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Sigma models describing low energy effective actions onD0-brane probes withN58 supercharges are
studied in detail using a manifestlyd51, N54 superspace formalism. Two (011)-dimensionalN54 mul-
tiplets together with their general actions are constructed. We derive the condition for these actions to beN
58 supersymmetric and apply these techniques to variousD-brane configurations. We find that if in addition
to N58 supersymmetry the action must also have Spin~5! invariance, the form of thes model metric is
uniquely determined by the one-loop result and is not renormalized perturbatively or nonperturbatively.
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I. INTRODUCTION AND SUMMARY

Recent developments@1–3# have emphasized the crucial
role played byD0-branes in probing space-time structure at
substringy scales as well as in a nonperturbative definition of
11-dimensionalM theory. The basic feature that enables
D-particles to test short distances in string theory is that their
low energy dynamics is a quantum mechanics of the lightest
open string degrees of freedom. The geometrical background
in the substringy domain is reproduced by quantum open
string effects, while the classical background at distances
larger than the string scale is described by supergravity re-
sults which are essentially mediated by massless closed
strings. As discussed in@1#, in the cases with enough super-
symmetry, the two regimes are continuously connected by
factorization of the open string annulus diagram. The general
behavior in such cases is that the long distance supergravity
results coincide with the one-loop quantum corrections to the
probe moduli space. By analogy with higher dimensional
field theories, it is plausible that higher order perturbative
corrections as well as nonperturbative ones vanish, leading to
nonrenormalization theorems. A similar nonrenormalization
result for a higher derivative interaction proves to be essen-
tial @2# in the matrix theory formulation ofM theory.

The purpose of the present work is to study theN58
quantum mechanics of aD0-brane probe moving in different
D4-brane and/or orientifold plane backgrounds. The low en-
ergy degrees of freedom in the probe theory are five bosons
and eight fermions. A singleD0-D4 configuration hasN
58 supersymmetry and a Spin~5! rotational symmetry in the
transverse directions under which the bosons transform as a
vector and the fermions as a spinor. We construct twoN
54 multiplets that together have these degrees of freedom,
but are not manifestly Spin~5! symmetric. We call the pair of
these multiplets thed51, N58 vector multiplet. Our main
result is that the condition for Spin~5! invariance of the vec-
tor multiplet action is compatible with the condition for it to
haveN58 supersymmetry and that when taken together

these invariances uniquely determine the form of the target
space metric. The form of the metric we find agrees with the
one-loop results of@1#, and we conclude that it cannot re-
ceive perturbative or nonperturbative corrections.

The plan of this paper is as follows. In Sec. II we develop
a manifestlyN54 superspace formalism in 011 dimen-
sions and describeN54 chiral and linear multiplets that
together contain the right number of bosonic and fermionic
degrees of freedom. We then find in Sec. III the condition for
this action to admit four additional supersymmetries and ar-
gue that this condition is essentially unique. Requiring also
Spin~5! invariance leads to the nonrenormalization theorem.
This result is applied in Sec. IV to variousD-brane configu-
rations. Finally, we discuss the range of validity of this theo-
rem in connection with three-dimensional analogues and
string duality.

II. N54 MULTIPLETS IN ONE DIMENSION

The d51,N54 superspace is parametrized by one com-
muting coordinatet and four noncommuting ones arranged
as an SU~2! spinor ua and its complex conjugateūa. The
covariant derivatives and supercharges are given by~our
conventions are summarized in Appendix A!

Da5
]

]ua
2 i ūa]0 , D̄a5

]

]ūa
2 iua]0 ,

Qa5
]

]ua
1 i ūa]0 , Q̄a5

]

]ūa
1 iua]0 ,

and satisfy the algebra

$Da ,D̄b%52i eab]0 , $Qa ,Q̄b%522i eab]0 , ~2.1!

with all the other anticommutators vanishing. The manifest
supersymmetry transformations are generated byeaQa

1 ēaQ̄a acting on the various multiplets.
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A. Chiral multiplet

As in thed54,N51 case, the chiral and antichiral mul-
tiplets are defined by the constraintsD̄F5DF̄50, which
are solved by functions ofy5t2 iuaūa andȳ5t1 iuaūa . In
component form they are given by

F~y!5F~y!12uaca~y!1uuF~y!

5F2 iuaūaḞ1
1

4
uuuuf̈12uaca

2 iuuūaċa1uuF,

and

F̄~ ȳ!5F̄~ ȳ!22ūac̄a~ ȳ!2uuF* ~ ȳ!

5F̄1 iuaūaFG 1
1

4
uuuuFJ 22ūac̄a

1 iuuuacG a2uuF* ,

which are thed54, N51 chiral and antichiral multiplets
reduced to one dimension. The physical on-shell degrees of
freedom arising from these multiplets are two bosons and
four fermions.

B. Linear multiplet

The d54, N51 vector multiplet dimensionally reduced
to D53 becomes equivalent@4# to the real linear multipletG
defined by the constraints

D2G5D̄2G50,

whereD and D̄ denote the spinor derivatives of thed53,
N52 superspace. They are solved by

G5DD̄V,

with V an arbitrary real superfield. The physical degrees of
freedom consist of a real scalar boson, a three-dimensional
vector field, and their fermionic superpartners. The real sca-
lar can be thought of as the fourth component of the four-
dimensional vector field. Further reduction to two dimen-
sions yields@4,5# the twisted chiral multipletS12 defined
@4# by the constraints

D̄1S125D2S1250.

The solution of these constraints can be expressed similarly
in terms of a real superfield

S125
1

&
D̄1D2V,

describing the dynamics of the two real scalars obtained by
dimensional reduction of the four-dimensional vector field
plus their superpartners.

In one dimension the closest analogue of the above con-
ditions would be

D2S5D̄2S50. ~2.2!

Proceeding naively we take

S5D̄aQa,

whereQa is a superfield, as the general solution of the sec-
ond constraint in Eq.~2.2!. By making use of@D̄a ,D2#
54iD a]0 , the first condition in Eq.~2.2! is satisfied if

D̄aD2Qa14iD a]0Qa50,

which is unacceptable since the time dependence ofQa is
restricted. A natural modification would be to consider a trip-
let of superfields which we denote bySab . More precisely,
the linear multipletSab is defined by

DgDaSab5D̄gD̄aSab50 ~2.3!

and the reality condition

S̄ab[Sab5eagSgdedb. ~2.4!

The unique solution of these constraints with no restriction
on the time dependence is given by

Sab5D̄ ~aDb)V, ~2.5!

whereV is the real superfield ofd54,N51 reduced to one
dimension and parentheses denote symmetrization. The sec-
ond constraint in Eq.~2.3! is identically satisfied, while the
first one follows from the algebra~2.1!:

D2Sab5 1
2 ~D2D̄aDb1D2D̄bDa!V5 i ~eba1eab!]0V.

~2.6!

The component form ofSab is given by

Sab52sab
i xi1 i ~ual̄b1ubl̄a!1 i ~ ūbla1 ūalb!2~ ūbua

1 ūaub!D1
i

2
~ubūgsga

i 1uaūgsgb
i 1 ūbugsga

i

1 ūaugsgb
i !ẋi1

1

2
uu~ubl̇b1ual̇b!2

1

2
uu~ūblGa

1 ūalGb!1
1

4
uuuusab

i ẍi ~2.7!

or, alternatively, by

S i[
1

2
s iabSab

52xi1 iugs igdl̄d1 i ūgs igdld2 ūgs igdudD

1e i jk ūgs j gdudẋk2
1

2
uuugs igdl̇d

1
1

2
uuūgs igdlG d1

1

4
uuuu ẍi , ~2.8!

which is more convenient for our purposes. We stress that
supersymmetry forces us to consider (S1,S2,S3) as avector
of superfields and not treat each component separately. This
can be seen by observing that the three scalarsxi enter the
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supersymmetry transformation ofl and l̄ symmetrically.
When S i is taken separately,xi enters through the lowest
order inu component, while the other two scalars appear in
theuū component. Thus only an invariant and real combina-
tion, such asSabSab or SW 2, may appear in a supersymmet-
ric action.

Finally we note that by analogy with thed54,N51 case
one can define chiral and antichiral field-strength multiplets
by

Wa[D̄bSab , W̄a[DbSab . ~2.9!

Then,

2 1
6 ~WaWauuu1W̄aW̄auuu!

yields the same kinetic terms asS iS i uuuuu .

III. N58 SUPERSYMMETRY
AND NONRENORMALIZATION

We will ultimately be concerned with applications to a
D0-brane inD4-branes and orientifold backgrounds. As will
be explained in Sec. IV, the low energy degrees of freedom
on theD0-brane world line are precisely described by the
pair ~F,S!, which is thed51,N58 multiplet. Such systems
have only eight supersymmetries, and so quadratic terms in
the velocities are generally not protected from renormaliza-
tion. In the regime where the velocity of theD0-brane is
small, we may restrict our attention to an action which is
quadratic in velocities and neglect higher order terms. A gen-
eral such action with four manifest supersymmetries is given
by

E d2u d2ū K~F,F̄,SW 2!, ~3.1!

whereK is an arbitrary real prepotential. It is possible to add
a superpotential integrated over half of superspace, but it will
not contribute to the metric. This remark actually applies to a
wider class of actions. We may think of Eq.~3.1! as the first
term in an expansion of the form

L5E d2u d2ū~K21K4]0S i]0S i1K̃4]0F]0F̄1••• !,

where each successiveKi produces ani th power in velocity
term in the Lagrangian~we do not have to consider an ex-
pansion in covariant derivatives of the multiplets since these
lead to cubic terms in the velocities!. Again, K4 ,K̃4 ,... can-
not give metric terms, and so the nonrenormalization result
we will prove below applies also to the metric terms in these
actions as well.

The metric can be read from the kinetic terms arising
from the superspace integration:

1

4
KS iS i@ ẋ j ẋ j1 i ~ l̄l̇1llG !#2KFF̄@ḞFG 1 i ~ c̄ċ1ccG !#,

~3.2!

and consists of only two undetermined functions1
4 KS iS i and

2KFF̄ . Note the absence of mixed derivative terms—this
will prove crucial for the applications to the 0-4 system.

A. Nonmanifest supersymmetries

If the action ~3.1! admits more supersymmetries, their
form is severely constrained by the following considerations.
First, they must be realized as spinorial derivatives acting on
superfields so that the supersymmetry algebra is satisfied.
The four manifest supersymmetries of each multiplet are al-
ready generated by the supercharges acting on it. Therefore,
additional supersymmetries, if they exist, must be generated
by spinorial derivatives acting on the other multiplets. This
means thatSab will enter the nonmanifest transformations of
F, F̄ and thatF, F̄ enter symmetrically the nonmanifest
variation of Sab . The form of these variations is further
constrained and, in fact, determined up to a constant by re-
quiring the variations to respect the defining constraints of
the multiplets. Thus we conclude that if there are four addi-
tional supersymmetries their form is

dF} i ēbD̄aSab ,

dF̄} i ebDaSab ,

dSab} i ~e (aDb)F2 ē (aD̄b)F̄!. ~3.3!

@The chiral and antichiral constraints ofdF and dF̄ follow
directly from Eq.~2.3!. The variation ofSab can be seen to
satisfy the conditions~2.4! and ~2.3! by using the algebra
~2.1!. It is also easy to verify that the commutator of two
nonmanifest variations closes on translations.#

A straightforward~and a little laborious! calculation in
components shows that the action~3.1! admits the four non-
manifest supersymmetries

dF5
22i

3
ēbD̄aSab ,

dF̄5
22i

3
ebDaSab ,

dSab5 i ~e (aDb)F2 ē (aD̄b)F̄!, ~3.4!

provided that the following condition holds:

KS iS i14KFF̄50. ~3.5!

This is actually also anecessarycondition. The explicit form
of the action shows that it cannot be invariant under the
supersymmetry transformations of the form~3.3! unless Eq.
~3.5! holds, that is, unless the action depends only one arbi-
trary function. As argued above, the form of the nonmanifest
variations is unique, and so we conclude that anyN54 su-
persymmetric action is automaticallyN58 supersymmetric
if and only if Eq. ~3.5! holds. The metric, the action, and all
the supersymmetry transformations are now determined by

f 52 1
4 KS iS i5KFF̄ ~3.6!
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and are given in Appendix B~f enters the variation laws
once the auxiliary fields are solved for!. Differentiating f
twice with respect toS i and with respect toF and F̄, and
using Eq.~3.5!, shows that the metric satisfies

f S iS i14 f FF̄50 ~3.7!

as well.

B. Spin „5… invariance and nonrenormalization

The five scalars in the vector multiplet can be thought of
as local coordinates,y1 ,...,y5 , on a five-dimensional target
space manifold by making the change of variables

yi5xi , i 51,2,3,

y45
1

2
~F1F̄!,

y55
1

2i
~F2F̄!.

In these coordinates the condition~3.7! satisfied by the met-
ric f is precisely the Spin~5!-invariant Laplace equation. Any
function ofr 2, r being the five-dimensional radius, must also
satisfy this equation, and therefore the condition for a
Spin~5!-invariant metric is compatible with the condition for
N58 supersymmetry. This conclusion depends crucially on
the relative sign and factor in Eq.~3.2! and would not have
been valid otherwise. Furthermore,f is now determined up
to two constants. The condition~3.7! on a Spin~5!-invariant
function reduces to

r 2f 91 5
2 f 850 ~3.8!

and is solved by

f 5C81
C

r 3 , ~3.9!

whereC and C8 are arbitrary constants. We conclude that
the metric of a general action compatible with the above
symmetries is not renormalized either perturbatively or non-
perturbatively.

It is also possible to restore manifest Spin~5! invariance in
the full Lagrangian. After solving algebraically for the aux-
iliary fields, the superspace Lagrangian is given by1

2 f „ẋi ẋi1 i ~ h̄ḣ1hhG !…1 ẋi f , j~hg i j h̄ !1 1
2 ~ f ,i j 2

1
2 f ,i f , j !

3~hg i h̄hg j h̄1hg ihh̄g j h̄ !, ~3.10!

and has a natural geometric interpretation. Specifically, the
bilinear fermion term, taking into account the fu¨nfbein fac-

tors, is the pull back of the minimal spin connection made of
the metricf . With a little algebra, the quadratic fermion term
can also be seen to be

Rabgdhah̄bhgh̄d,

with the curvature computed from the minimal connection.
The manifest and nonmanifest supersymmetry~SUSY! trans-
formations also match up in a nice way. The manifest ones
can be recovered if in the five-dimensional SUSY transfor-
mations~B6! the parameterea

5 is taken as

ea
55S ea

0 D
and the nonmanifest ones if we take

ea
55S 0

ea
D .

Since the target space is odd dimensional, these restrictions
cannot be made in an invariant way, but together they com-
bine into anN58 SUSY parameter. This is again due to the
consistency of the Spin~5! invariance andN58 conditions.

IV. D0-D4 SYSTEM

The formalism developed in the previous sections can be
applied to the study of low energy effective actions of
D0-brane probes in different type-IIA backgrounds. Extend-
ing the analysis of@1#, we considerD0-brane probes in
type-I8 theory realized as an orientifold of the type-IIA
theory compactified on a 5-torusT5 @6,7#. More precisely,
one starts with type-I theory onT5 and performsT duality on
all the five circles of the torus. The resulting theory is type
IIA on T5/Z2V with 16 pairs of D4-branes in the back-
ground to cancel the charge of the 32 orientifold fixed
planes. In the normalization of@6,7#, the Ramond-Ramond
~RR! charge of a fixed plane is21, while the charge of a
4-brane is 1 such that cancellation holds globally. Local can-
cellation occurs in a configuration with a 4-brane at each
orientifold plane. The supersymmetric probes for this back-
ground areD0-branes whose world line effective action is
expected to reproduce the string background@1#. We will
consider two distinct configurations:

~i! n D4-branes coalesce away from an orientifold fixed
plane. Ind51, N58 language, the degrees of freedom on
the D0-brane world line consist of an Abelian vector mul-
tiplet and a neutral hypermultiplet arising from 0-0 strings
andn hypermultiplets in the fundamental of the U~1! gauge
group arising from 0-4 strings. The space-time positions of
the 4-branes correspond to bare massesmW i of the charged
multiplets in the gauge theory on the probe. When the branes
come together, one obtains SU(n) gauge symmetry enhance-
ment in space-time corresponding to SU(n) global symmetry
enhancement in the probe theory.

When the 0-brane is away from the 4-brane, the massive
0-4 string states can be integrated out. The surviving low
energy degrees of freedom in the world line theory are the

1To avoid clutter, the same tangent space indices are used to de-
note the flat space carried by theg matrices.
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N58 vector multiplet and neutral hypermultiplet. The later
decouples, and so the low energy effective action is the
theory of an interactingN58 vector multiplet. If the posi-
tions of the 4-branes coincide, the system is rotationally in-
variant in the five transverse directions, and so the theory has
Spin~5!.Sp~2! symmetry under which the bosons transform
in the 5 and fermions in the4.

The result of the previous section applies to this configu-
ration, and it remains to determine the constants in Eq.~3.9!.
In the present case,

C85
1

gs

is the asymptotic value of the dilaton far from the 4-branes
and at the same time the classical coupling constant of the
gauge theory on the probe. The second constantC is deter-
mined by the one-loop effects of then charged hypermultip-
lets @1# to be

C5n.

Therefore, we conclude that the one-loop results of@1# are
exact already in this order and do not receive further correc-
tions. This statement is true as long as the theory is described
in terms of the multiplets introduced above, but it may break
down in a description in terms of different variables. A simi-
lar phenomenon is encountered in three-dimensional gauge
theories@8–10# where the monopole corrections become vis-
ible only after dualizing the photon. As we will see later,
string duality suggests that this happens in the present case
as well.

If the 4-branes are localized at different points of coordi-
natesmW i in transverse space, the SU(n) global symmetry on
the probe is broken since the hypermultiplets have different
masses. In this case one-loop metric is given by

f ~xW !5
1

gs
1

1

uxW2mW 1u3
1•••1

1

uxW2mW nu3
. ~4.1!

This configuration is no longer Spin~5! symmetric in the
transverse directions, but the nonrenormalization result still
holds. The system is stillN58 supersymmetric, and so the
exact f must still satisfy the five-dimensional Laplace equa-
tion. The boundary conditions on the exact metric close tomW i
are given by

f 5
1

uxW2mW i u3 ,

since near any of then D4-branes the remainingn21 hy-
permultiplets ~corresponding to the the rest of the
D4-branes! are very massive and can be neglected. Asf is
uniquely determined by the boundary conditions, the one-
loop result~4.1! is exact.

~ii ! n D4-branes coalesce at an orientifold fixed plane.
The degrees of freedom on theD0-brane consist now of a
non-Abelian SU~2! vector multiplet plus an adjoint hyper-

multiplet arising from 0-0 strings andn hypermultiplets in
the fundamental of the gauge group. Then coalescing 4-
branes can be viewed as a collection of 2n branes pairwise
identified by theZ2 projection. Therefore, they are localized
at pointsmW i and 2mW i in transverse space. The space-time
gauge symmetry is enhanced to SO(2n) when the branes
coincide with the orientifold plane. As before, this corre-
sponds to an SO(2n) global symmetry enhancement on the
probe. The SU~2! gauge group on the world line is sponta-
neously broken to U~1! by expectation values of the five
scalars in the vector multiplet which parametrize the Cou-
lomb branch of the theory. Strictly speaking, this terminol-
ogy is inappropriate as there is no real moduli space in quan-
tum mechanics. Nevertheless, one can still refer to a
quantum-mechanical moduli space in the Born-Oppenheimer
approximation@8#. In this sense the low energy effective
action on the probe is a U~1! gauge theory withN58 super-
symmetry. When the 4-branes coalesce at the fixed plane,
there is a global Spin~5! symmetry rotating the five scalars in
the Abelian vector multiplet. Therefore, the general action is
exactly of the form~3.10!. The only difference with respect
to the previous case is reflected in the value of the constant
C,

C52n21,

where the negative term represents the one-loop contribution
of the non-Abelian vector multiplet to the effective action.
As above, there are no quantum corrections beyond one loop.
When the 4-branes are in general positions, the one-loop
metric is

f ~xW !5
1

gs
1

1

uxW2mW 1u3 1
1

uxW1mW 1u3 1•••1
1

uxW2mW nu3

1
1

uxW1mW nu32
1

uxW u3 ,

and by the same argument used for Eq.~4.1! does not get
renormalized beyond this order.

V. DISCUSSION

We have shown above that the one-dimensional action
describing five bosons and eight fermions in the5 and4 of
Sp~2! is, up to two constants, uniquely determined by requir-
ing N58 supersymmetry and Spin~5! invariance. Since the
form of the action is fixed by a solution of a differential
equation, we cannot determine in our formalism the con-
stants that appear in the metric. Indeed, if the probe is near
an orientifold fixed plane with all 4-branes far away, the
metric becomes negative definite at a finite distance in
moduli space. The description of the physics in terms of the
N58 vector multiplet degrees of freedom breaks down, and
one has to look for another set of variables. Similar phenom-
ena occur in three-dimensional gauge theories where the
equivalent description involves dualizing the photon@8–10#.
In the new variables the three-dimensional nonrenormaliza-
tion theorem is violated by an infinite series of monopole
corrections@9#.

This is also likely to be the case here since a dual set of
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variables will not necessarily have a Spin~5! symmetry. Fur-
ther evidence for this conclusion can be inferred from string
duality arguments analogous to those presented in@8,9# for
the three-dimensional case. The type-I’ orientifold studied
above isT dual to type-I theory on a 5-torusT5, which is in
turn S dual to heterotic string theory on the sameT5. This is
further dual to type-IIA theory onK33S1 and afterT dual-
ity on the S1 factor to type-IIB theory onK33S̃1. The
D0-brane probe is mapped by the first duality in the chain to
a type-I D5-brane wrapped onT5, while theD4-branes in
the background are mapped to the 32D9-branes of type-I
theory. According to the analysis of@11#, the zero modes of
the type-ID5-brane wrapped on a 4-torus correspond to the
world sheet degrees of freedom of the type-IIB string in
static gauge. In our case the 5-brane is wrapped on an extra
circle, and thus it maps to a fundamental type-IIB string
wrapped on the extra circleS̃1, which is a particle in the five
noncompact dimensions. This is the image of the initial
D0-brane probe through the above chain of dualities. The
resultings model is very different from the one we started
with. It represents the motion of the particle onK33S̃1, and
thus the target space metric is the product of a hyper-Ka¨hler
metric onK3 and a trivial metric onS1. The fermions are
target space vectors, and the symmetry is reduced to a prod-
uct U(1)3G, whereG is the isometry group of the hyper-
Kähler metric.2 The orientifold background is mapped to a
noncompact hyper-Ka¨hler manifold asymptotic to anS1

bundle over the projective spaceRP2. In particular, the met-
ric is smooth and positive definite due to nonperturbative
corrections@9#. The singularities at infinite distance corre-
sponding to 4-branes are mapped to orbifold singularities in
the complex structure of the hyper-Ka¨hler surface.

While in the three-dimensional analysis of@8,9# the string
duality picture is entirely reproduced by electric-magnetic
duality on aD2-brane probe, the present situation is less
clear. One could try to define an analogue of higher dimen-
sional duality transformations for the linear multiplet, but we
leave this for further study.
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APPENDIX A: SPINOR CONVENTIONS

1. Sp„1… spinors

The anticommuting coordinatesua and ūa[(ua)* are
spinors of SU~2!.Sp~1!. Raising and lowering indices is
done with the Sp~1!-invariant metric as

ua5eabub, ua5eabub ,

ūa5ebaūb, ūa5ebaūb . ~A1!

Complex conjugation of anticommuting numbers is defined
by

~hajb!* 5 j̄bh̄a, ~A2!

which implies that]a* 52 ]̄a and ]a* 52 ]̄a . @This is nec-
essary for the solutionSab of Eq. ~2.3! to be consistent with
the reality condition~2.4!.# We also use

cc[caca , cc[c̄ac̄a, cc̄[cac̄a5cac̄a .

The symmetricg matrices are

sab
1 5 i1, sab

2 5t3, sab
3 5t1, ~A3!

wheret are the Pauli matrices. They satisfy the algebra

~s is j !ab5d i j eab1 i e i jksab
k ~A4!

and the reality condition

~sab
i !* [s iab5eagsgd

i edb. ~A5!

2. Sp„2… spinors

We give the decomposition of Sp~2! spinors andg matri-
ces in terms of the corresponding Sp~1! quantities, which is
used to write the action and supersymmetry variations in a
Spin~5! form. Unless otherwise noted, all conventions are
similar to those used above. Written in terms of Sp~1!
spinors, the Sp~2! ones are

ha5S la

c̄a
D , h̄a5S l̄a

caD . ~A6!

Indices are raised lowered and contracted using the metric

Jab5S 0
e

e
0D , ~A7!

with e being the Sp~1! metric. The antisymmetricg matrices
are taken to be

gab
i 5S 0

2s i
s i

0 D , i 51,2,3,

gab
4 5S i e

0
0

2 i e D ,

gab
5 5S 2e

0
0

2e D , ~A8!

with the reality condition being

~gab
1 !* [g iab52Jagggd

i Jdb. ~A9!

2The isometry group of a genericK3 surface is trivial. However,
the moduli spaces of the probe theories are usually noncompact
pieces of the entire surface. In this case the hyper-Ka¨hler metric can
have a nontrivial isometry group.
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APPENDIX B: LAGRANGIAN AND SUSY VARIATIONS

N54 Lagrangian:

1

4
KS iS i@ ẋ j ẋ j1 i ~ l̄l̇1llG1D2!#2KFF̄@ḞFG 1 i ~ c̄ċ1ccG !1FF* #1

1

2
ẋ j~KS iS iFcs jl1KS iS iF̄c̄s j l̄!1 ẋie i jk

3S 2
1

4
KS lS lSkls j l̄1KFF̄S i kcs j c̄ D1 iFG S 1

4
KS iS iF̄ll̄2KFF̄F̄cc̄2 iK FF̄S ics il D2 i ḞS 1

4
KS iS iFll̄2KFF̄Fcc̄

1 iK FF̄S ic̄s i l̄D1DS 1

4
KS lS lS ils i l̄1KFF̄S ics i c̄1

i

2
~KS iS iFcl1KS iS iF̄cl! D1FS 2

1

4
KS iS iFll2KFF̄F̄cc

1 iK FF̄S ils i c̄ D1F* S 1

4
KS iS iF̄ll1KFF̄Fcc2 iK FF̄S ics i l̄D1

1

4
~KS iS iF̄F̄ll cc1KS iS iFFllcc!1KFF̄F̄F̄cccc

1
1

16
KS lS lS iS illll2KFF̄S iS jcs i l̄ls j c̄2

i

4
~KS iS iS j F̄ls j c̄ ll1KS iS iS jF

cs j l̄ll!2 i ~KFF̄S iFls i c̄cc

1KFF̄S iF̄cs i l̄ cc!. ~B1!

TheN58 Lagrangian3 follows from theN54 one by making use of Eq.~3.7!:

L52 f @ ẋi ẋi1ḞFG 1 i ~ l̄l̇1llG1c̄ċ1ccG !#1 ẋi f ,ke
i jk~cs j c̄1ls i l̄!22ẋi~ f ,Fcs il1 f ,F̄c̄s i l̄!1Ḟ~ f ,i c̄s i l̄1 i f ,Fcc̄

1 i f ,F̄ll̄!1FG ~ f ,ics il2 i f ,Fcc̄2 i f ,F̄ll̄!1 i f ,iF~ls i c̄ ll2cs i l̄ cc!1 i f ,i F̄~cs i l̄ll2ls i c̄cc!2 f ,FFllcc

2 f ,F̄F̄ll cc2 f ,i j ls i l̄1 f ,FF̄cccc2
1

4
f ,i i llll2 f D21D@ f ,i~cs i c̄2ls i l̄!22 f ,Fcl22 f ,F̄cl#2 f FF*

1F~ f ,Fll2 f ,F̄cc1 i f ,ils i c̄ !2F* ~ f ,F̄ll2 f ,Fcc1 i f ,ics i l̄!. ~B2!

Auxiliary fields are given in Spin~5! language using the
results of Appendix A:

D5
1

2
f 21f ,ih

agab
i h̄b,

F5
i

2
f 21f ,i h̄

agab
i h̄b,

F* 5
i

2
f 21f ,ih

agab
i hb. ~B3!

Manifest SUSY:

dxi52 i ~es i l̄1 ēs il!,

dla5 ẋi~es i !a1 iD ea , dl̄a5 ẋi~ ēs i !a2 iD ēa ,

dD5elG2 ē l̇,

dF52ec, dF̄522ec,

dca52 i Ḟēa1Fea , dc̄a52 iFG ea1F* ēa ,

dF522i ē ċ, dF* 522i ecG . ~B4!

Nonmanifest SUSY:

dxi52 i ~es ic2 ēs i c̄ !,

dla5 i Ḟea1F* ēa , dl̄a52 iFG ēa2Fea ,

dD5eċ2eċ,

dF522ēl, dF̄52el̄,

dca5 ẋi~ ēs i !a1 iD ēa , dc̄a52 ẋi~es i !a1 iD ea ,

dF522i el̇, dF* 522i el̇. ~B5!

3There is a sign ambiguity in expressions of the formcs il or
c̄s i l̄, corresponding to lower or upper indices on the spinors. We
universally take spinors with lower indices. No such ambiguity
arises if one of the spinors is barred.
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Spin~5! SUSY follow from Eqs.~B4! and ~B5! using Eqs.~B3! and the results of Appendix A:

dxi5 i ~eagab
i h̄b2 ēagab

i hb!, dha5 ẋigab
i eb1

i

2
f 21f ,i~hgggd

i h̄dea1hgggd
i hdēa!,

dh̄a52 ẋigab
i ēb2

i

2
f 21f ,i~hgggd

i h̄dēa1h̄gggd
i h̄dea!. ~B6!
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