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We study global vortices coupled to~211!-dimensional gravity with a negative cosmological constant. We
found nonsingular vortex solutions inf4 theory with a broken U~1! symmetry, of which the spacetimes do not
involve a physical curvature singularity. When the magnitude of a negative cosmological constant is larger
than a critical value at a given symmetry breaking scale, the spacetime structure is a regular hyperbola;
however, it becomes a charged black hole when the magnitude of the cosmological constant is less than the
critical value. We explain through a duality transformation the reason why a static global vortex which is
electrically neutral forms a black hole with electric charge. Under the present experimental bound of the
cosmological constant, implications for cosmology as a straight black cosmic string are also discussed in
comparison with a global U~1! cosmic string in the spacetime of the zero cosmological constant.
@S0556-2821~97!02324-2#

PACS number~s!: 11.27.1d, 04.40.2b, 04.70.Bw

I. INTRODUCTION

Einstein gravity in 211 dimensions@~211!D# has no lo-
cal degrees of freedom and the matter coupled to gravity
changes only the global structure of spacetime outside
sources@1#. Subsequently anti–de Sitter solutions in three-
dimensional gravity were analyzed in the 1980’s@2#; how-
ever, it took many years thenceforth to find out the black
hole structure among those solutions of the negative cosmo-
logical constant@3#.

One of the reasons why conic solutions formed by point
particles in~211!D have attracted attention is that they stand
for the asymptotic space of cylindrically symmetric local
cosmic strings which are extended solitonic objects@4#. In
this context, an intriguing question in 211 dimensions with
the negative cosmological constant is whether or not one can
find the structure of black cosmic strings. In relation to the
stability of such stringlike objects in~311!D, the topological
vortex solution in~211!D is the first candidate. There has
been another subject in 311 dimensions: The study of black
holes, particularly charged black holes, formed by solitons,
e.g., monopoles, Skyrmions, etc., has been an interesting
subject @5#. Since the negative cosmological constant
amounts to the term of the energy proportional to the area of
the spatial manifold (;r 2), one can easily guess that static
extended objects carrying a long-range tail are important.
The simplest candidate in 211 dimensions may be the global
U~1! vortex of which energy diverges logarithmically in flat
spacetime, which is a viable cosmic string candidate in cos-

mology @4,6,7#. Here, if we recall the fact that a physical
curvature singularity in global string spacetime is unavoid-
able in the case of a zero cosmological constant, we can add
another question as to whether we can find regular global
cosmic strings in anti–de Sitter spacetime or black cosmic
strings with no divergent curvature@8#.

In this paper, we will consider a complex scalarf4 model
in ~211!-dimensional anti–de Sitter spacetime and look for
global vortex solutions. There are cylindrically symmetric
global U~1! vortex solutions connecting smoothly the sym-
metric local maximum at the origin and a broken vacuum
point at spatial infinity. The spacetimes formed by these
strings are regular hyperbola with a deficit angle, extremal
black hole, and charged black hole as the magnitude of the
cosmological constant decreases. The curvature of these so-
lutions is not divergent everywhere even for charged black
holes. So it is contrary to the zero cosmological constant
case, where the U~1! global string admits no globally well-
behaved solution.

This paper is organized as follows. We begin in Sec. II by
establishing explicitly the relation that the~211!D spinless
black hole solutions in Ref.@3# are part of general anti–de
Sitter space solutions in Ref.@2#. In Sec. III, we introduce the
model and obtain the global U~1! vortex solutions. Possible
geodesics of massless and massive test particles are also
given. In Sec. IV, the connection between the topological
charge and the electric charge of a black hole is illustrated by
use of duality transformations. In Sec. V, questions about the
physical relevance of a charged black cosmic string in 311
dimensions are addressed. We conclude in Sec. VI with a
brief discussion.

II. BLACK HOLE AS AN ANTI –de SITTER SOLUTION

In this section, let us recapitulate what the~211!-
dimensional Schwarzschild black hole solution is among a
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series of anti–de Sitter solutions of which all static metrics
can be characterized in terms of one complex function. Un-
der a conformal gauge, the static metric compatible with
static objects is parametrized by

ds25F2~z, z̄ !dt22b~z, z̄ !dzd z̄, ~2.1!

where z[x1 iy5ReiQ. For n massive spinless point par-
ticles located at positionsz5za , a51,2, . . . ,n, each with
massma , the cosmological constantL is obtained by solv-
ing the time-time component of the Einstein equations1

L52
2

b
]z] z̄ lnb(

a51

n

uza2zu8Gma. ~2.2!

The space-space components give two independent equa-
tions: One is for the spatial trace@9#,

L52
2

Fb
]z] z̄F, ~2.3!

and the other is for the traceless part,

]zS 1

b
]zF D50. ~2.4!

As obtained in Ref.@2#, the general anti–de Sitter solution of
Eq. ~2.2!, Eq. ~2.3!, and Eq.~2.4! is

b5
«

uLuV~z!V̄~ z̄ !sinh2A«~z2z0!
, ~2.5!

F5A«cothA«~z2z0!, ~2.6!

whereV(z) @ V̄( z̄ )# is an arbitrary@anti#holomorphic func-
tion andz is a real variable defined by

z[
1

2 F Ez dw

V~w!
1E z̄ dw̄

V̄~w̄!
G . ~2.7!

« is a real positive integration constant forL.0 and is an
arbitrary nonzero real constant forL,0.

Here let us consider the simplest case thatV5z/c where
c is a real constant so as to keep the single valuedness ofz.
When«.0, one can set«51 without loss of any generality.
In the radial coordinate,c is identified asc5124Gm and
the metric in Eq.~2.1! becomes

ds25S R~124Gm!1R2~124Gm!

R~124Gm!2R2~124Gm!D 2

dt2

2
4~124Gm!2

uLuR2~R~124Gm!2R2~124Gm!!2
~dR21R2dQ2!,

~2.8!

where m is the total mass of the point particle atR50.
Introducing the new coordinatesr andu such as

r 5
2

uLu1/2

1

uR~124Gm!2R2~124Gm!u
and u5~1

24Gm!Q, ~2.9!

we can rewrite the metric in Eq.~2.8! as

ds25~11uLur 2!dt22~11uLur 2!21dr22r 2du2.
~2.10!

Now we can easily identify the structure of manifold as a
hyperbola with deficit angled58pGm where 4Gm,1.

The above is the physical interpretation provided in Ref.
@2#. Then, how about the solutions with negative«? Or,
equivalently, the«521 case? In this case, the metric in Eq.
~2.1! can be reexpressed as

ds25
1

tan2~2clnR!
dt22

c2

uLusin2~2clnR!
~dlnR21du2!.

~2.11!

One can easily notice that the coordinateR has unconven-
tional ranges such thatF(R) and R2b(R) diverge at
R5exp(kp/4c) (k is an integer!. Because of the unconven-
tional behavior of metric functions atR50, it seems rather
difficult to pin the unknown constantc down by use of the
point particle massm under this coordinate system. To make
the physics clear, let us do a coordinate transformation

r 5
c

uLu1/2sin~2clnR!
. ~2.12!

The result leads to the well-known~211!D ~Schwarzschild-
type! black hole solution with massc2 and negative cosmo-
logical constantL @3#:

ds25~2c21uLur 2!dt22~2c21uLur 2!21dr22R2du2.
~2.13!

As shown in Fig. 1, each range of r
„exp(kp/4c),r ,exp@(k11)p/4c#… covers the exterior re-
gion of the Bañados-Teitelboim-Zanelli~BTZ! solution.

One step extension may be the quadraticV(z), i.e.,
V5(z2z1)(z2z2)/ c̃ , (z1Þz2). Reexamining the above
computation, we can easily conclude that this reproduces the
same result again:~i! When «51, it goes to anti–de Sitter
space with point particle mass 4Gm512u c̃ /(z12z2)u, and
~ii ! when «521, it goes to the BTZ black hole with the
black hole mass 8GM5u c̃ /(z12z2) u2. For more compli-
cated examples, further study is needed.

1Our equation in Eq.~2.2!, which uses the action for the point
particles,

Spp5(
a51

n

maEdsAgmn
„xa~s!…

dxm
a

ds

dxn
a

ds
,

is different from the equation written as Eq.~2.7! in Ref. @2#. Spe-
cifically ma5F(x)2ma

DJ . For the point sources, these two equa-
tions lead to the same solutions which were first obtained by the
authors in Ref.@2#. However, there is a possibility that the solutions
for the extended sources may include different curved spacetime.
Y.K. would like to thank R. Jackiw for a discussion on this point.
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It is now the turn of charged case. The metric compatible
with such spinless static objects and with rotational symme-
try is of a form

ds25e2N~r !B~r !dt22
1

B~r !
dr22r 2du2. ~2.14!

Then the Einstein equations are

1

r

dN

dr
5

8pG

B
~Tt

t2Tr
r !, ~2.15!

1

r

dB

dr
52uLu216pGTt

t . ~2.16!

If the source is composed of the electrostatic field of a point
chargeq, the energy-momentum density is

Tt
t5Tr

r5
e22N~r !

2
Ei

25
q2

2

e22N~r !

r 2
. ~2.17!

Inserting Eq.~2.17! into the Einstein equations in Eq.~2.16!
and Eq.~2.15!, we have

N~r !50, ~2.18!

B~r !5uLur 228pGq2lnr 28GM, ~2.19!

whereM is an undetermined mass parameter@of which the
dimension is mass per unit length in~311!D#. When

M>
p

2
q2S 12 ln

4pGq2

uLu D ,

a Reissner-Nordstro¨m-type black hole with two horizons is
formed, and an extremal one is formed when the equality
holds. For the Schwarzschild-type black hole case, there is
no curvature singularity at anyr (r>0). However, this
charged black hole contains the curvature singularity at the
origin, Rt

t56uLu28pGq2/r 2, due to the infinite self-energy
of the point charge. It should be noted that the black hole
charge is generated by the so-called logarithmically diver-
gent energy term*e

LdrrTt
t; lnL at large distance, but the

ultraviolet singularity at the origin (e→0) is not essential for
the formation of the charged black hole even though it gives
a divergent curvature. Therefore, the global vortex attracts

our interest since it involves the long tail of energy density
and does not involve the ultraviolet divergence at the vortex
core of which the singularity is irrelevant to the black hole
structures.

We have an explicit solution of the charged BTZ black
hole, and so the question is whether there are two or more
solutions under the conformal gauge in Eq.~2.1!, of which
one corresponds to the charged BTZ solution. Again, let us
consider the spacetime geometry with a point particle of
massm and chargeq sitting at the origin. The relevant Ein-
stein equation is

L52
2

b
]z] z̄ ln buzu8pGm216pGTemt

t , ~2.20!

and the energy density distribution determined by Gauss’
law, namely,Temt

t 5 (1/2b) (q2/R2). Again Eq.~2.20! with a
negative cosmological constant reduces to a Liouville-type
equation

2]z] z̄ lnS b

R28Gm24pGq2lnRD 5uLub. ~2.21!

It is known that this equation is not integrable and there is no
known exact solution of this equation, yet@10#. Once we try
to do a coordinate transformation from Eq.~2.1! to Eq.
~2.17! and Eq.~2.19!, the reason why we cannot obtain the
explicit form of the solution in the conformal metric is ob-
vious though we could get it in the Schwarzschild metric.
Despite the algebraic relationR2b(R)5r 2, R cannot be ex-
pressed as a function ofr in a closed form for charged
objects:

r 25r 0
2expH E r dlnR2

AuLuR224pGq2lnR228GM
J .

~2.22!

Only when the object is neutral (q50) is this integration
done in a closed form. For a negativeM , the integration
range ofr is not restricted and then we have the hyperbolic
solution in Eq.~2.8!, namely, a positivee solution in Eq.
~2.5!. On the other hand, for a positiveM , the integration
range ofr is larger thanM /uLu and it is the BTZ black hole
solution outside horizon in Eq.~2.13!, namely, a negativee
solution. Though we do not know the closed form of the
metric function in conformal coordinates and do not deter-
mine the range of integration range ofr explicitly, it is ob-
vious that there are both types of solutions for the charged
case (qÞ0). When

M,
p

2
q2S 12 ln

4pGq2

uLu D ,

we have a regular solution corresponding to the positivee
solution. When

M.
p

2
q2S 12 ln

4pGq2

uLu D ,

the obtained metric describes the inside of inner horizon and
outside of outer horizon of the charged black hole corre-

FIG. 1. The radial coordinateR under the conformal gauge vsr
of the Schwarzschild metric.
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sponding to the negative«. Note that the positivity ofM is
not a necessity for the charged black hole (qÞ0). We will
show it is indeed the case in global U~1! vortices.

In this section we have clarified a relation between the
rotationally symmetric solutions in the metric under a con-
formal gauge and the static BTZ black hole solutions in the
Schwarzschild-type metric. However, a similar construction
like the above relation is not clear for more complicated
solutions, e.g., multicenter solutions without rotational sym-
metry, solutions with the deficit angle equal to or bigger than
2p, and spinning black holes@11#, yet.

III. GLOBAL VORTEX IN ANTI –de SITTER SPACE
AS A REGULAR NEUTRAL VORTEX

OR A CHARGED BLACK HOLE

Let us consider the anti–de Sitter spacetime in the pres-
ence of global vortices. The standard example is given by the
action

S5E d3xAgH 2
1

16pG
~R12L!1

1

2
gmn]mf̄]nf

2
l

4
~f̄f2v2!2J , ~3.1!

where f(x) is a complex field. The ansatz for the static
global vortices with rotational symmetry is

f5ufu~r !einu. ~3.2!

From the model given above in Eq.~3.1!, the equation for a
scalar field is

d2ufu

dr2
1S dN

dr
1

1

B

dB

dr
1

1

r D dufu
dr

5
1

B S n2ufu

r 2
1l~ ufu22v2!ufu D . ~3.3!

The energy-momentum tensor for the Einstein equations in-
cludes the long-tail term (;1/r 2):

Tt
t5

1

2 H BS dufu
dr D 2

1
n2

r 2
ufu21

l

2
~ ufu22v2!2J , ~3.4!

Tr
r5

1

2 H 2BS dufu
dr D 2

1
n2

r 2
ufu21

l

2
~ ufu22v2!2J .

~3.5!

Substituting Eq.~3.4! and Eq.~3.5! into the Einstein equa-
tions in Eq.~2.15! and Eq.~2.16!, we obtain the following
equations:

1

r

dN

dr
58pGS dufu

dr D 2

, ~3.6!

1

r

dB

dr
52uLu28pGH BS dufu

dr D 2

1
n2

r 2
ufu2

1
l

2
~ ufu22v2!2J . ~3.7!

Then the metric functionsN(r ) and B(r ) are expressed in
terms of the scalar field:

N~r !528pGE
r

`

dr8r 8S dufu

dr8
D 2

, ~3.8!

B~r !5e2N~r !H 2uLu E
0

r

dr8r 8

3expF28pGE
r 8

`

dr9r 9S dufu

dr9
D 2G

28pGE
0

r

dr8r 8expF28pGE
r 8

`

dr9r 9S dufu

dr9
D 2G

3F n2

r 82
ufu21

l

2
~ ufu22v2!2G1eN~0!J . ~3.9!

Here we choose a set of boundary conditionsB(0)51
and N(`)50 according to the following reason: When we
take the limit of both no matter (Tn

m50) and zero vacuum
energy (L50), the spacetime reproduces Minkowski space-
time. Since a rescaling of the radial coordinater leads to a
flat cone with a deficit angle 2p@12AB(0)# in this limit,
B(0)51 is an appropriate choice. If the coincidence of the
proper time for the observer at spatial infinity is asked, then
the temporal coordinatet selectsN(`)50. In the context of
a scalar field, the configuration of our interest is the solitonic
one approaching its vacuum value at spatial infinity, i.e.,
ufu(`)5v. Now the one remaining boundary condition is
about the scalar amplitude at the origin. If there is no coor-
dinate and curvature singularity, single valuedness of scalar
field forcesufu(0)50 for the vortex solution (nÞ0). How-
ever, when we take into account the geometry with a curva-
ture singularity or a black hole including the horizons, it is
not necessary in general for the scalar field configuration to
be nonsingular. Such singular solutions, so-called exotic
black holes, where their scalar fields do not vanish at the
origin, have been studied in~311!D @5#. However, it seems
that there is a difference between the~311!D black holes
and the BTZ solution: The mass accumulated at the core of
the black hole induces a steep curvature change around its
core and is crucial to make a black hole in~311!D curved
spacetime, but the Schwarzschild-type BTZ solution does
not have any signal of such an accumulation singularity and
the divergent curvature at the origin of the Reissner-
Norström-type BTZ solution in Eq.~2.19! is irrelevant to the
black hole structure as explained previously. In this respect,
an intriguing question is whether there is the global vortex
solution interpolating smoothlyufu(0)50 and ufu(`)5v
even in asymptotically anti–de Sitter spacetime. As men-
tioned previously, the charged BTZ black hole made by the
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electric point charge involves an unnecessary divergent cur-
vature at the origin, and the regular extended objects, spe-
cifically the neutral global vortex, can have a chance to form
a curvature-singularity-free charged BTZ black hole.

The question of whether or not there exist smooth vortex
configurations is also intriguing in the context of the no-go
theorem that this global U~1! scalar model cannot support a
finite energy static regular vortex configuration in flat space-
time. Thus the global U~1! vortex carries logarithmically di-
vergent energy. This symptom seems to appear in curved
spacetime that the global U~1! vortex does not admit globally
a well-behaved solution whenL50 @7#. The negative poten-
tial energy ~the negative cosmological constant! comes in
this model through the coupling of gravity although it does
not have its own propagating degrees in~211!D. Therefore,
one may expect the existence of a regular vortex configura-
tions in anti–de Sitter spacetime, and we will show that it is
indeed the case in the global U~1! model of our interest.

Near the origin, the power series solutions up to the lead-
ing term are

ufu~r !;f0r n, ~3.10!

N~r !;N~0!14pGnf0
2r 2n, ~3.11!

B~r !;11~ uLu22pGlv428pGf0
2dn1!r 2. ~3.12!

Since the right-hand side of Eq.~3.6! is positive definite,
N(r ) is monotonically increasing everywhere. Equation
~3.12! tells us that, when the scale of cosmological constant
uLu/lv2 is smaller that the Planck scale 2pGv2, thenB(r )
starts to decrease near the origin.

Though we will take into account the geometry with the
‘‘horizon’’ and it may hinder the systematic expansion of the
solution, let us attempt the power series solution up to the
leading term for sufficiently larger :

ufu~r !;v2
f`

r 2
, ~3.13!

N~r !;2
8pGf`

2

r 4
, ~3.14!

B~r !;uLur 228pGv2n2lnr /r c28GM111O~1/r 2!,
~3.15!

whereM is the integration constant. Let us estimate the core
massM and the core sizer c of the global vortex. As a
simple but valid approximation, let us assume

ufu~r !5H 0 when r ,r c ,

v when r>r c ,
~3.16!

and neglect the change of the metric functionN(r ), i.e.,
N;0. Substituting Eq.~3.16! into Eq. ~3.9!, we have

B~r !2uLur 228pGv2n2lnr 21

'2pGv2~lv2r c
224n2lnr c!

>4pGv2n2~12 ln 2n2/lv2! .
~3.17!

Here the minimum value in the second line of Eq.~3.17! is
obtained whenr c;n/Alv andM; (p/2) v2n. Crude as
this approximation is, one can read the minimum point of
B(r ):

r m5A4pGv2n2

uLu
, ~3.18!

which may be valid when the minimum positionr m is much
larger than the core radius. The positivity of the core mass
M after subtracting the logarithmic long tail is different
from the global monopole in~311!D curved spacetime with
a zero cosmological constant. The core mass of the global
monopole is negative and the repulsive nature at the mono-
pole core leads to the impossibility of the formation of a
global monopole black hole even at the Planck scale@12#.

Suppose that there exists a horizon, namely, the position
r H where the metric functionB(r ) vanishes. At the horizon,
the boundary conditions are from Eq.~3.3! and Eq.~3.7!:

~i! BH50,

~ii !
dufu
dr U

H

5

ufuHF n2

r H
2

1l~ ufuH
2 2v2!G

8pGrHF uLu
4pG

2S n2

r H
2

ufuH
2 1

l

2
~ ufuH

2 2v2!2D G , ~3.19!

whereBH5B(r H) and ufuH5ufu(r H). The behaviors of functions near the horizon are approximated by

ufu~r !;ufuH1
dufu
dr U

H

~r 2r H!1
1

2

d2ufu

dr2 U
H

~r 2r H!2, ~3.20!

N~r !;NH1NH1~r 2r H!1NH2~r 2r H!2, ~3.21!
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B~r !;BH1~r 2r H!1BH2~r 2r H!2, ~3.22!

whereNH5N(r H), d2ufu/dr2 uH , NH1 NH2, BH1, andBH2 are expressed in terms ofufuH at r H :

d2ufu

dr2 U
H

5

ufuHF n2

r H
2

1l~ ufuH
2 2v2!2G

64p2G2r H
2 F uLu

4pG
2S n2

r H
2

ufuH
2 1

l

2
~ ufuH

2 2v2!2D G 2 S 28pGH n2

r H
2

ufuH
2 1F uLu

4pG
2S n2

r H
2

ufuH
2 1

l

2
~ ufuH

2 2v2!2D G

3F 11
n2

r H
2

1

F n2

r H
2

1l~ ufuH
2 2v2!2G G J 1

3ufuH
2 F n2

r H
2

1l~ ufuH
2 2v2!2G 2

2F uLu
4pG

2S n2

r H
2

ufuH
2 1

l

2
~ ufuH

2 2v2!2D G 1
1

2 F n2

r H
2

1l~3ufuH
2 2v2!G D ,

~3.23!

NH15
1

8pGrH

ufuH
2 F n2

r H
2

1l~ ufuH
2 2v2!G 2

F uLu

4pG
2S n2

r H
2

ufuH
2 1

l

2
~ ufuH

2 2v2!2D G 2
, ~3.24!

NH25

ufuH
2 F n2

r H
2

1l~ ufuH
2 2v2!2G 2

64p2G2r H
2 F uLu

4pG
2S n2

r H
2

ufuH
2 1

l

2
~ ufuH

2 2v2!2G 3S 28pGH n2

r H
2

ufuH
2 1F uLu

4pG
2S n2

r H
2

ufuH
2 1

l

2
~ ufuH

2 2v2!2D G

3F 1

2
1

n2

r H
2

1

F n2

r H
2

1l~ ufuH
2 2v2!2G G J 1

3ufuH
2 F n2

r H
2

1l~ ufuH
2 2v2!2G 2

2F uLu

4pG
2S n2

r H
2

ufuH
2 1

l

2
~ ufuH

2 2v2!2D G 1
1

2 F n2

r H
2

1l~3ufuH
2 2v2!G D ,

~3.25!

BH158pGrHF uLu
4pG

2S n2

r H
2

ufuH
2 1

l

2
~ ufuH

2 2v2!2D G , ~3.26!

BH254pGF uLu
4pG

1S n2

r H
2

2
l

2
~ ufuH

2 2v2!2D G2

3ufuH
2 S n2

r H
2

1l~ ufuH
2 2v2!D 2

2F uLu
4pG

2S n2

r H
2

ufuH
2 1

l

2
~ ufuH

2 2v2!2D G . ~3.27!
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Noticing that the expansion coefficients depend only onufuH
and not onNH in Eq. ~3.21!, one may suspect a possibility
that there does not exist a smooth solution interpolating
ufu(0)50 and ufu(`)5v with one horizon or two. How-
ever, the horizonr H in the expressions of the coefficients is
also an undetermined parameter, which is the position to
which the boundary conditions are applied. Therefore, we
can expect a difficulty in analyzing the solutions by using the
numerical technique, e.g., the shooting method.

If B(r ) is a decreasing function near the origin, there must
exist a minimum point r m of the metric function:
B(r )>Bm5B(r m). Let us do a series expansion ofB(r )
about the minimum,

ufu~r !'ufum1
dufu
dr U

m

~r 2r m!1
1

2

d2ufu

dr2 U
m

~r 2r m!2,

~3.28!

N~r !'Nm18pGrmS dufu
dr U

m
D 2

~r 2r m!1Nm2~r 2r m!2,

~3.29!

B~r !'Bm1Bm2~r 2r m!2, ~3.30!

where the coefficientsd2ufu/dr2 um , Nm2, Bm , andBm2 can
easily be evaluated in terms of the scalar amplitudeufum and
its derivativedufu/dr um at the minimum pointr m :

d2ufu

dr2 U
m

52F8pGrmS dufu
dr U

m
D 2

1
1

r m
Gdufu

dr U
m

1ufumS dufu
dr U

m
D 2

3

n2

r m
2

1l~ ufum
2 2v2!

uLu
4pG

2S n2

r m
2

ufum
2 1

l

2
~ ufum

2 2v2!2D ,

~3.31!

Nm258pGS dufu
dr U

m
D 25 211

1

2

dufu
dr U

m

28pGrm
2 S dufu

dr U
m
D 2

1r mufum
dufu
dr U

m

3

n2

r m
2

1l~ ufum
2 2v2!

uLu
4pG

2S n2

r m
2

ufum
2 1

l

2
~ ufum

2 2v2!2D 6 ,

~3.32!

Bm5
1

S dufu
dr U

m
D 2 F uLu

4pG
2S n2

r m
2

ufum
2 1

l

2
~ ufum

2 2v2!2D G ,

~3.33!

Bm258pGrmH 22ufum

dufu
dr U

m
S n2

r m
2

1l~ ufum
2 2v2!D

1
n2ufum

2

r m
3

1S 8pGrmS dufu
dr U

m
D 2

1
1

r m
D

3F uLu
4pG

2S n2

r m
2

ufum
2 1

l

2
~ ufum

2 2v2!2D G J . ~3.34!

From now on, let us examine vortex solutions in detail for
the cases of zero and negative cosmological constants sepa-
rately.

A. L50

First of all, under the Schwarzschild-type metric in Eq.
~2.14!, we read the case of a zero cosmological constant.
Consider a scalar configuration with the boundary condition
ufu(0)50, which is consistent with the single valuedness of
it at the origin under the vortex ansatz in Eq.~3.2!. Suppose
thatB(r ) is continuous and starts fromB(0)51. Then, near
the origin, B(r ) is a decreasing function as given in Eq.
~3.12! and, since the right-hand side of Eq.~3.7! is negative
as far asB(r ) is positive, it is monotonically deceasing. Fur-
thermore, since the second term ofTt

t in Eq. ~3.4! is domi-
nant for larger when ufu approaches the vacuum expecta-
tion value v, the negativity of the coefficient of the
logarithmic term in Eq.~3.15! tells us thatB(r ) goes to
negative infinity at spatial infinity if we keep forcing the
boundary conditionufu(`)5v. It means that there should
existr H such thatB(r H)50. Obviously, the nonsingular glo-
bal string solution connectingufu(0)50 andufu(`)5v can
not be supported unless the asymptotic region of space con-
structed by the U~1! global string is not well behaved. Fur-
thermore, the spacetime formed by these global strings in-
cludes a physical curvature singularity which is not
removable through coordinate transformation@7#. In the
viewpoint of a smooth solution, there still remains the pos-
sibility of the existence of a scalar configuration which has
oscillatory behavior around the vacuum expectation valuev
in the asymptotic region of negativeB(r ), because the sign
change ofB(r ) effectively flips up the potential term on the
right-hand side of Eq.~3.3!.

B. L<0

When the cosmological constant is negative,B(r ) in Eq.
~3.12! near the origin increases or decreases according as its
rescaled magnitude of the cosmological constantuLu/lv2

whether it is larger or smaller than the ratio of the Planck
scale and the symmetry-breaking scaleGv2. OnceB(r ) be-
gins decreasing fromr 50, sometimes it can form a horizon
as expressed in Eq.~3.22!. Here we study the vortex solu-
tions for three cases such that they have zero~regular
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vortex with asymptotic hyperbola!, one ~extremal black
hole!, and two ~Reissner-Nordstro¨m-type black hole! hori-
zon~s!.

1. Regular neutral vortex

In the previous subsection, we studied the global vortex
case of a zero cosmological constant. As expressed in Eq.
~3.9!, the gravitational correction due to the object contrib-
utes negatively toB(r ) and becomes dominant for larger
and finally changes the sign ofB(r ) for somer . The problem
was started by the very coordinate singularity, that is, the
zero point ofB(r ), and finally turns out to have a physical
singularity. Therefore, if the sign ofB(r ) does not change
for every r , there may probably be a regular global vortex
solution interpolatingufu(0)50 and ufu(`)5v smoothly.
In this viewpoint, the positive contribution of the negative
cosmological constant in Eq.~3.9! is drastic. No matter how
small the magnitude of the cosmological constant is, this
term is dominant for a sufficiently larger since it is propor-
tional to the area of space (;r 2) for any solution with a
boundary conditiondufu/drur→`50. WhenuLu/v2 is larger
than 8pGv2, the first term in Eq.~3.9! can be larger than the
second term. Then, in accordance with another boundary
conditionB(0)51, B(r ) can always be positive for everyr .
OnceB(r ) is regular and has only a positive sign for everyr ,
a regular global vortex solution connectingufu(0)50 and

ufu(`)5v smoothly exists, and so doesN(r ) from Eq.~3.6!.
The shapes of solutions obtained numerically are shown in
Fig. 2. The obtained regular neutral vortex solutions of the
topological chargen are classified into two categories by the
behavior ofB(r ). WhenuLu.2pGlv428pGf0

2dn1 in Eq.
~3.12!, B(r ) is monotonically increasing as shown by the
dashed lines in Fig. 2. WhenuLu,2pGlv428pGf0

2dn1 in
Eq. ~3.12!, B(r ) must have a positive minimum for the regu-
lar solution as shown by the solid lines in Fig. 2.

From Eq.~3.33!, we can roughly estimate a criterion for
positiveBm or equivalently for the regular solution:

uLu
4pG

.
Alvr m;1, ufum;v

lH n2

~Alvr m!2 S ufum

v D 2

1
1

2 F S ufum

v D 2

21G 2J ;O~l!. ~3.35!

2. Extremal black hole

The extremal black hole has to satisfy the boundary conditiondB/dr ur H
50 in addition toB(r H)50. Suppose that there is

an extremal black hole; the position of the horizon can exactly be expressed byufuH only:

r H55A
4pGn2ufuH

2

uLu22pGl~ ufuH
2 2v2!2

from Eq. ~3.9! or BH15Bm50,

n

Al~v22ufuH
2 !

from Eq. ~3.3!.

~3.36!

Combining these two, we obtain an explicit value forufuH ,

ufuH5vS 12
uLu

2pGlv4D 1/4

,v, ~3.37!

and r H ,

r H5
n

AlvS 12A12
uLu

2pGlv4
D 1/2

'5
n

Alv
when 2pGv2'

uLu

lv2
,

A4pGlv4

uLu

n

Alv
when 2pGv2@

uLu

lv2
.

~3.38!

FIG. 2. Regular vortex configurations:uLu/lv251.0 and
8pGv251.25 for solid lines, anduLu/lv250.1 and 8pGv251.15
for dashed lines.
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The second line in Eq.~3.38! coincides with the result in Eq.
~3.18! based on a rough estimation. The complete determi-
nation of the position of the horizonr H and the value of the
scalar amplitudeufuH is an inevitable result since the leading
terms of Eq.~3.3! and Eq.~3.7! lead to two algebraic equa-
tions in the case of the extremal black hole. Therefore, the
series expansion of Eqs.~3.3!, ~3.6!, and ~3.7! in order of
(r 2r H) determines all coefficients of the power series solu-
tions ufu(r ), N(r ), andB(r ) in closed form.

Before arguing for the existence of a global vortex solu-
tion constituting an extremal black hole, a comment should
be made here. To guarantee a solution of Eq.~3.37! and Eq.
~3.38! we must impose the following condition:
uLu/2pGlv4,1, since this is nothing but the condition to
distinguish then.2 solutions with a minimum at nonzeror
from those with monotonically increasingB(r ) in Sec.
III B 1. So it is not useful except forn51 solutions. Since
dB/druH50 at the horizon,BH1 in Eq. ~3.22! and Eq.~3.26!
must vanish at the horizonr H , and thenBH2 in Eq. ~3.27! is
automatically positive:

BH25Bm258pGlv4A12
uLu

2pGlv4

3S 12A12
uLu

2pGlv4D .0. ~3.39!

This implies a convex-down property ofB(r ) at the horizon
of the extremal black hole. In addition the positivity of the
slope of the scalar amplitude gives a condition

uLu

lv2
1

1

32pGv2
,

1

2
, ~3.40!

which is more restrictive than the previous one from Eq.
~3.37! and Eq.~3.38!. The power series expansion of higher
order terms will make the condition more and more restric-
tive. Note that the data for our numerical solution in the
caption of Fig. 3 are consistent with Eq.~3.40!.

Now the remaining task is to find numerically a patch
of solution connecting smoothly the boundary
conditions @ ufu(0)50, B(0)51# and @ ufuH5(3.37),
BH5dB/druH50# by use of the shooting method for various

(f0 ,N0)’s in Eq. ~3.10! and Eq.~3.12!, and the other patch
from the horizon to spatial infinity@ ufu(`)5v, N(`)51#.
We obtain one for a model with 8pGv251.338 and
uLu/lv250.1 ~see Fig. 3!.

3. Charged black hole with two horizons

As the scale of cosmological constantuLu/lv2 becomes
smaller than the critical value to support the extremal black
hole, we expect to witness a charged black hole with two
horizons. One can easily read this phenomenon by examin-
ing the integral equation ofB(r ). The right-hand side of Eq.
~3.9! involves two contributions; the positive term is propor-
tional to uLu while the negative one is proportional toG.
Obviously two terms are zero at the origin, and soB(0) is
equal to 1~positive!. If the second term dominates due to
uLu/lv2!8pGv2, thenB(r ) becomes negative at some in-
termediate region. However, for sufficiently larger , the first
term proportional to the square of the radiusr is much larger
than the second term of which the leading contribution is
logarithmic, and finallyB(r ) becomes positive again.

From now on, let us discuss details about the existence of
two horizons in several steps. The first step is to show that
there exists the inner horizonr in where ufu(r in),v and
dufu/drur H

.0. Let us assume a situation that

2pG(lv414f0
2d1n) is much larger thanuLu in Eq. ~3.12!

andufu(r )'f0r n. Then there exists an appropriatef0 for a
sufficiently smallr such thatufu(r ),v and B(r ) hits the
zero point approximately at
r in'1/A2pG(lv414f0

2d1n)2uLu. The second step deals
with the outer horizon. Again let us assume that the scaled
cosmological constantuLu/lv2 is much smaller than the ra-
tio of the square of the symmetry-breaking scale and that of
the Planck scale 2pGv2. Then there exists obviously a po-
sition r such that Eq.~3.15! without the term of order 1/r 2 is
valid (r @r c) and, simultaneously, theuLur 2 term can also be
neglected:

~3.15!;28pGv2n2lnr /r c28GM11

;4pGv2n2~122 lnr /r c!11.
~3.41!

If the second logarithmic term on the right-hand side of Eq.
~3.41! is larger than order 1 for somer , the value ofB(r ) is
negative at this range ofr . For an arbitrarily small positive
f` , ufu(r ),v. In addition,dufu/dr uH is positive because
of the negativity of both the numerator and denominator in
Eq. ~3.19!. The third step begins with recallingr m obtained
in Eq. ~3.18! by minimizing B(r ). For the condition
2pGv2.uLu/lv2, r m.r H

in . Since Eq.~3.15! tells us that
B(r m),0 when 8pGv2n2.1, r out should exist and be
larger thanr m . Therefore, the remaining step is to find a
smooth scalar fieldufu(r ) to have two horizonsr H

in and r H
out

through numerical analysis. The above range does not forbid
the convexity of the metric functionB(r ) both for shooting
from the outside and for shooting from the inside; it implies
the possibility of the existence of a smooth configuration to
connectufu(0)50 and ufu(`)5v. The approximate value

FIG. 3. Extremal black hole solution:uLu/lv250.1 and
8pGv251.338.
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of the inner horizon isAlvr H
in'2.03 and that of the outer

horizon isAlvr H
out'3.05 from Fig. 4.

Now we have three types of global U~1! vortices in
anti–de Sitter spacetime. Smooth as the configurations of the
scalar fieldufu(r ) are, the forms of the metric functionB(r )
contain horizons. At this stage, we should make it clear
whether the singularity at each horizon is a coordinate arti-
fact or a physical singularity. The answer is given by exam-
ining the square of the curvature: Specifically, the
Kretschmann scalar is expressed by the Einstein tensors in
211 dimensions,

RmnrsRmnrs

54GmnGmn54 TrF diagS 2
1

2r

dB

dr
,2

1

2r

dB

dr
2

B

r

dN

dr
,

2
1

2

d2B

dr2
2

3

2

dB

dr

dN

dr
2B

d2N

dr2
2BS dN

dr D 2D G . ~3.42!

At first glance one can read no curvature singularity at the
horizons from the expression~3.42!. The forms of Eq.~3.6!
and Eq.~3.7! tell us that there is no divergent curvature at the
origin as far as the scalar fieldufu(r ) behaves regularly, i.e.,
ufu(r );r n.

As mentioned previously, a characteristic of BTZ black
holes is that they need not contain divergent curvature at real
r . We have understood that the Schwarzschild-type solution
in Eq. ~2.13! is regular everywhere and the charged black
hole formed by the neutral vortex discussed in the Sec.
III B 3 has also a divergent curvature counterpart of a
charged BTZ black hole formed by the electric point source
in Eq. ~2.19!. Here let us clarify the structure of manifolds
and the nature of forces due to the global vortices by study-
ing the geodesics of test particles@13#.

The geometry depicted by the metric in Eq.~2.8! admits
two Killing vectors]/]t and]/]u, and then the constants of
motion along the geodesic are

g5Be2N
dt

ds
and L5r 2

du

ds
, ~3.43!

wheres is an affine parameter along the geodesic. Note that
one cannot interpretg as the local energy of a particle at
spatial infinity, since the spacetime is not asymptotically flat.

Using these constants of motion, we obtain the following
geodesic equation for the radial motions:

1

2 S dr

dsD 2

52
1

2 FB~r !S m21
L2

r 2 D 2
g2

e2N~r !G52V~r !,

~3.44!

wherem can be rescaled to be 1 for any time like geodesic
and 0 for a null-like geodesic. The radial equation in Eq.
~3.44! is an analogue of Newton’s equation forr>0 with a
conservative effective potentialV(r ) in which the hypotheti-
cal particle has unit mass and zero total mechanical energy.
In order to identify the existence of the black hole, a mean-
ingful quantity is the elapsed coordinate timet of the static
observer atr 0 for the motion of a test particle fromr 0 to r :

t5E
r

r 0 dr

B~r !eN~r !A12 ~1/g2!~m21 L2/r 2!B~r !e2N~r !
.

~3.45!

When we analyze the motions of test particles, they are
divided into four categories according to whether they have
mass (m51) or not (m50), or whether their motions are
purely radial (L50) or rotating (LÞ0).

a. (m50, L50) ~regular solution!. For the radial motion
of a massless test particle, the effective potential has no ex-
plicit dependence onB(r ) such that

V~r !52
g2

2
e22N~r !<0. ~3.46!

The allowed motions are~i! stopped particle motion for
g50, which is unstable, and~ii ! an unbounded motion for
gÞ0 since the potential is negative everywhere even at spa-
tial infinity. Moreover,N(r ) is monotonic increasing, and so
the radial force is always attractive. Then the test particle
starts with initial speed greater thandr/dt5g/A2 at a point
r 0 and approaches the center of the vortex. Obviously there
is no horizon@B(r ).0 for all r ], and a test particle starting
from a finite initial positionr 0 arrives at the origin in a finite
time measured by the clock of the static observer; i.e.,
t5*0

r 0dr/B(r )eN(r ) is finite.
b. (m50, LÞ0) ~regular solution!. For a rotational mo-

tion, the centrifugal force term is introduced in the potential
V(r ):

V~r !5
1

2 S L2B~r !

r 2
2

g2

e2N~r !D , ~3.47!

which forbids the motion near the core of the vortex. From
Fig. 5, we read the minimum value ofg, gcr , which means
no motion is allowed forg smaller thangcr ~see the dotted
line in Fig. 5! and the circular orbit is at the radiusr cr for
g5gcr ~see the solid line in Fig. 5!. Wheng.gcr , the mo-
tions are classified into two categories according to the val-
ues ofg/L: ~i! Wheng/L>AuLu, the motion is unbounded
in which the speed of the test particle at spatial infinity is
dr/dtur 5`5AL2uLu2g2 @see dashed lines~ii ! and ~iii ! in
Fig. 5#. ~ii ! Whengcr /L,g/L,AuLu, it is a bounded orbit

FIG. 4. A charged black hole solution with two horizonsr H
in and

r H
out : uLu/lv250.1 and 8pGv251.4.
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with perihelionr min and aphelionr max @see a dashed line~i!
in Fig. 5#. For the bounded motion, the apsidal distance
r max2rmin is in orderAlv.

c. (m51, L50) ~regular solution!. For the radial motion
of a massive test particle, the potential of it is

V~r !5
1

2 S B~r !2
g2

e2N~r !D . ~3.48!

SinceB(r );uLur 2 for sufficiently larger , all possible mo-
tions are bounded; i.e., there exists ar max such thatr<r max
for any positionr of the test particle. WhenB(r ) is mono-
tonic increasing,V(r ) is also monotonic increasing and
thereby the force is attractive everywhere. It is physically
natural since sufficiently large negative vacuum energy can
pervade all space despite the repulsive force at the core of
the vortex. Therefore, the motions are allowed only when
g>eN(0): Wheng5eN(0), the test particle stops at the origin,
and, wheng.eN(0), the particle can move insider max and
the stopped test particle starts to go inward. WhenB(r ) has
a positive minimum at a nonzeror , the schematic shapes of
the effective potentialV(r ) are given in Fig. 6, and the pos-
sible radial motions are classified in Table I since it seems
that gstop,eN(0) in our solution.

d. (m51, LÞ0) ~regular solution!. For the rotational
motions of a massive test particle, the effective potential
takes the general form

V~r !5
1

2 FB~r !S 11
L2

r 2 D 2
g2

e2N~r !G . ~3.49!

V(r ); 1
2 uLur 2 for large r , and V(r );L2/2r 2 for small r .

Therefore, there exists a critical value ofg, gcirc , for positive
B(r ) such that there is no orbit forg smaller than this critical
valuegcirc . The allowed motions are~i! the circular orbit at
r circ when g5gcirc and ~ii ! the bounded orbit between the
perihelionr min and aphelionr max wheng is larger thangcirc

~See Fig. 7!. Similar to the previous bounded orbit motions,
the range of allowed region is roughly estimated as a few
1/Alv.

Now we have the global vortex configurations with hori-
zons, i.e., the points of vanishingB(r ). We examine the
possible motions of massless and massive test particles under
the influence of this geometry and identify these manifolds
as those of extremal and Reissner-Nordstro¨m-type black
holes. Similar to the case of regular solutions, we analyze the
orbits for four categories. For the extremal case, there is no
distinction from the Reissner-Nordstro¨m case when we set
r H5r H

in5r H
out.

e. (m50, L50) ~extremal and charged black holes!. For
the radial motions of a massless test particle, the effective
potentialV(r ) does not depend onB(r ) as in Eq.~3.46!, and
so the analysis in Sec. III B 1 a is thesame as that for this
case. However, sinceB(r ) includes a negative region be-
tween two horizonsr H

in and r H
out, the radial motions are di-

vided into two: one around the vortex core inside the inner
horizon (r ,r H

in) and the other outside the outer horizon

FIG. 5. Schematic shapes of the effective potentialV(r ) for the
rotational motions of the massless test particle whenL51. Here
B(r ) is always positive.

FIG. 6. Schematic shapes of the effective potentialV(r ) for the
radial motions of the massive particle. HereB(r ) has its positive
minimum at a positiver .

TABLE I. The radial motions of a test particle of massm51 for
variousg ’s, whenuLu/lv251.0,Gv251.0, andL is rescaled to 1.

Fig. 6 g Orbit,force

~i! 0<g,gstop No orbit
~ii ! g5gstop Stopped motion atr stop

~iii ! gstop,g,eN(0) Oscillation betweenr min and r max

~iv! g5eN(0) r min50
~v! eN(0),g,gcr r<r max, repulsive near the core
~vi! g>gcr r<r max, attractive everywhere

FIG. 7. Schematic shapes of the effective potentialV(r ) for the
rotational motions of the massive particle.gcirc is 0.832 andL51.
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(r .r H
out). Though the motions at the particle’s coordinates

resemble those of regularB(r ), they are observed with a
drastic difference to the static observer. SinceB(r ) vanishes
both at inner and outer horizons, the elapsed timet to reach
a horizon is logarithmically divergent in terms of coordinate
time for the static observer:

t; lim
«→01

E
r 0

r H
out

1« dr

B~r !
~3.50!

;S lim
«→01

E
r 0

r H
out

1« dr

r 2r H
outD 3~finite part!, ~3.51!

where r 0.r H
out1«. Since the potential is attractive outside

the outer horizon, the ingoing particle takes an infinite time
to reach the outer horizon for the static observer. If we re-
placer H

out1« by r H
in2« and r 0,r H

in2«, then one can easily
notice that the situation is the same for the case inside the
inner horizon. However, one must remember the attractive
nature of the force inside the inner horizon, which causes the
test particle to move the center of the vortex.

f. (m50, LÞ0) ~extremal and charged black holes!. The
rotational motion of a massless test particle is described by
the effective potential in Eq.~3.47!. SinceB(r ) is negative

between the horizons (r H
in,r ,r H

out) and theN(r ) term in Eq.
~3.47! is always negative, the shapes of the potential for this
case correspond to the dashed lines@~i!, ~ii !, and~iii !# in Fig.
5. Then the allowed regions are as follows: When
g/L,AuLu, r min<r,rH

in and r H
out,r<r max for two bounded

motions. Wheng/L>AuLu, r min<r,rH
in for a bounded mo-

tion inside the black hole andr H
out,r for an unbounded mo-

tion outside the outer horizon. As noted in Eq.~3.51!, the
time elapsed to reach a horizon for a static observer is infi-
nite, which means no orbital motion.

g. (m51, L50) ~extremal and charged black holes!. As
discussed in Sec. III B 3 f, V(r ) includes a negative region
betweenr min(rmin,rH

in) and r max(rmax.rH
out). Therefore, for

variousg values, one can expect two patterns; one is given
in the lines~iii !–~vi! in Fig. 6 and the other is summarized
below ~see Fig. 8!. The corresponding solutions are provided
in Table I for the former and in Table II for the latter. For the
BTZ black hole solutions we obtained, the extremal solution
follows Fig. 6 @~iii !–~vi! in Table I# and the BTZ solution
with two horizons follows Fig. 8~Table II!.

h. (m51, LÞ0) ~extremal and charged black holes!. For
any rotating motion for the massive particle under the influ-
ence ofB(r ) for the vortex black hole, the allowed regions
are r min<r,rH

in in which the force is repulsive, and
r H

out,r<r max in which the force is attractive~see the dashed
line in Fig. 7!.

Under the metric written as in Eq.~2.1! the conserved
quasilocal mass measured by a static observer atr is given
by @14#

8GMq52Ae2N~r !B~r !@AB0~r !2AB~r !#. ~3.52!

Here B0(r ) is the background metricgrr which determines
the zero point of energy. The background can be obtained
simply by setting the integration constant of a particular so-
lution to some specific value that specifies the reference
frame. As we discussed previously, the background is the
spacetime without the global vortex, specifically,n50 and
ufu(r )5v and therebyB0(r )5uLur 211. When the space-
time is asymptotically flat, the usual Arnowitt-Deser-
Misner~ADM ! massMq is determined in the limitr→`. For
sufficiently larger , Eq. ~3.14! and Eq.~3.15! give

FIG. 8. Schematic shapes of the effective potentialV(r ) for the
radial motions of the massive particle. The shaded region between
the inner and outer horizons is forbidden for the test particle.

TABLE II. The radial motions of a test particle of massm51 for variousg ’s, when uLu/lv251.4,
Gv250.1.

Fig. 8 g Orbit force

~i! g,eN(0) r min<r,rH
in ~repulsive!, r H

out,r<r max ~attractive!
~ii ! g5eN(0) r min<r,rH

in ~repulsive!, r H
out,r<r max ~attractive!

Stopped motion atr 50
~iii ! eN(0),g,g top r min<r,rH

in ~repulsive!, r H
out,r<r max ~attractive!

r ,r top,r min ~attractive!
~iv! g5g top r ,r top ~attractive!, stopped motion atr top

r ,r H
in ~repulsive!, r H

out,r<r max ~attractive!
~v! g top,g,gflat r ,r H

in ~attractive-repulsive!, r H
out,r ,r max ~attractive!

~vi! g5gflat r ,r H
in ~no force atr 0, attractive elsewhere!

r H
out,r ,r max ~attractive!

~vii ! gflat,g r ,r H
in , r H

out,r ,r max ~attractive everywhere!
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Mq→
r→`

pn2v2lnr /r c1M. ~3.53!

Thus the quasilocal mass determined atr→` contains two
terms: finite negative mass from the core of the vortex and
the logarithmically divergent one from the topological sector
of Goldstone degree. This coincides approximately with the
mass formula of the global vortex in flat spacetime, which is
obtained by the spatial integration of the time-time compo-
nent of the energy-momentum tensor. ThoughMq cannot be
identified as ADM mass due to the hyperbolic structure of
global spacetime of our interest, its form looks natural once
we recall the nonpropagation of a~211!-dimensional gravi-
ton in anti–de Sitter gravity.

IV. TOPOLOGICAL CHARGE AS A BLACK HOLE
CHARGE

In the previous section we have shown that the long tail of
a neutral static vortex can provide the black hole charge in a
~211!-dimensional BTZ black hole. By use of the duality
transformation@15#, we construct the direct relationship be-
tween the topological chargen of the neutral vortex and the
electric charge of the dual transformed theory. Through this
analysis the reason why the vorticityn of neutral objects can
play the same role as~electric! charge of the BTZ black hole
will be manifest.

The path integral of our theory is written as

Z5E @dgmn#@df̄#@df#expi H E d3xAgF2
1

16pG
~R12L!

1
1

2
gmn]mf̄]nf2V~ ufu!G J . ~4.1!

Rewrite the scalar field in the path integral in terms of the
radial variablesf5ufueiV and linearize the term of the sca-
lar phase such that

E @dV#expH i E d3xAg
gmn

2
ufu2]mV]nVJ

5)
x

ufu23g1/4E @dV#@dCm#

3expH i E d3xAgF2
gmn

2 S CmCn

ufu2
22Cm]nV D G J .

~4.2!

Let us divide the configurations of the scalar phase by the
topological sectorQ which is (emnr/Ag) ]n]rQÞ0, and the
single-valued parth which satisfies (emnr/Ag) ]n]rh50:
V5Q1h and@dV#5@dQ#@dh#. Integrating outh and us-
ing @d]mh#5@dh# up to a field-independent Jacobian factor,
we have

~4.2!5)
x

ufu23g1/4E @dQ#@dhm#

3@dCm#dS emnr

Ag
]nhrD expH i E d3xAg

3F2
gmn

2ufu2
CmCn1gmnCm~]nQ1hn!G J .

~4.3!

Let us rewrite thed functional in Eq.~4.3! by introducing the
dual vector fieldAm , i.e.,

dS emnr

Ag
]nhrD 5*@dAm#expH 2 iv*d3xAg

emnr

Ag
Am]nhrJ ,

and integrate outhm . Then we obtain a relation from thed
functional, Cm5(v/2)AgemnrFnr and Fmn5]mAn2]nAm .
Finally if we do the integration over the vector auxiliary field
Cm , then Eq.~4.1! becomes

Z5E @g3/4dgmn#@ ufu22dufu#@dAm#@dQ#

3expH i E d3xAgF2
1

16pG
~R12L!

1
1

2
gmn]mufu]nufu2V~ ufu!2

v2

4ufu2
gmngrsFmrFns

1
vemnr

2Ag
Fmn]rQG J . ~4.4!

This duality transformation can be achieved in arbitrary (D
11! dimensions by use of an antisymmetric tensor field of
rank (D21!, and so the Maxwell-like term in Eq.~4.4! be-
comes nothing but the Kalb-Ramond action@16# in ~211!D.
The Euler-Lagrange equations read

1

Ag
]m~Aggmn]nufu!5

v2

2ufu3
gmngrsFmrFns2

dV

dufu
,

~4.5!

1

Ag
]nS Ag

v2

ufu2
FmnD 5

emnr

Ag
]n]rQ, ~4.6!

Rmn2
gmn

2
~R12L!5

v2

4ufu2
grs~gmngtk24gm

t gn
k!FrtFsk

1S gm
r gn

s2
1

2
gmngrsD ]rufu]sufu

1gmnV. ~4.7!

Since we are interested in neutral objects which do not carry
a global U~1! charge (C05g0mufu2]mV50), they do not
carry a dual magnetic field@Fi j 5 (e0i j /Ag) C050#. Thus
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the spatial components of the equation for the dual gauge
field are automatically satisfied. The time component of Eq.
~4.6! is nothing but Gauss’ law in the asymptotic region for
large r (ufu→v): For the rotationally symmetric vortex so-
lutions Q5nu, it is

1

Ag
] i~AgF0i !'n

1

Ag
d~2!~xW !. ~4.8!

The next order term of the scalar amplitude due to the small
perturbation from the vacuum valuev does not contribute to
the charge, and so one can easily identify the vorticityn as
the electric charge of the dual gauge field. Similarly, since
the scalar amplitude terms, which are the second and third
terms on the right-hand side of Eq~4.7!, fall rapidly as the
radial coordinater increases, the time-time component of
Einstein equations in Eq.~4.7! has the leading contribution
from the negative cosmological constant term and the next
leading term from the electric energy for larger :

G00'e2NBS L1
v2

2ufu2
~F0i !

2D ;e2NBS L1v2
n2

r 2 D .

~4.9!

Obviously, the electric field can be identified as that of the
point charge at the origin. The self-energy in flat spacetime
contains a logarithmic divergence. Therefore this topological
charge can constitute the charge of the BTZ black holes:
B(r )'uLur 228pGv2n2lnr2M for large r .

At the core of the vortex, the nonvanishing component of
the dual electric fieldF0r is regular: For smallr ,

F0r;2n
f0

v2
r 2n21, ~4.10!

since ufu(r );f0r n. The dual electric field term of the
energy-momentum tensor in Eq.~4.9! is also regular:

T00}e2NB
v2

2ufu2
~F0r !

2;
n2

2

f0
2

v2
e2N~0!r 2~n21!. ~4.11!

Therefore, the role of 1/ufu2 in Eq. ~4.6! and Eq.~4.7! is a
regulator of the soliton at its core.

Now we have an understanding that the addition of the
global vortex of vorticity n to the center of the
Schwarzschild-type BTZ black hole produces a Reissner-
Nordström-type BTZ black hole of electric chargen. This
implies that spinless static vortices with finite energy in flat
spacetime, e.g., the topological charge of Abrikosov-
Nielsen-Olesen vortices in the Abelian Higgs model or that
of topological lumps in the O~3! nonlinears model, cannot
give rise to an additional BTZ black hole~electric! charge
since they do not carry long tail of energy density. However,
it is an open question as to whether the spinning charged
solitons, e.g.,Q lumps ~or nontopological global vortices!
@17# or topological or nontopological vortices in Chern-
Simons theories@18,19#, can constitute a BTZ black hole
with both charge and spin.

V. PHYSICAL RELEVANCE AS A BLACK COSMIC
STRING IN „311…D

We have considered the global vortices in~211!D curved
spacetime: however, these point-particle-like extended ob-
jects on the spatial plane may describe the straight global
U~1! strings along thez direction@4#. If we consider a static
metric of cylindrically symmetric string along thez axis

ds25B~r !e2N~r !~dt22dz2!2
dr2

B~r !
2r 2du2, ~5.1!

which also has boost invariance in thez direction, the previ-
ous analysis moves to~311!-dimensional anti–de Sitter
spacetime with no change since we already adjusted the di-
mension of fields and constants to those in 311 dimensions.

Here let us take into account a perfect situation: A global
U~1! static string straight along thez axis was generated in
some symmetry-breaking scalev and has evolved safely to a
static object in the present universe. Inserting the Newton
constant and the present lower bound of the cosmological
constant into Eq.~3.39!, we have the critical value for an
extremal black hole in our room temperature scale,
uLu/2plv4'0.3 eV. This implies that, when the cosmologi-
cal constant is negative and bounded by the experimental
lower limit in the present universe†2~0.34–0.99!
310283 (GeV)2,L,(0.68– 1.98)310283 (GeV)2 @20#‡,
the global strings produced at almost all the scales remain as
charged black strings. However, the global vortices made in
‘‘relativistic’’ 4He superfluid are regular@21#. The character-
istic scaler H in Eq. ~3.38! is 106 pc for the grand unified
scalev;1015 GeV, and is 1022 a.u. for electroweak scale.
The underlying physics for the reason why we reached this
enormous size of horizon is easy: The mass density of a
black cosmic string per unit length is given by the ratio of
the scalar mass and the Planck scale, 2ApGv, but the nega-
tive vacuum energy density inside the horizon is given by the
ratio of the square root of the absolute value of the cosmo-
logical constant and the scalar mass,AuLu/Alv. The scale of
cosmic string generation is large, but the lower bound of the
present cosmic vacuum energy is extremely small. Then the
scale for this black cosmic string characterized by the hori-
zon scale should be very large. Though these values are ob-
tained under a perfect presumed toy situation without taking
into account fluctuations around the black cosmic string, the
huge radius of it, namely, the radius of the black cosmic
string produced in the grand unified theory~GUT! scale
(;106 pc! is larger than the diameter of our galaxy (;5
3104 pc!, and may imply a difficulty for the survival of the
charged black cosmic strings produced in such an early uni-
verse in the present universe with an extremely small bound
for the cosmological constant. Once a global cosmic string is
produced, it starts to radiate gapless Goldstone bosons. This
dominant mechanism for energy loss makes the lifetime of a
typical string loop very short@22#: A global string loop os-
cillates about 20 times before radiating most of its energy
which is contrasted with gravitational radiation where the
oscillation lasts about 104 times. The space outside the hori-
zon of the black cosmic string is almost flat except for a tiny
attractive force due to the negative cosmological constant as
shown in Eq.~3.44! and Eq.~3.15!, and then the massless
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Goldstone bosons can be radiated outside the horizon. How-
ever, almost all the energy accumulated inside the horizon
remains eternally. This ‘‘black’’ nature of the global U(1)
string in the anti–de Sitter spacetime is remarkable at least
for the case of straight cosmic strings.

Finally, let us emphasize again that we have two mass
scales, the core mass and the inverse of the horizon, which
are determined by three energy scales with large differences,
namely, the Plank scale (1/AG;1019 GeV!, the present
bound of the cosmological constant (AuLu;10242 GeV!,
and the symmetry-breaking scale~from v;1019 GeV to v
;0.3 eV!. Therefore, the very existence of this horizon is
expected to change drastically the physics related to the dy-
namics of global U~1! strings, e.g., the intercommuting of
two strings or the production of wakes by moving long
strings@4#.

VI. CONCLUSION

In this paper, we have considered a scalar field model
with a spontaneously broken U~1! global symmetry in~2
11!-dimensional anti–de Sitter spacetime, and investigated
the cylindrically symmetric vortex solutions. We have found
regular topological soliton configurations of which base
manifolds constitute smooth hyperbolic space, extremal BTZ
black holes, and charged BTZ black holes according to the
decreasing magnitude of the negative cosmological constant.
Different from the zero cosmological constant space sup-
ported by the global U~1! vortex, which cannot avoid a
physical singularity, the obtained anti–de Sitter spaces are
~physical! singularity free. Because of the logarithmic long
tail of the Goldstone mode, the BTZ black hole also carries a
charge which is identical to the case of an electric Maxwell
charge. This identification was constructed by the duality
transformation. All possible geodesic motions of massive
and massless test particles were analyzed. Since the

asymptotic space is hyperbolic, all the motions of massive
particles are bounded. However, some massless test particles
can escape to the spatial infinity of a hyperbola.

In 311 dimensions, the obtained global vortex-BTZ black
hole depicts a straight charged black cosmic string. We
brought up a toy model situation that these objects formed
through a cosmological phase transition in the early universe
~from the grand unification scale to the standard model scale!
and survive in the present universe assumed with an allow-
ably small magnitude of the negative cosmological constant
(uLu;10283 GeV2). The corresponding scale of the hori-
zon r H is in order from 106 pc to 1022 a.u. Then it implies
that the observation of a black cosmic string in the present
universe may relate the bound of the negative cosmological
constant to the production of global U~1! vortices in the early
universe.

Three brief comments are now in order.~i! For the vorti-
ces in the Abelian Higgs model or O~3! nonlinears model,
they have finite energy in flat spacetime. A question of in-
terest is whether they can form black holes in anti–de Sitter
space. Until now we do not have an answer to this question
@23#. If we find them, such BTZ black holes must be
Schwarzschild type without an electric charge.~ii ! Static
charged BTZ black holes can also be obtained in dilaton
gravity. Therefore, the global U~1! vortices coupled to dila-
ton and anti–de Sitter gravity may have some relevance in
stringy cosmology@24#. ~iii ! For more realistic models of
straight static black cosmic strings, a general metric of the
form ds25B(r )e2N(r )(dt2C(r )dz)22B(r )21dr22r 2du2

2D(r )dz2 has to be taken into account.
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