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Global vortex and black cosmic string
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We study global vortices coupled {8+ 1)-dimensional gravity with a negative cosmological constant. We
found nonsingular vortex solutions i* theory with a broken (L) symmetry, of which the spacetimes do not
involve a physical curvature singularity. When the magnitude of a negative cosmological constant is larger
than a critical value at a given symmetry breaking scale, the spacetime structure is a regular hyperbola;
however, it becomes a charged black hole when the magnitude of the cosmological constant is less than the
critical value. We explain through a duality transformation the reason why a static global vortex which is
electrically neutral forms a black hole with electric charge. Under the present experimental bound of the
cosmological constant, implications for cosmology as a straight black cosmic string are also discussed in
comparison with a global (1) cosmic string in the spacetime of the zero cosmological constant.
[S0556-282(97)02324-3

PACS numbses): 11.27+d, 04.40-b, 04.70.Bw

I. INTRODUCTION mology [4,6,7]. Here, if we recall the fact that a physical
curvature singularity in global string spacetime is unavoid-
Einstein gravity in 2-1 dimensiong(2+1)D] has no lo-  able in the case of a zero cosmological constant, we can add

cal degrees of freedom and the matter coupled to gravitgnother question as to whether we can find regular global
changes only the global structure of spacetime outsid§OSMIC strings in anti—de Sitter spacetime or black cosmic
sourced1]. Subsequently anti—de Sitter solutions in three-Strings with no divergent curvatue].

; X - - . ) In this paper, we will consider a complex scadst model
dimensional gravity were analyzed in the 19825, how in (2+1)-dimensional anti—de Sitter spacetime and look for

ever, it took many years thenceforth to find out the black lobal vortex solutions. There are cylindrically symmetric

hole structure among those solutions of the negative cosm jlobal U(1) vortex solutions connecting smoothly the sym-

logical constan{3]. _ _ __metric local maximum at the origin and a broken vacuum
One of the reasons why conic solutions formed by pointyoint at spatial infinity. The spacetimes formed by these

particles in(2+1)D have attracted attention is that they standgyrings are regular hyperbola with a deficit angle, extremal
for the asymptotic space of cylindrically symmetric local pjack hole, and charged black hole as the magnitude of the
cosmic strings which are extended solitonic objdefs In  cosmological constant decreases. The curvature of these so-
this context, an intriguing question intZ dimensions with  |ytions is not divergent everywhere even for charged black
the negative cosmological constant is whether or not one caholes. So it is contrary to the zero cosmological constant
find the structure of black cosmic strings. In relation to thecase, where the (@) global string admits no globally well-
stability of such stringlike objects i(8+1)D, the topological behaved solution.

vortex solution in(2+1)D is the first candidate. There has  This paper is organized as follows. We begin in Sec. Il by
been another subject in+dl dimensions: The study of black establishing explicitly the relation that ti@+1)D spinless
holes, particularly charged black holes, formed by solitonsplack hole solutions in Re{3] are part of general anti—de
e.g., monopoles, Skyrmions, etc., has been an interestin‘éitter space solutions in Rg2]. In Sec. Ill, we introduce the
subject [5]. Since the negative cosmological constantModel and obtain the global(W) vortex solutions. Possible
amounts to the term of the energy proportional to the area ojeodesics of massless and massive test particles are also
the spatial manifold £r2), one can easily guess that static 9ven- In Sec. IV, the connection between the topological
extended objects carrying a long-range tail are important‘?harge and_ the electric charge of a black hole is illustrated by
The simplest candidate int2L dimensions may be the global use c_)f duality transformations. In Sec. V, que§t|on§ abput the
U(1) vortex of which energy diverges logarithmically in flat Physical relevance of a charged black cosmic string 1.3

spacetime, which is a viabie cosmic string candidate in cosdimensions are addressed. We conclude in Sec. VI with a

brief discussion.

, . Il. BLACK HOLE AS AN ANTI —de SITTER SOLUTION
*Electronic mail address: nakwoo@phya.snu.ac.kr

TElectronic mail address: yoonbai@cosmos.skku.ac.kr In this section, let us recapitulate what thg+1)-
*Electronic mail address: dragon@phya.snu.ac.kr dimensional Schwarzschild black hole solution is among a
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series of anti—de Sitter solutions of which all static metrics R(1-4Gm) 4 R-(1-4Gm)) 2
can be characterized in terms of one complex function. Un- ds?= 1-46m o (1-45m) dt?
der a conformal gauge, the static metric compatible with R -R
static objects is parametrized by )
H3-40m dR2+R2d©2
ds?=®3(z,z)dt?—b(z,z)dzd z, (2.2) | A|RE(R(-40m) R—<1—4Gm>)2( )y
wherez=x+iy=Ré&®. For n massive spinless point par- (2.8

ticles located at positiong=z,, a=1,2,...n, each with
massm,, the cosmological constart is obtained by solv-
ing the time-time component of the Einstein equattons

where m is the total mass of the point particle R=0.
Introducing the new coordinatesand # such as

2 1

2 . r= and 6=(1
A=-— Eaza;‘nbgl |z4—2|8C™Ma, (2.2 |A|M2 |R(L-46m _ R-(1-46m) (
. . —4Gm)6, (2.9
The space-space components give two independent equa-
tions: One is for the spatial tra¢6], we can rewrite the metric in E42.8) as
B ds?=(1+|A|r?®)dt?— (1+|A|r?) " tdr2—r2d e
A_ - (D—bﬁzﬂ;q), (2.3) (2'1@
and the Other is for the trace'ess part' Now we can easily |dent|fy the structure of manifold as a

hyperbola with deficit anglé=87Gm where 45m<1.
1 The above is the physical interpretation provided in Ref.
az(Bach):o_ (24 [2]. Then, how about the solutions with negati¥@ Or,
equivalently, thee = —1 case? In this case, the metric in Eq.
As obtained in Ref[2], the general anti—de Sitter solution of (2.1) can be reexpressed as
Eq. (2.2, Eq. (2.3, and Eq.(2.9) is
1 c?
ds’= dt’— _ (dInR%+d6?).
8 2.5 tarf(2cInR) |A|sir(2¢InR)
' (2.11

b= — ,
|AIV(2)V(Z)sintPe(£— o)

One can easily notice that the coordin&ehas unconven-
® = ecothye (¢~ $o), (2.6 tional ranges such thatb(R) and R?b(R) diverge at
R=expkm/4c) (k is an integer. Because of the unconven-
tional behavior of metric functions &=0, it seems rather
difficult to pin the unknown constaret down by use of the
point particle massn under this coordinate system. To make
_ 2.7) the physics clear, let us do a coordinate transformation

whereV(z) [V(z)] is an arbitrary{ antilholomorphic func-
tion and({ is a real variable defined by

fz dw Jz— dw
V(w) V(w)
e is a real positive integration constant far>0 and is an
arbitrary nonzero real constant far<0.

Here let us consider the simplest case Watz/c where  The result leads to the well-know@+1)D (Schwarzschild-

c is a real constant so as to keep the single valuedness of type) black hole solution with mass? and negative cosmo-
Wheng>0, one can set=1 without loss of any generality. |ogical constant\ [3];

In the radial coordinates is identified asc=1—-4Gm and
the metric in Eq(2.1) becomes ds?=(—c2+|A|rd)dt?— (—c?+|A|r?) " dr2—R%d 6.
(2.13

10ur equation in Eq(2.2), which uses the action for the point AS ~shown in Fig. 1, each range ofr
particles (expkm/dc) <r<exd(k+1)m/4c]) covers the exterior re-

n e gion of the Baiados-Teitelboim-Zanel{BTZ) solution.
S made\/g””(Xa(s)) dXﬂ dXV’ One step extension may be the quadraiiz), i.e.,
a=1 s as V=(z-2))(z—2,)/c, (z;#2,). Reexamining the above

. i . . _ computation, we can easily conclude that this reproduces the
is different from the equation written as E@.7) in Ref.[2]. Spe same result agairti) Whene=1, it goes to anti—de Sitter

cifically ma=tb(x)2m53. For the point sources, these two equa- ) ) . —_

tions lead to the same solutions which were first obtained by théPace with point particle massan=1—| c¢/(z,~2,)|, and
authors in Ref[2]. However, there is a possibility that the solutions (i) whene=—1, it goes to the BTZ black hole with the
for the extended sources may include different curved spacetimélack hole mass @ M=|c/(z,—z,)|2. For more compli-
Y.K. would like to thank R. Jackiw for a discussion on this point. cated examples, further study is needed.

1
=2

c

" | A[¥sin(2¢inR) 212
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our interest since it involves the long tail of energy density
and does not involve the ultraviolet divergence at the vortex
core of which the singularity is irrelevant to the black hole

structures.

We have an explicit solution of the charged BTZ black
hole, and so the question is whether there are two or more
solutions under the conformal gauge in Ef.1), of which
one corresponds to the charged BTZ solution. Again, let us
consider the spacetime geometry with a point particle of

0 massm and chargey sitting at the origin. The relevant Ein-
0 /2 4 3n/2 2 stein equation is
clnR
2
FIG. 1. The radial coordinate under the conformal gauge vs A=——3,97In b|z/8"C™— 167TGT§3m, (2.20

of the Schwarzschild metric. b

and the energy density distribution determined by Gauss’

It is now the turn of charged case. The metric compatibl e 2,52 : 4
with such spinless static objects and with rotational symm(iaw' namely,Te, = (1/2b) (q°/R®). Again Eq.(2.20 with a

try is of a form negative cosmological constant reduces to a Liouville-type
equation

1
ds?=e?NB(r)dt?— ——dr?—r?d¢>.  (2.19

B(r) =|A|b. (2.2

2‘92‘9?”( R~ 8Gm-47G qzlnR)

Then the Einstein equations are
It is known that this equation is not integrable and there is no
1dN 8wnG _, _, known exact solution of this equation, y@t0]. Once we try
FW_T(Tt_Tr)’ (2.15 to do a coordinate transformation from E(2.1) to Eqg.
(2.17 and Eq.(2.19, the reason why we cannot obtain the
1dB . explicit form of the solution in the conformal metric is ob-
T ar = 2lA[-167GT,. (2.16  vious though we could get it in the Schwarzschild metric.
Despite the algebraic relatidR?b(R)=r?, R cannot be ex-

If the source is composed of the electrostatic field of a poinPressed as a function of in a closed form for charged

chargeq, the energy-momentum density is objects:
—2N(r) 2 a—2N(r) dInR?
e g e r
T=Ti=——5—El=% > (2.17 r?=rgex f

VIA|R?— 47GInR2— 8GM

Inserting Eq.(2.17) into the Einstein equations in E(R.16) (222

and Eq.(2.19), we have Only when the object is neutralj0) is this integration
done in a closed form. For a negati, the integration
N(r)=0, (2.18 range ofr is not restricted and then we have the hyperbolic
solution in Eq.(2.8), namely, a positivee solution in Eq.
(2.5. On the other hand, for a positivd, the integration
range ofr is larger tharM/|A| and it is the BTZ black hole
solution outside horizon in Eq2.13, namely, a negative
solution. Though we do not know the closed form of the
4GP metric function in conformal coordinates and do not deter-
W) , mine the range of integration range oexplicitly, it is ob-
vious that there are both types of solutions for the charged
case (+0). When

B(r)=|A|r?—87Gq?Inr —8GM, (2.19

whereM is an undetermined mass paramdifrwhich the
dimension is mass per unit length @+1)D]. When

au
Mziqz(l—ln

a Reissner-Nordstro-type black hole with two horizons is

formed, and an extremal one is formed when the equality - 4GP
holds. For the Schwarzschild-type black hole case, there is M<Eq2( 1-In T)
no curvature singularity at any(r=0). However, this Al

ch_arged black hole contains the curvat_ur(_e _singularity at thg\,e have a regular solution corresponding to the posiéive
origin, Ri=6|A|—87Gg?/r?, due to the infinite self-energy goiution. When

of the point charge. It should be noted that the black hole ’

charge is generated by the so-called logarithmically diver- T, 47GQg?

gent energy termftdrrT{fvlnL at large distance, but the M>§q (1—In W)

ultraviolet singularity at the origind— 0) is not essential for

the formation of the charged black hole even though it giveghe obtained metric describes the inside of inner horizon and
a divergent curvature. Therefore, the global vortex attract®utside of outer horizon of the charged black hole corre-
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sponding to the negative. Note that the positivity oM is
not a necessity for the charged black hotg#0). We will
show it is indeed the case in global1) vortices.

In this section we have clarified a relation between the
rotationally symmetric solutions in the metric under a con- + %(|¢|2_vz)2]_ (3.7

B
———=2|A|-87G{B

g2
r dr * |¢|

o

formal gauge and the static BTZ black hole solutions in the

Schwarzschild-type metric. However, a similar construction

like the above relation is not clear for more complicatedThen the metric function®(r) and B(r) are expressed in
solutions, e.g., multicenter solutions without rotational sym-terms of the scalar field:

metry, solutions with the deficit angle equal to or bigger than

24, and spinning black hold41], yet. oo d 2
P 9 Y N(r)=—81-rGj dr’r’(%) , (3.8
r r
Ill. GLOBAL VORTEX IN ANTI —de SITTER SPACE
AS A REGULAR NEUTRAL VORTEX ;
OR A CHARGED BLACK HOLE B(r)=e N" 2|A|f dr'r’
0
Let us consider the anti—de Sitter spacetime in the pres-
ence of global vortices. The standard example is given by the |¢|
action Xexp —87G dr”r”
r’ dr”
fdsxf ———(R+2A)+ 59,39, -8 Gfrdr’r’ex -8 Gfxdr”r" dlel)’
167G g P G G| "
N Fh—v2y? 3.0 2, 2 N(O)

4 ’ ' |¢>| —(|¢| —v?)?|+e (3.9
where ¢(x) is a complex field. The ansatz for the static  Here we choose a set of boundary conditi®®)=1
global vortices with rotational symmetry is andN(=)=0 according to the following reason: When we

o take the limit of both no matterT(;=0) and zero vacuum
o=|d|(r)em’. (3.2 energy (\ =0), the spacetime reproduces Minkowski space-

time. Since a rescaling of the radial coordinatieads to a
From the model given above in E(.1), the equation for a flat cone with a deficit angle 2 1—+/B(0)] in this limit,

scalar field is B(0)=1 is an appropriate choice. If the coincidence of the
proper time for the observer at spatial infinity is asked, then
d? 4| (dN 1 dB 1) d| | the temporal coordinateselectsN(e)=0. In the context of
— =+ | — a scalar field, the configuration of our interest is the solitonic
dr? dr Bdr ) dr one approaching its vacuum value at spatial infinity, i.e.,

2 |#|(«)=v. Now the one remaining boundary condition is
_ |¢| 0 (| 82— 0v?)| | 3.3 about the scalar amplitude at the origin. If there is no coor-
B ' dinate and curvature singularity, single valuedness of scalar
field forces| ¢|(0)=0 for the vortex solutionrf#0). How-
The energy-momentum tensor for the Einstein equations in€Ver When we take into account the geometry with a curva-
2 ture singularity or a black hole including the horizons, it is
cludes the long-tail term~1/r<):
not necessary in general for the scalar field configuration to

be nonsingular. Such singular solutions, so-called exotic

L) (dlel\? » 2 22 black holes, where their scalar fields do not vanish at the
Tt_i[ B(T * r_2|¢| 5ol =%, 34 origin, have been studied i3+1)D [5]. However, it seems
that there is a difference between tf®+1)D black holes
and the BTZ solution: The mass accumulated at the core of
T’—E _B d/¢|\? | 2, 2 the black hole induces a steep curvature change around its
r2 dr ¢l°+ |¢| v : core and is crucial to make a black hole(B+1)D curved

(3.5 spacetime, but the Schwarzschild-type BTZ solution does
not have any signal of such an accumulation singularity and
the divergent curvature at the origin of the Reissner-
Norstran-type BTZ solution in Eq(2.19 is irrelevant to the
black hole structure as explained previously. In this respect,
an intriguing question is whether there is the global vortex
5 solution interpolating smoothly¢|(0)=0 and |¢|(*)=v

1 d_N_ M) (3.6 even in asymptotically anti-de Sitter spacetime. As men-
rdr dr tioned previously, the charged BTZ black hole made by the

Substituting Eq(3.4) and Eq.(3.5) into the Einstein equa-
tions in Eq.(2.15 and Eq.(2.16), we obtain the following
equations:
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electric point charge involves an unnecessary divergent cur- B(r)~|A|r2—8nwGuv?n?Inr/r,—8GM+1+ O(1/r?),
vature at the origin, and the regular extended objects, spe- (3.195
cifically the neutral global vortex, can have a chance to form

a curvature-singularity-free charged BTZ black hole. where M is the integration constant. Let us estimate the core
The question of whether or not there exist smooth vorteX-cs A1 and the core size. of the global vortex. As a
c .

configurations is also intriguing in the context of the no'gosimple but valid approximation, let us assume
theorem that this global (1) scalar model cannot support a '

finite energy static regular vortex configuration in flat space-
time. Thus the global (1) vortex carries logarithmically di- |0 whenr<rg,
i i [l (r)= (3.16

vergent energy. This symptom seems to appear in curved v whenr=rg,
spacetime that the global(l) vortex does not admit globally
a well-behaved solution whek=0 [7]. The negative poten-
tial energy (the negative cosmological constamomes in
this model through the coupling of gravity although it does
not have its own propagating degreeg2-1)D. Therefore,
one may expect the existence of a regular vortex configura- B(r)—|A[r?=87Gv®n’Inr —1
tions in anti—de Sitter spacetime, and we will show that it is ~27Go2(Np2r2— 4n?)
indeed the case in the globall) model of our interest. mGu (Ao7rc—4nTinre)

Near the origin, the power series solutions up to the lead-
ing term are =47Gv?n?(1—In 2n?/\v?).

|| (1)~ or", (3.10

N(r)~N(0)+47Gnpr?, (3.11) Herg the minimum value in the second Iin% of E8.17) is
obtained whenr.~n/\Av and M~ (w/2)v?n. Crude as
B(r)~1+(|A|—27G o4 —87G$25,)r2. (3.12 'g1(is)approximation is, one can read the minimum point of
r):

and neglect the change of the metric functiNdr), i.e.,
N~0. Substituting Eq(3.16) into Eqg. (3.9, we have

(3.17

Since the right-hand side of E@3.6) is positive definite,
N(r) is monotonically increasing everywhere. Equation \/m
(3.12 tells us that, when the scale of cosmological constant rm=\—F— (3.18
|A|/\v? is smaller that the Planck scalerBv?, thenB(r) |A]
starts to decrease near the origin.

Though we will take into account the geometry with the which may be valid when the minimum positiog, is much
“horizon” and it may hinder the systematic expansion of thelarger than the core radius. The positivity of the core mass
solution, let us attempt the power series solution up to theM after subtracting the logarithmic long tail is different

leading term for sufficiently large: from the global monopole i(3+1)D curved spacetime with
a zero cosmological constant. The core mass of the global
b monopole is negative and the repulsive nature at the mono-
|#l(r)~v— r_z 3.13 pole core leads to the impossibility of the formation of a

global monopole black hole even at the Planck s¢al.
Suppose that there exists a horizon, namely, the position

2
N(r)~— 87TG¢°°1 (3.14 ry where the metric functioB(r) vanishes. At the horizon,
ré the boundary conditions are from E®.3) and Eq.(3.7):
n2
o] [#ln] = + N dlE—v?)
(i) = i , (319
dr |, Al (M2 N L,
87GIy| 7=~ a|¢|H+§(|¢|H_U )
whereB,=B(ry) and|¢|y=|¢|(ry). The behaviors of functions near the horizon are approximated by
d|¢| 1 d* 4| )
|pl(r)~|pln+ dar H(f—fH)'*‘E ar2 (r=ry)*, (3.20

N(r)~Np+ Ny (r =) +Npo(r —ry)?, (3.2
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B(r)~Bpa(r —ry) +Bpa(r —ry)?, (3.22

whereNy=N(ry), d?|¢|/dr?|,, Ny; Npo, By, andBy, are expressed in terms pp|, atry:

2
| Blu| 5 +N(lfE— vz)]
d2|¢|‘ i n? o | 1Al TP P
z| —87G _2|¢|H+ A-G _2|¢|H+_(|¢|H_U)
r2‘H 22,2 Al n? 2 N 2 2v2 TH 4mG TH 2
64m°Gry| ;—=—| Zldlat 5 (dlh—v9)
ra 2
2 2
) 3elh| 7\(|¢|ﬁ—v2)zl )
x| 142 ! i o1 n—+)\(3|¢|2—z)2)
" nz+ 2 22 2 AL [ 2 N2l 20 2[ri " ,
iz M| #li—v?) .G E| ol §(|¢|H—U)
(3.23
n? ?
|¢li| — + (I olE—v?
1 rH
— , (3.29
87Gry [ |A| [ n A ?
2 2\2
- | — —U
G |12 ~leli+ (|¢|H )
2 n2 2 i
|pli| — N ¢lh—v?)?
N i oy P (L (4l
H2= —om —lolLt | —=—| = o H™U
A PR S 3 4G\ rf
64m°G?r} - —|¢| —(|<f>|H—vz)2
47G rH
n? ?
3| ¢lh| — + M elh—v?)?
1 n? 1 ra 1| n?
x| —+— + +—[—+N@EBlG-vD | |,
2 r3|n? [A| n? N ra
_+7\(|¢|H v? 2| ——— _|¢| _(|¢|H_U2)2
rH 47G rH
(3.29
| | n? A
=87Gry 55| Flelt 5 (eli—0%? )], (3.26
H
2
3/ ¢l3 (—+>\(|¢|H v )
B,= 476 2ok [N g2 p2y2] | it 3.2
H2= 2O =T 2 5(oli—v IA| 2 327

477G

n A
- r—2|¢|ﬁ+§(|¢|ﬁ—vz>2>]
H
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Noticing that th_e expansion coefficients depend onl)}'dé?lr,q_ _ 1 IA| n2 , A ,
and not onNy in Eq. (3.21), one may suspect a possibility B,,= d 5 G~ — | plmt §(|¢|m—vz)2 ,
that there does not exist a smooth solution interpolating (M ) A Mm
|#[(0)=0 and|¢|(*)=v with one horizon or two. How- dr |
ever, the horizomy in the expressions of the coefficients is (3.33
also an undetermined parameter, which is the position to
which the boundary conditions are applied. Therefore, we d| 4| n2
can expect a difficulty in analyzing the solutions by using the  B,,=87Gr,} — 2| ¢|mW — (] #12—v?)
numerical technique, e.g., the shooting method. m\'m

If B(r) is a decreasing function near the origin, there must 21 12 2
exist a minimum pointr, of the metric function: n |¢|m+ 87Gr M +i
B(r)=B,,=B(r,,). Let us do a series expansion B{r) rs modr | Mm
about the minimum, ,

A n A
dl | 1?4 i %— a|¢|§1+ §<|¢|§n—v2>2) ] (334
(10 =10l G| (=)t 5| (T,
(3.28 From now on, let us examine vortex solutions in detail for
the cases of zero and negative cosmological constants sepa-
dl¢|| \2 rately.
N(r)wNm+8wGrm(T )(r—rm)+Nm2(r—rm)2,
m —
(3.29 A A=0
First of all, under the Schwarzschild-type metric in Eqg.
B(r)~By+Bma(r —rm)?, (3.30 (2.14), we read the case of a zero cosmological constant.

where the coefficientd?|¢|/dr?|,, Nm2, By, andB, can
easily be evaluated in terms of the scalar amplitusle, and
its derivatived| ¢|/dr |, at the minimum point

dlgl| |2 1]d4l
_—[87TGrm<Wm) +awm
m

2

d?[¢|
dr?

dj¢
{22

n® 5
_2+)\(|¢|m_vz)

m

X
| | ? 2 2 2\2
- r_|¢)| +_(|¢| —v )

(3.3)
d|¢| d|¢|
dr

2 1
Nm2=87TG(W ) —1+§—
m m

+ 1l Blm

? d|¢|
r
m

r—2+x<|¢|$n—UZ>

m

>< 1
Al

47G

n? A
S lglnt 5 (|6l5—v?)?
rm

(3.32

Consider a scalar configuration with the boundary condition
|#|(0)=0, which is consistent with the single valuedness of
it at the origin under the vortex ansatz in §§.2). Suppose
thatB(r) is continuous and starts froB(0)=1. Then, near
the origin, B(r) is a decreasing function as given in Eq.
(3.12 and, since the right-hand side of E§.7) is negative

as far aB(r) is positive, it is monotonically deceasing. Fur-
thermore, since the second term'Effin Eqg. (3.4 is domi-
nant for larger when|¢| approaches the vacuum expecta-
tion value v, the negativity of the coefficient of the
logarithmic term in Eq.(3.195 tells us thatB(r) goes to
negative infinity at spatial infinity if we keep forcing the
boundary conditior| ¢|(=)=v. It means that there should
existry such thaB(r)=0. Obviously, the nonsingular glo-
bal string solution connectings|(0)=0 and|¢|(*)=v can

not be supported unless the asymptotic region of space con-
structed by the (1) global string is not well behaved. Fur-
thermore, the spacetime formed by these global strings in-
cludes a physical curvature singularity which is not
removable through coordinate transformatipr]. In the
viewpoint of a smooth solution, there still remains the pos-
sibility of the existence of a scalar configuration which has
oscillatory behavior around the vacuum expectation value
in the asymptotic region of negati&(r), because the sign
change oB(r) effectively flips up the potential term on the
right-hand side of Eq(3.3).

B. A<O

When the cosmological constant is negatiBér) in Eq.
(3.12 near the origin increases or decreases according as its
rescaled magnitude of the cosmological constaxj/\v?
whether it is larger or smaller than the ratio of the Planck
scale and the symmetry-breaking sc@e?. OnceB(r) be-
gins decreasing from=0, sometimes it can form a horizon
as expressed in E¢3.22. Here we study the vortex solu-
tions for three cases such that they have zé&egular
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vortex with asymptotic hyperbola one (extremal black 3 T — L5
hole), and two (Reissner-Nordstr-type black holg hori- /

zon(s).

1. Regular neutral vortex

N
\
<|

In the previous subsection, we studied the global vortex Y
case of a zero cosmological constant. As expressed in Eg. s
(3.9), the gravitational correction due to the object contrib- /
utes negatively tB(r) and becomes dominant for large
and finally changes the sign B{r) for somer. The problem 0 9 4 6
was started by the very coordinate singularity, that is, the Vor
zero point ofB(r), and finally turns out to have a physical FIG. 2. Regular vortex configurations:A|/\v2=1.0 and

singularity. Therefore, if the sign d8(r) does not change 87Gu?=1.25 for solid lines, andiA|/\v?=0.1 and &Gv2=1.15
for everyr, there may probably be a regular global vortex,. -cucq lines

solution interpolating ¢|(0)=0 and|¢|()=v smoothly.

In this viewpoint, the positive contribution of the negative | ¢|(«)=v smoothly exists, and so dobKr) from Eq.(3.6).
cosmological constant in E3.9) is drastic. No matter how The shapes of solutions obtained numerically are shown in
small the magnitude of the cosmological constant is, thig=ig. 2. The obtained regular neutral vortex solutions of the
term is dominant for a sufficiently largesince it is propor-  topological charge are classified into two categories by the
tional to the area of space~(2) for any solution with a behavior ofB(r). When|A|>27GAv*—87G ¢35, in Eq.
boundary conditiord| ¢|/dr|,_..=0. When|A|/v? is larger ~ (3.12), B(r) is monotonically increasing as shown by the
than 87Gu?, the first term in Eq(3.9) can be larger than the dashed lines in Fig. 2. thm|<27-rG)\v4—87-rG¢§5n1 in
second term. Then, in accordance with another boundarig.(3.12, B(r) must have a positive minimum for the regu-
conditionB(0)=1, B(r) can always be positive for every lar solution as shown by the solid lines in Fig. 2.

OnceB(r) is regular and has only a positive sign for every From Eq.(3.33, we can roughly estimate a criterion for
a regular global vortex solution connectihg|(0)=0 and  positive B, or equivalently for the regular solution:

-]

The extremal black hole has to satisfy the boundary condtiBidr |,H=0 in addition toB(r)=0. Suppose that there is
an extremal black hole; the position of the horizon can exactly be expresset| bynly:

1

AL x|—”2 <%)2+ ~0(\) (3.39
47TGV‘TUrm~1v [$lm~v (\/erm)2 v 2 . '

2. Extremal black hole

47Gn?| |3

\/ TGNl ¢l from Eq. (3.9 or By;=B,,=0,
|A|=27GN(|$[—0v?)?

ry= (336)

n from Eg. (3.3.

WA (v2=[9[3)

Combining these two, we obtain an explicit value fei ,

|A| 1/4
=p|1l—-——| <uv, 3.3
[l 27GAv* 337
andry,
[ n Y

when 27Gpl~ —,

n ) \/;v Av? (2.39
ry= ~ :
: |A| 172 47TG)\U4 n |A|

——— when 27TGUZ> .
Av| 1- 1-——
\/_ 27TG)\U4 \ |A| \/;U )\U2
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3 T T T L5 (¢0,Np)’s in Eq. (3.10 and Eq.(3.12), and the other patch
from the horizon to spatial infinity| ¢| () =v, N(*)=1].
We obtain one for a model with 8Gv?=1.338 and
2 1 |A]/\v2=0.1(see Fig. 3.

v 3. Charged black hole with two horizons

As the scale of cosmological constdrt|/\v? becomes
smaller than the critical value to support the extremal black
Ty hole, we expect to withess a charged black hole with two
0 9 4 6 horizons. One can easily read this phenomenon by examin-

Vur ing the integral equation d(r). The right-hand side of Eq.
(3.9 involves two contributions; the positive term is propor-
tional to |A| while the negative one is proportional ®.
Obviously two terms are zero at the origin, andB@®) is
equal to 1(positive. If the second term dominates due to
|A|/\v?<87Guv?, thenB(r) becomes negative at some in-
termediate region. However, for sufficiently largethe first
term proportional to the square of the radiuis much larger
than the second term of which the leading contribution is
éogarithmic, and finallyB(r) becomes positive again.

FIG. 3. Extremal black hole solution{A|/Av?=0.1 and
87Gv?=1.338.

The second line in Eq3.38 coincides with the result in Eq.
(3.18 based on a rough estimation. The complete determi
nation of the position of the horizan, and the value of the
scalar amplitudée|,, is an inevitable result since the leading
terms of Eq.(3.3) and Eq.(3.7) lead to two algebraic equa-
tions in the case of the extremal black hole. Therefore, th

series expansion of Eq€3.3), (3.6), and (3.7) in order of From now on, let us discuss details about the existence of
(r—ry) determines all coeﬁiéients’of the power series solywo horizons in several steps. The first step is to show that

tions|&|(r), N(r), andB(r) in closed form. there exists the inner horizon, where |¢|(r;,)<v and

Before arguing for the existence of a global vortex solu-d|¢|/dr|rH>0' Let us assume a situation that
tion constituting an extremal black hole, a comment shoul®TG(\v*+4¢58,,) is much larger thadA| in Eg. (3.12
be made here. To guarantee a solution of 887 and Eq.  and|¢|(r)~ ¢or". Then there exists an appropriatg for a
(339 we must impose the following condition: sufficiently smallr such that|¢|(r)<v and B(r) hits the
|A|/27GAv4<1, since this is nothing but the condition to zero point approximately at
distinguish then>2 solutions with a minimum at nonzero  r,~1/\J27G(\v*+4¢36:,)—|A|. The second step deals
from those with monotonically increasing(r) in Sec. with the outer horizon. Again let us assume that the scaled
I B 1. So it is not useful except fon=1 solutions. Since cosmological constant\|/\v? is much smaller than the ra-
dB/dr|;=0 at the horizonBy in Eq.(3.22 and Eq.(3.26) tio of the square of the symmetry-breaking scale and that of
must vanish at the horizan,, and therBy, in Eq.(3.27)is  the Planck scale 2Gv?. Then there exists obviously a po-
automatically positive: sitionr such that Eq(3.15 without the term of order &f is

valid (r>r.) and, simultaneously, tHe\ |r? term can also be

|A| neglected:

27GAv?

Buo=Bmy=8mGAv*\/1—
(3.19~—8nGuv?n?Inr/r,—8GM+1

Al

———|>0. 3.39 ~A47Gv2n3(1-21Inr/r.) +1.
PP (3.39 mGv“n( c)

X(l— 1-
(3.4)

This implies a convex-down property 8{(r) at the horizon ¢ the second logarithmic term on the right-hand side of Eq.
of the extremal black hqle. In addmon the.posmvny of the (3.41) is larger than order 1 for sonte the value ofB(r) is
slope of the scalar amplitude gives a condition negative at this range of For an arbitrarily small positive
.., |#|(r)<v. In addition,d|¢|/dr | is positive because
of the negativity of both the numerator and denominator in
Eqg. (3.19. The third step begins with recalling, obtained
in Eq. (3.18 by minimizing B(r). For the condition
which is more restrictive than the previous one from Eq.2mGv>[A[/\v?, rp>r}}. Since Eq.(3.19 tells us that
(3.37 and Eq.(3.38. The power series expansion of higher B(r;) <0 when 8rGv?n?>1, r,, should exist and be
order terms will make the condition more and more restricdarger thanr,,. Therefore, the remaining step is to find a
tive. Note that the data for our numerical solution in thesmooth scalar fieldip|(r) to have two horizons}} andr{"
caption of Fig. 3 are consistent with E@.40. through numerical analysis. The above range does not forbid
Now the remaining task is to find numerically a patchthe convexity of the metric functioB(r) both for shooting
of solution connecting smoothly the boundary from the outside and for shooting from the inside; it implies
conditions [|¢#|(0)=0, B(0)=1] and [|¢|y=(3.37), the possibility of the existence of a smooth configuration to
By =dB/dr|y=0] by use of the shooting method for various connect|$|(0)=0 and|¢|(«)=v. The approximate value

A 1
—+
A2 327Go?

1
<§, (3.40
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3 . . T L5 Using these constants of motion, we obtain the following
geodesic equation for the radial motions:
== V(r),

1(dr}® 1
2\lds] 2
(3.44

wherem can be rescaled to be 1 for any time like geodesic
and 0 for a null-like geodesic. The radial equation in Eq.
(3.49 is an analogue of Newton’s equation fice 0 with a
N conservative effective potentigl(r) in which the hypotheti-
_ ) o cal particle has unit mass and zero total mechanical energy.
oF1G- 4. A charged black hole solution with two horizasand | order to identify the existence of the black hole, a mean-
rg" [Al/A0*=0.1 and &Gv*=14. ingful quantity is the elapsed coordinate timef the static
, observer at for the motion of a test particle fromy to r:
of the inner horizon isyAvr{j~2.03 and that of the outer
horizon is\Avr{"=3.05 from Fig. 4. o dr
Now we have three types of global(1) vortices in t=J .
anti—de Sitter spacetime. Smooth as the configurations of the ' B(r)eN“)\/l— (1y?)(m?+ L?/r?)B(r)e*N™"
scalar field ¢|(r) are, the forms of the metric functids(r) (3.4H5
contain horizons. At this stage, we should make it clear . ]
whether the singularity at each horizon is a coordinate arti- When we analyze the motions of test particles, they are
fact or a physical Singu'arity_ The answer is given by exam_diVided into four Categories aCCOfding to whether they have
ining the square of the curvature: Specifically, themMass (=1) or not (M=0), or whether their motions are
Kretschmann scalar is expressed by the Einstein tensors RHrely radial ¢ =0) or rotating ( #0).

2

2
m?+ —
I,2

,)/2

e2N(r)

B(r)

2+1 dimensions, a. (m=0, L=0) (regular solution. For the radial motion
of a massless test particle, the effective potential has no ex-
R, upeRETPT plicit dependence oB(r) such that

_ 1dB 1dB BdN 2
=4G,,G*'=4 Tr| dia

________ = V(r)=— 2 2Nn<o, (3.46
dN\? The allowed motions ardi) stopped particle motion for
B W) ) . (3.42 v=0, which is unstable, andi) an unbounded motion for
v# 0 since the potential is negative everywhere even at spa-
. ) . tial infinity. Moreover,N(r) is monotonic increasing, and so
At first glance one can read no curvature singularity at thene ragdial force is always attractive. Then the test particle
horizons from the expressid.42. The forms of Eq(3.6)  gtarts with initial speed greater than/dr=y/+/2 at a point
and Eq(3.7) tell us that there is no divergent curvature at the, anq approaches the center of the vortex. Obviously there
orgin as Iar as the scalar fiel@|(r) behaves regularly, i.e., s no horizon[B(r)>0 for all r], and a test particle starting
| Bl(r)~r". . . . from a finite initial positionr  arrives at the origin in a finite
As mentioned previously, a characteristic of BTZ bIathime measured by the clock of the static observer: i.e.,

holes is that they need not contain divergent curvature at real_ r, N(T) e fimi
r. We have understood that the Schwarzschild-type solutio% go dr/_B(r)e 1S f|n|t:a. luti ional
in Eq. (2.13 is regular everywhere and the charged black P- (M=0, L#0) (regular solution. For a rotational mo-

hole formed by the neutral vortex discussed in the SeCtion, the centrifugal force term is introduced in the potential

1d°B 3dBdN d?N

2 drz 2 dr dr dr2

B3 has also a divergent curvature counterpart of a/(n):

charged BTZ black hole formed by the electric point source ) )

in Eq. (2.19. Here let us clarify the structure of manifolds V()= E( L°B(r) v ) (3.47
and the nature of forces due to the global vortices by study- 2 r2 @2N(r) |’ '

ing the geodesics of test particlgg3].

The geometry depicted by the metric in Eg.8) admits  which forbids the motion near the core of the vortex. From
two Killing vectorsd/dt andd/ 96, and then the constants of Fig. 5, we read the minimum value of vy, which means
motion along the geodesic are no motion is allowed fory smaller thany,, (see the dotted
line in Fig. 5 and the circular orbit is at the radius, for
v= 7y (see the solid line in Fig.)5Wheny>y,,, the mo-
tions are classified into two categories according to the val-
ues of y/L: (i) When y/L=\[A[, the motion is unbounded
wheres is an affine parameter along the geodesic. Note thah which the speed of the test particle at spatial infinity is
one cannot interprey as the local energy of a particle at dr/d|,_..=L*|A|—y* [see dashed line€i) and (iii) in
spatial infinity, since the spacetime is not asymptotically flatFig. 5]. (i) When y./L<y/L<\[A], it is a bounded orbit

—geN D and L=r22’ 3.4
y=BeT 4o an s (3.43
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TABLE I. The radial motions of a test particle of mass-1 for
variousy’'s, when|A|/Av?=1.0,Gv?=1.0, andL is rescaled to 1.
Fig. 6 vy Orbit,force
(i) 0=<y<stop No orbit
(i) Y= Ystop Stopped motion atq,
(iii) Yeop< y<€V®  Oscillation betweer ;, andr y,
01k e e e e e e e e = (iii) (lV) Y:eN(O) I’min:0
V) eNO < y<yy I <rmax repulsive near the core
i 1 1 1 1 1 1 1 = < 1
0.20 N S . " : . o (vi) V=Y I <rmax attractive everywhere
\/er
FIG. 5. Schematic shapes of the effective potenfial) for the 1 L2 9
. . . y
rotatlgnal motions .o.f the massless test particle whenl. Here V(N ==|BN| 1+ —| - _ (3.49
B(r) is always positive. 2 r2 2N(r)

with perihelionr .,;, and apheliorr ., [see a dashed lin@)
in Fig. 5]. For the bounded motion, the apsidal distancev(r)~;|A|r2 for large r, and V(r)~L22r2 for small r
I max—Fmin IS in orderyAuv. 2 ’ '

c. (m=1, L=0) (regular solution. For the radial motion
of a massive test particle, the potential of it is

Therefore, there exists a critical valuegfy,.., for positive
B(r) such that there is no orbit far smaller than this critical
value y... The allowed motions ar@) the circular orbit at
1 52 Ieie When y= vy and (ii) the bounded orbit between the
V(r)= 5( B(r)— 2Nm> . (3.48 perihelionr ,;, and apheliorr ., When vy is larger thany,.
e (See Fig. 7. Similar to the previous bounded orbit motions,

SinceB(r)~|A|r? for sufficiently larger, all possible mo- tlr}e\}xrjnge of allowed region is roughly estimated as a few

tions are bounded; i.e., there exists g, such thatr <r .« , . . .
for any positionr of the test particle. WheB(r) is mono- Now we have the global vortex configurations with hori-

tonic increasing,V(r) is also monotonic increasing and zons, 1.€., the points of vanishing(r). .We examine the
thereby the force is attractive everywhere. It is physicallyposs'IbIe motions OT massless and massive test parucleg under
natural since sufficiently large negative vacuum energy caf1® influence of this geometry and identify these manifolds
pervade all space despite the repulsive force at the core & those of extremal and Reissner-Nordsttype black

the vortex. Therefore, the motions are allowed only wherholes. Similar to the case of regular solutions, we analyze the
y=eNO): Wheny=eN©), the test particle stops at the origin, Orbits for four categories. For the extremal case, there is no

and, wheny>eN(©, the particle can move inside,,, and  distinction from the Reissner-Nordsimocase when we set

the stopped test particle starts to go inward. WB€n) has szfiﬂzfﬁ“t-

a positive minimum at a nonzerg the schematic shapes of  e. (m=0, L=0) (extremal and charged black hoje&or
the effective potential/(r) are given in Fig. 6, and the pos- the radial motions of a massless test particle, the effective
sible radial motions are classified in Table | since it seemgpotentialV(r) does not depend dB(r) as in Eq.(3.46), and
that ysiop< eN© in our solution. so the analysis in Sec.lIB 1 a is thesame as that for this

d. (m=1, L#0) (regular solution. For the rotational case. However, sincB(r) includes a negative region be-
motions of a massive test particle, the effective potentiatween two h()riz()nsr'}['1 andraUt, the radial motions are di-
takes the general form vided into two: one around the vortex core inside the inner

horizon (<r}]) and the other outside the outer horizon

() (i)

0.4 T T T T

(vi) 0.4

04 =

FIG. 6. Schematic shapes of the effective potenfial) for the
radial motions of the massive particle. HeB¢r) has its positive FIG. 7. Schematic shapes of the effective potential) for the
minimum at a positive . rotational motions of the massive particlg,,. is 0.832 and_=1.
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between the horizons [[<r<r{") and theN(r) term in Eq.
(3.47) is always negative, the shapes of the potential for this
case correspond to the dashed lip@s (ii), and(iii )] in Fig.
5. Then the allowed regions are as follows: When
YIL<\JA], fmin=<r<r and r®"<r<r,, for two bounded
motions. Wheny/L= \[A], rpin=<r<rl for a bounded mo-
tion inside the black hole and'<r for an unbounded mo-
F tion outside the outer horizon. As noted in E§.51), the
) time elapsed to reach a horizon for a static observer is infi-
! nite, which means no orbital motion.
L L I L g. (m=1, L=0) (extremal and charged black hoje#\s
Sor discussed in Sec.lIB 3f, V(r) includes a negative region
betweenr pin(fmin<<ft1) and rma(rmaro"). Therefore, for
FIG. 8. Schematic shapes of the effective potential) for the  various+y values, one can expect two patterns; one is given
radial motions of the massive particle. The shaded region betweeim the lines(iii)—(vi) in Fig. 6 and the other is summarized
the inner and outer horizons is forbidden for the test particle. below (see Fig. 8 The corresponding solutions are provided
in Table | for the former and in Table Il for the latter. For the
(r>r2". Though the motions at the particle’s coordinatesBTZ black hole solutions we obtained, the extremal solution
resemble those of reguld(r), they are observed with a follows Fig. 6 [(iii)—(vi) in Table I] and the BTZ solution
drastic difference to the static observer. Silfe) vanishes With two horizons follows Fig. §Table Il).

both at inner and outer horizons, the elapsed tine reach h. (m=1, L+#0) (extremal and charged black holegor
a horizon is logarithmically divergent in terms of coordinate any rotating motion for the massive particle under the influ-
time for the static observer: ence ofB(r) for the vortex black hole, the allowed regions
are rpi,<r<ry; in which the force is repulsive, and
. routy dr r o< r <r . in Which the force is attractivésee the dashed
t~ lim B (350 jine in Fig. 9
oot dre  B(r) g. 1.

Under the metric written as in Eq2.1) the conserved
quasilocal mass measured by a static observeriatgiven
by [14]

out, dr
~( lim f’“* out)X(finite parp,  (3.5D)
r r

s0T 0 r—ry

8GMy=2eNB(r)[VBy(r)—VB(r)]. (3.52

wherer,>r2"+¢. Since the potential is attractive outside
the outer horizon, the ingoing particle takes an infinite timeHere By(r) is the background metrig"™ which determines
to reach the outer horizon for the static observer. If we rethe zero point of energy. The background can be obtained
placer(+& by rji—e andro<r{j—e, then one can easily simply by setting the integration constant of a particular so-
notice that the situation is the same for the case inside thkition to some specific value that specifies the reference
inner horizon. However, one must remember the attractivérame. As we discussed previously, the background is the
nature of the force inside the inner horizon, which causes thepacetime without the global vortex, specificalhs0 and
test particle to move the center of the vortex. |#|(r)=v and therebyBy(r)=|A|r?+1. When the space-

f. (m=0, L+#0) (extremal and charged black ho}eFhe time is asymptotically flat, the usual Arnowitt-Deser-
rotational motion of a massless test particle is described biisne(ADM) massM, is determined in the limit— . For

the effective potential in Eq.3.47). SinceB(r) is negative sufficiently larger, Eq. (3.14) and Eq.(3.19 give

TABLE II. The radial motions of a test particle of mass=1 for variousy’s, when |A|/\v2=1.4,

Guv?=0.1.

Fig. 8 y Orbit force

(i) y<eN© Fmin=<r<ri" (repulsive, ri"'<r=<r., (attractive

(ii) y=eNO Fmin<r<ri" (repulsive, r&"<r=r,.,, (attractive
Stopped motion at=0

(iii) eNO<y<yp Fmin=<r<ri" (repulsive, r&"'<r=r., (attractive
I <Iop<Imin (altractive

(iv) Y= Ytop r <rp (attractivg, stopped motion at,,

r<r" (repulsive, r'<r<r ., (attractive
(v) Yiop<Y< Yfat r<ri" (attractive-repulsive r "'<r <r .. (attractive
(vi) Y= YViat r<r‘,§‘ (no force atr, attractive elsewheje

F<r <r e (attractive

(vii) Vit <Y r<rif, ro<r<r... (attractive everywheje
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r—oo

My — mn2o2Inr/r + M. (3.53 (4-2)=1:[ |¢|‘391"‘f [d®][d7,]

eHvP
Tgﬂv’r]p ex ideX\/a
v

g
X| - ——C,C,+g*'C,(d,0+17,
2107 " g*"C( 7,)

Thus the quasilocal mass determined ate contains two X[dC,]s
terms: finite negative mass from the core of the vortex and
the logarithmically divergent one from the topological sector
of Goldstone degree. This coincides approximately with the

mass formula of the global vortex in flat spacetime, which is '
obtained by the spatial integration of the time-time compo-

nent of the energy-momentum tensor. Tholgh cannot be

identified as ADM mass due to the hyperbolic structure OfLet us rewrite thes functional in Eq.(4.3) by introducing the

global spacetime of our m;erest, its form Iook_s natural ONCe, [ vector fieldA e,
we recall the nonpropagation of(a+1)-dimensional gravi- L

ton in anti—de Sitter gravity.
5(

4.3

emtvp eMtvp
Tgaﬂ,p =J[dA,]ex —ivfd3X\/§TgAM(9V77p ,

IV. TOPOLOGICAL CHARGE AS A BLACK HOLE

CHARGE and integrate ouy,,. Then we obtain a relation from the
functional, C,,= (v/2)\ge,, F and F,,=d,A,—d,A,.
Finally if we do the integration over the vector auxiliary field
%M, then Eq.(4.1) becomes

In the previous section we have shown that the long tail o
a neutral static vortex can provide the black hole charge in
(2+1)-dimensional BTZ black hole. By use of the duality
transformation15], we construct the direct relationship be-
tween the topological chargeof the neutral vortex and the Z=f [9¥dg,, ][ 4| 2d|¢|I[dA,][dO]
electric charge of the dual transformed theory. Through this

analysis the reason why the vorticityof neutral objects can 1
play the same role aglectrig charge of the BTZ black hole xXexp i f d3x\/§ - R(th 2A)
will be manifest.

The path integral of our theory is written as 2

1 v
— MV — _ MV NPOT
+ 5949, ¢ld,| 4l = V(| 4]) 4|¢|29 9°F 1o F vo
_ 1
_ ; 3 _
Z—f[dgw][ddﬂ[dd)]expud xg| - 755 (R+2A) b
+——=F,.0,0|. (4.9
T 2\9
+ 59" 0,63,6- V()| |- @y | o
This duality transformation can be achieved in arbitrady (

+1) dimensions by use of an antisymmetric tensor field of
rank (D—1), and so the Maxwell-like term in Ed4.4) be-
comes nothing but the Kalb-Ramond actid®] in (2+1)D.
The Euler-Lagrange equations read

Rewrite the scalar field in the path integral in terms of the
radial variablesp=|¢|e'®* and linearize the term of the sca-
lar phase such that

L (Vag ool = ——grgre, . — -3V
v = gg v v = g Vg 7 vo Al L]
f [dQ]ex ifdgx\/gg# |4]%0,05,0Q Che 2/4l° " dl¢|
2 e (4.5
- 1 b2 e
~T1 l¢l % [a01rdc, ) 1, ((_ ,w>:_
A Vg—F 9,0,0, (4.6
x Vo |2 R
_ g"’[C,C
3 M=V 2
Xexp{'fd xg = ( PR _ZC“&”Q)“' Ry 2 (R+20) =~ gr7(g,,0™ — 407G F,F
Y% 2 4|¢|2 2% puIv) U prt ok
(4.2 .
+ g/’igg_ Eg,u,vgpo—) apl ¢|(90'| ¢|

Let us divide the configurations of the scalar phase by the
topological secto® which is (e#*?//g) 3,d,0#0, and the +9,,V. 4.7
single-valued party which satisfies €“**/\/g) d,d,m=0:

Q=0+ and[dQ]=[dO®][d7]. Integrating outy and us-  Since we are interested in neutral objects which do not carry
ing [dd, »]=[d»] up to afield-independent Jacobian factor,a global U1) charge C0=gOM|¢|2af‘_{_l=0), they do not
we have carry a dual magnetic fielfF' = (€%1/./g) C,=0]. Thus
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the spatial components of the equation for the dual gauge V. PHYSICAL RELEVANCE AS A BLACK COSMIC
field are automatically satisfied. The time component of Eq. STRING IN (3+1)D

(4.6) is nothing but Gauss’ law in the asymptotic region for
larger (| ¢|—v): For the rotationally symmetric vortex so-
lutions @ =n4, it is

We have considered the global vorticeg2+-1)D curved
spacetime: however, these point-particle-like extended ob-
jects on the spatial plane may describe the straight global
1 1 U(1) strings along the direction[4]. If we consider a static

ai(\/EFOi)~n—5<2>(>2). 4.8 metric of cylindrically symmetric string along theaxis

g Vo

ds’= 2NO(dt?—dZ?) — ar
The next order term of the scalar amplitude due to the small =B(re (dt ) B(r)
perturbation from the vacuum valwedoes not contribute to
the charge, and so one can easily identify the vortioigs  \hich also has boost invariance in theirection, the previ-
the electric charge of the dual gauge field. Similarly, SiNC&ys analysis moves t63+1)-dimensional anti—de Sitter
the scalar amphtude terms, which are the sepond and th'rgpacetime with no change since we already adjusted the di-
terms on the right-hand side of Hg.7), fall rapidly as the  mnensjon of fields and constants to those inl3dimensions.
radial coordinater increases, the time-time component of  ere et us take into account a perfect situation: A global
Einstein equations in Ec{.4.7)_ has the leading contribution U(1) static string straight along the axis was generated in
from the negative cosmological constant term and the next,me symmetry-breaking scaleand has evolved safely to a

2
—r2de#?, (5.1

leading term from the electric energy for large static object in the present universe. Inserting the Newton
constant and the present lower bound of the cosmological

N 2 ) N 2n2 constant into Eq(3.39, we have the critical value for an
Goo~€™'B| A+ 2|¢|2(F0i) ~eTB| A+u 2] extremal black hole in our room temperature scale,

4.9 |A|/2m\v?~0.3 eV. This implies that, when the cosmologi-

' cal constant is negative and bounded by the experimental
Obviously, the electric field can be identified as that of thelowefSgl'm't " the present unlv§g§e[—(0.§4—0.99
point charge at the origin. The self-energy in flat spacetime< 10~ (GeV)"<A<(0.68—1.98K10™* (GeVv)" [20]],

contains a logarithmic divergence. Therefore this topologicail® global strings produced at almost all the scales remain as
charge can constitute the charge of the BTZ black holescharged black strings. However, the global vortices made in

B(r)~|A|r2—87Gu2n2inr— M for larger. f"rglativistic” _"'He superfluid are regulg1]. The character-
At the core of the vortex, the nonvanishing component of'St¢ scalerH5 in Eq. (3.39 is %ds pc for the grand unified
the dual electric fieldF,, is regular: For smalt, scalev~101_ GeV, and is 10< a.u. for electroweak scale. .
The underlying physics for the reason why we reached this
enormous size of horizon is easy: The mass density of a
FOrM_n@an—l, (4.10 black cosmic string per unit length is given by the ratio of
v? the scalar mass and the Planck scalerBuv, but the nega-

tive vacuum energy density inside the horizon is given by the
since | ¢|(r)~ ¢or". The dual electric field term of the ratio of the square root of the absolute value of the cosmo-

energy-momentum tensor in E@.9) is also regular: logical constant and the scalar magpA[/Av. The scale of
cosmic string generation is large, but the lower bound of the
02 n2 ¢(2) present cosmic vacuum energy is extremely small. Then the
Tosxe?"B (For)?~ > _2e2N(0>r2(“—1>_ (4.1 scale for this black cosmic string characterized by the hori-

2|¢? zon scale should be very large. Though these values are ob-
tained under a perfect presumed toy situation without taking
Therefore, the role of 14|? in Eq. (4.6) and Eq.(4.7) is a  into account fluctuations around the black cosmic string, the
regulator of the soliton at its core. huge radius of it, namely, the radius of the black cosmic
Now we have an understanding that the addition of thestring produced in the grand unified theo/@UT) scale
global vortex of vorticity n to the center of the (~10° po) is larger than the diameter of our galaxy- %
Schwarzschild-type BTZ black hole produces a Reissnerx 10* pc), and may imply a difficulty for the survival of the
Nordstran-type BTZ black hole of electric charge This  charged black cosmic strings produced in such an early uni-
implies that spinless static vortices with finite energy in flatverse in the present universe with an extremely small bound
spacetime, e.g., the topological charge of Abrikosov-for the cosmological constant. Once a global cosmic string is
Nielsen-Olesen vortices in the Abelian Higgs model or thatproduced, it starts to radiate gapless Goldstone bosons. This
of topological lumps in the (3) nonlinearo model, cannot dominant mechanism for energy loss makes the lifetime of a
give rise to an additional BTZ black holglectrio charge typical string loop very shoif22]: A global string loop os-
since they do not carry long tail of energy density. However cillates about 20 times before radiating most of its energy
it is an open question as to whether the spinning chargedhich is contrasted with gravitational radiation where the
solitons, e.g.,Q lumps (or nontopological global vorticés oscillation lasts about ftimes. The space outside the hori-
[17] or topological or nontopological vortices in Chern- zon of the black cosmic string is almost flat except for a tiny
Simons theorie§18,19, can constitute a BTZ black hole attractive force due to the negative cosmological constant as
with both charge and spin. shown in Eq.(3.44) and Eq.(3.195, and then the massless
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Goldstone bosons can be radiated outside the horizon. Hovasymptotic space is hyperbolic, all the motions of massive
ever, almost all the energy accumulated inside the horizoparticles are bounded. However, some massless test particles
remains eternally. This “black” nature of the global U(1) can escape to the spatial infinity of a hyperbola.
string in the anti—de Sitter spacetime is remarkable at least In 3+1 dimensions, the obtained global vortex-BTZ black
for the case of straight cosmic strings. hole depicts a straight charged black cosmic string. We
Finally, let us emphasize again that we have two mas$rought up a toy model situation that these objects formed
scales, the core mass and the inverse of the horizon, whidhrough a cosmological phase transition in the early universe
are determined by three energy scales with large differencegfrom the grand unification scale to the standard model scale
namely, the Plank scale (IG~10" GeV), the present and survive in the present universe assumed with an allow-
bound of the cosmological constant/W~ 10742 GeV), ably small magnitude of the negative cosmological constant
and the symmetry-breaking scalftom v~10° GeV tov  (|A|~107% GeV?). The corresponding scale of the hori-
~0.3 eV). Therefore, the very existence of this horizon iszonry is in order from 16 pc to 102 a.u. Then it implies
expected to change drastically the physics related to the dyhat the observation of a black cosmic string in the present
namics of global 1) strings, e.g., the intercommuting of universe may relate the bound of the negative cosmological
two strings or the production of wakes by moving long constant to the production of globall) vortices in the early
strings[4]. universe.
Three brief comments are now in ordéi). For the vorti-
V1. CONCLUSION ces in the Abelian Higgs model or(8) nonlinearc model,
they have finite energy in flat spacetime. A question of in-
In this paper, we have considered a scalar field modeferest is whether they can form black holes in anti—de Sitter
with a spontaneously broken(l) global symmetry in(2  space. Until now we do not have an answer to this question
+1)-dimensional anti—de Sitter spacetime, and investigatef23]. If we find them, such BTZ black holes must be
the cylindrically symmetric vortex solutions. We have found Schwarzschild type without an electric charg@) Static
regular topological soliton configurations of which basecharged BTZ black holes can also be obtained in dilaton
manifolds constitute smooth hyperbolic space, extremal BTZravity. Therefore, the global () vortices coupled to dila-
black holes, and charged BTZ black holes according to théon and anti—de Sitter gravity may have some relevance in
decreasing magnitude of the negative cosmological constanétringy cosmology{24]. (i) For more realistic models of
Different from the zero cosmological constant space supstraight static black cosmic strings, a general metric of the
ported by the global ) vortex, which cannot avoid a form ds?=B(r)e*N"(dt—C(r)dz)?—B(r) ‘dr2—r2de?
physical singularity, the obtained anti—de Sitter spaces are D(r)dz? has to be taken into account.
(physica) singularity free. Because of the logarithmic long
tail of the (_30Id_st(_)ne mode, the BTZ black hole als_o carries a ACKNOWLEDGMENTS
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