54, anda(T)50.001. As
argued in@5# and as can be seen in Fig. 1~a!, the perturbative
series forF through g5 is well behaved in this case, with
respect to both convergence for a given renormalization scale
m̄ and to the growingm̄ independence ofF towards higher
orders. The Pade´ approximantsF @1,2# andF @2,2# are close to
theg3 andg4 results within the expected accuracy~given by
the magnitude of theg4 and g5 corrections, respectively!.
However,F @2,3# has a pole, as seen in Fig. 1~b!. This pole
comes about through a zero of the denominator in Eq.~5!,
which, in turn, due to the smallness ofa(T), is caused by a
zero of the first term in the denominator of Eq.~5!, c2

3

1c0c3
22c0c2c4. We know that the full result forF is inde-

pendent ofm̄ and that consequently this pole is an artifact of
the resummation scheme. We therefore determine its posi-
tion and residue, explicitly remove it and call the resulting
function F̄ @2,3# . The curve in Fig. 1~b! for F̄ @2,3# is virtually
identical to theg5 result in the perturbative series in Fig.
1~a!.

Now let us turn to cases where the pure perturbative series
needs improvement. Figure 2~a! represents the perturbative
series for the pure SU~2! example from@5# with dA53, CA
52, nf5dF5SF5S2F50, anda(T)50.03, while Fig. 2~b!
shows the Pade´ approximants. Again, we have removed the
pole from F @2,3# to define F̄ @2,3# and show both functions.
Clearly, the convergence behavior of the seriesF @1,2# , F @2,2# ,
F̄ @2,3# is drastically improved compared to the purely pertur-
bative series, particularly around natural choices ofm̄, such
as m̄5T or m̄5gT, which up tog5 order are the only mass

scales in finite-temperature non-Abelian gauge theories. Note
also the relative independence from the renormalization
scale.

Now turn to the other QCD example in@5#, namely,
a(T)50.1 with the other parameters being the same as in
our first case. The result is plotted in Fig. 3. Again, there is
much improvement compared to the pure perturbative series
aroundm̄5T'gT, where higher approximants give subse-
quently smaller corrections to their predecessors.

As our final example in non-Abelian gauge theories, con-
sider three-flavor QCD, i.e.,dA58, CA53, nf53, dF59,
SF53/2, S2F52 with a(2pT)51/3 @note that we have to

FIG. 2. The same as Fig. 1, but for pure SU~2! theory with
a(T)50.03.
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replaceT→2pT in Eqs.~2! and~6! accordingly#. Up to the
fact that we neglect the strange-quark mass and that we have
set all chemical potentials to zero, this is close to the case of
the quark-gluon plasma to be produced at the BNL Relativ-
istic Heavy-Ion Collider~RHIC!. The result is plotted in Fig.
4. There seems to be no useful improvement over the pertur-
bative series, although the range of manifestly bad behavior
is shifted towards smaller values ofm̄.

In Fig. 5, we present an example in scalar theory, namely

with a(T)50.75. Note how, at least for not too bigm̄, the
Padéapproximants fluctuate much less in subsequent orders
than their purely perturbative counterparts. The fact that we
can go to larger couplings in scalar theory than in non-
Abelian gauge theory is easily explained. For example, for
the case of no fermions, the effective expansion parameter in
F is seen to beCAa(T). That is, a larger number of degrees
of freedom leads to stronger corrections to the ideal gas re-
sult ~unless we try to make fermionic and bosonic contribu-
tions cancel!.

Let us make two final remarks.~i! The use of the approxi-
mants@2/1# and@3/2# instead of@1/2# and@2/3# gives results
very similar to those presented here, while approximants
@m/n# with um2nu.1 give typically less improvement.~ii !
Starting atg6 order, another physical scaleg2T enters the
calculation ofF in non-Abelian gauge theories@9#. There-
fore, it would be interesting to see how inclusion of theg6

term changes our results. Unfortunately, computation of this
term is difficult and requires a combination of perturbative
and nonperturbative techniques@6,10#.

I am grateful to G. Jikia for helpful comments and to E.
Braaten for pointing out an error in the original manuscript.
This work was supported by the Deutsche Forschungsge-
meinschaft~DFG!.

APPENDIX

Here we give the results of@3# and @5,6#.
With the Euclidean Lagrange density

L5
1

2
~]mf!21

g2

4!
f4, ~A1!

the free energy density in the MS̄scheme is
FIG. 4. The same as Fig. 1, but for only three fermion flavors

and witha(2pT)51/3.

FIG. 3. The same as Fig. 1, but witha(T)50.1. FIG. 5. The same as Fig. 1, but in scalar theory witha(T)
50.75.
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where we have translated the MS result of@3# into MS̄ using
m25egEm̄2/(4p) and wherez is Riemann’s zeta function
andgE is the Euler-Mascheroni constant. The one- and two-
loop coefficients inbg are

b053/~4p!2 , b152 17/3~4p!4 . ~A3!

In gauge theory with fermions with a single, simple Lie
group consider the Euclidean Lagrange density

L5 c̄gm~]m2 igAm
a Ta!c1 1

4 ~]mAn
a2]nAm

a 1g fabcAm
b An

c!2,
~A4!

where theTa are the generators of the group in the fermion
representation. LetdA and CA be the dimension and qua-
dratic Casimir invariant of the adjoint representation, with

daa5dA , f abcf dbc5CAdad. ~A5!

Let dF be the dimension of the total fermion representation
~e.g., 18 for six-flavor QCD!, and defineSF andS2F in terms
of the generatorsTa for the total fermion representation as

SF5
1

dA
tr~T2!, S2F5

1

dA
tr@~T2!2#, ~A6!

whereT25TaTa. For SU(N) with nF fermions in the funda-
mental representation, the standard normalization of the cou-
pling gives

dA5N221, CA5N, dF5NnF ,

SF5
1

2
nF , S2F5

N221

4N
nF . ~A7!

The free energy density is given by

F5dAT4
p2

9 H 2
1

5S 11
7dF

4dA
D1S g

4p D 2S CA1
5

2
SFD248S g

4p D 3S CA1SF

3 D 3/2

248S g

4p D 4

CA~CA1SF! lnS g

2p
ACA1SF

3 D
1S g

4p D 4FCA
2S 22

3
ln

m̄

4pT
1

38

3

z8~23!

z~23!
2

148

3

z8~21!

z~21!
24gE1

64

5
D 1CASFS 47

3
ln

m̄

4pT
1

1

3

z8~23!

z~23!
2

74

3

z8~21!

z~21!

28gE1
1759

60
1

37

5
ln2D 1SF

2S 2
20

3
ln

m̄

4pT
1

8

3

z8~23!

z~23!
2

16

3

z8~21!

z~21!
24gE2

1

3
1

88

5
ln2D

1S2FS 2
105

4
124 ln2D G2S g

4p D 5S CA1SF

3 D 1/2FCA
2S 176 ln

m̄

4pT
1176gE224p224941264 ln2D

1CASFS 112 ln
m̄

4pT
1112gE1722128 ln2D 1SF

2S 264 ln
m̄

4pT
264gE1322128 ln2D 2144S2FG1O~g6!J .

~A8!

The one- and two-loop coefficients inbg are

b05
1

~4p!2S 2
22

3
CA1

8

3
SFD , b15

1

~4p!4S 2
68

3
CA

21
40

3
CASF18S2FD .

~A9!
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