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Effective action and motion of a cosmic string
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We examine the leading order corrections to the Nambu effective action for the motion of a cosmic string,
which appear at fourth order in the ratio of the width to radius of curvature of the string. We determine the
numerical coefficients of these extrinsic curvature corrections, and derive the equations of motion of the
worldsheet. Using these equations, we calculate the corrections to the motion of a collapsing loop, a traveling
wave, and a helical breather. From the numerical coefficients we have calculated, we discuss whether the string
motion can be labeled as “rigid” or “antirigid,” and hence whether cusp or kink formation might be sup-
pressed or enhanceld0556-282(197)04224-(

PACS numbsgps): 11.27+d, 11.10.Lm, 98.80.Cq

[. INTRODUCTION network would rapidly become tangled and would not obey a
scaling law; such a configuration would be in conflict with
The study of topological or vacuum defects is of impor-the universe we see around us today. Even with intercommu-
tance in many areas of contemporary physics. In high-energgation[6], strings which are strongly rigid and hence straight
physics, a defect will generically occur during a symmetry-will have different gravitational effects to those that are very
breaking process where different parts of a medium chooserinkly [7,8].
different vacuum energy configurations, and the noncompat- The dynamical behavior of a defect is generally assumed
ibility of these different vacua forces a sheet, line, or point ofto be approximated by an effective action, a description
energy where these noncompatible vacua meet. The relevawhich models the rather large numbers of degrees of free-
vacuum order parameter then becomes indeterminate—thadom of the full field theory by the smaller number of degrees
is the defect. A defect may be topologi¢al, in that it is the  of freedom based on the position of the core of the defect.
topology of the vacuum that simultaneously allows forma-Attempts to derive effective actions or equations of motion
tion, and prevents dissipation, of these objects—but othefor topological defects have commonly focussed on the
types of defect are also possible. For instance, a defect mastrong coupling limit, meaning that of large values of the
be stable dynamicallgi.e., classically, due to energy consid- coupling coefficientA of the relevant Higgs field. In this
erationg but not topologically, as it happens for semilocal limit, the defect becomes infinitesimally thin and effectively
[2] or electroweaK 3] defects. A defect can even be “topo- decouples from the othénfinitely massive particles in the
logical” and unstable, as in the case of textufd$, but field theory. The study of the effective motion of topological
nonetheless of physical importance. defects has been extend@#-11] away from the limit\ — o
In cosmology, there has been much speculation that topde cases for which the thickness is small but not exactly zero.
logical defects(stable or otherwigemight have played an The resultant effective action generically contains a “zero-
important role in structure formatid®]. In general, there are thickness” term proportional to the area of the defect
two main concerns when considering the cosmological eff12,13, and extrinsic curvature terms which appear at qua-
fects of topological defects: their gravitational effects anddratic order in the thickned®—11]. The exact form of these
their dynamics. Any theory concerning galaxy formationsecond order terms is dependent on whether an “off-shell”
must be able to allow or constrain the presence of stronglyr “on-shell” approach has been used to derive the effective
self-gravitating objects. But the dynamics of the defects araction as was explained using the example of the domain
in fact even more important, for it is the dynamics that de-wall in [14], and one finds that in a self-consistent order by
termine to a large extent the shapes of the gravitating defectsrder solution of the equations of motion, the only quadratic
For instance, if cosmic strings did not intercommute, anycorrection appearing is due to the geometry of the defect
world surface, and is proportional to its intrinsic Ricci cur-
vature[14]. For the domain wall, this term gives corrections
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The leading order corrections to the motion of a cosmic Il. DERIVING THE EFFECTIVE ACTION
string were shown by one of Ud5] to appear at quartic

order in the string width. In this paper, a systematic expan- In this section we review the formalism required for the

sion of the geometry and field equations clarified an earlief;erme/?t'%gsoef dthc?n Sttrrnltra]gcc?r]:ftee%tt“s/ema()ctllcén.T-Lhels fggr:rlr']sgf IS
discrepancy concerning second order “twist” terf®4, and gely o P

derived the fourth order action of the string, which is b!“'”dmg. the _effectlve action Is to reduce some  four-
dimensional field theoretic action integral

o o
S=—uf dza\/—_y[l—riiRH;‘ ;2732 5=—f d*x\-gr @
ag N to some two-dimensional worldsheet integral
+— K, KEKL KM (1)
u M | [
Sef= — j d’e V= YLeit - (3
whereR, K;,, are the Ricci and extrinsic curvatures of the

luv
worldsheetto be defined in the next sectiprand thea; are  We follow the canonical approach by setting up a coordinate
numerical coefficients depending on the field theory modelsystem based on the worldsheet, and expanding the action
ing the vortex(to be defined in Sec. Il for the Abelian-Higgs and equations of motion around this worldsheet. By “ex-
mode). Unlike the domain wall, whose background solution, pand” we mean that we do not expect in one attempt to be
and extrinsic curvature corrections can be expressed analytible to solve the full equations of motion and integrate out
cally [14], the prototypical cosmic string solution, the (otherwise why find an effective actipbut that we will be
Nielsen-Olesen vortekl2], does not have a closed analytic able to express the equations of motion for the system in
form, hence these coefficients must be evaluated numerterms of an expansion ins«, whererg is the radius of the
cally. string, andx a typical scale of the extrinsic curvature of the
As soon as one calculates corrections to the Nambu agyorldsheet. We then solve the equations of motion in the
tion, it becomes of general concern whether or not thesgirections perpendicular to the worldsheet, and integrate out
corrections cause the motion of the defect to be “rigid” or the four-dimensional actiof2) over these degrees of free-
“antirigid.” The implications of extrinsic curvature terms dom to get an action of the fori8).
for string motion have been well-explor¢ti0,16-19, how- We will look at the particular case of a(ll) local string in

ever, it is not always easy to decidepriori (especially for  flat spacetimésignature+,—,—,—). This is a vortex solu-
the fourth order termswhether the strings will be rigid or  tion of the Abelian-Higgs model

not, or indeed what one means by rigitB].
In this paper we address these issues. We determine the 1. A
numerical values of they; for the Abelian-Higgs model by L=(D,¢)"(D"¢)~ 27 P Z(|<P|2— 7)°% (4
solving the perturbed field equations for the nonflat world-
sheet. We then derive the fourth order equations of motioR here

i X .=V, +ieA, is the usual gauge covariant deriva-
from Anderson’s action and calculate corrections to thre%ve andE . the field strenath associated wi We re-
“test case” trajectories: the circular loop, the traveling wave, "’ AV 9 ; &), . )

I){vrlte the field content of this model in the usual way:

and the helical breather. These three solutions display diffe
ent characteristics which should be mirrored in the correc- o o i (X9

tions to the Nambu motion if the rigidity of the string is to be P(x) = 7X(x*) e, (53
determined. The loop collapses to a pdia6], and rigidity
would be indicated by a retardation of this collapse. A trav-
eling wave on the other hand has been shown to be an exact
solution of the full field theonf21], and should not exhibit
any corrections if our approach is to be trusted. The helicaso that the vacuum is characterised ¥y 1. In terms of
breather(see, e.9.[22]) is a time-dependent solution which these new variables, the Lagrangian becomes

is never singular. Rigidity for this trajectory is more subtle,

since the helical breather is never singular, however, we 5 1, 7*

could call the string rigid if the tendency of the correction is ~ £=7%(V . X)*+ n*PiX*— FF’”_ T(Xz— 1)?,

to lower the magnitude of the scalar curvature of the world- € 6)
sheet. As we will see, it is rather difficult to give an intuitive

criterion for rigidity. . . whereF ,, is now the field strength oP,. By making a
The layout of the paper is as follows. In the next SeCt'oncompengating gauge transformation 4),, we have ab-
we review the formalism for the derivation of the effective sorbed the unphysical gauge degree of freedom of the theory.

action. In S?C- lll we rederive A_nderson S action, and Present r future reference, here are the equations of motion for the
new numerical results evaluating the coefficients appearing ., . fiolds:

in the action. In Sec. IV we derive the equations of motion of

the fourth order string, and in Sec. V we calculate corrections 1 A2

to three test trajectories. In Sec. VI we discuss the question =0, [—gorX= P, P“X— TX(XZ—l), (78
of rigidity and conclude. \

1
Au(X) = S[PL(X*) =V X (x9)], (5b)
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1 Because we no longer have a flat coordinate system, the
—3d,\N—gF*'=—2e?5?X?P". (7b)  connection will no longer be trivial, although the curvature
v—49 components should still vanish. In order to examine the form

. _ ) of these relations, we use a Gauss-Codazzi apprf2gh
These equations are known to admit vortex solutions, th‘?see alsd24] for more of a physicist's approaghFor short-
best known being that due to Nielsen and OleE2l—a | 5nd we denote by} (A=0,1) the coordinate§r, o, the

solution corresponding to an infinite straight static string. Aworldsheet by and the Minkowski spacetime by
vortex solution is characterized by the fact that the scalar The first fundamental form J, of W'is defined as.

field phase has a nonzero winding number around an axis
corresponding to the zeroes of the Higgs fiekd=0). If we h,,=g,,+Ni,Ni,. (12)
choose the string axis to be aligned with thexis, then a . . .

gauge can be chosen in which the vortex solution takes th€he tensoh ,, acts as a projector ontd/, but is still a tensor

form in the four-dimensional spacetime. For the meiticinsic to
» the worldsheet, one uses the familiar
o= 1Xno(VA 7p)€'”, (89)
IXHE X, 12
YAB= oA 5B (12

1
A= [Prno(VA7p) — 1]V 6 (80)

whereX*(¢*) are the spacetime coordinates of the submani-
in cylindrical polar coordinates, whedyo and Pyo satisfy  fold W. This gives an interpretation o as both a world-
the (generically second order coupled differential equationssheet in spacetime and a two-dimensional manifold with its
own intrinsic geometry. One can define the intrinsic curva-
ture of W in the standard way, and the extrinsic curvatures,
(9a)
or second fundamental formby

OXP? o1
_X”_T+_TI' +§X(X —1):0,

P’ Ki,=hf hV ni, . (13
—P"+ —+ BPX*=0, (9b) e e T
These extrinsic curvaturefs;,,, measure howV curves in
and we have introduced the Bogomol'nyi parameterM. Since the codimension of the worldsheet is greater than
B=2e2/\. B—0 is the global string, an@=1 is the critical 1, we also have a nontriviaiormal fundamental form

(supersymmetricstring for which the equations of motion 1
factor to two coupled first order equations: w,u,zzsijnjvvp,niyv (14)
rX'=XP, (108
whereg;; is the alternating symbol on two indices. This rep-
1, resents how near to orthogonality the world blanket coordi-
P :Er(x —1). (10D pate system is; it measures the rotation ofrifieén their own
planes as one moves around the worldsheet. Note that, de-
Intuitively we expect the solution for a general worldsheetspite lying tangent tdV, w,, is a gauge-dependent object,
to be very close to the Nielsen-Olesen solution in Suitabkdepending on the choice of the normal fields—an(30
coordinates, and that we might be able to expand the ﬁeld§Jauge group. In factw, is the connection on the normal
and therefore the action, around this approximate solutiony, ,qie ofyy. “
Let us now try to make this idea more concrete. Now, we may write
First we choose a worldsheet-based coordinate system.
(Note this will only be valid within the radii of curvature of
the worldshee}. We start by coordinatizing the worldsheet

by o and as usual. Since we are in flat space, at each poinyhere the symmetrization is understood to be only acting on
on the worldsheet we have a well defined orthogonal flaj,gices of the same type, so that thabove does not par-

two-plane, and such orthogonal planes do not intersecﬁcipate in any symmetrization. This now indicates an alter-
within the radii of curvature of the worldsheet. Thus we canpative definition of the second fundamental forms

thicken the worldsheet to a world blanket by definmgnd

7 to be constant on such orthogonal planes. Since the world- _ 1

sheet} has codimension 2, it has two associated families of Kip=5Li9u0t &ij@(uNjn) = 5LiN 0 (16)
unit normals{n{}. We choose a Cartesian parametrization of

the orthogonal planes such thab/¢¢');i_=nf". Thus wheres; denotes the Lie derivative with respectrtf. We
{7,0,¢'} define a coordinate system in the vicinity of the may now use the Riemann identity in flat space to derive the
worldsheet. In general it will not be possible to choose thisfollowing relation for the extrinsic curvatures:

system to be globally orthogonal, however, we will assume

that the normal fields have been chosen so that the departure R
from orthogonality is minimal, i.e., of order of the extrinsic

curvature of the worldsheet. Therefore, contracting witly*” gives

VM= Kipy = & 0N}y (15

o(unp N = LiKi = Kip(uKf) = 0. (17)

iy
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L= —K, SO (18) 1 ) _ _
o : \/:{ai[\/_g(g”é’jx"'EglAé’AX)+E(9A(\/_g(g|A(9iX
-g

AB D E v 1 2
+ €9 ﬁBX))]}IPMPVg'“ X_EX(X -1), (25

(2%

In addition, note that

_ _ o~ 1
Liw,=n/V, o,+ w,,V#niV=—niVV,,(sjknk(,Vlun]q)

2
_ 1 o S L N "
+,9,n'=0 (19  —@{V-9lg*g"Fu+ (9" —g"g"*)(€daP— 3Pa)

NS
and .
+eg*g'®F ag]}
Lin, =NV, nf=w,ejj . (20 + ean{ = o[ g**Q! F i+ (04giB — gPBgi¥) (9P

The system of equatiori&6)—(20) give the “equations of
motion” for the geometry of the system, which together with
Eq. (7) form the full equations of motion for the string.

In order to extract a low-energy effective action, we will
need to expand these quantities and equations of motion in 1 . . . . - .
terms of the thickness of the strimg. To do this systemati- fg(ﬁi{\/__g[g'kgAlelJr (9'°9"'—9"9"®)(edgP1—dPs)
cally we define the dimensionless parametdyy

— edgPy) + 9By Fgcl})

= — BX%(gI B+ g Py, (26

+eg'Bg”CFgcl}
+ edp{ V- 9[g®g"F i+ (9"~ gP'g"%) (edcP
—9Pc)+€gBCg"PF ol = _sz(ngﬁ’j +9"BPp).

K
€= ——Krlg, (21
A7y
where k! represents a typical radius of curvature of the
worldsheet. We then define tlzero thickness limito mean 27
e—0 with ux 72, the energy per unit length of the string,
fixed. Note that this may not necessarily mean that the strinl\];|
width is zero, since instead the extrinsic curvature could bci
zero (a flat worldsheegt However, if k# 0, this limit corre-
sponds to the conventional—« limit.
We now redefine coordinates so that the worldsheet has L=\ 7"

ere, IA:”- is the tensorF;; defined in terms of the rescaled

agrangian

XX +2€9;XIpX g + €29sX IpX gB

ariables. Finally, we also need the explicit expansion of the

thickness and curvature of order unity by setting
x'=¢/rq, (229
sh= ok, (22b)

and redefining for consistency the following variables:

+X%P,P,g""
1 e e Cikal - B\ ik yiA
_ﬁ{Fij[Fklg 9" +4(dPa—€daPr)g"g

+2€F pp0'AgiB]

Ki o= Kipw! &, (23a +2(0Pa— €3A|Si)((7]’58_fﬁsﬁj)(gingB_gingA)
w,= i, Ik, (23b) +€eFac[4(9Pg— €dgP;) g g+ eF 5 pg"Bg°PT}
S - E(Xz—l)2 (28
PL=rP,. (230 4 :

The worldsheet geometry equatiofi)—(19) become

‘Cih;LVZZEKi/.LV’ (24@

This now allows us to expand rigorously in powers ef
Note that so far we have made no assumptions about any of
the fields or their dependence on the coordinates. We have
simply rewritten the equations of motion, scaling with re-
spect to the physical dimensionful quantities in the problem,

Li9uv=2€[Kipy—eijorunin], (24b) leaving the equations of motion in terms of the dimension-
- less parametet.
LiKiur=€Kig(uK7o), (240 The procedure is as follows. We first consider #he 0
limit, with the metric and fundamental forms taking their
LiKi=— €K, K", (240 geometrically defined values on the worldsheet. Sinced
is also the flat worldsheet limit, we expect that the fields will
Lijw,=0, (24¢ take the Nielsen-Olesen form, which indeed turns out to be

and the field equation&’) become

the case. In the next section we will go to higher orders,in
deriving the corrections to the geometry and fields, and
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However, in calculating the Lie derivatives of the metric and
its determinant some fortuitous cancellations occur. First

08l note that

L LiKi = €Li(Kig(uKj1),977) =0 (34)
0.6+

and also that
LLiLiV—g= €= g(KiK K — KiKE Ky,
—KKEKp, — KKEKY +2KEKY K7) =0,

04|

021 o'
(35
o f6 777777 g 10 which follows from a trace identity for the 22 matrix K
r (units ofry) [15]. Hence to all orders, the metric and the volume Jacobian
FIG. 1. The Nielsen-Olesen solution for the critical cgse1.0. are given by
This solution has been found using the relaxation methedsl — +2ex (K . n:
routines described in26], by giving the conditions at=0 for X 9ur= Gurlot 26X (Kiyy o~ eijw(unjylo)
(solid line) and P and atr —o for X’ andP’. + XX (Kipul oK plo— Sijw,@,), (363
hence the corresponding effective action. However, for the . 1,..
moment we conclude this section by proving that the V=9=V—0lo| 1+ ex'Kj o+ € XX (KiloKijlo
Nielsen-Olesen solution is in fact the leading order behavior
for the vortex fields around the worldsheet. AB
To zeroth order, —Kias |0KJ lo) | (36b
Lih,,=Li9,,= LiKj,,=0, (29 This gives all the information on the geometrical contribu-

. . . tions to the action. Now let us turn to the field theoretic
hence all geometrical quantities take their worldsheet Valueéontributions.

A iy A
Kjun (87,X) =K, (s7,0), etc. Hence First note that since

ox+ 2>
AT

o

YaB 0 " 5S
Jour=| 0 _ 5”, (30 5S|90,w:f dodxy—y X

5P#)
(37)

vanishes by the equations of motion, first order field correc-
tions contribute at second order in the action, and second
order corrections at fourth order.

To first order we may read off the equations for the cor-

You
gO/uf

and thus the equations of motion fp andP,,, are

o 1
— 80X+ (PZ=P3)X+ SX(X*~1)=0, (313

_ail":ij +,8X2I5j =0 (31b) rections to the fields as
— 0,0,P ot BX2P,=0. (310 = 30X = KidXo+ Poj Poi Xy +2Pg; P1iXo
1
These are solved by the Nielsen-Olesen solution, which is +§X1(3X§—1)=0, (383
plotted in Fig. 1 against for 8=1:
XO:XNo(r), ﬁ)OJ =PNO(I’)&JG, lE)OA:o (32) _aIFllj_KIFOIJ+BXSP11+ZBXOX1P01201 (38b)
Substitution of this solution back into E€) yields the — di(waXlekFi) — didiPia+ BXGP1a+ BX5waX & Pox

familiar Nambu action. It is the corrections to this action we
are interested in. =0. (389

The first two equations do not apparently lend themselves to

. THE CORRECTIONS TO THE NAMBU ACTION a straightforward solution, however, we note that the equa-
Nambu action. In order to calculate quantities away from thdVambu action is
worldsheet, such as the metric, we must perform a Taylor

expansion off the worldsheet OX#=n{K;=0, (39

1 which would indicate that the “driving” terms in Eq$38a),
Q=0Q|o+&LiQ|o+ EfifjﬁiﬁjQ 4+, (33 (38b vanish and hence the appropriate solution is
0 X;=P4;=0. Indeed[10] demonstrated that unless the trace
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of the extrinsic curvature vanished on the defect, the firsThis gives two sets of coupled second order differential
order perturbation equations have no solution that is regulagquations:
and bounded. Thus in fact the appropriate solutions to the
first two equations of38) are X;=0 andP;=0. Y N 1
The last equation of Eq38) is solved by[15] —g'— gT + ng 4 2 070He 2°q¢+§g(3x(2)_ 1)=—rX},
~ . ~ r r
Pia=—waX'gjPox; (40) (463

the presence of this term, as pointed oufis], guarantees

the gauge invariance of the effective action to worldsheet
SQO(2) gauge transformations, for on substituting in the form

of the fields, this correction td5A exactly cancels the
“twist” terms of Maeda and Turok, and we arrive at the gng
second order result

!

" a > ol
—q+ 2+ BXGa,+2BXoPog=—1Py, (46D

a __ g’ 4g P2g 2P.X,qy
R N IR A0 L. 2
I r r2 r2 r2
7 1
:_'“j d%d—y(l—riflqzw), (41b) +§g(3xg—1):—rx6, (479
where .
A ~ - <’I5 ’ 2qr 2 D ~_ o/
L[ o XePS Pt 1 Ayt 20—+ BXply T 28XoPog=—rPy,
M=2T7 jo rdr| X5°+ 5 +@+Z(Xo_l) ) (47b
(429
PO 4q,—2q/,+ Br2x3q,= —r2p}. 47¢
_77772 - 3d X,2+ 3P3+P_62+E X2_12 ar qu B qu 0 ( )
A= 0r ri Xo > > 4( o—1)

(42b) There are no additional corrections g, at this level.
In the critical case83=1, the above equations reduce to
For the fourth order action we need the second order cotwo sets of first order ordinary differential equations
rections to the fields, the volume factor already being exactODE’s):
to all orders. From Eqg25)—(27) we may read off the equa-
tions for these as

rg’ =Xods+ Pog, (48a
- ai &iX2+XjKiAB K}AB&iXO-i— |50i ISOiXZ
g .
A oa 1 —Z=Xo9+ Py, 48h
+2Pg PoXot 5X(3X3-1)=0, (433 r 7097 o (48D
— 4 'EZij +XkKiABK¢B'&Oij + Bxéﬁ’zj +2BXoX; '501' =0, and
(43b)
o . — — . — 1P
—di(waX'gji Fi) — di9; P2a=0. (430 rg’'=Xoqge+ Pog+x—0, (493
To simplify these, and to remove the expliitdependence
we will decompose in cylindrical harmonics by setting Y
29=rq,Xo+ —, (49b)
1 .2 i AB Xo
X2=59Kias T 9X KiagKj™, (449
1, . 2q/,—409,=2rgXo. (490
PZ(;{;:quﬁKiAB_'— q4X'KiasKj™, (44b)
Note that just as Eq47) is really two coupled second order
P2r:qr8kiKkABK}/_\BXij’ (440  ODE's, Eq.(49) is really two coupled first order ODE’s. The
fact that Eqs(46),(47) reduce to such a first order form for
where B=1 is reassuring, since we do not expect to destroy super-
i symmetry simply by bending the string.
Xii XX 35 (45) Substituting Eq(44) into the action, and after some alge-
=7 ij -

bra, one arrives at Anderson’s result
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FIG. 2. Higgs fieldg (dashed lingand polar gauge field,, as
functions ofr solving Eq.(46) for the value8=1.0.

a
S= _,LLJ d?c— y{ 1—6271Ki2AB+ e

X

] (508

@2 2 a3 AB cb
;(KiAB)2+7KiABKj Kicp Kj

o
—u[ o y[l—rgilC?WH‘S‘

/Cf”/cm,/cj”“ ., (50b

aj 2 as
X ;(Kiﬂv)z—‘rz ICi;LV
where
77772 ® oo _ Is(', _
azszo dr|r<Xs(29—g)+ ?(ZQd:_qdz_rqr)
4r|5§} 519
B 1
2 <Y 52
T — 2Py — Po
asszo dr{2r2X0g+7(q¢+rqr)— B (51b

If B=1, it can be seen from Eqg!8),(49) that 2a,+ a3=0.
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16
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FIG. 3. Higgs fieldg (dashed ling polar gauge field , (solid
line) and radial gauge field, (in function ofr) solving Eq.(47) for
B=1.0.

9.9.9,~r, (538
qg~r2, (53b)
q,~const, (530

which can be checked to satisfy the asymptotic counterparts

of Egs.(46),(47).
We have computed the coefficienisa, , @, anda; for a

range of values oB; the results are shown in Figs. 4-6 and

in Table I. The key points to note are that for the rangg of
for which we computed the coefficients €Q3<100)
Mm,a1>0 andas,ar+ a3<0; however, 2v,+ a3 is positive
(negative for B<1 (B8>1) and a, is positive for
B<Bgir=3.03 and negative foB> B -

IV. THE EQUATIONS OF MOTION FOR THE STRING

In order to derive the equations of motion for the string

we must express the actidb0) in terms of the worldsheet

coordinates, with respect to which we are varying the action.

To do this, we note that

3

To determinex, and a3, we need to solve Eq$46) and 25
(47). This was done numerically by relaxation methods, us-
ing NAG routineDo2GAF [25]. Sample solutions for both sets 2

of equations for the critical casg@=1 are plotted in Figs. 2
and 3. The first set of equations can be readily implemented | 5
and was solved by requiring thatg(0)=g()

=04(0)=q4()=0. Before solving the second set of equa-

tions, we expressed, from Eq. (470 as

2q’,—r2p]
S B (52
4+ BreXg 0

r

and eliminated_it from_the eqiationsivhich were then solved
by asking thatg (0)= g(«)= q(’ﬁ(O)z g4(%)=0. The solu-
tions obtained clearly behave at the origin as

FIG. 4. The parameterg(B)/m5? (solid line) and a,(B)! m»?
appearing in the action to fourth order.
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0.2 ‘ ‘ ‘ ‘ ‘ . . . . TABLE I. The numerical coefficients appearing in the action to
fourth order for some values of the Bogomol'nyi parameger
0.5 B wl wn? aylmy? ayla azlm
0.1l i 0.1 3.272 6.025 77.761  —104.985
0.2 2.813 3.347 23.565 —32.835
~ 0,05 | | 0.5 2314 1.634 4.308 —6.767
s 1.02 2.000 0.999 1.069 —2.138
2.0 1.736 0.642 0.174 -0.722
10.0 1.278 0.272 —0.097 —0.094
50.0 0.977 0.141 —0.065 —0.030
100.0 0.880 0.111 —0.052 —0.023
0.1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ % or B=1, it can be analytically deduced from the equations of
6 10 20 30 40 SOB 60 70 80 90 100 motion thatu/w7?=2a, /77*=2 and that 2, + a3=0.

o _ We may therefore, using the identity
FIG. 5. The parameter,(B)/7 appearing in the action to

fourth order. 1
RABCD=§R( YACYBD ™~ YADYBC) (59
Kiag =Ny aX",5=—Nj, X, ag=—N;j, Xhg.  (54)

- and the symmetries &, infer the following useful relations:
Hence, defining

; ; 1
Né%ZXM:A;CXM;D'B, (55) RSZER‘%:_NSE\, (609
we see that
R=—N4B
2 _ _ ywuwAB _ _ nNAB BA ' (60b)
Kiag = = XX ,.a8= — Npa, (569

NESNE2B= X#ABY (CO(R, capt+ X apXs-
K. KABK.  KCD_yuiABy _ ywCDy  _ NACNDB BDTTCA i (Raceot XiapXyec)
iaB Ny Ricp i\ w,CD »,AB~ NgpINcAa - 1
(560 = ZR2+ NADNGE (600
> .
Now, the connection on the worldsheet is given by

We can now rewrite the action and its constituent variations

as
Féczz Y5 (¥ee.ct Yec B~ YBC.E) = YAEX”aEXM 1BC
4
o €
(57 S=—,u,f dZU\/—y[l—ez—lR-i-— ast §a3) R2
and the curvaturéeither directly or from the Gauss-Codazzi K ®
equationy is
- aONEE | 6
Rasco=XfacX 8o~ XfapXuiBC - (59

and

1
N—y= V™ Y B8yas= V- yY BX¥AX . 8,
(623
SR=—2XMABS(X . ap) + ANREXHBSX ,
= —2XHAB(5X ) ag— 2RX*PSX, p, (62D
S(NBENSE) =4(8X,,). sX*CPNED
—4X*e X, aY"FNEENES (620

[using the fact thabT $gX* is parallel to the worldsheet,
‘ ‘ ‘ ‘ ‘ . . . . ;AB ;L
250303 € 509500 where_asxf‘ is perpendicular, and Eg60)]. o o
B Noting that[+/— yRx x, the Euler characteristic which is
a topological invariant, or from the above equations, we see
FIG. 6. The parameters(B)/w appearing in the action to that thea; term will not contribute to the equations of mo-

fourth order. tion. TheR? term, on the contrary, gives
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3( 'yABXlTARZ);B_ 4( RX’L;AB) AB

= (X#BRZ—4R s XHAB).p = — 4R, \gX# "B, (63)
where we used the Riemann identity
(DaDg—DgDa)X* c=RcpagX*®, (64)
which implies
XHiAB = RABX’fB=%RX“'A (65)

at each step.
The N? term gives

3(X*ANGENER) A+ A(NEEXHCP) ag,
but
1 } .
Né%;AX”;CD: XV;B;DAxv;c;AX”;CDZE(XV;DAXV;CA);BX”’CD
(66)

1 .
=- Z(RYCD);BX”’CDZO,

hence the full equations of motion for the system are
72 .
?DX”= — (2az+4a,)R.AgX A B+ 3a X ANEENED) A

AB ,CD
+4a3NCDX”“ :AB -

(67)

It is possible to express these equations in terms of the eim

trinsic curvatures. Using Eq54) and

Xt g=X4p—T5eX, (683
X,.0X*.a8=0, (68b)
it follows that
Xiag= 1" X, A= (?’CDX,’EX,VD_ sl nip'njy)xv;AB
=—5"nfnX, as=8"NKpg - (69)

Contracting the equation of motion witf and with X,
gives equations of motion normal and paralleltd

- %KiAA=(4a2+ 2arg)R agk B
+4C¥35ij]ACKEDniU'XM;CDAB,

(702

0= 3“3(NEENEED),P"'4“3NEE3’AE7’BFX,MPXM;CDAB(- "
70

Note that this latter equatiofi70b) is an identity for the
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M — _ mn
Ni'X..coas= —Kicp;as= 0" €imweKncp:a

mn mn E
-0 SimwAKnCD;B_ 0" KmcoKnaKies

— 0Mejmwa.sKncot Kicpwaws, (71)

which implies that the equations of motion also read

M
EKC-\: —(4ap+2a3)RasK P+ 43K KPP (= Kicp:ap

E
—eikweKicpa— gikwaKkep:s— Kico KikaKies

—&ikwa.g Kkept Kicpwaws). (72)

V. CORRECTIONS TO THE MOTION
OF TEST TRAJECTORIES

We now wish to derive the corrections to the motion of
three test trajectories: the circular loop, the traveling wave,
and the helical breather. We have chosen these three ex-
amples because they provide three different ways in which to
observe the rigidity or otherwise of the string.

The loop trajectory is given by

X*(r,0)=(7,c08rcosr,cosrsing, 0), (73
and collapses to a point after a time peridd= 7/2=L/4,
whereL=¢do=2m is the length of the closed string. The
extrinsic curvature invariants become singular at this point,
hence rigidity would be indicated by a retardation of the
collapse or a positive correction to the amplitude of the loop.

A traveling wave on the other hand is a variant of the flat
worldsheet where a deformation of arbitrary size and form is
roduced, the only constraint being that the deformation is
a function of only one of the light cone coordinates
o.=0xT!

X r,0)=[71,f(t—0),9(7—0),0]. (74)
This has been shown to be a solution of the full field theory
[21], hence no correction should be found for this trajectory.

The helical breather is a time-dependent solution which

may be written as

X#(1,0)=(7,y1—g’cosrcosr, 1 — g°cosrsino,qo).
(79

The limit g—1 corresponds to the flat worldsheet and the
limit g— 0 to the collapsing circular loop. For intermediate
the trajectory is never singular, and the extrinsic curvature
peaks at approximately~2y1—g?. Rigidity would be indi-
cated by a preference for lower extrinsic curvature and hence
a negative correction to the amplitude of oscillation.

A. Corrections to the motion of a collapsing loop

As a first example of the effects of curvature terms on the
motion of freely-moving cosmic strings, we consider the col-
lapse of a circular loop. In Cartesian coordinates, the position
of this string is given by

unperturbed worldsheet. We have verified that it does indeed

hold using the light cone gauge. Now,

X*(1,0)=[7,Z(7)cosr,Z(7)sino,0], (76)
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and the normals to the worldsheet are 0
n=(Z,cosr,sin,0)/V1— 22, (779
n§=(0,0,0,). (77b
g
+
In this case, one obtains,=0, and 8
z 0 . i
Kang= V1-22, (783 '
0 —Z al
52030 40 50 60 70 80 90 100
K3pe=0, (78b) B
1-72 0 FIG. 7. The “rigidity” parameter @,+ a3)(B)/ 7 appearing in
Yag= 2) (780 the equations of motion for the loop to fourth order.
o -z?)
6Z —3264 + ! e +1 é
1—72 N 1 31 T . 82
Tag= 5 | (780 1556¢7) ~ 50087 —gsin(7) | (82)
0 1-72 Thus, the sign ofa,+ a3 determines whether the string is
rigid or antirigid. This “loop rigidity parameter” is plotted
. againstg on Fig. 7, and its negativity means that the loop is
o Z 0 1 78 antirigid and tends to collapse faster than in the Nambu ap-
ABTZl1 o) (789 proximation. This is illustrated on Fig. 8, where we compare
the zero-order solutioZ(7)=cos({) with the corrected so-
The equation of motion to zeroth order is lution Z(7) =cos@)+6Z(7).
Note that the approximation breaks down when
25412 |Kgl=0(r Y, i.e., when cosf)=0(rg). For example, in the
=———-=0. (79 illustration of collapse in Fig. 8 s=1/10 is rather large; we
Z(1—-2%)%2 would hope that our approximation would be valid until the

radii of curvature of the worldsheet became close to 1/10, let

The general soluton to this equation is us say twice the radius of the string: 1/5. Inputt|igh| = 1/5
Z(7)=kcos(7—1)/k). Choosingk=1,7o=0 as initial condi- gives r=1.1, which does indeed correspond to the point at
tions one obtains the canonical form of the loop trajectorywhich the solutions start to significantly differ in Fig. 8.
(73). Note that for this choice of loop length=1 and we
can useK or interchangeab'y_ B. The motion of a traVeling wave

We now wish to find the corrected solution to order Now consider a trave"ng wave, whose position and nor-

4_ 4 : : . .

e*=rg. To do this, we use Eq.72) (technically its unres- mals are given by
caled counterpartSinceK ;55 andw” vanish, the right-hand

side of Eq.(72) considerably simplifies to
A(a,+ a3)R;ABICAB= 32 ay+ ajz) seé(r)[7seé(r)—6]. 0.8 |
(80)
06|
(Note that we have dropped the subscript 2 on the extrinsic
curvature)
The left-hand side is obtained by varying the trace(af 04+
from Eq. (79), whereby we obtain the equation fé6Z as
02}
. . re
82+ 2tan(t) 62— 6Z= 32;(0(24- az)se’(r)
O [

0 02 04 06 08 1 12 14
X [7seé(r)—6]. (81) T
FIG. 8. The collapse of a circular loop in the Nambu approxi-

The solution to this, with initial  conditions pation(solid line) and at fourth order, for &ather large parameter
57(0)=562(0)=0 is e=1/10.
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XY 71,0)=[71,f(r—0),9(7—0),0], (833 gz (0 1 &7
Koag =~ "T5—=3 ; 7
ng=nt=(0g',~1'0/NF?g? (830 varrzid 0
1 (z O
ny=m‘=(f2+g'% 19 2+ g3\ 7+g% Kans=——— ( ) (879
(830 W h-z2\o -z
where a prime denotes differentiation with respect to the ar- _q 0
gument, namelys—o. — _ 87
Writing AT 72 ’—q2+22( 1) (870
Nr—0o)=f"?+g'? (848 Hence the equations of motion to zeroth order become
{(r=0a)=(f"g' = f'g")IN, (84b) z z 0 @9
. + . =0.
__72\3/2 2 2 _72\1/2
ka7 ) =(1'g' = £'g") I\, (849 (1297 (@ +2)(1-27)
This equation admits for general solution
rs(1=0)=(F'1"+9'g"/ N, (849
T— T
one has Z(T)=\/k2—qzcos< " 0), (89)
1
so that, choosing again the initial conditioks 1,7,=0 and
wA=§(—1), (853 i ing agai initi iti To
1 -1 Q(7)=cog(7)+q?sir(7), (90)
KiAB:Ki( -1 1 ) ’ ®5D e have
1 0
1-\ A
YAB:Q( ), (919
YAB:( N —1—)\), (850 0 -1
1_q2 0 1
R R U e Kaag =0\ =g —sinn| 1 o|. (10
Ige=7%|-1]®| 1 -1] (850
It is the_n stra|ghtforward_ to see that all terms on the right- Kaap = — o cosn| g 1], (910
hand side of Eq(72) vanish separately, as do the traces of
the extrinsic curvatures: the traveling wave is an exact solu-
tion to (at leasy fourth order. q 0
C. Corrections to the motion of a helical string

in breathing mode
The right-hand side of the corrected equation of motion

We now consider the string given by the following posi- becomes then

tion functions:
X#=(1,Z(7)cogo),Z(7)sSin(o),q0), (869 —32¢*\J1—qg%cog 1)~

_ -1 -2 -3

n4=(0gsin(0),~qcos @) 2)/Na?+ 2%, (86h) X(Bam Bl 4 Bofd T afl ),

where

n4=(Z,cogo),sina),0)/ V1—Z2. (860

This string is helical with breathing: the limits q—0 and 5 4

g—1 represent a collapsing loop and a straight string, re- B2=7(az+ az)+(38ay+22a3)q°+(7az—3a3)q",

spectively. [Note how Egs.(86a3—(860 reduce to Egs. (92b

(76),(77), and how all pertinent quantities in the equations of 5 5

motion are obtained from these expressipns. B3=59(7Tay+5a3)+(Tar+2a3)q], (920
With this choice of normals, the fundamental forms are

B1=6[ (aa+ a3) + ay0?], (923

Ba=150*2a,+ a3), (920

(879 and the left-hand side is obtained as before by varying the
' trace ofKsj:

1-2? 0
0 —(q’+Z?)

YAB:<
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S(Khy) =0~ 3257+ 20751~ q?)sin(7)coq 1) 6Z 01
0.09
+07%7g%— (1-g?)co(7)]8Z. (93 008 |
Finally, the corrected equations of motion are 0.07 ¢
0.06 |
. 1-¢? . g?—(1—-g?cod(r
82+2 a sin(T)cos(T)(sz+q (1—q7)cos( )52 0.05 |
Q Q
0.04 |
' 0.03 |
=—32—\J1-q%cog ) 3B~ B0 !
M 0.02
+ B30 2= B, 073, (94) 0.01 |
0 1 1 1 1 1 1 1
Although it is possible to find an exact solution to this 0 02 0406 O'E- ! 1214
equation(see Appendix for detailsit is more instructive to
consider the quasiflat limig—1. In this case, Eq(94) be- FIG. 9. The corrected evolution of the quasiflat limit of a helical
comes breather forB=1 and e=A=1/10. The correction added to the
Nambu solutionZ(7) (solid line) is in fact 1#5Z in this figure
A3 (dashed ling
852+ 682=—32 [(ay+ az)cog 7)
K i.e., the only effect of the correction is to reduce the fre-
—(2ap+ ag)cog 7)sir?(7)], (95) quency of oscillation of the breather, which would seem to
be unambiguously rigidsee Figs. 9 and 10
whereA is defined by However, we now observe a curious property: Suppose
instead we consider initializing the correction at the instant
g’=1-A2 (96)  of maximal velocity6Z(— m/2)= 6Z(— m/2)=0, we find
The solution 5Z(7) satisfying 6Z(0)=52(0)=0 is then 472
found to be Z+ 522 1_ (2&’2"’ 9a3)
64A3 i E4A2 ,
§Z=———[4(2ay+3a3)7SIN(7)+ (2a,+ a3) xsim | 1+ (20p+3a3) |7
X (cosr—cog37))]. (97 _ ‘a3

P’ (2a,+ a3)sin(37')+0(?) (100

The corrected trajectory can then be written
(where 7' = 7+ 7/2). Now note that while the frequency of

74 52:41_ €4A2(2a2+ ) oscillation is decreased by the same amount, and the higher
€*A? :
XCOSl’ 1+ (2&2"‘3&3) T] 0.8
0.6
A3 0.4
+ (2a5+ a3)coq37). (98)
0.2

The effect of the correction is threefold: First, it alters the

frequency of the motiony—[1+4€e*A%(2a,+3as)/ u]7: 02 =

since (@,+ a3),a3<0 this has the effect of reducing the 04 |7

frequency—a tendency we would be tempted to call rigid. 06 |

Secondly, the amplitude of the oscillation is altered by a

factor 1— €*A%(2a,+ a3)/ . This could be either an ampli- 08T

fication or reduction, depending on wheth@r1 or 8<1. -1 0 1'0 2'0 3'0 4'0 5'0 6'0 7'0 8'0 9'0 100
Finally, a higher frequency oscillation is superposed on the 8

motion for B#1. If, for simplicity, we take 8=1, so

2a;+ a3=0, we see that FIG. 10. The coefficientsr,+ 3 a5 (solid line) and 2u,+ ay

appearing in the solutiodZ. Note that this last combination also
(99) appears in the action, and that it vanishes for the critical coupling
' B=1.

8e*A?
Z+6Z=Acos| 1+ 4 as|T
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—S=,UJJ’ d?o —y—62a1J d?0\— yM;;

+e4azf dZU\/—yMﬁ+e4a3f d?oy—yM;;M;;

(102

-S

where the matrixdM;; is defined as

M;; =Kiag K,AB- (103

As M;;M;; :Mﬁ—z det(M), this can be expressed as

A —S=pA—aix+ e'[(art+as)l1—2asl,], (104

FIG. 11. Schematic graph ef S(\), the variation of the action with A the area of the worldsheet for the range{efo}
as the worldsheet is rescaled. The solid line would correspond to peing integrated over ang proportional to the Euler char-

rigid string, and the dashed line to an antirigid string. acter ofW. Also,
frequer?cy term is still the same, the amplitude is now uni- |1:j A2 = yM2, (1053
formly increased for all3. If, as before, we takg@=1, we
now find
|2=f d?oy— yde(M). (105b
472 4 A2
7+ 5ZZA(1_ 8e'A a3)sin (1+ 84 a3) , We now rescaleXx*—AX*, so that forn>1 the world-
sheet is expanded and farc1 it is shrunk. Then,
(101
Yas— N Yas, (1063
in other words arincreasein the amplitude of oscillation Kias— AKiag (106b
accompanies a similar decrease in its frequency. One cannot
immediately see from this solution whether or not the behavand thusl;—\ 2l;, i=1,2. The shape of the cun@\)

ior is rigid, however, an analysis of the Ricci curvature neamow depends explicitly on the integrdls, since—Siis res-
7' =0 shows that it is in fact increased—a behavior consiscaled as
tent with antirigidity. A calculation of the dependence of the

curvature on generaj is presented in the Appendix. The — —S—N2uA+eax+N "2 (ay+ ag)l1—2asl,].
algebra is more complicated but the results are the same: all (107
helical breathers display both rigid and antirigid characteris-

tics. We know thates,a,+ a3<0, and clearlyl;>0, so in

The results of our helical breather calculations thereforé)rqe”r‘]) dgtermfir:je the T:hapﬁié(f)\) we only need to detekr-_
appear rather ambiguous. If we wish to identify rigidity by Mine the sign of det). ~Or these purposes, we can work in
the behavior of a corrected trajectory—whether it increased1® conformal gaugeyag=7ag, and we find
or decreases curvature—we are forced to calculate the effe _ _ 2
on the curvaturésee Appendixand then the results appear 8E(M)—(K200K311 KaooK 211

to depend on the initial conditions. What this shows is that —2(K 11K 310~ K311K2102— 2(K 50K 310
the “decrease in curvature” criterion for rigidity is too naive )
to be reliably applied in all situations. — K3oK210*. (108

If we impose the Nambu equations of motidﬁigzo, this
determinant is strictly negative. Hence, singA is positive,
we see tha§(\) is unbounded, because the coefficients mul-
We now want to determine whether a string can be latiplying A% and\ ~2 have opposite signs.
beled “rigid” or “antirigid.” To do this, we use an argu- We must therefore conclude that the string is antirigid.
ment based in that of Polyakdd7], which consists in de- This does not mean thall the trajectories of the string ex-
termining how the action varies under a rescaling of thehibit antirigidity, but rather that it is impossible for all tra-
spacetime coordinate§*— A X*. Such transformations alter jectories to be rigid.
the scale of crinkles of the worldsheet and magnify or reduce Let us illustrate this by considering the trajectories of the
small-scale structure, hence rigidity would be indicated by grevious section. For the collapsing loop, )= 0, and as
extremum of the energy or the action with respect to thewe noticed, a,+ a3 determines alone the shape 8f\).
rescaling parametex, as illustrated in Fig. 11. This simplification came from the fact that the loop is flat,
Our starting point is the actiofb0), which can be written and therefore has only one nonvanishing extrinsic curvature.

VI. THE QUESTION OF RIGIDITY
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1 . A2 . g*—A%cog(7)
52+ 2 g SIn(7)CO8 1) 62+ —————— 5Z

64
= _32;A003 T)Qis(ﬁl_lgzﬂil_kﬁsgiz

05 s
—Bal77). (A2)
This can be solved using the method of variation of pa-
rameters, givingafter a long and tedious calculatjon
00 0.5 1
X 16| (B1 B2 B3 PBa .
2 _ | (Pr_Pz2, P3_Pa 2
A 0Z() A (3 275 5 (coq 7)+ A%7sin( 7))

FIG. 12. Schema showing the regions of antirigidighaded
igidity for the helical h =1. HereA’=1—¢?
and rigidity for the helical breather & ere g and _( By B, Bs Ba )Coqr)l

3 =sin(r). -
(0) 303 404 +SQ5 60°
For the traveling waveM;; =0, which is consistent with

the observation of no corrections to this trajectory.

In the case of the helical breather, bdih;, and det) 6
are nonzero, so we do not expect results to depend on +sirA(r)cog ) > A,Q " (A3)
as+ az. Even though the action is unstable to the scaling of n=1
the worldsheet, what is happening with the helical breather is
that the correction does not always have a nonzero projectiodere, Q(7) = co(7)+¢sin(7), the 8’s were defined in Eq.
on this unstable mode. However, we would expect a generdb2) and the’s are
correction of the breather to exhibit an instability.

To sum up: We have reviewed the derivation of the effec- A
tive action for a W1) local cosmic string to fourth order in - 2y _ 2 4
the ratio of string width to worldsheet curvature. We pre- Mo 24(11M[64q3+1/q By 3605+ 2la™+ Lia") B
sented numerical results calculating the coefficients of these 2 a N 2
fourth order terms. We then derived the equations of motion T48(35+ 15007+ 9/q™+ 5/07) B3 2563+ 280
for the string to fourth order, and calculated corrections to a +18/g*+ 12/0°+ 7/9®) B4], (Adq)
sample of well-known trajectories. We have given a general
argument for antirigidity of the cosmic string to fourth order,
however, by reference to our examples have shown that no
all trajectories need behave in an “antirigid” fashion—
rigidity it appears is rather similar to a theorem, it may work ) 4 6 )
in special cases, but one needs only find a single counterex-  148105-25l0°— 17/q"— 15/0°) B3 — 5(945- 210k

ample to disprove it. —1364"*—1106°—1054%) 8,1, (A4b)

+ \osin( 7)tan” (gtan( 7))

A
_ P NP M2 alnA
K, T20, | 19203 1g) 1~ 36015~ 4/1g°~310%) 5,
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APPENDIX: THE HELICAL BREATHER 7‘3_90M[480ﬂ1 360, +48(7— 1/9°) B3~ 5(63~8/g
Recall from Sec. V C that the helical breather solution to —719% B4l (A4d)
the Nambu action is
. A 2
X#=(7,Acoq 7)cogo),Acog1)sin(o),qo) (Al) )\4=m[—6032+4833—5(9—1/q )Bal, (Ade)
[where A is defined in Eq.(96)] and that the equation of :ﬂ _
motion for Z(7) is Eq.(94): As 15,u[6B3 Shal, (A4D)
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8A 2Acog 1) ..
Ne=— 3 Pa- (Adg) SR=———— 470 8Z( 7o)
H 0°(7o)
To use this general solution to investigate thetrigid 42

oy . . 64e*A? cog (1)

nature of these helicoidal trajectories, we need to observe = ———(B10%— B0+ B3) (A7)
. 8 '

how the Ricci curvature ® Q1)
R Ko KAB_K K — — 20222 where we have used E(P4) to evaluatesZ(r,), and noted
IAB T T (@24 224172 that 8,=0 for B=1. Now, the combinatiorRSR will be

negative if the magnitude of the curvature is decreased,
277 which corresponds to an intuitive notion of rigidity. From

(1= 22)2(q2+ 22) (A5) Egs.(A6) and (A7) we see that this requires
—A2)S2_
depends on the correction. For simplicity, we tgke 1, and [(2=a9%7~1]

note that for the background solution X (—A2+2A%—8A%S2+13A%52-6A534) >0, (A8)
2
R=— ﬁ(qzsinz(r)—cosz( 7). (A6) where,2=sir(r,). Figure 12 shows the sign ®JR as a
Q3 function of the two parametets andA. The shaded zones

. . ] . indicate the regions where the string is antirigid. We see
Now, suppose we wish to investigate th_e behavior of thehat—with the exception of the loop casé\i=1)—the
curvature near a general initial pointrg, where  string admits both rigid and antirigid behavior for each value

8Z(70) = 6Z(7)=0. Then nearr, of A.
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