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Nonrenormalization theorem for the d=1, A/=8 vector multiplet
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Sigma models describing low energy effective actionsDirbrane probes witth'=8 supercharges are
studied in detail using a manifestty=1, N=4 superspace formalism. Two {QL)-dimensionalNV=4 mul-
tiplets together with their general actions are constructed. We derive the condition for these actiov to be
=8 supersymmetric and apply these techniques to vaibbsane configurations. We find that if in addition
to /=8 supersymmetry the action must also have &imvariance, the form of ther model metric is
uniquely determined by the one-loop result and is not renormalized perturbatively or nonperturbatively.
[S0556-282(97)01424-Q

PACS numbes): 11.30.Pb., 11.15.Tk

I. INTRODUCTION AND SUMMARY these invariances uniquely determine the form of the target
space metric. The form of the metric we find agrees with the
Recent developmenfd—3] have emphasized the crucial one-loop results of1], and we conclude that it cannot re-

role played byD0-branes in probing space-time structure atceive perturbative or nonperturbative corrections.
substringy scales as well as in a nonperturbative definition of The plan of this paper is as follows. In Sec. Il we develop
11-dimensionalM theory. The basic feature that enables@ manifestly V=4 superspace formalism in40L dimen-
D-particles to test short distances in string theory is that theigions and deS.C”bEVZA chiral and linear multiplets that
low energy dynamics is a quantum mechanics of the lighte©9ether contain the right number of bosonic and fermionic
open string degrees of freedom. The geometrical backgrour@grees of freedom. We then find in Sec. lil the condition for
in the substringy domain is reproduced by quantum ODEII\ IS action to adm|.t .four. addmon_al supersymmetries and ar-
string effects, while the classical background at distance ue that this condition is essentially unique. Requiring also

. . . . pin(5) invariance leads to the nonrenormalization theorem.
larger than the string scale is described by supergravity "This result is applied in Sec. IV to variol®-brane configu-

Stjl.ts WT\Ch d_are eszerllltlal_ly ﬂr]nedlated bi/h massle;]ss closeiions. Finally, we discuss the range of validity of this theo-
strngs. AS diSCusse [.]’ In the cases with énough SUPer- o, iy connection with three-dimensional analogues and
symmetry, the two regimes are continuously connected b)étring duality

factorization of the open string annulus diagram. The general
behavior in such cases is that the long distance supergravity
results coincide with the one-loop quantum corrections to the Il. N=4 MULTIPLETS IN ONE DIMENSION

probe moduli space. By analogy with higher dimensional Thed=1, N'=4 superspace is parametrized by one com-

field theories, it is plausible that higher order perturbative . . i
. . , . ~muting coordinate and four noncommuting ones arranged
corrections as well as nonperturbative ones vanish, leading to —

. . . -
nonrenormalization theorems. A similar nonrenormalization®S @" SW) spinor 6, and its complex conjugaté”. The

result for a higher derivative interaction proves to be essencovanant derivatives an(_j supercharge; are given(dy

tial [2] in the matrix theory formulation oM theory. conventions are summarized in Appendix A
The purpose of the present work is to study th'e=8

guantum mechanics of@0-brane probe moving in different 9 — — g

D4-brane and/or orientifold plane backgrounds. The low en- Da=—a—i 0,90, Da==a—i 0,90,

ergy degrees of freedom in the probe theory are five bosons a9 a9

and eight fermions. A singl®0-D4 configuration hasV’

=8 supersymmetry and a S rotational symmetry in the

transverse directions under which the bosons transform as a Q :iﬂg_(yo Q_Zi—'Fi 0,90

vector and the fermions as a spinor. We construct iWo Cogee T T g Y

=4 multiplets that together have these degrees of freedom,

but are not manifestly SpiB) symmetric. We call the pair of

these multiplets thel=1, N=8 vector multiplet. Our main

result is that the condition for SpiB) invariance of the vec-

tor multiplet action is compatible with the condition for it to D 1= 9 O l— _oi

have N'=8 supersymmetry and that when taken together {DeDgj=2i€apdo, {Qu:Qpt=~2l€updo, (21

and satisfy the algebra

with all the other anticommutators vanishing. The manifest

*Electronic address: duiliu@physics.rutgers.edu supersymmetry transformations are generated €3,
TElectronic address: rami@physics.rutgers.edu +e“Q, acting on the various multiplets.
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A. Chiral multiplet Proceeding naively we take
As in thed=4, N=1 case, the chiral and antichiral mul-
tiplets are defined by the constrairiisb =D®=0, which
are solved by functions of=t—i6*9, andy=t+i6*6,. In  where®* is a superfield, as the general solution of the sec-
component form they are given by ond constraint in Eq(2.2). By making use of[D,,D?]
D(y)=D(y)+ 200, (y)+ OOF(Y) =4iD ,d,, the first condition in Eq(2.2) is satisfied if

3=D,0°

1 D,D20%+4iD ,3,0%=0,

=D —i6°9, D+~ 0000p+20%, o _ ,
4 which is unacceptable since the time dependenc® dbfis

restricted. A natural modification would be to consider a trip-

—1060,y"+ 06F, let of superfields which we denote &y, ;. More precisely,
and the linear multiplet ,; is defined by
_ = DS .=DIDS =
B(y) = B(Y) —20,4°(Y)— 00F* (y) D?D2p=D"D" =0 @3

and the reality condition

_ .1 .
=D+i6°0,0+ 7 0006D—20,4°

S.p=3"P=e"75 5% (2.4

00 e poE*x
1060, — 00F, The unique solution of these constraints with no restriction
which are thed=4, A’=1 chiral and antichiral multiplets O the time dependence is given by
reduced to one dimension. The physical on-shell degrees of S —D . D.V 5
freedom arising from these multiplets are two bosons and ap™ H(a=p (2.9

four fermions. whereV is the real superfield af=4, A’'=1 reduced to one

_ ) dimension and parentheses denote symmetrization. The sec-
B. Linear multiplet ond constraint in Eq(2.3) is identically satisfied, while the
The d=4, N=1 vector multiplet dimensionally reduced first one follows from the algebre2.1):
to D=3 becomes equivalefd] to the real linear multipleG , . = )
defined by the constraints DX p=2(D°D,Ds+ DD gD, )V=i(€gat Eaﬁ)ﬁo\(/é 6
D2G=D2G=0, o
The component form ok 4 is given by
whereD andD denote the spinor derivatives of thie= 3, i L . A
N=2 superspace. They are solved by 2ap= T TapXiTi(Ohg+ Ogha) +i(Ophat Ok p) = (650,

— — i — — . —
G=DDV, +0a0p)D+ 5 (05070%,F 0,070 5+ 650707,

with V an arbitrary real superfield. The physical degrees of . 1 . _ 1 .
freedom consist of a real scalar boson, a three-dimensional + 9ama'y3)xi+ 5 00(0ghg+ 0 N g)— 5 060( 0\,
vector field, and their fermionic superpartners. The real sca- 2 2

lar can be thought of as the fourth component of the four- . 1

dimensional vector field. Further reduction to two dimen- +0a)\ﬁ)+z 00000, 5X; (2.7
sions yields[4,5] the twisted chiral multiple®, . _ defined
[4] by the constraints or, alternatively, by
D+E+_=D_E+_=0. 1 .
Si=2 o'ePfy, B
The solution of these constraints can be expressed similarly 2

in terms of a real superfield _ —Xi+i070i ya)\_5+ ie_yoi yé‘)\ﬁ_e_yo_i ¥39,D

2+7=5 D.D_V, +eijk0y0175655(k—% 000,07\ s
describing the dynamics of the two real scalars obtained by 1 — s 1 —.
dimensional reduction of the four-dimensional vector field + 2 000,07"\s+ 4 0660x., 28
plus their superpartners.

In one dimension the closest analogue of the above corwhich is more convenient for our purposes. We stress that
ditions would be supersymmetry forces us to consid2r*(3.2,3.%) as avector
of superfields and not treat each component separately. This
D23 =D?3=0. (2.2)  can be seen by observing that the three scalaenter the
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supersymmetry transformation of and )\_symmetrically. and cgnsists of only two undetermined fu_ncti_cinsziza and
When3' is taken separatelys’ enters through the lowest — Koo . Note the absence of mixed derivative terms—this
order in § component, while the other two scalars appear inWill prove crucial for the applications to the 0-4 system.

the #0 component. Thus only an invariant and real combina- _ _
tion, such as ;5 *# or X2, may appear in a supersymmet- A. Nonmanifest supersymmetries

ric action. _ If the action (3.1) admits more supersymmetries, their
Finally we note that by analogy with thie=4, N'=1 case  form is severely constrained by the following considerations.
one can define chiral and antichiral field-strength multipletsrirst, they must be realized as spinorial derivatives acting on
by superfields so that the supersymmetry algebra is satisfied.
_ _ The four manifest supersymmetries of each multiplet are al-
W,=DPS 5, W,=DP3 ;. (2.9 ready generated by the supercharges acting on it. Therefore,
additional supersymmetries, if they exist, must be generated
Then, by spinorial derivatives acting on the other multiplets. This
means thak ,; will enter the nonmanifest transformations of

— 5 (WW,| oo+ W W, | 75) ®, ® and that®, ® enter symmetrically the nonmanifest

variation of %,5. The form of these variations is further
yields the same kinetic terms 383|577 constrained and, in fact, determined up to a constant by re-
quiring the variations to respect the defining constraints of
the multiplets. Thus we conclude that if there are four addi-

lll. N'=8 SUPERSYMMETRY tional supersymmetries their form is

AND NONRENORMALIZATION

- . - i ePD
We will ultimately be concerned with applications to a oD i e" DX op,

DO0-brane inD4-branes and orientifold backgrounds. As will

be explained in Sec. 1V, the low energy degrees of freedom 5‘;“%'8'3“2@,
on theDO0-brane world line are precisely described by the o
pair (®,%), which is thed=1, /=8 multiplet. Such systems 8% 51 (€(4D py® — €D ) P). 3.3

have only eight supersymmetries, and so quadratic terms in

the velocities are generally not protected from renormalizafThe chiral and antichiral constraints & and S follow

tion. In the regime where the velocity of tH20-brane i directly from Eq.(2.3). The variation of., 5 can be seen to

small, we may restrict our attention to an action which isgatisfy the conditiong2.4) and (2.3 by using the algebra

quadratic in velocities and neglect higher order terms. Agenc2 1. It is also easy to verify that the commutator of two

eral such action with four manifest supersymmetries is givethonmanifest variations closes on translations.

by A straightforward(and a little laborious calculation in
components shows that the actig®1) admits the four non-

J’ 420 dze_K(CD,tlT,iz), 3.0) manifest supersymmetries
whereK is an arbitrary real prepotential. It is possible to add o0= 3 € D .
a superpotential integrated over half of superspace, but it will
not contribute to the metric. This remark actually applies to a i
wider class of actions. We may think of E®.1) as the first 5¢:T eBD“EQE,
term in an expansion of the form
53 4p=i(€(uD sy® — €D ), (3.9

/=f 420 d20(Ko+ K 4003 003 + K 4do@ dp®+ - - - ),
provided that the following condition holds:

Where_ each success_iwa produces anth power ir_l velocity Ksisi+4Kgpp=0. (3.5
term in the Lagrangiafiwe do not have to consider an ex-

pansion in covariant derivatives of the multiplets since theserps is actually also aecessaryondition. The explicit form
lead to cubic terms in the velocitlesAgain, K4,K,,... can-  of the action shows that it cannot be invariant under the
not give metric terms, and so the nonrenormalization resul§ypersymmetry transformations of the fofB3) unless Eq.
we will prove below applies also to the metric terms in these3.5) holds, that is, unless the action depends only one arbi-

actions as well. o ~ trary function. As argued above, the form of the nonmanifest
The metric can be read from the kinetic terms arisingyariations is unique, and so we conclude that Afiy4 su-
from the superspace integration: persymmetric action is automatically=8 supersymmetric

if and only if Eq. (3.5 holds. The metric, the action, and all

1 o — - Ce o — - the supersymmetry transformations are now determined by
7 KsisilXI X' +T(MHAN) = Koo PO+i (it ih) ],

(3.2 f=—2Ksisi=Kgpg (3.6



8048 DUILIU-EMANUEL DIACONESCU AND RAMI ENTIN 56

and are given in Appendix Bf enters the variation laws tors, is the pull back of the minimal spin connection made of
once the auxiliary fields are solved foDifferentiating f the metricf. With a little algebra, the quadratic fermion term
twice with respect t&' and with respect tab and®, and  can also be seen to be

using Eq.(3.5), shows that the metric satisfies
J q( 5) Ra[}yb‘na;'gny?i
fyisit4f4=0 (3.7 . - .
with the curvature computed from the minimal connection.
The manifest and nonmanifest supersymméaySy) trans-
as well. formations also match up in a nice way. The manifest ones
can be recovered if in the five-dimensional SUSY transfor-
B. Spin (5) invariance and nonrenormalization mations(B6) the parameteéi is taken as

The five scalars in the vector multiplet can be thought of

as local coordinatesy,,...,ys, on a five-dimensional target 5 [€a
space manifold by making the change of variables €7\ o
yi=x, =123, and the nonmanifest ones if we take
1 J—
Ya=5 (P+), 5:(0)
(23 e-a -
1 J—
Ys=5; (O—). Since the target space is odd dimensional, these restrictions

cannot be made in an invariant way, but together they com-

In these coordinates the conditi¢.7) satisfied by the met- bine into an\'=8 SUSY parameter. This is again due to the
ric f is precisely the Spifh)-invariant Laplace equation. Any consistency of the Spi) invariance andV=8 conditions.
function ofr?, r being the five-dimensional radius, must also

satisfy this equation, and therefore the condition for a IV. DO-D4 SYSTEM

Spin(5)-invariant metric is compatible with the condition for ) ] ) )

N=8 supersymmetry. This conclusion depends crucially on 1he formalism developed in the previous sections can be
the relative sign and factor in E3.2) and would not have 2aPplied to the study of low energy effective actions of
been valid otherwise. Furthermorgjs now determined up DO0-brane probes in different type-llA backgrounds. Extend-

to two constants. The conditio3.7) on a Spif5)-invariant  INg the analysis of 1], we considerD0O-brane probes in

function reduces to type-I" theory realized as an orientifold of the type-IIA
theory compactified on a 5-torug® [6,7]. More precisely,
r’f"+3f =0 (3.9 one starts with type-I theory oF° and performd duality on
all the five circles of the torus. The resulting theory is type
and is solved by IIA on T%/Z,Q with 16 pairs of D4-branes in the back-

ground to cancel the charge of the 32 orientifold fixed
. planes. In the normalization ¢8,7], the Ramond-Ramond
f=C'+ 3 (3.9 (RR) charge of a fixed plane is- 1, while the charge of a
4-brane is 1 such that cancellation holds globally. Local can-

whereC and C’ are arbitrary constants. We conclude thatcellation occurs in a configuration with a 4-brane at each
the metric of a general action compatible with the aboveorientifold plane. The supersymmetric probes for this back-
symmetries is not renormalized either perturbatively or nonground areDO-branes whose world line effective action is
perturbatively. expected to reproduce the string backgrodibifd We will
It is also possible to restore manifest §@innvariance in  consider two distinct configurations: o _
the full Lagrangian. After solving algebraically for the aux- (i) n D4-branes coalesce away from an orientifold fixed
iliary fields, the superspace Lagrangian is given by plane. Ind=1, N=8 language, the degrees of freedom on
the DO-brane world line consist of an Abelian vector mul-

T Ep— . i i— 1 1 tiplet and a neutral hypermultiplet arising from 0-0 strings
—fOXX i(nn+ )+ X j(gy ) p)+3(F 5 —2ff ) andn hypermultiplets in the fundamental of the(1) gauge
X(pY gy n+ 9y nnyn), (3.10 group arising from 0-4 strings. The space-time positions of

the 4-branes correspond to bare massef the charged

multiplets in the gauge theory on the probe. When the branes
th@ome together, one obtains Si)(gauge symmetry enhance-

ment in space-time corresponding to SYglobal symmetry

enhancement in the probe theory.

When the 0-brane is away from the 4-brane, the massive

To avoid clutter, the same tangent space indices are used to d8-4 string states can be integrated out. The surviving low

note the flat space carried by thematrices. energy degrees of freedom in the world line theory are the

and has a natural geometric interpretation. Specifically,
bilinear fermion term, taking into account thenfbein fac-
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N=8 vector multiplet and neutral hypermultiplet. The later multiplet arising from 0-0 strings and hypermultiplets in
decouples, and so the low energy effective action is théhe fundamental of the gauge group. Thecoalescing 4-
theory of an interactingV=8 vector multiplet. If the posi- branes can be viewed as a collection of Branes pairwise
tions of the 4-branes coincide, the system is rotationally inidentified by theZ, projection. Therefore, they are localized
variant in the five transverse directions, and so the theory hagt pointsm; and —m; in transverse space. The space-time
Spin(5)=Sp(2) symmetry under which the bosons transformgauge symmetry is enhanced to S@f2vhen the branes
in the 5 and fermions in thel. coincide with the orientifold plane. As before, this corre-
The result of the previous section applies to this configu-sponds to an SO global symmetry enhancement on the
ration, and it remains to determine the constants in(B§).  probe. The S(2) gauge group on the world line is sponta-
In the present case, neously broken to (1) by expectation values of the five
scalars in the vector multiplet which parametrize the Cou-
1 lomb branch of the theory. Strictly speaking, this terminol-
C'=— ogy is inappropriate as there is no real moduli space in quan-
9s tum mechanics. Nevertheless, one can still refer to a
guantum-mechanical moduli space in the Born-Oppenheimer
is the asymptotic value of the dilaton far from the 4-branesapproximation[8]. In this sense the low energy effective
and at the same time the classical coupling constant of thaction on the probe is a(l) gauge theory withV=8 super-
gauge theory on the probe. The second consfai#t deter- symmetry. When the 4-branes coalesce at the fixed plane,
mined by the one-loop effects of tmecharged hypermultip- there is a global Spi®) symmetry rotating the five scalars in
lets[1] to be the Abelian vector multiplet. Therefore, the general action is
exactly of the form(3.10. The only difference with respect
C=n. to the previous case is reflected in the value of the constant
C,

Therefore, we conclude that the one-loop result§ldfare
exact already in this order and do not receive further correc-
tions. This statement is true as long as the theory is described
in terms of the multiplets introduced above, but it may breakvhere the negative term represents the one-loop contribution
down in a description in terms of different variables. A simi- 0f the non-Abelian vector multiplet to the effective action.
lar phenomenon is encountered in three-dimensional gaug®s above, there are no quantum corrections beyond one loop.
theorieg8—10] where the monopole corrections become vis-When the 4-branes are in general positions, the one-loop
ible only after dualizing the photon. As we will see later, Metric Is

string duality suggests that this happens in the present case

C=2n-1,

as well. 1 1 1 1
If the 4-branes are localized at different points of coordi- F(x)= i*’ [X—my[ + [+ m,[3 oot [X— My
natesmy; in transverse space, the Si)(global symmetry on
the probe is broken since the hypermultiplets have different N 1 1
masses. In this case one-loop metric is given by IX+m,|® [x]®
1 1 1 and by the same argument used for 1) does not get
fO=5.+ oml T e (4.1 renormalized beyond this order.

. . . . L. V. DISCUSSION
This configuration is no longer Sgi) symmetric in the

transverse directions, but the nonrenormalization result still We have shown above that the one-dimensional action
holds. The system is stilN=8 supersymmetric, and so the describing five bosons and eight fermions in thand4 of
exactf must still satisfy the five-dimensional Laplace equa-Sp(2) is, up to two constants, uniquely determined by requir-
tion. The boundary conditions on the exact metric clos@to ing N'=8 supersymmetry and Sgb) invariance. Since the

are given by form of the action is fixed by a solution of a differential
equation, we cannot determine in our formalism the con-
1 stants that appear in the metric. Indeed, if the probe is near
f:m, an orientifold fixed plane with all 4-branes far away, the
|

metric becomes negative definite at a finite distance in
moduli space. The description of the physics in terms of the
since near any of the D4-branes the remaining—1 hy-  A/=8 vector multiplet degrees of freedom breaks down, and
permultiplets (corresponding to the the rest of the one has to look for another set of variables. Similar phenom-
D4-braneg are very massive and can be neglectedfAs  ena occur in three-dimensional gauge theories where the
uniquely determined by the boundary conditions, the oneequivalent description involves dualizing the phof8s-10].

loop result(4.1) is exact. In the new variables the three-dimensional nonrenormaliza-

(i) n D4-branes coalesce at an orientifold fixed plane.tion theorem is violated by an infinite series of monopole

The degrees of freedom on tlx0-brane consist now of a correctiong9].

non-Abelian SW2) vector multiplet plus an adjoint hyper- This is also likely to be the case here since a dual set of
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variables will not necessarily have a Sfihsymmetry. Fur- = €pa0P, 07=€P0,. (A1)
ther evidence for this conclusion can be inferred from string

duality arguments analogous to those presentdd,@ for  Complex conjugation of anticommuting numbers is defined
the three-dimensional case. The type-I" orientifold studiedpy

above isT dual to type-I theory on a 5-tordE, which is in

turn S dual to heterotic string theory on the saifie This is « _p—a

further dual to type-lIA theory oK3x St and afterT dual- (na€p)* =€, (A2)
ity on the St factor to type-lIB theory onK3xS!. The o o

DO-brane probe is mapped by the first duality in the chain tavhich implies thats* = —¢* and 9** = —4,,. [This is nec-
a type-I D5-brane wrapped ofi®, while theD4-branes in  essary for the solutioB, «p Of EQ.(2.3) to be consistent with
the background are mapped to the B®-branes of type-l the reality condition2.4).] We also use

theory. According to the analysis pf1], the zero modes of o o o

the type-ID5-brane wrapped on a 4-torus correspond to the Y=y, (J,_l/,E Yo b, PP= b=, .
world sheet degrees of freedom of the type-IIB string in

static gauge. In our case the 5-brane is wrapped on an extfene symmetricy matrices are

circle, and thus it maps to a fundamental type-IIB string

wrapped on the extra circl8*, which is a particle in the five oap=il, ohp=T, oog=Th (A3)
noncompact dimensions. This is the image of the initial

DO-brane probe through the above chain of dualities. Thavherer are the Pauli matrices. They satisfy the algebra
resultingo model is very different from the one we started o - T

with. It represents the motion of the particle K8x St, and (0'0)ap= 0 €uptie oy, (Ad)
thus the target space metric is the product of a hypérd¢a ) N

metric onK3 and a trivial metric ors. The fermions are and the reality condition

target space vectors, and the symmetry is reduced to a prod-

i — iaB_ _ay, B
uct U(1)X G, whereG is the isometry group of the hyper- (Tap)* =0'"P= €0, ;6. (AS)
Kahler metric? The orientifold background is mapped to a
noncompact hyper-Kder manifold asymptotic to ars! 2. Sp(2) spinors

bundle over the projective spaB?. In particular, the met- We give the d i ¢ . i
fic is smooth and positive definite due to nonperturbative '€ give the decomposition of &) spinors andy matri-

corrections[9]. The singularities at infinite distance corre- ces n term_s of the cqrrespondmg($pquant|t|es, V.Vh!Ch IS
sponding to 4-branes are mapped to orbifold singularities i S?d to write the action and. supersymmetry variations in a
the complex structure of the hyper-Kar surface. _pn_"(5) form. Unless otherwise no_ted, all conventions are
While in the three-dimensional analysis[&9] the string S'm'lar to those used above. Written in terms of(Bp
duality picture is entirely reproduced by electric-magneticSp'nors’ the S(2) ones are
duality on aD2-brane probe, the present situation is less _
clear. One could try to define an analogue of higher dimen- Y — [\
sional duality transformations for the linear multiplet, but we Na™= W, m= gl
leave this for further study.

(AB)

Indices are raised lowered and contracted using the metric
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cussions. with € being the Sfil) metric. The antisymmetrig matrices

are taken to be

APPENDIX A: SPINOR CONVENTIONS

. : 0o J\
1. Sp(1) spinors Yap=| _4i o] 15123
The anticommuting coordinateg, and @s(aa)* are

spinors of SW2)=Sp(1). Raising and lowering indices is i 0
done with the Sfl)-invariant metric as v :( N i )
ab 10 —ie)’

0,=€,30°, 6°=€POy,
5 —-e 0
’Yaﬁ: O —€’ (A8)

2The isometry group of a generi¢3 surface is trivial. However, . . . .
the moduli spaces of the probe theories are usually noncompaith the reality condition being
pieces of the entire surface. In this case the hypérlétanetric can 1 vk iap wy i 138
have a nontrivial isometry group. (Yap) =7 "==3y, 7. (A9)
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APPENDIX B: LAGRANGIAN AND SUSY VARIATIONS
N=4 Lagrangian:
1 = e L. 1. . L
7l Kyisi[ X)X +i(AMA+ AN+ D) ] —Kgap[ PP+i(pyp+ pip) +FF* |+ > X (Ksisippa' N\ +Ksisighol\) +x' €'

X

1 — . -1 — — , (1 _ _
2 Ksisiskha! N+ K(M,_Eikwala) +id 7 KsisighA— Kq,ﬁwlﬁ—qu,ngiwa')\) —i@(z KsisigphN— Koo WtV

1 — — J— 1 J—
7 Ksisisiha' A+ Kgpsio' i+ > (KsisigA +Ksisig¥h\) | +F| — 7 KyisioAN —Koopo Py

+qu>q)EiI0'i;)+D

. , 1 — o 1 —— —
+|chc1>2i)\0'lg)+':* 1 KsisighA+ Kq)cmﬂr’”//_'K@@z“lfU';)"' 1 (Ksisigp N ¢+ Ksisioa AN ph) + Koooa by

1 — — — i —_— — —
+ 16 Ksisisisi AMNMN = Kgpsisitha' NN o' p— 2 (Ksisisighal ¢y AN+ Kgigizjq,lﬂoj)\)\)\)— i(Kppsioha' dipy

+Koasiaho'\ yih). (BD)
The V=8 Lagrangian follows from the A’'=4 one by making use of E¢3.7):

L= —F[XX + DD+ i (N AN+ i+ ) ]+ X €14l b Na'N) = 2K (F g pa' N+ F 5o \) + D(F o N +if gy

Hif AN+ D(F o N —if piph—if GAN) +if ;oA Y AN — ha' N i) +if 5o NNA =N thiph) — f g MAip
o _ 1 _ _ _
~ GA\ Py NN+ f agippp— 7 TN = D2+ D[F (o' y—Na'N) =2 oy —2f Gyn]—FFF*

FE(f oA —f gyt if Aot g)—F* (f AN —f pp+if jypo'\). (B2)

Auxiliary fields are given in Spifb) language using the Sxi= _i(EUi)\_JFZTi)\),
results of Appendix A:

S\,=X(ed),+iDe,, ON,=X(ed'),~iDe,,

1 . 5D=E;\—E_).\,
Dzzf lf,iﬂaylaﬁ?, o o
SD=2ey, SD=—2ey,

i _ Sy, =—ide +Fe,, oOp,=—ide,+F*e,,
Fzzfilf,ina’ylaﬁ?i . -
SF=—2iey, OF*=—2iey. (B4)

. Nonmanifest SUSY:
| .
*_— _ f-1f _a,l B . . - —
Fr= S i Yo (B3) Xi=—i(ed' y—ea i),
S\, =ide,+F*c,, Or,=—ide,—Fe,,

Manifest SUSY: R
oD=ey— €y,
Sb=—2eN, OD=2e\,
_3Th_ere is a sign ambiguity in expressions of the fogra'\ or
Yo'\, corresponding to lower or upper indices on the spinors. We

universally take spinors with lower indices. No such ambiguity . .
arises if one of the spinors is barred. OF=—2ieN, OF*=—2ie\. (B5)

Sy, =X(eo') ,+iDe,, Op,=—X(eda'),+iDe,,



8052 DUILIU-EMANUEL DIACONESCU AND RAMI ENTIN 56

Spin(5) SUSY follow from Eqgs.(B4) and (B5) using Egs(B3) and the results of Appendix A:

o . L i . .
X =1(€"Yopn’ = € Vapn®),  8na=Xyope’t 5 11 (7Y 50 et 17y 5m €L,

— i P s Ty
01a= =X Vo€ = 5 1T H (Y €0t 7Yy 5n7€0). (65
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