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We examine the leading order corrections to the Nambu effective action for the motion of a cosmic string,
which appear at fourth order in the ratio of the width to radius of curvature of the string. We determine the
numerical coefficients of these extrinsic curvature corrections, and derive the equations of motion of the
worldsheet. Using these equations, we calculate the corrections to the motion of a collapsing loop, a traveling
wave, and a helical breather. From the numerical coefficients we have calculated, we discuss whether the string
motion can be labeled as ‘‘rigid’’ or ‘‘antirigid,’’ and hence whether cusp or kink formation might be sup-
pressed or enhanced.@S0556-2821~97!04224-0#
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I. INTRODUCTION

The study of topological or vacuum defects is of impor-
tance in many areas of contemporary physics. In high-energy
physics, a defect will generically occur during a symmetry-
breaking process where different parts of a medium choose
different vacuum energy configurations, and the noncompat-
ibility of these different vacua forces a sheet, line, or point of
energy where these noncompatible vacua meet. The relevant
vacuum order parameter then becomes indeterminate—this
is the defect. A defect may be topological@1#, in that it is the
topology of the vacuum that simultaneously allows forma-
tion, and prevents dissipation, of these objects—but other
types of defect are also possible. For instance, a defect may
be stable dynamically~i.e., classically, due to energy consid-
erations! but not topologically, as it happens for semilocal
@2# or electroweak@3# defects. A defect can even be ‘‘topo-
logical’’ and unstable, as in the case of textures@4#, but
nonetheless of physical importance.

In cosmology, there has been much speculation that topo-
logical defects~stable or otherwise! might have played an
important role in structure formation@5#. In general, there are
two main concerns when considering the cosmological ef-
fects of topological defects: their gravitational effects and
their dynamics. Any theory concerning galaxy formation
must be able to allow or constrain the presence of strongly
self-gravitating objects. But the dynamics of the defects are
in fact even more important, for it is the dynamics that de-
termine to a large extent the shapes of the gravitating defects.
For instance, if cosmic strings did not intercommute, any

network would rapidly become tangled and would not obey a
scaling law; such a configuration would be in conflict with
the universe we see around us today. Even with intercommu-
tation @6#, strings which are strongly rigid and hence straight
will have different gravitational effects to those that are very
crinkly @7,8#.

The dynamical behavior of a defect is generally assumed
to be approximated by an effective action, a description
which models the rather large numbers of degrees of free-
dom of the full field theory by the smaller number of degrees
of freedom based on the position of the core of the defect.
Attempts to derive effective actions or equations of motion
for topological defects have commonly focussed on the
strong coupling limit, meaning that of large values of the
coupling coefficientl of the relevant Higgs field. In this
limit, the defect becomes infinitesimally thin and effectively
decouples from the other~infinitely massive! particles in the
field theory. The study of the effective motion of topological
defects has been extended@9–11# away from the limitl→`
to cases for which the thickness is small but not exactly zero.
The resultant effective action generically contains a ‘‘zero-
thickness’’ term proportional to the area of the defect
@12,13#, and extrinsic curvature terms which appear at qua-
dratic order in the thickness@9–11#. The exact form of these
second order terms is dependent on whether an ‘‘off-shell’’
or ‘‘on-shell’’ approach has been used to derive the effective
action as was explained using the example of the domain
wall in @14#, and one finds that in a self-consistent order by
order solution of the equations of motion, the only quadratic
correction appearing is due to the geometry of the defect
world surface, and is proportional to its intrinsic Ricci cur-
vature@14#. For the domain wall, this term gives corrections
to the motion, however, for the string this term is a topologi-
cal invariant—proportional to the Euler character of the
worldsheet—and hence does not give any correction to the
Nambu equations of motion.
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The leading order corrections to the motion of a cosmic
string were shown by one of us@15# to appear at quartic
order in the string width. In this paper, a systematic expan-
sion of the geometry and field equations clarified an earlier
discrepancy concerning second order ‘‘twist’’ terms@9#, and
derived the fourth order action of the string, which is
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whereR, Kimn are the Ricci and extrinsic curvatures of the
worldsheet~to be defined in the next section!, and thea i are
numerical coefficients depending on the field theory model-
ing the vortex~to be defined in Sec. III for the Abelian-Higgs
model!. Unlike the domain wall, whose background solution,
and extrinsic curvature corrections can be expressed analyti-
cally @14#, the prototypical cosmic string solution, the
Nielsen-Olesen vortex@12#, does not have a closed analytic
form, hence these coefficients must be evaluated numeri-
cally.

As soon as one calculates corrections to the Nambu ac-
tion, it becomes of general concern whether or not these
corrections cause the motion of the defect to be ‘‘rigid’’ or
‘‘antirigid.’’ The implications of extrinsic curvature terms
for string motion have been well-explored@10,16–19#, how-
ever, it is not always easy to decidea priori ~especially for
the fourth order terms! whether the strings will be rigid or
not, or indeed what one means by rigid@19#.

In this paper we address these issues. We determine the
numerical values of thea i for the Abelian-Higgs model by
solving the perturbed field equations for the nonflat world-
sheet. We then derive the fourth order equations of motion
from Anderson’s action and calculate corrections to three
‘‘test case’’ trajectories: the circular loop, the traveling wave,
and the helical breather. These three solutions display differ-
ent characteristics which should be mirrored in the correc-
tions to the Nambu motion if the rigidity of the string is to be
determined. The loop collapses to a point@20#, and rigidity
would be indicated by a retardation of this collapse. A trav-
eling wave on the other hand has been shown to be an exact
solution of the full field theory@21#, and should not exhibit
any corrections if our approach is to be trusted. The helical
breather~see, e.g.,@22#! is a time-dependent solution which
is never singular. Rigidity for this trajectory is more subtle,
since the helical breather is never singular, however, we
could call the string rigid if the tendency of the correction is
to lower the magnitude of the scalar curvature of the world-
sheet. As we will see, it is rather difficult to give an intuitive
criterion for rigidity.

The layout of the paper is as follows. In the next section
we review the formalism for the derivation of the effective
action. In Sec. III we rederive Anderson’s action, and present
new numerical results evaluating the coefficients appearing
in the action. In Sec. IV we derive the equations of motion of
the fourth order string, and in Sec. V we calculate corrections
to three test trajectories. In Sec. VI we discuss the question
of rigidity and conclude.

II. DERIVING THE EFFECTIVE ACTION

In this section we review the formalism required for the
derivation of the string effective action. This formalism is
largely based on the contents of@10,15#. The problem of
building the effective action is to reduce some four-
dimensional field theoretic action integral

S52E d4xA2gL ~2!

to some two-dimensional worldsheet integral

Seff52E d2sA2gLeff . ~3!

We follow the canonical approach by setting up a coordinate
system based on the worldsheet, and expanding the action
and equations of motion around this worldsheet. By ‘‘ex-
pand’’ we mean that we do not expect in one attempt to be
able to solve the full equations of motion and integrate out
~otherwise why find an effective action! but that we will be
able to express the equations of motion for the system in
terms of an expansion inr sk, wherer s is the radius of the
string, andk a typical scale of the extrinsic curvature of the
worldsheet. We then solve the equations of motion in the
directions perpendicular to the worldsheet, and integrate out
the four-dimensional action~2! over these degrees of free-
dom to get an action of the form~3!.

We will look at the particular case of a U~1! local string in
flat spacetime~signature1,2,2,2). This is a vortex solu-
tion of the Abelian-Higgs model

L5~Dmw!†~Dmw!2
1

4
F̃mnF̃mn2

l

4
~ uwu22h2!2, ~4!

whereDm5¹m1 ieAm is the usual gauge covariant deriva-
tive, andF̃mn the field strength associated withAm . We re-
write the field content of this model in the usual way:

w~xa!5hX~xa!eix~xa!, ~5a!

Am~xa!5
1

e
@Pm~xa!2¹mx~xa!#, ~5b!

so that the vacuum is characterised byX51. In terms of
these new variables, the Lagrangian becomes

L5h2~¹mX!21h2Pm
2 X22

1

4e2
Fmn

2 2
lh4

4
~X221!2,

~6!

where Fmn is now the field strength ofPn . By making a
compensating gauge transformation inAm , we have ab-
sorbed the unphysical gauge degree of freedom of the theory.
For future reference, here are the equations of motion for the
new fields:

1

A2g
]mA2g]mX5PmPmX2

lh2

2
X~X221!, ~7a!
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1

A2g
]mA2gFmn522e2h2X2Pn. ~7b!

These equations are known to admit vortex solutions, the
best known being that due to Nielsen and Olesen@12#—a
solution corresponding to an infinite straight static string. A
vortex solution is characterized by the fact that the scalar
field phase has a nonzero winding number around an axis
corresponding to the zeroes of the Higgs field (X50). If we
choose the string axis to be aligned with thez axis, then a
gauge can be chosen in which the vortex solution takes the
form

w5hXNO~Alhr!eiu, ~8a!

Am5
1

e
@PNO~Alhr!21#¹mu ~8b!

in cylindrical polar coordinates, whereXNO andPNO satisfy
the ~generically! second order coupled differential equations

2X92
X8

r
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1

2
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2P91
P8

r
1bPX250, ~9b!

and we have introduced the Bogomol’nyi parameter
b52e2/l. b→0 is the global string, andb51 is the critical
~supersymmetric! string for which the equations of motion
factor to two coupled first order equations:

rX85XP, ~10a!

P85
1

2
r ~X221!. ~10b!

Intuitively we expect the solution for a general worldsheet
to be very close to the Nielsen-Olesen solution in suitable
coordinates, and that we might be able to expand the fields,
and therefore the action, around this approximate solution.
Let us now try to make this idea more concrete.

First we choose a worldsheet-based coordinate system.
~Note this will only be valid within the radii of curvature of
the worldsheet.! We start by coordinatizing the worldsheet
by s andt as usual. Since we are in flat space, at each point
on the worldsheet we have a well defined orthogonal flat
two-plane, and such orthogonal planes do not intersect
within the radii of curvature of the worldsheet. Thus we can
thicken the worldsheet to a world blanket by definings and
t to be constant on such orthogonal planes. Since the world-
sheetW has codimension 2, it has two associated families of
unit normals$ni

m%. We choose a Cartesian parametrization of
the orthogonal planes such that (]/]j i)j i50

m
5ni

m . Thus
$t,s,j i% define a coordinate system in the vicinity of the
worldsheet. In general it will not be possible to choose this
system to be globally orthogonal, however, we will assume
that the normal fields have been chosen so that the departure
from orthogonality is minimal, i.e., of order of the extrinsic
curvature of the worldsheet.

Because we no longer have a flat coordinate system, the
connection will no longer be trivial, although the curvature
components should still vanish. In order to examine the form
of these relations, we use a Gauss-Codazzi approach@23#
~see also@24# for more of a physicist’s approach!. For short-
hand we denote by$sA% (A50,1) the coordinates$t,s%, the
worldsheet byW and the Minkowski spacetime byM.

The first fundamental form hmn of W is defined as

hmn5gmn1nimnin . ~11!

The tensorhmn acts as a projector ontoW, but is still a tensor
in the four-dimensional spacetime. For the metricintrinsic to
the worldsheet, one uses the familiar

gAB5
]Xm

]sA

]Xm

]sB , ~12!

whereXm(sA) are the spacetime coordinates of the submani-
fold W. This gives an interpretation ofW as both a world-
sheet in spacetime and a two-dimensional manifold with its
own intrinsic geometry. One can define the intrinsic curva-
ture ofW in the standard way, and the extrinsic curvatures,
or second fundamental forms, by

Kimn5h~m
r hn)

s ¹rnis . ~13!

These extrinsic curvaturesKimn measure howW curves in
M. Since the codimension of the worldsheet is greater than
1, we also have a nontrivialnormal fundamental form

ṽm5
1

2
« i j nj n¹mni

n , ~14!

where« i j is the alternating symbol on two indices. This rep-
resents how near to orthogonality the world blanket coordi-
nate system is; it measures the rotation of theni

m in their own
planes as one moves around the worldsheet. Note that, de-
spite lying tangent toW, ṽm is a gauge-dependent object,
depending on the choice of the normal fields—an SO~2!

gauge group. In fact,ṽm is the connection on the normal
bundle ofW.

Now, we may write

¹~mnin)5Kimn2« i j ṽ~mnj n) , ~15!

where the symmetrization is understood to be only acting on
indices of the same type, so that thej above does not par-
ticipate in any symmetrization. This now indicates an alter-
native definition of the second fundamental forms

Kimn5
1

2
Ligmn1« i j ṽ~mnj n)5

1

2
Lihmn , ~16!

whereLi denotes the Lie derivative with respect toni
m . We

may now use the Riemann identity in flat space to derive the
following relation for the extrinsic curvatures:

Rs~mn)rni
snj

r5LjKimn2Kir~mKj n)
r 50. ~17!

Therefore, contracting withgmn gives
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LjKi52KimnKj
mn . ~18!

In addition, note that

Liṽm5ni
n ¹nṽm1ṽn¹mni

n5
1

2
ni

n ¹n~« jknks¹mnj
s!

1ṽn¹mni
n50 ~19!

and

Linj n5nj m¹n ni
m5ṽn« i j . ~20!

The system of equations~16!–~20! give the ‘‘equations of
motion’’ for the geometry of the system, which together with
Eq. ~7! form the full equations of motion for the string.

In order to extract a low-energy effective action, we will
need to expand these quantities and equations of motion in
terms of the thickness of the stringr s . To do this systemati-
cally we define the dimensionless parametere by

e5
k

Alh
}kr s , ~21!

where k21 represents a typical radius of curvature of the
worldsheet. We then define thezero thickness limitto mean
e→0 with m}h2, the energy per unit length of the string,
fixed. Note that this may not necessarily mean that the string
width is zero, since instead the extrinsic curvature could be
zero ~a flat worldsheet!. However, ifkÞ0, this limit corre-
sponds to the conventionall→` limit.

We now redefine coordinates so that the worldsheet has
thickness and curvature of order unity by setting

xi5j i /r s , ~22a!

sA5sAk, ~22b!

and redefining for consistency the following variables:

Kimn5Kimn /k, ~23a!

vm5ṽm /k, ~23b!

P̂m5r sPm . ~23c!

The worldsheet geometry equations~16!–~19! become

Lihmn52eKimn , ~24a!

Ligmn52e@Kimn2« i j v~mnj n)#, ~24b!

LjKimn5eKis~mK j n)
s , ~24c!

LjKi52eKimnK j
mn , ~24d!

Ljvm50, ~24e!

and the field equations~7! become

1

A2g
$] i@A2g~gi j ] jX1egiA]AX!1e]A„A2g~giA] iX

1egAB]BX!…#%5 P̂mP̂ngmnX2
1
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X~X221!, ~25!

1

A2g
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1egiAgjBF̂AB#%
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2e]BP̂k!1egABgjCF̂BC#%…
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1

A2g
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1egiBgACF̂BC#%

1e]B$A2g@gBkgAlF̂kl1~gBCgAl2gBlgAC!~e]CP̂l

2] l P̂C!1egBCgADF̂CD#%…52bX2~gjAP̂j1gABP̂B!.

~27!

Here, F̂ i j is the tensorFi j defined in terms of the rescaled
variables. Finally, we also need the explicit expansion of the
Lagrangian

L5lh4S ] iX] jXgi j 12e] iX]AXgiA1e2]AX]BXgAB

1X2P̂mP̂ngmn

2
1

2b
$F̂ i j @ F̂klg

ikgjl 14~]kP̂A2e]AP̂k!g
ikgjA

12eF̂ABgiAgjB#

12~] i P̂A2e]AP̂i !~] j P̂B2e]BP̂j !~gi j gAB2giBgjA!

1eF̂AC@4~] i P̂B2e]BP̂i !g
iAgBC1eF̂BDgABgCD#%

2
1

4
~X221!2D . ~28!

This now allows us to expand rigorously in powers ofe.
Note that so far we have made no assumptions about any of
the fields or their dependence on the coordinates. We have
simply rewritten the equations of motion, scaling with re-
spect to the physical dimensionful quantities in the problem,
leaving the equations of motion in terms of the dimension-
less parametere.

The procedure is as follows. We first consider thee→0
limit, with the metric and fundamental forms taking their
geometrically defined values on the worldsheet. Sincee→0
is also the flat worldsheet limit, we expect that the fields will
take the Nielsen-Olesen form, which indeed turns out to be
the case. In the next section we will go to higher orders ine,
deriving the corrections to the geometry and fields, and
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hence the corresponding effective action. However, for the
moment we conclude this section by proving that the
Nielsen-Olesen solution is in fact the leading order behavior
for the vortex fields around the worldsheet.

To zeroth order,

Lihmn5Ligmn5LiK j mn50, ~29!

hence all geometrical quantities take their worldsheet values
K j mn (sA,xi)5K j mn (sA,0), etc. Hence

g0mn5S gAB 0

0 2d i j D ~30!

and thus the equations of motion forX0 andP0m are

2] i] iX1~ P̂i
22 P̂A

2 !X1
1

2
X~X221!50, ~31a!

2] i F̂ i j 1bX2P̂j50, ~31b!

2] i] i P̂A1bX2P̂A50. ~31c!

These are solved by the Nielsen-Olesen solution, which is
plotted in Fig. 1 againstr for b51:

X05XNO~r !, P̂0 j 5PNO~r !] ju, P̂0A 50. ~32!

Substitution of this solution back into Eq.~2! yields the
familiar Nambu action. It is the corrections to this action we
are interested in.

III. THE CORRECTIONS TO THE NAMBU ACTION

We now derive the leading order corrections to the
Nambu action. In order to calculate quantities away from the
worldsheet, such as the metric, we must perform a Taylor
expansion off the worldsheet

Q5Qu01j iLiQU01
1

2
j ij jLiLjQU

0

1•••. ~33!

However, in calculating the Lie derivatives of the metric and
its determinant some fortuitous cancellations occur. First
note that

LkLjKimn5eLk~Kis~mK j n)rgsr!50 ~34!

and also that

LkLjLiA2g5e3A2g~KiK jKk2KiK j n
m Kkm

n

2K jKin
m Kkm

n 2KkK j n
m Kim

n 12Kis
m K j m

n Kkn
s !50,

~35!

which follows from a trace identity for the 232 matrix K
@15#. Hence to all orders, the metric and the volume Jacobian
are given by

gmn5gmnu012exi~Kimn u02« i j v~mnj n)u0!

1e2xixj~Kis(mu0K j n)
s u02d i j vmvn!, ~36a!

A2g5A2gu0F11exiKiU01
1

2
e2xixj~Ki u0K j u0

2KiAB u0K j
ABu0!G . ~36b!

This gives all the information on the geometrical contribu-
tions to the action. Now let us turn to the field theoretic
contributions.

First note that since

dSug0mn
5E d2sd2xA2gS dS

dXUg0mn
dX1

dS

dPm
U

g0mn

dPmD
~37!

vanishes by the equations of motion, first order field correc-
tions contribute at second order in the action, and second
order corrections at fourth order.

To first order we may read off the equations for the cor-
rections to the fields as

2] i] iX12Ki] iX01 P̂0i P̂0iX112P̂0i P̂1iX0

1
1

2
X1~3X0

221!50, ~38a!

2] i F̂1i j 2KiF̂0i j 1bX0
2P̂1 j12bX0X1P̂0 j50, ~38b!

2] i~vAxj« jkF̂ ik!2] i] i P̂1A1bX0
2P̂1A1bX0

2vAxj« jkP̂0k

50. ~38c!

The first two equations do not apparently lend themselves to
a straightforward solution, however, we note that the equa-
tion of motion for the worldsheet obtained by varying the
Nambu action is

hXm5ni
mKi50, ~39!

which would indicate that the ‘‘driving’’ terms in Eqs.~38a!,
~38b! vanish and hence the appropriate solution is
X15P1 j50. Indeed,@10# demonstrated that unless the trace

FIG. 1. The Nielsen-Olesen solution for the critical caseb51.0.
This solution has been found using the relaxation methods~and
routines! described in@26#, by giving the conditions atr 50 for X

~solid line! and P̂ and atr→` for X8 and P̂8.
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of the extrinsic curvature vanished on the defect, the first
order perturbation equations have no solution that is regular
and bounded. Thus in fact the appropriate solutions to the
first two equations of~38! areX150 andP1 j50.

The last equation of Eq.~38! is solved by@15#

P̂1A52vAxj« jkP̂0k ; ~40!

the presence of this term, as pointed out in@15#, guarantees
the gauge invariance of the effective action to worldsheet
SO~2! gauge transformations, for on substituting in the form
of the fields, this correction toP̂A exactly cancels the
‘‘twist’’ terms of Maeda and Turok, and we arrive at the
second order result

S52mE d2sA2gS 12e2
a1

m
KiAB

2 D ~41a!

52mE d2sA2gS 12r s
2 a1

m
Kimn

2 D , ~41b!

where

m52ph2E
0

`

rdr S X08
21

X0
2P̂0

2

r 2
1

P̂08
2

r 2b
1

1

4
~X0

221!2D ,

~42a!

a15
ph2

2 E
0

`

r 3drS X08
21

X0
2P̂0

2

r 2
1

P̂08
2

r 2b
1

1

4
~X0

221!2D .

~42b!

For the fourth order action we need the second order cor-
rections to the fields, the volume factor already being exact
to all orders. From Eqs.~25!–~27! we may read off the equa-
tions for these as

2] i] iX21xjKiAB K j
AB] iX01 P̂0i P̂0iX2

12P̂0i P̂2iX01
1

2
X2~3X0

221!50, ~43a!

2] i F̂2i j 1xkKiABKk
ABF̂0i j 1bX0

2P̂2 j12bX0X2 P̂0 j50,
~43b!

2] i~vAxj« jk F̂ ik!2] i] i P̂2A50. ~43c!

To simplify these, and to remove the explicitK dependence
we will decompose in cylindrical harmonics by setting

X25
1

2
gKiAB

2 1 ḡxi j KiABK j
AB, ~44a!

P2f5
1

2
qfKiAB

2 1 q̄fxi j KiABK j
AB , ~44b!

P2r5qr«kiKkABK j
ABxi j , ~44c!

where

xi j 5
xixj

r 2 2
1

2
d i j . ~45!

This gives two sets of coupled second order differential
equations:

2g92
g8

r
1

P̂0
2g

r 2
1

2P̂0X0qf

r 2
1

1

2
g~3X0

221!52rX08 ,

~46a!

2qf9 1
qf8

r
1bX0

2qf12bX0 P̂0g52r P̂08 , ~46b!

and

2 ḡ92
ḡ8

r
1

4 ḡ

r 2
1

P̂0
2 ḡ

r 2
1

2P̂0X0 q̄f

r 2

1
1

2
ḡ~3X0

221!52rX08 , ~47a!

2 q̄f9 1
q̄f8

r
12qr82

2qr

r
1bX0

2 q̄f12bX0 P̂0 ḡ52r P̂08 ,

~47b!

4qr22 q̄f8 1br 2X0
2qr52r 2P̂08 . ~47c!

There are no additional corrections toP̂A at this level.
In the critical caseb51, the above equations reduce to

two sets of first order ordinary differential equations
~ODE’s!:

rg85X0qf1 P̂0g, ~48a!

qf8

r
5X0g1 P̂0 , ~48b!

and

r ḡ 85X0 q̄f1 P̂0 ḡ1
r P̂08

X0
, ~49a!

2 ḡ5rqrX01
r P̂08

X0
, ~49b!

2 q̄f8 24qr52r ḡ X0 . ~49c!

Note that just as Eq.~47! is really two coupled second order
ODE’s, Eq.~49! is really two coupled first order ODE’s. The
fact that Eqs.~46!,~47! reduce to such a first order form for
b51 is reassuring, since we do not expect to destroy super-
symmetry simply by bending the string.

Substituting Eq.~44! into the action, and after some alge-
bra, one arrives at Anderson’s result
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S52mE d2sA2gH 12e2
a1

m
KiAB

2 1e4

3Fa2

m
~KiAB

2 !21
a3

m
KiABK j

ABKiCD K j
CDG J ~50a!

52mE d2sA2gH 12r s
2 a1

m
Kimn

2 1r s
4

3Fa2

m
~Kimn

2 !21
a3

m
Kimn Kj

mnKilrKj
lrG J , ~50b!

where

a25
ph2

4 E
0

`

drF r 2X08~2g2 ḡ !1
P̂08

b
~2qf2 q̄f2rqr !

1
4r P̂0

2

b
G , ~51a!

a35
ph2

4 E
0

`

drF2r 2X08 ḡ1
2P̂08

b
~ q̄f1rqr !2

4r P̂0
2

b
G . ~51b!

If b51, it can be seen from Eqs.~48!,~49! that 2a21a350.
To determinea2 anda3, we need to solve Eqs.~46! and

~47!. This was done numerically by relaxation methods, us-
ing NAG routineD02GAF @25#. Sample solutions for both sets
of equations for the critical caseb51 are plotted in Figs. 2
and 3. The first set of equations can be readily implemented
and was solved by requiring thatg(0)5g(`)
5qf(0)5qf(`)50. Before solving the second set of equa-
tions, we expressedq̄ r from Eq. ~47c! as

qr5
2 q̄f8 2r 2P̂08

41br 2X0
2

~52!

and eliminated it from the equations, which were then solved
by asking thatḡ (0)5 ḡ (`)5 q̄f8 (0)5 q̄f(`)50. The solu-
tions obtained clearly behave at the origin as

g, ḡ ,qr;r , ~53a!

qf;r 2, ~53b!

q̄f;const, ~53c!

which can be checked to satisfy the asymptotic counterparts
of Eqs.~46!,~47!.

We have computed the coefficientsm,a1 ,a2 anda3 for a
range of values ofb; the results are shown in Figs. 4–6 and
in Table I. The key points to note are that for the range ofb
for which we computed the coefficients (0,b<100)
m,a1.0 anda3 ,a21a3,0; however, 2a21a3 is positive
~negative! for b,1 (b.1) and a2 is positive for
b,bcrit.3.03 and negative forb.bcrit .

IV. THE EQUATIONS OF MOTION FOR THE STRING

In order to derive the equations of motion for the string
we must express the action~50! in terms of the worldsheet
coordinates, with respect to which we are varying the action.
To do this, we note that

FIG. 2. Higgs fieldg ~dashed line! and polar gauge fieldqf as
functions ofr solving Eq.~46! for the valueb51.0.

FIG. 3. Higgs fieldḡ ~dashed line!, polar gauge fieldq̄f ~solid
line! and radial gauge fieldqr ~in function ofr ) solving Eq.~47! for
b51.0.

FIG. 4. The parametersm(b)/ph2 ~solid line! anda1(b)/ph2

appearing in the action to fourth order.
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KiAB 5nim ,AXm,B52nim Xm,AB52nim X;AB
m . ~54!

Hence, defining

NCD
AB5Xm;A

;CXm;D
;B, ~55!

we see that

KiAB
2 52Xm;ABXm;AB52NBA

AB , ~56a!

KiAB K j
ABKiCD K j

CD5Xm;ABXm;CDXn;CDXn;AB5NBD
ACNCA

DB .
~56b!

Now, the connection on the worldsheet is given by

GBC
A 5

1

2
gAE~gBE ,C1gEC ,B2gBC ,E!5gAEXm,EXm ,BC

~57!

and the curvature~either directly or from the Gauss-Codazzi
equations! is

RABCD5X;AC
m Xm;BD2X;AD

m Xm;BC . ~58!

We may therefore, using the identity

RABCD5
1

2
R~gACgBD2gADgBC! ~59!

and the symmetries ofN, infer the following useful relations:

RD
B5

1

2
RdD

B52NDA
AB , ~60a!

R52NBA
AB , ~60b!

NBD
ACNCA

DB5Xm;ABXm
;CD~RACBD1X;AD

n Xn;BC!

5
1

2
R21NBC

ADNAD
CB . ~60c!

We can now rewrite the action and its constituent variations
as

S52mE d2sA2gH 12e2
a1

m
R1

e4

m F S a21
1

2
a3DR2

1a3NBC
ADNAD

CBG J ~61!

and

dA2g5
1

2
A2ggABdgAB5A2ggABX ,A

m dXm,B ,

~62a!

dR522Xm;ABd~Xm;AB!14NAB
DAXm,BdXm,D

522Xm;AB~dXm! ;AB22RXm,DdXm,D , ~62b!

d~NBC
ADNAD

CB!54~dXm! ;ABXm;CDNCD
AB

24X ,F
m dXm,AgAFNBC

EDNED
CB ~62c!

@using the fact thatdGAB
C X ,C

m is parallel to the worldsheet,
whereasXm;AB is perpendicular, and Eq.~60!#.

Noting that*A2gR}x, the Euler characteristic which is
a topological invariant, or from the above equations, we see
that thea1 term will not contribute to the equations of mo-
tion. TheR2 term, on the contrary, gives

FIG. 5. The parametera2(b)/p appearing in the action to
fourth order.

FIG. 6. The parametera3(b)/p appearing in the action to
fourth order.

TABLE I. The numerical coefficients appearing in the action to
fourth order for some values of the Bogomol’nyi parameterb.

b m/ph2 a1 /ph2 a2 /p a3 /p

0.1 3.272 6.025 77.761 2104.985
0.2 2.813 3.347 23.565 232.835
0.5 2.314 1.634 4.308 26.767
1.0a 2.000 0.999 1.069 22.138
2.0 1.736 0.642 0.174 20.722
10.0 1.278 0.272 20.097 20.094
50.0 0.977 0.141 20.065 20.030
100.0 0.880 0.111 20.052 20.023

aFor b51, it can be analytically deduced from the equations of
motion thatm/ph252a1 /ph252 and that 2a21a350.
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3~gABX ,A
m R2! ;B24~RXm;AB! ;AB

5~Xm,BR224R,AXm;AB! ;B524R;ABXm;AB, ~63!

where we used the Riemann identity

~DADB2DBDA!Xm
,C5RCDABXm,D, ~64!

which implies

Xm;AB
;B5RABX ,B

m 5
1

2
RXm,A ~65!

at each step.
The N2 term gives

3~Xm,ANBC
EDNED

CB! ;A14~NCD
ABXm;CD! ;AB ,

but

NCD;A
AB Xm;CD5Xn;B

;DAXn;C
;AXm;CD5

1

2
~X ;DA

n Xn;C
;A! ;BXm;CD

52
1

4
~RgCD! ;BXm;CD50, ~66!

hence the full equations of motion for the system are

m

e4
hXm52~2a314a2!R;ABXm;AB13a3Xm,A~NBC

EDNED
CB! ;A

14a3NCD
ABXm;CD

;AB . ~67!

It is possible to express these equations in terms of the ex-
trinsic curvatures. Using Eq.~54! and

X;AB
m 5X,AB

m 2GAB
C X,C

m , ~68a!

Xm,DXm
;AB50, ~68b!

it follows that

X;AB
m 5hmnXn;AB5~gCDX,C

m X,D
n 2d i j ni

mnj
n!Xn;AB

52d i j ni
mnj

nXn,AB5d i j ni
mK jAB . ~69!

Contracting the equation of motion withni
m and withX,P

m

gives equations of motion normal and parallel toW:

2
m

e4
KiA

A 5~4a212a3!R;ABKi
AB

14a3d jkK j
ACKk

BDni
mXm;CDAB , ~70a!

053a3~NEF
CDNCD

FE ! ,P14a3NEF
CDgAEgBFX,P

m Xm;CDAB .
~70b!

Note that this latter equation~70b! is an identity for the
unperturbed worldsheet. We have verified that it does indeed
hold using the light cone gauge. Now,

ni
mXm;CDAB52KiCD;AB2d mn« imvBKnCD;A

2dmn« imvAKnCD;B2dmnKmCDKnA
E KiEB

2dmn« imvA;BKnCD1KiCDvAvB , ~71!

which implies that the equations of motion also read

m

e4
KiA

A 52~4a212a3!R;ABKi
AB14a3K j

ACK j
BD~2KiCD;AB

2« ikvBKkCD;A2« ikvAKkCD;B2KkCD KkA
E KiEB

2« ikvA;B KkCD1KiCDvAvB!. ~72!

V. CORRECTIONS TO THE MOTION
OF TEST TRAJECTORIES

We now wish to derive the corrections to the motion of
three test trajectories: the circular loop, the traveling wave,
and the helical breather. We have chosen these three ex-
amples because they provide three different ways in which to
observe the rigidity or otherwise of the string.

The loop trajectory is given by

Xm~t,s!5~t,costcoss,costsins,0!, ~73!

and collapses to a point after a time periodDt5p/25L/4,
whereL5rds52p is the length of the closed string. The
extrinsic curvature invariants become singular at this point,
hence rigidity would be indicated by a retardation of the
collapse or a positive correction to the amplitude of the loop.

A traveling wave on the other hand is a variant of the flat
worldsheet where a deformation of arbitrary size and form is
introduced, the only constraint being that the deformation is
a function of only one of the light cone coordinates
s65s6t:

Xm~t,s!5@t, f ~t2s!,g~t2s!,s#. ~74!

This has been shown to be a solution of the full field theory
@21#, hence no correction should be found for this trajectory.

The helical breather is a time-dependent solution which
may be written as

Xm~t,s!5~t,A12q2costcoss,A12q2costsins,qs!.
~75!

The limit q→1 corresponds to the flat worldsheet and the
limit q→0 to the collapsing circular loop. For intermediateq
the trajectory is never singular, and the extrinsic curvature
peaks at approximatelyq22A12q2. Rigidity would be indi-
cated by a preference for lower extrinsic curvature and hence
a negative correction to the amplitude of oscillation.

A. Corrections to the motion of a collapsing loop

As a first example of the effects of curvature terms on the
motion of freely-moving cosmic strings, we consider the col-
lapse of a circular loop. In Cartesian coordinates, the position
of this string is given by

Xm~t,s!5@t,Z~t!coss,Z~t!sins,0#, ~76!
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and the normals to the worldsheet are

n2
m5~ Ż,coss,sins,0!/A12Ż2, ~77a!

n3
m5~0,0,0,1!. ~77b!

In this case, one obtainsvA50, and

K2AB5S Z̈ 0

0 2Z
D Y A12Ż2, ~78a!

K3AB50, ~78b!

gAB5S 12Ż2 0

0 2Z2D , ~78c!

GAB
t 5S 2ŻZ̈

12Ż2
0

0
ZŻ

12Ż2

D , ~78d!

GAB
s 5

Ż

ZS 0 1

1 0D . ~78e!

The equation of motion to zeroth order is

K2A
A 5

ZZ̈112Ż2

Z~12Ż2!3/2
50. ~79!

The general solution to this equation is
Z(t)5kcos(@t2t0#/k). Choosingk51,t050 as initial condi-
tions one obtains the canonical form of the loop trajectory
~73!. Note that for this choice of loop lengthk51 and we
can useK or K interchangeably.

We now wish to find the corrected solution to order
e45r s

4 . To do this, we use Eq.~72! ~technically its unres-
caled counterpart!. SinceK3AB andvA vanish, the right-hand
side of Eq.~72! considerably simplifies to

4~a21a3!R;ABKAB532~a21a3! sec8~t!@7sec2~t!26#.

~80!

~Note that we have dropped the subscript 2 on the extrinsic
curvature.!

The left-hand side is obtained by varying the trace ofK2
from Eq. ~79!, whereby we obtain the equation fordZ as

dZ̈12tan~t!dŻ2dZ532
r s

4

m
~a21a3!sec5~t!

3@7sec2~t!26#. ~81!

The solution to this, with initial conditions
dZ(0)5dŻ(0)50 is

dZ~t!532
e4

m
~a21a3!S 7

40
sec5~t!1

1

60
sec3~t!

1
1

15
sec~t!2

31

120
cos~t!2

t

8
sin~t! D . ~82!

Thus, the sign ofa21a3 determines whether the string is
rigid or antirigid. This ‘‘loop rigidity parameter’’ is plotted
againstb on Fig. 7, and its negativity means that the loop is
antirigid and tends to collapse faster than in the Nambu ap-
proximation. This is illustrated on Fig. 8, where we compare
the zero-order solutionZ(t)5cos(t) with the corrected so-
lution Z(t)5cos(t)1dZ(t).

Note that the approximation breaks down when
uKB

Au5O(r s
21), i.e., when cos(t)5O(rs). For example, in the

illustration of collapse in Fig. 8,r s51/10 is rather large; we
would hope that our approximation would be valid until the
radii of curvature of the worldsheet became close to 1/10, let
us say twice the radius of the string: 1/5. InputtinguKB

Au51/5
gives t.1.1, which does indeed correspond to the point at
which the solutions start to significantly differ in Fig. 8.

B. The motion of a traveling wave

Now consider a traveling wave, whose position and nor-
mals are given by

FIG. 7. The ‘‘rigidity’’ parameter (a21a3)(b)/p appearing in
the equations of motion for the loop to fourth order.

FIG. 8. The collapse of a circular loop in the Nambu approxi-
mation~solid line! and at fourth order, for a~rather large! parameter
e51/10.
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Xm~t,s!5@t, f ~t2s!,g~t2s!,s#, ~83a!

n2
m[nm5~0,g8,2 f 8,0!/Af 821g82, ~83b!

n3
m[mm5~ f 821g82, f 8,g8, f 821g82!/Af 821g82,

~83c!

where a prime denotes differentiation with respect to the ar-
gument, namely,t2s.

Writing

l~t2s!5 f 821g82, ~84a!

z~t2s!5~ f 9g82 f 8g9!/l, ~84b!

k2~t2s!5~ f 9g82 f 8g9!/Al, ~84c!

k3~t2s!5~ f 8 f 91g8g9!/Al, ~84d!

one has

vA5zS 1

21D , ~85a!

KiAB5k iS 1 21

21 1 D , ~85b!

gAB5S 12l l

l 212l D , ~85c!

GBC
A 5

l8

2 S 1

21D ^ S 21 1

1 21D . ~85d!

It is then straightforward to see that all terms on the right-
hand side of Eq.~72! vanish separately, as do the traces of
the extrinsic curvatures: the traveling wave is an exact solu-
tion to ~at least! fourth order.

C. Corrections to the motion of a helical string
in breathing mode

We now consider the string given by the following posi-
tion functions:

Xm5„t,Z~t!cos~s!,Z~t!sin~s!,qs…, ~86a!

n2
m5„0,qsin~s!,2qcos~s!,Z…/Aq21Z2, ~86b!

n3
m5„Ż,cos~s!,sin~s!,0…/A12Ż2. ~86c!

This string is helical with breathingq: the limits q→0 and
q→1 represent a collapsing loop and a straight string, re-
spectively. @Note how Eqs. ~86a!–~86c! reduce to Eqs.
~76!,~77!, and how all pertinent quantities in the equations of
motion are obtained from these expressions.#

With this choice of normals, the fundamental forms are

gAB5S 12Ż2 0

0 2~q21Z2!
D , ~87a!

K2AB 52
qŻ

Aq21Z2S 0 1

1 0D , ~87b!

K3AB5
1

A12Ż2S Z̈ 0

0 2Z
D , ~87c!

vA5
2q

A12Ż2Aq21Z2S 0

1D . ~87d!

Hence the equations of motion to zeroth order become

Z̈

~12Ż2!3/2
1

Z

~q21Z2!~12Ż2!1/2
50. ~88!

This equation admits for general solution

Z~t!5Ak22q2cosS t2t0

k D , ~89!

so that, choosing again the initial conditionsk51,t050 and
calling

V~t!5cos2~t!1q2sin2~t!, ~90!

we have

gAB5VS 1 0

0 21D , ~91a!

K2AB 5qA12q2

V
sin~t!S 0 1

1 0D , ~91b!

K3AB 52A12q2

V
cos~t!S 1 0

0 1D , ~91c!

vA52
q

VS 0

1D . ~91d!

The right-hand side of the corrected equation of motion
becomes then

232e4A12q2cos~t!V29/2

3~b12b2V211b3V222b4V23!,

where

b156@~a21a3!1a2q2#, ~92a!

b257~a21a3!1~38a2122a3!q21~7a223a3!q4,
~92b!

b355q2@~7a215a3!1~7a212a3!q2#, ~92c!

b4515q4~2a21a3!, ~92d!

and the left-hand side is obtained as before by varying the
trace ofK3:
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d~K3A
A !5V23/2dZ̈12V25/2~12q2!sin~t!cos~t!dŻ

1V25/2@q22~12q2!cos2~t!#dZ. ~93!

Finally, the corrected equations of motion are

dZ̈12
12q2

V
sin~t!cos~t!dŻ1

q22~12q2!cos2~t!

V
dZ

5232
e4

m
A12q2cos~t!V23~b12b2V21

1b3V222b4V23!. ~94!

Although it is possible to find an exact solution to this
equation~see Appendix for details!, it is more instructive to
consider the quasiflat limitq→1. In this case, Eq.~94! be-
comes

dZ̈1dZ5232
e4D3

m
@~a21a3!cos~t!

2~2a21a3!cos~t!sin2~t!#, ~95!

whereD is defined by

q2512D2. ~96!

The solution dZ(t) satisfying dZ(0)5dŻ(0)50 is then
found to be

dZ52
e4D3

m
@4~2a213a3!tsin~t!1~2a21a3!

3„cost2cos~3t!…#. ~97!

The corrected trajectory can then be written

Z1dZ5DF12
e4D2

m
~2a21a3!G

3cosH F11
4e4D2

m
~2a213a3!GtJ

1
e4D3

m
~2a21a3!cos~3t!. ~98!

The effect of the correction is threefold: First, it alters the
frequency of the motion,t→@114e4D2(2a213a3)/m#t ;
since (a21a3),a3,0 this has the effect of reducing the
frequency—a tendency we would be tempted to call rigid.
Secondly, the amplitude of the oscillation is altered by a
factor 12e4D2(2a21a3)/m. This could be either an ampli-
fication or reduction, depending on whetherb.1 or b,1.
Finally, a higher frequency oscillation is superposed on the
motion for bÞ1. If, for simplicity, we take b51, so
2a21a350, we see that

Z1dZ5DcosF S 11
8e4D2

m
a3D t G , ~99!

i.e., the only effect of the correction is to reduce the fre-
quency of oscillation of the breather, which would seem to
be unambiguously rigid~see Figs. 9 and 10!.

However, we now observe a curious property: Suppose
instead we consider initializing the correction at the instant
of maximal velocitydZ(2p/2)5dŻ(2p/2)50, we find

Z1dZ5F12
e4D2

m
~2a219a3!G

3sinH F11
4e4D2

m
~2a213a3!Gt8J

2
e4D3

m
~2a21a3!sin~3t8!1O~e8! ~100!

~wheret85t1p/2!. Now note that while the frequency of
oscillation is decreased by the same amount, and the higher

FIG. 9. The corrected evolution of the quasiflat limit of a helical
breather forb51 and e5D51/10. The correction added to the
Nambu solutionZ(t) ~solid line! is in fact 104dZ in this figure
~dashed line!.

FIG. 10. The coefficientsa21
3
2 a3 ~solid line! and 2a21a3

appearing in the solutiondZ. Note that this last combination also
appears in the action, and that it vanishes for the critical coupling
b51.
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frequency term is still the same, the amplitude is now uni-
formly increased for allb. If, as before, we takeb51, we
now find

Z1dZ5DS 12
8e4D2

m
a3D sinF S 11

8e4D2

m
a3D t8G ,

~101!

in other words anincreasein the amplitude of oscillation
accompanies a similar decrease in its frequency. One cannot
immediately see from this solution whether or not the behav-
ior is rigid, however, an analysis of the Ricci curvature near
t850 shows that it is in fact increased—a behavior consis-
tent with antirigidity. A calculation of the dependence of the
curvature on generalq is presented in the Appendix. The
algebra is more complicated but the results are the same: all
helical breathers display both rigid and antirigid characteris-
tics.

The results of our helical breather calculations therefore
appear rather ambiguous. If we wish to identify rigidity by
the behavior of a corrected trajectory—whether it increases
or decreases curvature—we are forced to calculate the effect
on the curvature~see Appendix! and then the results appear
to depend on the initial conditions. What this shows is that
the ‘‘decrease in curvature’’ criterion for rigidity is too naive
to be reliably applied in all situations.

VI. THE QUESTION OF RIGIDITY

We now want to determine whether a string can be la-
beled ‘‘rigid’’ or ‘‘antirigid.’’ To do this, we use an argu-
ment based in that of Polyakov@17#, which consists in de-
termining how the action varies under a rescaling of the
spacetime coordinatesXm→lXm. Such transformations alter
the scale of crinkles of the worldsheet and magnify or reduce
small-scale structure, hence rigidity would be indicated by a
extremum of the energy or the action with respect to the
rescaling parameterl, as illustrated in Fig. 11.

Our starting point is the action~50!, which can be written

2S5mE d2sA2g2e2a1E d2sA2gMii

1e4a2E d2sA2gMii
2 1e4a3E d2sA2gMi j M i j ,

~102!

where the matrixMi j is defined as

Mi j 5KiAB K j
AB . ~103!

As Mi j M i j 5Mii
2 22 det(M ), this can be expressed as

2S5mA2e2a1x1e4@~a21a3!I 122a3I 2#, ~104!

with A the area of the worldsheet for the range of$t,s%
being integrated over andx proportional to the Euler char-
acter ofW. Also,

I 15E d2sA2gMii
2 , ~105a!

I 25E d2sA2gdet~M !. ~105b!

We now rescaleXm→lXm, so that forl.1 the world-
sheet is expanded and forl,1 it is shrunk. Then,

gAB→l2gAB , ~106a!

KiAB→lKiAB , ~106b!

and thusI i→l22I i , i 51,2. The shape of the curveS(l)
now depends explicitly on the integralsI i , since2S is res-
caled as

2S→l2mA1e2a1x1l22e4@~a21a3!I 122a3I 2#.
~107!

We know thata3 ,a21a3,0, and clearlyI 1.0, so in
order to determine the shape ofS(l) we only need to deter-
mine the sign of det(M ). For these purposes, we can work in
the conformal gauge,gAB5hAB , and we find

det~M !5~K200K3112K300K211!
2

22~K211K3102K311K210!
222~K200K310

2K300K210!
2. ~108!

If we impose the Nambu equations of motion,KiA
A 50, this

determinant is strictly negative. Hence, sincemA is positive,
we see thatS(l) is unbounded, because the coefficients mul-
tiplying l2 andl22 have opposite signs.

We must therefore conclude that the string is antirigid.
This does not mean thatall the trajectories of the string ex-
hibit antirigidity, but rather that it is impossible for all tra-
jectories to be rigid.

Let us illustrate this by considering the trajectories of the
previous section. For the collapsing loop, det(M )50, and as
we noticed,a21a3 determines alone the shape ofS(l).
This simplification came from the fact that the loop is flat,
and therefore has only one nonvanishing extrinsic curvature.

FIG. 11. Schematic graph of2S(l), the variation of the action
as the worldsheet is rescaled. The solid line would correspond to a
rigid string, and the dashed line to an antirigid string.
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For the traveling wave,Mi j [0, which is consistent with
the observation of no corrections to this trajectory.

In the case of the helical breather, bothMii and det(M )
are nonzero, so we do not expect results to depend on
a21a3. Even though the action is unstable to the scaling of
the worldsheet, what is happening with the helical breather is
that the correction does not always have a nonzero projection
on this unstable mode. However, we would expect a general
correction of the breather to exhibit an instability.

To sum up: We have reviewed the derivation of the effec-
tive action for a U~1! local cosmic string to fourth order in
the ratio of string width to worldsheet curvature. We pre-
sented numerical results calculating the coefficients of these
fourth order terms. We then derived the equations of motion
for the string to fourth order, and calculated corrections to a
sample of well-known trajectories. We have given a general
argument for antirigidity of the cosmic string to fourth order,
however, by reference to our examples have shown that not
all trajectories need behave in an ‘‘antirigid’’ fashion—
rigidity it appears is rather similar to a theorem, it may work
in special cases, but one needs only find a single counterex-
ample to disprove it.
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APPENDIX: THE HELICAL BREATHER

Recall from Sec. V C that the helical breather solution to
the Nambu action is

Xm5„t,Dcos~t!cos~s!,Dcos~t!sin~s!,qs… ~A1!

@where D is defined in Eq.~96!# and that the equation of
motion for dZ(t) is Eq. ~94!:

dZ̈12
D2

V
sin~t!cos~t!dŻ1

q22D2cos2~t!

V
dZ

5232
e4

m
Dcos~t!V23~b12b2V211b3V22

2b4V23!. ~A2!

This can be solved using the method of variation of pa-
rameters, giving~after a long and tedious calculation!

dZ~t!5
16

mDF S b1

3
2

b2

4
1

b3

5
2

b4

6 D „cos~t!1D2tsin~t!…

2S b1

3V3
2

b2

4V4
1

b3

5V5
2

b4

6V6D cos~t!G
1l0sin~t!tan21

„qtan~t!…

1sin2~t!cos~t! (
n51

6

lnV2n. ~A3!

Here,V(t)5cos2(t)1q2sin2(t), theb ’s were defined in Eq.
~92! and thel ’s are

l05
D

240qm
@640~311/q2!b12360~512/q211/q4!b2

148~35115/q219/q415/q6!b3225~63128/q2

118/q4112/q617/q8!b4#, ~A4a!

l15
D

720m
@1920~321/q2!b12360~1524/q223/q4!b2

148~105225/q2217/q4215/q6!b325~9452210/q2

2136/q42110/q62105/q8!b4#, ~A4b!

l25
D

360m
@1920b12360~521/q2!b2148~3526/q2

25/q4!b325~315249/q2239/q4235/q6!b4#,

~A4c!

l35
D

90m
@480b12360b2148~721/q2!b325~6328/q2

27/q4!b4#, ~A4d!

l45
D

15m
@260b2148b325~921/q2!b4#, ~A4e!

l55
8D

15m
@6b325b4#, ~A4f!

FIG. 12. Schema showing the regions of antirigidity~shaded!
and rigidity for the helical breather atb51. HereD2512q2 and
S5sin(t0).
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l652
8D

3m
b4 . ~A4g!

To use this general solution to investigate the~anti!rigid
nature of these helicoidal trajectories, we need to observe
how the Ricci curvature

R5KiAB Ki
AB2KiKi52

2q2Ż2

~q21Z2!2~12Ż2!

2
2ZZ̈

~12Ż2!2~q21Z2!
~A5!

depends on the correction. For simplicity, we takeb51, and
note that for the background solution

R52
2D2

V3
„q2sin2~t!2cos2~t!…. ~A6!

Now, suppose we wish to investigate the behavior of the
curvature near a general initial pointt0, where
dZ(t0)5dŻ(t0)50. Then neart0,

dR.2
2Dcos~t0!

V3~t0!
dZ̈~t0!

5
64e4D2

m

cos2~t0!

V8~t0!
~b1V22b2V1b3!, ~A7!

where we have used Eq.~94! to evaluatedZ̈(t0), and noted
that b450 for b51. Now, the combinationRdR will be
negative if the magnitude of the curvature is decreased,
which corresponds to an intuitive notion of rigidity. From
Eqs.~A6! and ~A7! we see that this requires

@~22D2!S221#

3~2D212D428D4S2113D6S226D6S4!.0, ~A8!

whereS25sin2(t0). Figure 12 shows the sign ofRdR as a
function of the two parametersS andD. The shaded zones
indicate the regions where the string is antirigid. We see
that—with the exception of the loop case (D251)—the
string admits both rigid and antirigid behavior for each value
of D.
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