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Exact eigenstates and “triviality” of A (¢* ¢)? theory in the Feshbach-Villars formulation
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The complex scalaiKlein-Gordon quantum field theoryQFT) with aX (¢* ¢)? interaction is considered in
the Feshbach-Villars formulation. It is shown that exact few-particle eigenstates of the QFT Hamiltonian can
be obtained. The resulting relativistic few-body equations correspond to Klein-Gordon particles interacting via
delta-function, or “contact,” potentials. Momentum-space solutions of the two-body equation yield a “trivial”
unity S matrix. [S0556-282(97)05422-2

PACS numbds): 11.10.Ef

The model scalar field theory, based on the Lagrangian oy 1 — ; No—
(h=c=1) Lev=i¢ nd—5 V- V—md ¢— 75 (d¢)".
(6)

Note thatLyg is not identical tolry . IndeedLyg=Lry
+(dldt) (¢* ). However, they lead to identical equations of

: motion[Egs.(4) and(5)] and so are equivalent in this sense.
many _text_s(e.g., Qross, Refl)), and_ has been the_SUbJeCt of Henceforth we shall base our results 6p,. The momenta
investigation on its own account in many studies. To our

i . . corresponding ta andv are
knowledge, no exact solutions of this theory have been writ- P 9 v

L= "¢* (X)d,0(X) —M?e* (X) @(X) = N (@* (X) ¢(X))?,

is often used as a prototype quantum field the@yT) in

ten down. We shall consider this theory in the present paper, oL
but in the Feshbach-VillargV) formulation[2] of covariant Pu=——~=iu*, p,=—iv*,
scalar(Klein-Gordorn) field theory. We recall that in the FV u

formulation, the fielde and its time-derivativep are re-

- N . .
placed by a two-component vector that is,u* andv™* are, in essence, the conjugate momenta, so

that the Hamiltonian density is given by the expression
1

p— H i A’ >y
, u——ﬁ(mwlcp) o H(x)=¢*(x)nh(x)¢(x)+m(</>(x)¢(><>)2, @)
1 | .
v= \/ﬁ (Mme—ie) where h(x) = 7(—1/2m)V?+m%, and where we have sup-

pressed the ter - (1/2m¢V ¢).
We use canonical equal-time quantization, whereupon the

so that, for example, Be* o= (u* +v*)(Uu+v)= o 7o, 1S5€ : ,
nonvanishing commutation relations are

where  and 7 are the matrices

[U(X,t),pu(y,t)] =i ﬁ(x_y),

1 0 1 1 @
=0 4l TT 4 |
0 -t t o), P, (y.)]=i 8%(x—Y), ®
The Euler-Lagrange equations of motion for this theoryor equivalently
are ' '
T - 3y _
ﬁMaMQD+m2qD+2)\(QD* (P)(P:O (4) [¢a(x!t)'¢b(yvt)] 77ab5 (X y)l avb 112 (9)

and where¢"=[ ¢1=u,¢,=v], while 7,, are elements of
the » matrix (3). Using these commutation relations, we note
that the QF theoretic Hamiltonian can be written as

and its conjugate. In the FV formulation the equation of mo-
tion (4) takes on the form

. 1 N — =
6= 5 Virtmydt 5 o (b4)7, () H=HotHa, 10
L where
where ¢= ¢ 5. The Lagrangian density corresponding to
Eqg.(5) is A
6 Ho:f dx ¢"(x) ph(x) b(x) (13)
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A v ) tion of the free KG equatiofil5) with eigenenergy;, and
Hy=7m2 f d*x[(x) p(x)] whereE,=¢,+¢,, as would be expected. In the rest frame,
Potal ¥2) =0, Eq.(17) simplifies to

A —_— — — —
=WdeX¢(X)[¢(X)¢(X)]¢(X), (12 h(r)F(r)+[h(r)FT(r)]T+V(r)TTF(r)7-=EZF(r),(19)
and where we have used=0 in the last step of Eq.12). _ _ 2
Note that no infinities are dropped upon normal ordering,\'\’hl(ifr.er_fx._ty an?\t/(r)—_t()\/ZrPt)h("SS(r). tion i i
since none arise on account of thé=0 property. form 'Swghm erest 1o write out this equation in componen

In the Schrdinger picture we can take=0. Therefore, '
we shall use the notation that, sgy(x,t=0)= ¢(x), etc.,
for QFT operators. We define an empty vacuum st@e, F(r)=
such that

s(r) t(r)

un v(n) 20

~ namely
$2|0)=0. (13

This is different from the conventional Dirac vaculd (the - % V2(2s—u—t)+V(s—t—u+v)+(2m—E,)s=0,
“filled negative energy sea” vacuumwhich is annihilated 21)
by only the positive frequency part gf and by the negative

frequency part obb* (see, for example, Reff3], p. 38. With 1

the definition(13), the state defined as ~5m V3(s—v)+V(s—t—u+v)—E,t=0, (22

1) = f d ¢(x) 7t (x)[0), (14 1,
~om Vé(s—v)+V(s—t—u+v)—E,u=0, (23
wheref(X) is a two-component vector, is an eigenstate of the
QFT Hamiltonian(10) with eigenvalueE; provided that the and
f(x) is a solution of the equation 1
R __— y2 _ —t— - =
() F(x) = ELF(%). (15) o V(t+u—2v)+V(s—t—u+v)—(2m+E,)v=0.
24
This is just the free-particle Klein-Gordon equation for sta- 24
tionary stateg| ;) is insensitive toH, ), in the FV formula-  Equations(22) and (23) imply thatt(r)=u(r), so that only
tion. It has, of course, all the usual negative-energy “pa-three equations survive:
thologies” of the KG equation. The presence of negative-

energy solutions is a consequence of the choice of vacuum e i 2 i 2 _
(13). We shall refer td¢,) as a one-KG-patrticle state. 2m—E, m ViV st m V-2Vttt Ve =0,
We can define analogous two-KG-patrticle states, (25
— | 43y 2 T Tonla 1 1
[h2)= | & &%y Fap(X,Y) da(X) #p(¥)[0),  (16) ~ 5 V2+V|s—(Ep+2V)t+ T V2+V|v=0,
(26)

where summation on repeated indicesand b is implied.

This state is an eigenstate of the QFT Hamiltoniad) pro- 54
vided that the X 2 coefficient matrix- =[F ;] is a solution

of the two-body equation,

1 1
VS—(— V2+2V)t— 2m+E,— — V2—v)v=o.
m m

hOOF(Y) +[h(yY)FT(x, )T+ V(X—y)TF(x,y) 7

(27)
=E,F(x 1 . o .
2F(X), 17 These equations have positive-energy solutions of the type
where the superscripf stands for “transpose,’h=yhy, ~ E2=m+m+---, negative-energy solutions of the tyf®
T=nrp=1", and =—m—m+---, and “mixed” type solutions withE,=m

—m-+--- (this is clear, for example, i¥=0 and the par-
N ticles are at rest
V(x—y)= m2 83 (x—y) (18) For the positive-energy solutions, if we writg,=2m
+¢€, then in the nonrelativistic limit|(e—V-+p%m)u|
in this case. Note that Eq(16) implies that F,(x,y)  <|mv| (and similarly fors andt), and so Eqs(26) and(27)
=Fpa(Y,X) or FT(x,y)=F(y,x) in matrix notation. show thatt and v are small components, by factors
Equation (17) is a two-body Klein-Gordon-Feshbach- O(e/m,p?m?,V/m). Thereupon, Eq(25) reduces to
Villars-like equation, with a repulsive delta-function inter-
particle interaction. IfV=0, then Eq.(17) has the solution

1
_ T2 _
F(x,y)=gl(x)g£(y), where eachf;(x)= »g;(x) is a solu- m VIS(r)+V(n)s(r)=es(r), (28)
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which is the usual time-independent Sdfirger equation
for the relative motion of two particles, each of mass
interacting through the potentist(r) = (A/2m?) 8(r). Simi-
larly, in the nonrelativistic limitp is the large component for

2
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the negative-energy solutionsvith E,=—(2m+¢€), and
s—v, V—=—V in Eq. (28)], while t is the large component
for the mixed energy solutions. This is obvious from the
form of the free-particle solutionsV(=0), which are

2

1 L 1 i
+m . 2m :
F=so| [_P |2 |07 olePT——so| [P} o6 |em (29
w+m —) L) 2m (—)
w+m m 2m
for E,=2w=2\p?+m?,
P L
2m?+ p? .
F(r)=tg p? e'P, (30
2m?+p?
for E,=0, and
o=m® (P |* LANNILAE
w+m w+m _ 2m 2m _
F(r):UO 2 elp.r—>UO 2 elp.r, (31)
L 1 Py P 1
w+m m 2m

for E,=—-2w= —2\/p2+ m?, and wheresy, ty, andvg are
constants.

For the repulsive delta-function potential there are, of

course, no positive-energy bound state solutions of(E®).

It is easily verified that the free particle solutio(®9)—(31),
in particular, satisfy these relations. One can therefore write

s=[8m?V+E(2m+E)?]y (34)

For the continuum case, the scattering is trivial, in that the

phase-shifts are zelthe S-matrix is unity), as we point out
in detail below. Thus the interaction is “trivial” in this

and

sense. Bg and Furlong 4] have shown previously that the t=[8m2V+E(E2—4m?)]y,
nonrelativistic limit of A\ (¢* ¢)2 theory corresponds to the

same “trivial” repulsive delta-function interactions. These Wherey is a solution of

results are consistent with the generally accepted “triviality”

of A ¢* theory, in the sense that the particle excitations above

the vacuum are noninteractirig.g., Refs{5] and[6], and Equation(36) is form-identical to the Schoinger equation.

citations thereih Since the delta-function interaction becomes simply a con-
We now proceed to demonstrate the triviality of the scat- Py

tering by explicit solution. Equationé5)—(27) can be re- stant in the momentum representation, it is convenient to
duced by taking suitable linear combinations, whereupon prite Eq.(36) in momentum space:
follows that E=E,)

(39

—AEV?y+[E(4m?—E?)+8m?V]x=0. (36)

A
(pz—KZ)X(p)erdeq x(q)=0, (37)

(2m+E)v=(2m—E)s+ 2Et (32

where k%= (E/2)>—m?, and from which it is obvious that
only s waves are affected by the delta-function potential.
Thus we can write the solution of E(B7) as

[E(4m?—E?)—8m?V]s= —[E(2m+ E)?+8m?V]t.

(33) where
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A 1
cX:f d3q x(a). (39) I1=PJO dp p? P (42
The s-wave phase shifty, extracted from EQq(38), is then
given by In actuality, the upper limif\ on the integral42) is infinite,
however, the integral then diverges linearly with hence
AC, K we regulate it with this cutoff. Nevertheless, when finally we
tamy= - (40 take Ao, Eq. (41) shows thatc,— 0, hence the phase-

shift » of Eq. (40) vanishes for any finite value of. This
Substituting Eq(38) into Eq.(39) and solving forc, yields  confirms that theS matrix is indeed unity.
the result One could, of course, solve EqR5)—(27) directly [and
so Eqg.(19)] since, for a delta-function potential, they are, in
c = 1 (41) essence, algebraic equations in momentum space. This leads
X Ny to the same results, albeit at the cost of a little more algebraic
1- 272E effort.
It is straightforward to write down three-body eigenstates
where analogous to Eq16), namely,

99~ [ BP0 a0 3 50) 6100) 8100 %)), 3
provided that the 2=8 coefficient functions (X1 ,X,X3) are solutions of the relativistic three-body KG-FV-like equation
Nak(X0) Froe X1, %2, X3) + Nok(Xo)F ake X1 X, X3) + Nek(Xa) FabiXa Xz Xs) +V (X~ Xz)
X Tak, Tok,F iy koo (X1 X2, X3) + V(X = X3) Tok, Tek, Fak,ky(X15X2,X3) + V(X3 X1)
X Tek, Tak,Fkyblo(X1 %2, X3) = EsF apdX1,X2,X3), (44)

where summation on repeated indices is implied and whéxe— xj)z()\/2m2) b\g(xi—xj). Once again we have “trivial”
delta-function(contac} interactions among the particles, exactly as in the two-body case. Generalizatidfvboaly eigen-
states can be written down in an analogous fashion.
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