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Chaos and rotating black holes with halos
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The occurrence of chaos for test particles moving around a slowly rotating black hole with a dipolar halo is
studied using Poincare´ sections. We find a novel effect: particles with angular momentum opposite to the black
hole rotation have larger chaotic regions in phase space than particles initially moving in the same direction.
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The main paradigm in the study of the motion of stars in
a galaxy is a model of a central bulge surrounded by a halo
@1#. In this context, for the particular axially symmetric case,
arose the celebrated He´non-Heiles model@2# whose study
has been the source of inspiration of many researches on
chaotic behavior@3#. The underlying theory in this case is the
usual Newtonian gravitation that for large masses and veloci-
ties is known to be less appropriate than Einsteinian general
relativity. In the latter case the Newtonian potential is re-
placed by the spacetime metric and Newton motion equa-
tions by geodesics. This change of dynamics can produce
dramatic effects, for instance, test particles moving in the
presence of systems of masses that are integrable in Newton-
ian theory are chaotic in general relativity; examples are the
fixed two body problem@4,5#, and particles moving in a
monopolar center of attraction surrounded by a dipolar halo
@6#. Also gravitational waves, a nonexisting phenomenon in
the Newtonian realm, can produce an irregular motion of test
particles orbiting around a static black hole@7,8#. Another
distinctive feature of general relativity is the dragging of in-
ertial frames due to mass rotation. This fact is observed, for
instance, in the impressive differences of the geodesic mo-
tion in Schwarzschild and Kerr geometries@9#.

In this Brief Report we study the effects of rotation in the
motion of a particle orbiting around a slowly rotating black
hole surrounded by a dipolar halo. The nonrotating case is
chaotic, so we shall study mainly the change in the chaotic
behavior due to the rotation of the center of attraction. A
typical situation is represented by a galaxy with a rapid ro-
tating center surrounded by a distant massive halo, ring or
other shell-like distributions of matter. We study the motion
of particles moving between the center and the halo whose
first contribution is dipolar. This contribution is always

present whenever the halo does not possess reflection sym-
metry with respect to the black hole equatorial plane.

The metric that represents the superposition of a Kerr
black hole and a dipole along the rotation axis is a stationary
axially symmetric spacetime. The vacuum Einstein equations
for this class of spacetimes is an integrable system of equa-
tions that is closely related to the principals model @10#.
Techniques to actually find the solutions are Ba¨cklund trans-
formations and the inverse scattering method, also a third
method constructed with elements of the previous two is the
‘‘vesture method,’’ all these methods are closely related@10#.
The general metric that represents the nonlinear superposi-
tion of a Kerr solution with a Weyl solution, in particular,
with a multipolar expansion can be found by using the ‘‘in-
verse scattering method’’@11#. We find

ds25gtt~r ,z!dt212gtf~r ,z!dtdf1gff~r ,z!df21 f ~r ,z!

3~dz21dr2!, ~1!

where

gtt52$e22Dpuv@e24Dpu
„e28Dpv~p11!2~u221!

1e28Dp~p21!2~u221!22e24Dp~v11!~u22v2!q2
…

1e24Dp~11v !~e28Dpu11!~v221!q2#%/F,

gtw52pqe22Dp~u1v11!$e24Dpu@e24Dpv~p11!~u2v !

3~u11!1e24Dp~p21!~u1v !~u21!~v11!#

2e24Dpv~p11!~u1v !~u11!~v21!2e24Dp~p21!

3~u2v !~u21!~v21!%/F,
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gww5@~gtw!22~mr!2#/gtt ,

f 5m2$e24Dp[ ~v11!u2v11]@e24Dpuv~p21!2~u21!2

1e24Dp[ ~v11!u1v21]~v11!2q2#

1e24Dp[ ~v11!u1v21]24Dpuv~p11!2~u11!2

22e22Dp[ ~v11!u1v21]22Dp[ ~v11!u2v11]24Dpuv

3~u22v2!q21e28Dpuv~v21!2q2%/H,

F[e24Dpu@e28Dpv~p11!2~u11!21e28Dp~p21!2

3~u21!222e24Dp~v11!~u22v2!q2#,

H[4exp$22Dp@~v11!u1v21#22Dp@~v11!u2v11#

26Dpuv2~u221!~v221!D2p2%. ~2!

The coordinates (r ,f,z) are dimensionless and have the
range of the usual cylindrical coordinates. They are related to
u and v by: z5uv and r 5(u221)1/2(12v2)1/2, u>1 and
21<v<21. Our units are such thatc5G51; D represents
the dipole strength anda the rotation parameter,q5a/m and
p21q251. The coordinate transformationt85t12aw,
u5R/m21,v5cosq,w85w reduces Eq.~2! with D50 to the
Kerr solution in the usual Boyer-Lindquist coordinates@12#.

To study the slow rotation case is better to use the metric
obtained by keeping the first order terms in the rotation pa-
rametera in the exact metric~2!. This approximation, for the
parameters and range of coordinates used, will not produce a
significant information loss; we shall come back to this point
later. We find, forgmn5gmn

0 1agmn
1 ,

gtt52
u21

u11
exp~22Duv !,

gtf5
a

u11
$~u1v !~12v !exp@22D~12u2v !#

1~u2v !~11v !exp@22D~11u2v !#%,

gff5m2~12v2!~11u!2exp~2Duv !,

f 5m2
~u11!2

u22v2
exp$D@~u221!~v221!D12uv24v14#%.

~3!

The geodesic equations for the metric~1! can be cast as

ṫ5gtbEb , ḟ5gfbEb , ~4!

r̈ 52
1

2 f
@g,r

abEaEb1 f ,r~ ṙ 22 ż2!12 f ,zṙ ż#, ~5!

z̈52
1

2 f
@g,z

abEaEb1 f ,z~ ż22 ṙ 2!12 f ,r ṙ ż#, ~6!

where the dots denote derivation with respect tos and the
indices a and b take the values (t,f), gab stands for the
inverse of gab . Et52E and Ef5L are integration con-

stants;E andL are the test particle energy and angular mo-
mentum, respectively. The set~4!–~6! admits a third integra-
tion constant

E35gabEaEb1 f ~ ṙ 21 ż2!521. ~7!

Thus to have complete integrability we need one more inde-
pendent constant of integration. In the case of pure Kerr
solution (D50) we have a fourth constant due to the exis-
tence of a Killing tensor and for the nonrotating case we
have another constant related to a third Killing vector asso-
ciated to spherical symmetry@9#.

The system~5! and ~6! can be written as a four dimen-
sional dynamical system in the variables (r ,z,Pr5 ṙ ,Pz5 ż).
A convenient method to study qualitative aspects of this sys-
tem is to compute the Poincare´ sections through the plane
z50. The intersection of the orbits with this plane will be
studied in some detail for bounded motions. We shall nu-
merically solve the system~4!–~6! and use the integral~7! to
control the accumulated error along the integration; we shall
return to this point later.

The Poincare´ section for different initial conditions with
energy E50.965 and angular momentumL523.75
~counter rotation! moving in an approximate Kerr geometry
(D50) with rotation parametera50.01 and massm51
~this value for the mass will be kept unchanged from now
on! are presented in Fig. 1. We have the typical section of an
integrable motion, i.e., the sectioning of invariant tori, for
integrability and KAM theory, see, for instance,@13#.

We also studied the same case for direct rotationL53.75,
as well as, the corresponding Schwarzschild limita50, and
L523.75. All these cases present Poincare´ sections almost
identical to Fig. 1. The section area for the Schwarzschild
case is slightly smaller than the section area of Fig. 1 and the
section area for particles in direct rotation in a Kerr geometry
is even smaller. We have that counter rotation enlarges the

FIG. 1. Poincare´ section of test particles moving with angular
momentumL523.75 in an approximate Kerr geometry with rota-
tion parametera50.01~counter rotation! and massm51. This is a
typical section of an integrable system.
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area of the section and direct rotation shrinks it. This is
clearly an effect of the dragging of inertial frames due to
rotation.

The motion of test particles around a static black hole
with a dipolar halo (a50 andD50) is chaotic and it was
studied in some detail in@6# for a different energy shell. In
Fig. 2 we show the Poincare´ section forD50.0005 and the
same values ofE50.965, andL53.75 as in Fig. 1. We find
islands of integrability surrounded by chaotic motion. The
two isolated islands around the points~10, 0.05! and ~5,
0.075! are parts of the same torus. In the case studied in@6#
they were closer.

Now we shall consider a particle moving around a slowly
rotating attractive center surrounded by a dipolar halo for

both direct rotation and counter rotation. In Fig. 3 we draw
the Poincare´ section forD50.0005,a50.01,E50.965, and
L53.75 ~direct rotation!. We see that the islands of stability
are larger in this case than in the nonrotating case~see Fig.
2!; also we have new systems of small islands immersed in
the chaotic region. We have that the chaotic region is smaller
in this case than in the equivalent nonrotating one. It does
seem that the direct rotation diminishes the effect of the di-
polar strength as a chaos source. In Fig. 4 we present the
section with the same parameters of Fig. 3, except that now
we have counter rotation,L523.75. In Fig. 4 we observe
that the chaotic region increases in a significant way and also
that the islands located around the points~10, 0.05! and ~5,
0.075! in Figs. 2 and 3 have disappeared in this scale. In
other words, withD50, the counter rotating motion of par-
ticles is more chaotic than the static case, the later being
more chaotic than the direct rotation case. Also, we can say
that the counter~direct! rotation reinforces~weakens! the
strength of the dipole as a source of the chaotic motion~for
D50 we have an integrable system!. This effect is a mani-
festation of the fact that particles moving in nonequatorial
orbits of a rotating central body can suffer repulsive forces
due to rotation. This fact allows in a Kerr geometry closed
orbits of test particles moving on planes parallel to the equa-
torial plane@14#, though these orbits are not stable. Although
in the present paper we present results for particular values
of the parameters involved, we did a rather extended numeri-
cal study that supports our conclusions, Figs. 3 and 4 being
representative of this search.

For the values of the parametersD50.0005, a50.01,
E50.965, andL563.75, we have that the particles move in
the ‘‘box’’ 4.7,r ,21,25,z,9. We take, as a measure of
error the quantities,

Dgab5u~gab
ex2gab!/gab

exu, D f 5u~ f ex2 f !/ f exu, ~8!

FIG. 2. Poincare´ section forD50.0005,E50.965,a50, m51,
and L563.75. The two isolated islands around the points~10,
0.05! and ~5, 0.075! are parts of the same torus.

FIG. 3. Poincare´ section for D50.0005, a50.01, m51
E50.965, andL53.75~direct rotation!. The islands of stability are
larger in this case than in the nonrotating case~cf. Fig. 2!.

FIG. 4. Poincare´ section with the same parameters of Fig. 3,
except that nowL523.75 ~counter rotation!. The chaotic region
increases in a significant way, also the system of islands located
around the points~10, 0.05! and ~5, 0.075! in the two precedent
cases has disappeared.
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where in these expressions the sum rule of repeated indices
does not apply.gmn

ex andgmn refer to the solutions~2! and~3!,
respectively. We find that for the above mentioned range of
coordinates and the values of parameters used in this paper
the quantities defined in~8! are at most of the order of 1026.
Also in this range, the error in the derivatives of the metric
functions is even smaller~the metric functions are very
smooth!. We also want to mention that the Poincare´ sections
shown in this paper were computed from orbits with an ac-
cumulated error in the ‘‘energy’’@cf. Eq. ~7!# smaller than
10210.

We want to conclude with a discussion of a possible as-
trophysical implication of our main result: direct rotating
particles are less chaotic than counter rotating ones. In a
rotating center of gravitational attraction we can have struc-
tures formed by counter and direct rotating particles, thus our
result favors larger life times of structures formed with direct
rotating particles. A deeper discussion of this point will be
presented elsewhere.
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