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The complex scalar~Klein-Gordon! quantum field theory~QFT! with a l(w* w)2 interaction is considered in
the Feshbach-Villars formulation. It is shown that exact few-particle eigenstates of the QFT Hamiltonian can
be obtained. The resulting relativistic few-body equations correspond to Klein-Gordon particles interacting via
delta-function, or ‘‘contact,’’ potentials. Momentum-space solutions of the two-body equation yield a ‘‘trivial’’
unity S matrix. @S0556-2821~97!05422-2#

PACS number~s!: 11.10.Ef

The model scalar field theory, based on the Lagrangian
(\5c51)

LKG5]mw* ~x!]mw~x!2m2w* ~x!w~x!2l„w* ~x!w~x!…2,
~1!

is often used as a prototype quantum field theory~QFT! in
many texts~e.g., Gross, Ref.@1#!, and has been the subject of
investigation on its own account in many studies. To our
knowledge, no exact solutions of this theory have been writ-
ten down. We shall consider this theory in the present paper,
but in the Feshbach-Villars~FV! formulation@2# of covariant
scalar~Klein-Gordon! field theory. We recall that in the FV
formulation, the fieldw and its time-derivativeẇ are re-
placed by a two-component vector

f5F u5
1

A2m
~mw1 i ẇ !

v5
1

A2m
~mw2 i ẇ !

G , ~2!

so that, for example, 2mw* w5(u* 1v* )(u1v)5f†htf,
whereh andt are the matrices

h5F1 0

0 21G , t5F 1 1

21 21G . ~3!

The Euler-Lagrange equations of motion for this theory
are

]m]mw1m2w12l~w* w!w50 ~4!

and its conjugate. In the FV formulation the equation of mo-
tion ~4! takes on the form

i ḟ52
1

2m
¹2tf1mhf1

l

2m2 ~f̄f!tf, ~5!

where f̄5f†ht. The Lagrangian density corresponding to
Eq. ~5! is

LFV5 if†hḟ2
1

2m
¹f̄•¹f2mf†f2

l

4m2 ~f̄f!2.

~6!

Note thatLKG is not identical toLFV . IndeedLKG5LFV
1(]/]t)(w* ẇ). However, they lead to identical equations of
motion @Eqs.~4! and~5!# and so are equivalent in this sense.
Henceforth we shall base our results onLFV . The momenta
corresponding tou andv are

pu5
]LFV

]u̇
5 iu* , pv52 iv* ,

that is,u* andv* are, in essence, the conjugate momenta, so
that the Hamiltonian density is given by the expression

H~x!5f†~x!hĥ~x!f~x!1
l

4m2 „f̄~x!f~x!…2, ~7!

where ĥ(x)5t(21/2m)¹21mh, and where we have sup-
pressed the term¹•(1/2mf̄¹f).

We use canonical equal-time quantization, whereupon the
nonvanishing commutation relations are

@u~x,t !,pu~y,t !#5 id3~x2y!,

@v~x,t !,pv~y,t !#5 id3~x2y!, ~8!

or, equivalently,

@fa~x,t !,fb
†~y,t !#5habd

3~x2y!, a,b51,2 ~9!

and wherefT5@f15u,f25v#, while hab are elements of
theh matrix ~3!. Using these commutation relations, we note
that the QF theoretic Hamiltonian can be written as

H5H01Hl , ~10!

where

H05E d3x f†~x!hĥ~x!f~x! ~11!

and*Electronic address: darewych@yorku.ca

PHYSICAL REVIEW D 15 DECEMBER 1997VOLUME 56, NUMBER 12

560556-2821/97/56~12!/8103~4!/$10.00 8103 © 1997 The American Physical Society



Hl5
l

4m2 E d3x@f̄~x!f~x!#2

5
l

4m2 E d3xf̄~x!@f̄~x!f~x!#f~x!, ~12!

and where we have usedt250 in the last step of Eq.~12!.
Note that no infinities are dropped upon normal ordering,
since none arise on account of thet250 property.

In the Schro¨dinger picture we can taket50. Therefore,
we shall use the notation that, sayf(x,t50)5f(x), etc.,
for QFT operators. We define an empty vacuum state,u0̃&,
such that

fau 0̃&50. ~13!

This is different from the conventional Dirac vacuumu0& ~the
‘‘filled negative energy sea’’ vacuum!, which is annihilated
by only the positive frequency part ofw and by the negative
frequency part ofw* ~see, for example, Ref.@3#, p. 38!. With
the definition~13!, the state defined as

uc1&5E d3x f†~x!h f ~x!u0̃&, ~14!

wheref (x) is a two-component vector, is an eigenstate of the
QFT Hamiltonian~10! with eigenvalueE1 provided that the
f (x) is a solution of the equation

ĥ~x! f ~x!5E1f ~x!. ~15!

This is just the free-particle Klein-Gordon equation for sta-
tionary states~uc1& is insensitive toHl!, in the FV formula-
tion. It has, of course, all the usual negative-energy ‘‘pa-
thologies’’ of the KG equation. The presence of negative-
energy solutions is a consequence of the choice of vacuum
~13!. We shall refer touc1& as a one-KG-particle state.

We can define analogous two-KG-particle states,

uc2&5E d3x d3y Fab~x,y!fa
†~x!fb

†~y!u0̃&, ~16!

where summation on repeated indicesa and b is implied.
This state is an eigenstate of the QFT Hamiltonian~10! pro-
vided that the 232 coefficient matrixF5@Fab# is a solution
of the two-body equation,

h̃~x!F~x,y!1@ h̃~y!FT~x,y!#T1V~x2y!t̃F~x,y!t

5E2F~x,y!, ~17!

where the superscriptT stands for ‘‘transpose,’’h̃5hĥh,
t̃5hth5tT, and

V~x2y!5
l

2m2 d3~x2y! ~18!

in this case. Note that Eq.~16! implies that Fab(x,y)
5Fba(y,x) or FT(x,y)5F(y,x) in matrix notation.

Equation ~17! is a two-body Klein-Gordon-Feshbach-
Villars-like equation, with a repulsive delta-function inter-
particle interaction. IfV50, then Eq.~17! has the solution
F(x,y)5g1(x)g2

T(y), where eachf i(x)5hgi(x) is a solu-

tion of the free KG equation~15! with eigenenergy« i , and
whereE25«11«2 , as would be expected. In the rest frame,
Ptotaluc2&50, Eq. ~17! simplifies to

h̃~r !F~r !1@ h̃~r !FT~r !#T1V~r !tTF~r !t5E2F~r !,
~19!

wherer5x2y andV(r )5(l/2m2)d3(r ).
It is of interest to write out this equation in component

form, with

F~r !5Fs~r !

u~r !

t~r !

v~r !G , ~20!

namely

2
1

2m
¹2~2s2u2t !1V~s2t2u1v !1~2m2E2!s50,

~21!

2
1

2m
¹2~s2v !1V~s2t2u1v !2E2t50, ~22!

2
1

2m
¹2~s2v !1V~s2t2u1v !2E2u50, ~23!

and

2
1

2m
¹2~ t1u22v !1V~s2t2u1v !2~2m1E2!v50.

~24!

Equations~22! and ~23! imply that t(r )5u(r ), so that only
three equations survive:

S 2m2E22
1

m
¹21VD s1S 1

m
¹222VD t1Vv50,

~25!

S 2
1

2m
¹21VD s2~E212V!t1S 1

2m
¹21VD v50,

~26!

and

Vs2S 1

m
¹212VD t2S 2m1E22

1

m
¹22VD v50.

~27!

These equations have positive-energy solutions of the type
E25m1m1••• , negative-energy solutions of the typeE2
52m2m1••• , and ‘‘mixed’’ type solutions withE25m
2m1••• ~this is clear, for example, ifV50 and the par-
ticles are at rest!.

For the positive-energy solutions, if we writeE252m
1e, then in the nonrelativistic limitu(e2V1p2/m)vu
!umvu ~and similarly fors andt!, and so Eqs.~26! and~27!
show that t and v are small components, by factors
O(e/m,p2/m2,V/m). Thereupon, Eq.~25! reduces to

2
1

m
¹2s~r !1V~r !s~r !5es~r !, ~28!
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which is the usual time-independent Schro¨dinger equation
for the relative motion of two particles, each of massm,
interacting through the potentialV(r )5(l/2m2)d3(r ). Simi-
larly, in the nonrelativistic limit,v is the large component for

the negative-energy solutions@with E252(2m1e), and
s→v, V→2V in Eq. ~28!#, while t is the large component
for the mixed energy solutions. This is obvious from the
form of the free-particle solutions (V50), which are

F~r !5s0F 1

S p

v1mD 2
S p

v1mD 2

S v2m

v1mD 2G eip•r ——→
p
m !1

s0F 1

S p

2mD 2
S p

2mD 2

S p

2mD 4G eip•r, ~29!

for E252v52Ap21m2,

F~r !5t0F p2

2m21p2 1

1
p2

2m21p2

G eip•r, ~30!

for E250, and

F~r !5v0F S v2m

v1mD 2 S p

v1mD 2

S p

v1mD 2

1
G eip•r ——→

p
m !1

v0F S p

2mD 4 S p

2mD 2

S p

2mD 2

1
G eip•r, ~31!

for E2522v522Ap21m2, and wheres0 , t0 , andv0 are
constants.

For the repulsive delta-function potential there are, of
course, no positive-energy bound state solutions of Eq.~19!.
For the continuum case, the scattering is trivial, in that the
phase-shifts are zero~the S-matrix is unity!, as we point out
in detail below. Thus the interaction is ‘‘trivial’’ in this
sense. Be´g and Furlong@4# have shown previously that the
nonrelativistic limit of l(w* w)2 theory corresponds to the
same ‘‘trivial’’ repulsive delta-function interactions. These
results are consistent with the generally accepted ‘‘triviality’’
of lw4 theory, in the sense that the particle excitations above
the vacuum are noninteracting~e.g., Refs.@5# and @6#, and
citations therein!.

We now proceed to demonstrate the triviality of the scat-
tering by explicit solution. Equations~25!–~27! can be re-
duced by taking suitable linear combinations, whereupon it
follows that (E5E2)

~2m1E!v5~2m2E!s12Et ~32!

and

@E~4m22E2!28m2V#s52@E~2m1E!218m2V#t.
~33!

It is easily verified that the free particle solutions~29!–~31!,
in particular, satisfy these relations. One can therefore write

s5@8m2V1E~2m1E!2#x ~34!

and

t5@8m2V1E~E224m2!#x, ~35!

wherex is a solution of

24E¹2x1@E~4m22E2!18m2V#x50. ~36!

Equation~36! is form-identical to the Schro¨dinger equation.
Since the delta-function interaction becomes simply a con-
stant in the momentum representation, it is convenient to
write Eq. ~36! in momentum space:

~p22k2!x~p!1
l

~2p!3E E d3q x~q!50, ~37!

wherek25(E/2)22m2, and from which it is obvious that
only s waves are affected by the delta-function potential.
Thus we can write the solution of Eq.~37! as

x~p!5
1

4pp2 Fd~p2k!1
lcxp2

2p2E~p22k2!G , ~38!

where
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cx5E d3q x~q!. ~39!

The s-wave phase shifth, extracted from Eq.~38!, is then
given by

tanh5
lcxk

4pE
. ~40!

Substituting Eq.~38! into Eq. ~39! and solving forcx yields
the result

cx5
1

12
lI 1

2p2E

, ~41!

where

I 15PE
0

L

dp p2
1

p22k2 . ~42!

In actuality, the upper limitL on the integral~42! is infinite,
however, the integral then diverges linearly withL, hence
we regulate it with this cutoff. Nevertheless, when finally we
take L→`, Eq. ~41! shows thatcx→0, hence the phase-
shift h of Eq. ~40! vanishes for any finite value ofl. This
confirms that theS matrix is indeed unity.

One could, of course, solve Eqs.~25!–~27! directly @and
so Eq.~19!# since, for a delta-function potential, they are, in
essence, algebraic equations in momentum space. This leads
to the same results, albeit at the cost of a little more algebraic
effort.

It is straightforward to write down three-body eigenstates
analogous to Eq.~16!, namely,

uc3&5E d3x1d3x2d3x3Fabc~x1 ,x2 ,x3!fa
†~x1!fb

†~x2!fc
†~x3!u0̃&, ~43!

provided that the 2358 coefficient functionsFabc(x1 ,x2 ,x3) are solutions of the relativistic three-body KG-FV-like equation

h̃ak~x1!Fkbc~x1 ,x2 ,x3!1h̃bk~x2!Fakc~x1 ,x2 ,x3!1h̃ck~x3!Fabk~x1 ,x2 ,x3!1V~x12x2!

3 t̃ak1
t̃bk2

Fk1k2c~x1 ,x2 ,x3!1V~x22x3!t̃bk1
t̃ck2

Fak1k2
~x1 ,x2 ,x3!1V~x32x1!

3 t̃ck1
t̃ak2

Fk1bk2
~x1 ,x2 ,x3!5E3Fabc~x1 ,x2 ,x3!, ~44!

where summation on repeated indices is implied and whereV(xi2xj )5(l/2m2)d3(xi2xj ). Once again we have ‘‘trivial’’
delta-function~contact! interactions among the particles, exactly as in the two-body case. Generalizations forN-body eigen-
states can be written down in an analogous fashion.
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