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Domain walls in supersymmetric Yang-Mills theories
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We present a detailed analysis of the domain walls in supersymmetric gluodynamics and SQCD. We use the
(correctedl Veneziano-Yankielowicz effective Lagrangians to explicitly obtain the wall profiles and check
recent results of Dvali and Shifmaf) the BPS-saturated nature of the walls #ingthe exactexpressions for
the wall energy density which depend only on global features of dynahieexistence of a nontrivial central
extension ofN=1 superalgebra in the theories which admit wall-like solutioffssupersymmetry is softly
broken by the gluino mass, the degeneracy of the distinct vacua is gone, and one can consider the decay rate
of the “false” vacuum into the genuine one. We do this calculation in the limit of the small gluino mass.
Finally, we comment on the controversy regarding the existendg distinct chirally asymmetric vacua in
SU(N) SUSY gluodynamics.S0556-282(97)02224-§

PACS numbgs): 11.27+d, 11.30.Pb, 12.60.Jv

[. INTRODUCTION where the subscript marks the values of the gluino con-
densate at spatial infinitigsay, atz— * o assuming that the
Recently it was noted1] that some supersymmetric domain wall lies in thexy plang. The existence of the exact
gauge theories possess domain walls with rather remarkabfélation(2) is a consequence of the fact that the domain walll
properties. The energy density of these domain walls is exin the case at hand is a Bogomol'nyi-Prasad-Sommerfield-
actly calculable, in spite of the fact that the theories undefBPS) saturated configuration preserving 1/2 of the original
consideration are in the strong coupling regime. For superSUPersymmetry. ) ) _ _
symmetric gluodynamics, the theory of gluons and gluinos In this paper we will explore in more detail the issue of

with no matter, the calculation of the energy density wash® domain walls both in supersymmetricfgluodynamics
carried out in Ref{1], in an indirect way. The key ingredient (Sec. 1) and In a supersymmetric extension o QECENCD,
is the central extension of tHé=1 superalgebra supersymmetric Yang-Mills theory with matiersee Secs.

' II-V. We will consider the profiles of the domain wall so-

N lutions, and calculate the energy density directly, by analyz-
t ot - . ing these profiles. The expressions obtained in this way will
1Q.Qp1= 4_772(‘7)@[ d*xV(Tr A?), @) beg confror?ted with the gepneral results of Rfgf]. Anothe);
issue of interest, to be discussed below, is the dependence of
. ) ) ] the central charge on the mass parameter of the matter field
where Q, is the supercharge) is the gluino field, and 1, The central charge is a chiral quantity; therefore, the
(0-)')&B:{()'3,—i’—o'l}t'lb is a set of matrices converting the dependence om, should be holomorphic, as in Ref2].
vectorial index of the representation (1,0) of the LorentzThe holomorphy implies that as far as the energy density of
group in the spinorial indicesThe commutatorl) is given & BPS-saturated domain wall is concerned, the transition
for the SUN) gauge group; the parametdr reflects this  from the weak coupling Higgs regime to the strong coupling
choice of the group. The integral over the full derivative onsupersymmetric gluodynamics is smooth.
the right-hand side is zero for all localized field configura- If supersymmetry is explicitlysoftly) broken, say, by the
tions; it does not vanish, however, for the domain walls.gluino mass term, the vacuum degeneracy is lifted — we find

Equation(1) implies that the energy density of the domain ourselves in a classical situation with a false vacuum. Now,
wall is instead of the domain wall, one can study the decay rate of

the false vacuum. If supersymmetry breaking is small, so that
N it is legitimate to work in the leading order in this parameter,
e=—(Tr \D).—(TrA?d)_.|, (2)  one can obtain an explicit expression for the decay rate of the
872 false vacuum. This problem is discussed in Sec. VI.
Section VIl is devoted to an issue which, although related
to the domain wall solutions, can be formulated in wider

*On leave of absence from PPARC. terms. Questioned is the very existencaNodlistinct chirally
"Permanent address: Institute of Theoretical and Experimentadisymmetric vacua in the SWNj-supersymmetric gluody-
Physics, Moscow 117259, Russia. namics. The chiraZ,y symmetry is a remnant of the anoma-

'Equations(9) and (11) in the original version of Ref[1] con-  lous Ry symmetry of the model. The presence of this sym-
tained a misprint; the factdd/4=? was omitted. Further comments metry is due to quantization of the topological charge. If the
regarding Eq(1) are presented in Sec. IV. topological charge is quantized in a nonstandard \Way,
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fractional topological charges are allowgdthen the global  scalar potential corresponding Zgy— Z, breaking,plus an
structure of the theory changes. In particular, only oneyqgitional minimum at the origin where the gluino conden-
chirally asymmetric vacuum survives, mdt The extra states gate vanishes.

disappear as a result of a new superselection rule. This is For simplicity from now on, if not stated to the contrary,
clearly seen within the effective Lagrangian approach. Theye will consider the case of @), although this restriction
issue is being debated in the literature. We discuss the impagd not of any conceptual importance and can be easily lifted.

of new arguments associated with supersymmegysy) The Lagrangian realizing the anomalous Ward identities
and smoott{and calculablebehavior of the wall energy den- s constructed in terms of the chiral superfield
sity.
3
S= Tr W2, 5
3272 ®

Il. SUPERSYMMETRIC GLUODYNAMICS
namely,

To begin with, we will concentrate on supersymmetric 1 A — 1 1 )
generalization of pure gluodynamics — i.e., the theory of L= Zf d*6C(S9) "+ §f d<6S
gluons and gluinos. The Lagrangian of the model at the fun-

damental level has the forf3] 1 32
1 b +—f d?6s In:—27rin), (6)

1 —
L=--5G2,G2,+ 25—5G2 B2, + S[iIND ;)\ ],
agg “* M 32t T gg

SZ
In —2+27Tin
g

(3)  whereo is a numerical parameter,

. . . . ' — 34i0/2
where the spinorial notation is used. In the superfield lan- o=eA%e"",

guage the Lagrangian can be written as andA is the scale parameter, a positive number of dimension

L= Rei Tr j d2oW?2, (4) of mass which we will set equal to unity in the following.

292 A new element in the Lagrangia®) is an integer-valued
where Lagrange multipliem. In calculating the partition function
1 1 i9 and all correlation functions the sum owveiis implied. The

R variablen takes only integer values and is not a local field. It
g? g(z) 8m? does not depend on the space-time coordinates and, there-
fore, integration over it imposes a global constraint on the
In what follows the vacuum anglé will play no role and topological charge. It is easy to see tiiaftter the Euclidean
can be set equal to zero. Our conventions regarding the suwetation) the constraint takes the form
perfield formalism are summarized, e.g., in a recent review
[4]. We will limit ourself to the SUN) gauge groudthe v=
generators of the group? are in the fundamental represen-

tation, so that Tr(°T") :_(1/2)5ab]' , ) While theF term in Eq.(6) is unambiguously fixed, the
SU(N)-supersymmetric gluodynamics has a discrete Symgem is not specified by the anomalous Ward identities. First,

metry, Zoy, a (nonanomalousremnant of the anomalous e effective Lagrangian at hand is not Wilsonian; therefore,

axial symmetry generated by the phase rotations of theyere are no reasons to discard terms with higher derivatives,

gluino field. The fqrmation of the qujno cond.ensal'sem (it generally speaking. A possible example of this type is
follows from certain supersymmetric Ward identities com-

bined with explicit instanton calculatiof§]) breaks this dis- (9 51/3%31/3)
crete chiral symmetry down t8,. Therefore, there exists a (SS)13
set of distinct vacua labeled by the value of the gluino con-
densate. The field configurations interpolating between difEven leaving aside higher derivatives, one is free to choose
ferent values of A\) at spatial infinities are topologically any value of the numerical consta@tin Eq. (6). As we will
stable domain walls. see shortly, these ambiguities do have an impact on the pro-
A formal description of these domain walls can be givenfile of the wall. The surface energy density, however, re-
in the framework of the effective Lagrangian approach. Wemains intact, in full accordance with the general arguments
will exploit the so-called Veneziano-Yankielowi¢¥Y) ef-  of Ref.[1]. For the time being we will pu€=1.
fective Lagrangian$6,7]. The original VY Lagrangian does The extra term added to the Veneziano-Yankielowicz La-
not possesg8] the discreteZy invariance of supersymmetric grangian is clearly supersymmetric and is also invariant un-
gluodynamics(3). Recently it was shown that the VY ex- der all global symmetries of the original theory. The single
pression is incomplete; it was amended to become compataluedness of the scalar potential and Heinvariance are
ible with all symmetries of supersymmetric gluodynamics inrestored® The chiral phase rotation by the angi&k with
Ref.[9]. The corrected expression exhibisminima of the

4 =a _
] axeig -z @

®

D

3The explicit invariance here i, rather than the comple&, of
2Another way to make the same statement is to say that noncorthe original SUSY gluodynamics, since we have chosen to write our
tractable cycles in the space of the gauge fields are shorter than éffective Lagrangian for the superfield which is invariant under
usually believed. AN——NA\.
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integerk just leads to the shift of by k units. Sincen is

summed over in the functional integral, the resulting La-

grangian forS is indeedZ, invariant.
The constraint orf S— S]¢ following from the Lagrang-

ian (6) results in a peculiar form of the scalar potential. The

expression for the scalar potential is given in Ekf) of Ref.
[9]. It can be considerably simplified in the infinite volume
limit. Eliminating, as usual, th& component ofS with the
help of classical equations of motion at fixedthe effective
potential can be written as

U(¢)=—V 1In

; exp(— 16V(¢* $)2%In? ¢|

+(a+mn)?]}|. (9)

HereV is the total space-time volume of the systefnis the
lowest component of the superfiekianda=arg(¢). In the
limit V— only one term in the sum over contributes for
every value ofw. Thus, for— m/2<a< /2 the only contri-
bution comes froom=0, while for 7/2<a<37/2 from n

—1. Therefore in the right half-plane,

U(d)=Uq(¢)=16(¢* $)*°In ¢In ¢*

ad T 10
at arg;ﬁe —E,E s ( )

while in the left half-plane, when adye (7/2,37/2),
U(#)=Uo(se™'m). 11

In other words, the complex) plane is divided into two

sectors. The scalar potential in the second sector is just théﬁt

in the first sector rotated by 7. The scalar potential itself is

continuous, but its first derivative in the angular direction

experiences a jump at apg= = /2. The scalar potential is
“glued” out of two pieces? The Z, symmetry is explicit in

this expression. It is quite obvious that the problem at hand

has three supersymmetric minima — twodat £ 1, corre-
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[lI. DOMAIN WALLS IN SUPERSYMMETRIC
GLUODYNAMICS

We will now consider the domain wall interpolating be-
tween

$»=0 and ¢=1

at spatial infinities.

For definiteness, the domain wall is assumed to be in the
Xy plane. The profile to be determined is a function of one
coordinate z. The corresponding domain wall is purely real
(Im ¢ will vanish on the wall profilg and lies completely
inside the first sector. In other words, we will only need the
potential on the real positive semiaxis éf

It is convenient to perform a rescaling

S=d3,
which casts the kinetic term of the scalar field in the canonic
form. Correspondingly,
¢=¢°
where ¢ is the lowest component of the superfigid
The scalar potential in the right half-plane éfthen is

IM()]?
U<qo>=‘ (9;‘”) , (12)
where
2 6
Wig)=5¢°In % (13

The domain wall is the planar static field configuration
(z) satisfying the boundary conditiong(—oc)=0,¢p()

1 and minimizing the energy functional. Hengg(z) sat-
isfies the classical equations of motion with the inversed sign
of the potential:

o= —= (14)

PPW oW
@2 d¢

D

sponding to a nonvanishing value of the gluino condensatg\S we will now show the domain wall we deal with is a

(spontaneously broken discrete chiral symmetrgnd a
minimum at¢=0 (unbroken chiral symmetjy

4Similar “glued” potentials appear due to the quantization of to-

pological charge in the Schwinger mod&D].
SThe existence of thisadditional vacuum state with vanishing

gluino condensate, which does not follow from any symmetry con-
siderations, is probably the most surprising and nontrivial finding of
Ref.[9] and is also a very important element of the present study o*

domain walls. We want to draw an analogy here with the situatio
in two-dimensional QCD with adjoint fermion studied in REE0.
There too vacuum structure is nontrivial and “domain walls” in-

n

BPS-saturated stafé&]. This means that a linear combination
of supercharges, acting on the wall, annihilates it. One-half
of supersymmetry is preserved. The general formula for the
supersymmetry transformation is

Sy =\2i(#¢) e+ \2€°F,
5?‘= - \/Ei(a-““aea-l— V2 €°F.

f the parameter of the transformatiefi is chosen in such a
way that

(15

016" =*ie,

terpolating between the vacua with different values of the fermionthen Sy=0 provided that

condensate exist. For SN gauge groups with eveN=4, the

d,p=*F, (16)

existence of different vacua did not follow from symmetry consid-

erations. In Ref[10], this was formulated as a paradox. It seems -
now that it is not a logical paradox, but rather a surprising phenomwhereF=—dW/de.
enon which takes place in some sophisticated enough two- Equation(16) is the first-order differential equation, a
dimensional and four-dimensional gauge theories. “square root” of the general Eq14). The solution with the
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boundary conditions we are interested in corresponds to the ¢

plus sign in Eq.(16);® under our choice of parameters it is 1
obviously purely real. Thereforeyw=). Even without
knowing the explicit form of the solution, the energy density ¢.3s
of the wall can be readily calculated. Indeed,
0.6
[ od siptgr 2222
e= z — =
LT g I 0.4
® S 4% 0.2
=2f dz(d,¢)| ——, 17 '
o (9(P
zZ
where Eq(16) is used. The right-hand side evidently reduces 6.2 0.4 0.6 0.8 1 1.2

to FIG. 1. The domain wall profile in SUSY gluodynamics.

_2 (18) stantC is immediately absorbed in a rescalingzfand the
3’ final expressior(18) remains intact.

where the values of the superpoteniiaB) at z=+ (i.e.,

. : o IV. SQCD WITH ONE FLAVOR
¢=0 and 1) are substituted. This result is in full agreement Q

with Eq. (2). What happens with the domain walls when the matter

Let us discuss now the wall profile. Combining E¢E3)  fields are added? In this section we will consider SU(2)
and (16) we arrive at the relation theory with one flavor(two subflavors The matter fields
belong to the fundamental representation of(3)J This
fz ﬂ_ 19(7— 19 model is described in great detail in a review pgdédr, and

e IN X A2 2), (19 so we omit all explanations. At the fundamental level the

matter sector has the form
wherez, is the wall center. The left-hand side is expressible
in terms of the integral logarithm. This does not help us find
the explicit form ¢(z) and we therefore will not use this

1 —— m
£M=Zf d?6d? 9°Q'eVQ"+ Tof d20Q°'Q, ¢+ H.c.|,

expression in the following. The asymptotic behavior of the (20
solution is, however, transparent. At large posita/ep(z)
approaches unity exponentially, wherea is the color and the subflavor indexg,f=1,2;Q
is the quark superfield. Furthermomag is the matter mass
¢©(z2)—1—constx e 122720, term. The subscript 0 indicates that it is the bare mass that
enters the Lagrangian; this parameter is complex. Certain
At large negativez, ¢(z) approaches zero as quantities depend omg in a holomorphic way, which will
allow us to exactly trace the evolution of the wall parameters
11 under variations ofng [2,12].
12z,~z By examining the symmetries of the model one derives

the corresponding VY effective Lagrangifin]. The R, cur-
modulo logarithms. This type of behavior was anticipatedrent, the superpartner of the energy-momentum tensor and
Indeed, for positive we are in the phase with the spontane-supercurrenf13], generates
ous breaking of the chiral symmetry and a mass gap. Hence,
the approach is exponential. On the other hand, the phase at A\ ,—e'’\,, ¢ '—e P8y’ ¢l e@P64 T
z— —o has no mass ga®], and the asymptotics is power (21
like.

Figure 1 presents the profile of the domain wall for thewherey and ¢ are the quark and squark fields, respectively.
field ¢(2). The Ry current is anomalous at the quantum level. The
Note that the wall energy density calculated above is inanomaly-freeR current is a linear combination of the,
sensitive to the particular choice of the kinetic term. Equa-<current and the Konishi currefit4]. At the one-loop level it

tion (17) illustrates this insensitivity. Let us return to B§)  corresponds t¢15]®
and restore the constafit in the kinetic term,C#1, as an _ ) )
example of possible ambiguity. It is quite clear that the con- No—€PN,, yi—e PPyl ploe Pyl (22

The R current is conserved in the massless limg=0.

5The corresponding supertransformation parameteris e*?

={1,—i}.
"We recall thatA is set equal to unity, so that 3(32) ~1Tr A2 8In higher orders the form of the conservBdcurrent becomes
=1 in the vacuum with the broken chiral invariance. more complicated16], but this is unimportant for our purposes.
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The VY Lagrangian is constructed in terms of two chiral
superfieldsS [see Eq.5)] andM,

M=Q"Qqr.

Omitting irrelevant constants one can write

(23

1 — s 1 _
L= Zf d*6(SS)M*+ Zf d*6(MMm)?
1

- 2
3f d 95(

Following Ref.[9], we introduced the Lagrange multiplier
(integer-valued constant “field’h) in the original expres-
sion which can be borrowed, e.qg., frgit7], to ensure proper

J’_

SM ) m
In —_+2min +Zf d?6M + H.c.

eA

(29)

guantization of the topological charge. As before, summatior;i

over n is implied. A priori the mass parametéthe coeffi-
cient in front of M) is proportional to the quark mass,,.
The coefficient of proportionality 1) was established

from the Konishi anomaly14]; see below. Furthermoré\
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pling regime. If the expectation value of the fieltl is small
(this happens either for large values mf, or in the addi-
tional vacuum found in Ref.9]), we are in the strong cou-
pling regime, where the VY effective Lagrangian is expected
to properly capture the qualitative picture of the emerging
dynamics. If the expectation value of the fidltlis large, we

are in the weak coupling reginié&5]. Here the VY Lagrang-

ian provides a good description of the moduli fiels but
does not properly describe the dynamics of the masgdive
bosons characteristic of the weak coupling regime. Yet it
reproduces correctly the vacuum structure in both cases. Cor-
respondingly, the profile of the domain wall following from
Eq. (24) will be qualitatively realistic. In this section we will
consider the wall solution interpolating betweei+1 and
¢=0. The solution that interpolates between two chirally
noninvariant vacua at smathy will be treated separately in
Sec. V. As in supersymmetric gluodynamics, the energy den-
ty of the walls will be exact.

Again, we will be interested here in a solution interpolat-
ing between the vacuum at the origin and that at finite values
of S,M. Therefore, it is sufficient to consider only one sector
of the theory. The corresponding vacuum structure is ob-

is the scale parameter of SQCD with one flavor. Its relationained by minimizing the superpotential

to A, the scale parameter of supersymmetric gluodynamics,
will be established later. Again, as in supersymmetric gluo-
dynamics, theéD terms in the Lagrangiaf24) are not deter-

mined completely by the symmetries of the theory. We have
chosen the simpledd term which is as good as any other FromdWW/dM =0 we conclude that, in the standard vacuum,

—28| mM 25
W—g I’]@-i-i . (25)

one for the purpose of illustrating our point.

In the massless limitn,— 0, the Lagrangiari24) is ob-
viously invariant under theR transformation, 6—e'?,
S—e?#s, andM—e ?AM. The variation of the Lagrang-
ian (24) under the anomalouR, transformation is

20, —
5 B(S= Sk,
while that of Eq.(6) is

8 _
31B(S=S)e,

in full accordance with the fact that the first coefficients of

the B8 functions are 5 and 6 in SU(2) SQCD with one flavor
and supersymmetric gluodynamics, respectivelymjf+0,
the only chiral invariance left in the Lagrangi&6) is the
discrete(anomaly fre¢ Z, chiral transformation

N —semiki2y pioul, @i ekt
wherek is an integer. In the VY Lagrangiaf24), amended

in accordance with Ref9], the discrete chiral symmetry is
realized a<Z,,

0_)e'n'ik/20, S—>e”ikS, M—>e7TikM.

The scalar potential, being properly calculated from @4),

($)=— ZmM). 29

Given our definitions o5 andM, this is nothing but a con-
sequence of the Konishi relatiga4]

nNZ2Aaf VAaf
D?Qfe'Q'= 2 ey

1
=4moQ*'Que+ ——5 Tr WA (27)
2

This explains our choice of the mass parameter in(24).

The conditiondW/3S=0 implies that the vacuum states
are at(S)(M)=1 (in the units of A which will be used
hereafter, if not stated to the contraryt is seen that it is
convenient to assume the mass parametdo be real and
negative. Then the vacuum value bf will be real. The
phase of the parameten can be adjusted arbitrarily by an
appropriate rotation of the fielddandM. From now on we
will assume thatm is a real negative number; for conve-
nience we will introduce

m=-m.

Thenm is real and positive.
It is convenient to pass to the superfields with the canonic

is composed of two sectors, much in the same way as iinetic terms,

supersymmetric gluodynamics, Sec. Il.
The fundamental theory described by the Lagrandg®&n

S—®3, M—-X2 (28)

and(20) is in the unified Higgs-confinement phase, since theThe lowest component ob is denoted by, as in Sec. Il;
Higgs field is in the fundamental representation. One carthe lowest component oK is y. The superpotentia(25)
distinguish the strong coupling regime versus the weak cougenerates the scalar potential
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IWIZ2 | oW|? After this, the effective potential for the light matter fields is
U(e,x)= 70l Ty =4|¢? In(¢%x?)|? obtained 15] which gives a valid description of the “Higgs”
® phase]x|>1. We will analyze in more detail the physics of
_ 43 2 the Higgs phase in the subsequent section and will show, in
+ - (290  particular, that BPS-saturated domain walls which interpo-
3x late between two Higgs vacy{ae) with different phases of

It is zero at the origin and at the standard minita8) do exist. However, the domain walls interpolating between
9 , . ' .__one of the standard vacua and the new vacuum at the origin
Let us analyze the profile of the domain wall connectmgdisa ear in this aporoach
the minimum at the origin and one of the standard minima V\?gwant to emgﬁasize .that Eq&0) and (32 with the
. g - _ 2 . - _
(with the positive sign 9f<M>_<X )). It is again a BPS_ boundary condition$31) do have a solution at any value of
saturated state, preserving two out of four supercharges; S@e | ihe limit M—0 the solution acquires, however, a pe-

Eq. (19. The corresponding equations are culiar singular form being composed of two pieces. The first

d,9=*Fg, dx=%*Fy, (300  piece corresponds to moving from the minimyn y=0 at
z=—x to the point¢=0, y= x, atz=z, according to the
where law
— W, — I, _ . Shiz-
F(D:_(—(PX), FX:_(—(PX)_ X(Z)—X*emz 29)
e ax

Then the trajectory abruptly turng(z) does not change

The following boundary conditions are imposed: anymore, but o(z) starts rising from o(z0)=0 to

e=x=0 at z——oo; o(°)=¢, as is dictated by the first equation in E{82)
with frozeny(z) = x, (it has the same functional form as the
=@y, X—Xi at Z—om, (31)  wall equation in supersymmetric gluodynamicEhis second

- ] half of the wall is much broader than the first one. Its width
where (the real positive parameterse, ,x, are defined s of orderi~ 2 compared to the width- 1/ of the section

through the expressions of the wall with negativez— z,,.
5 1 \/5 It is qlear why _this solution is lost in_ the Born-
Ye=—-—=, ¢ =—m, Oppenheimer analysis. The scalar potent2d) involves a
*BYym T 2 rather high barrier between the Higgs vacua and the origin.

_ The new wall corresponds to climbing this “mountain
and the scale paramet@ris put to unity, temporarily. These ridge.” In the vicinity of the ridge the relatiop®y?=1 is
boundary conditions correspond to the plus sign in@@).  not valid and the naive Born-Oppenheimer analysis breaks

After the rescalinge=m"Y%, ¢=m"%g, Egs.(30) take the ~down.

form It is not surprising as such that a solution going over this
ridge still exists. What is rather remarkable and very specific
d,0=—2mY%0? In(¢%x?), for the supersymmetric case is that the surface energy den-
_ sity of this nonstandard BPS-saturated wall is not high. It is
- . 498 determined by the generalization of EG7),
z“?z)(:)( m— 3—,.)_(,2) . (32)

Oy 0+ d x I Xt

f“ q AW W  IW IWw
These equations can be solved analytically in two interesting R 7 de (9¢T+ IX dx
casesm—o andm—0. L

When the mass is large, the behavior of the solution is =2(W_o—Ws). (33
gualitatively evident. In this case, we can integrate out the
heavy matter fields, after which the dynamics of the light Using Eq.(25) for the superpotential we conclude that
(gauge sector is the same as in supersymmetric gluodynam-
ics. Indeed, az=o the curve starts ab, ,x, ; then it fol-
lows the trajectory on whick?® is (almos} equal to 3ny?/4,
and the solution fokp is (almos} the same as in Sec. Il —

exponentially close tgp, — then quicklye andy approach ~ .
ze?o as ¢t _yz)—l m?))aulo Iogar?thmsy(erhe c):(ongﬁionﬁ where the scale parametdr is restored. The relatio(34)
0 : holds for anym. It is amusing that, in the limiting case

=3my?/4 nullifies the(large second term in the scalar po- ~ . .
tential (29) and exactly corresponds to freezing the heav;/n_)o’ half of the energy densif83) comes from the region

degree of freedom in the spirit of the Born-OppenheimelZ< Zo (6_‘ narrow section of th_e walland another half from
approach, the regionz>z, (a broad ;ectloh

The situation is somewhat nontrivial in the opposite limit When the mass is n_e|ther too large nor too small, Egs.
when the matter fields are very light. A standard proceduréSO) do not have analytic solutions. They can be SSIVEd nu-
would be to freeze the gauge degrees of freedom, whicherically, however. As an illustration the results fp(z),
amounts to imposing the conditiop®y?=1 (so that the x(z) and the parametric plot in the, y plane withm=1.0
“large” first term in the scalar potential would disappgar are presented in Figs. 2, 3, and 4.

e= %(FﬁKS)l’Z, (34)
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FIG. 2. The profile of the fieldp inside the domain wall in FIG. 4. The parametric plot of vs ¢ inside the domain wall in
SUSY QCD form=1. SUSY QCD form=1.
We solved also the equations for other valuestofind R ) Mo
observed how the profiles approach the asymptotic curves in {QZQL}=4(U);¥BJ d3xV{ > 7Q‘”QM
the limit when the mass parameter tends to zero or infinity. f
If mis large, the quarks can be integrated out, and SQCD
reduces to supersymmetric gluodynamics. Itis not difficult to n T W2 | — _Tr WZJ . (36)
obtain a relation between the scale parametemnd A. In 16w 16w -0

the fundamental theory this can be done by exploiting the
Novikov-Shifman-Vainshtein-ZakharotNSVZz) g function lus full (supeyderivatives. The sum over flavors on the

[18]; in the effective theories one compares to this end th ight-hand side assumes that one may have an arbitrary num-

EXpressions fc?'(s>| In dthe st_andard vac_uwl”n Iln ShQ.CD and ber of flavors(the expression above refers to the fundamental
supersymmetric gluodynamics, respectively. In this way Wq'epresentation; we recall that each flavor requires two sub-

arrve at flavors. Note that the expression in the square brackets is the
Konishi anomaly(27) itself, and as such, is a full super-
A3=\/—§(m7\'5)1’2. (35) derivative that gives no contribution in the central charge.
2 Thus, in the theory with any number of flavors the central

charge is given by the last term in the braces; i.e., we return

The scale parameters are introduced via Efs.and (24), to Eqg. (1), which holds universally, irrespective of the values
respectively. Thanks to holomorphy, the square root deperff Ny andm.

dence in Eq(35) is exact, not approximate. This relation is A brief remark is in order here concerning derivation of
exact. Equation(35) implies, in turn, that in SQCDs Eq. (36). The commutator consists of two parts. The first,
=(47%) ~1Tr \?2 — this is exactly the same relation we ob- tree-level part is proportional to the matter superpotential
served in supersymmetric gluodynamics. The fact that th&nd is entirely due to the matter fields. It is trivially obtained
explicit m dependence disappears — it is completely hiddedrom the canonic commutation relations. The part containing
in the gluino condensate — is no coincidence. The reason i&" W* is an anomaly. In principle, it could be obtained by a
rather transparent: The central extension of superalgdhra direct calculation of the relevant one-loop graphs, with both

in SU(N) SQCD with matter takes the form the matter and gauge fields in the loop, provided these graphs
are regularized in the ultraviolet and infrared in such a way
% that all symmetries of the modéhcluding supersymmetjy
are preserved. We did not attempt to carry out this program
1 in full (although some steps in this direction are reported in
Ref.[19]). An indirect way is based on the observation that
0.8 there are no essentially new “geometric’ anomalies other
than that in the divergence of i current and the trace of
0.6 the energy-momentum tensor. A superfield expression for
this standard “geometric” anomaly is
0.4
—_ 1 D aw
0.2 D Jaa—gDa{ 3W : Q'aQi
z 3N - Nf

1 2 3 4 5 6 —

Tr W2+ %2 »D*Qe'Q)

, , oo . . 1672 }’
FIG. 3. The profile of the fieldy inside the domain wall in

SUSY QCD form=1. (37
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where y; are the anomalous dimensions of the quark superteristic of the VY Lagrangian in the SU(2) theory. The su-
fields Q;, perpotential forM is perfectly holomorphic.
NP1 Let us again introduce the superfie¥t=M*? with the
— standard kinetic term. The BPS wall equations corresponding
2N to the superpotential38) for the wall between the vacua
(x?)=*x2 have the form

’yi:_(? |nZ|/(9 In M=

o
—+
w

[see, e.g., Eq(26) in Ref. [16]]. First, one may discard the
last term in the second square brackets, since this term is a — o

full superderivative. To make the tree-level part of this stan- Gy = M — Myt ﬂ (39)
dard anomaly compatible with E436) one must subtract X ax X %

from the former full superderivatives which obviously does

not affect the value of the central charge anyway. The approgng its complex conjugafghere is, of course, also a pair of
priate superderivative is the Konishi relati¢2?) itself. In - gqyations with negative sign with a solution which is the
this way we arrive at Eq(36); see Ref.[19] for further  iror image of the solution of Eq39)]. Substituting here
details. An independent check is thatNg=0 Eq. (36) co- ¥(2)=p(2)€°?, one observes after some simple transfor-

incides with Eq.(1), which, in turn, can be readily derived, mations thatp(z) = x, is just constant and the phaséz)
e.g., from the VY Lagrangian. EquatidB86) guarantees the g iisfies the equation

smooth transition to the large limit, with no explicit m
dependence of the wall energy density. This feature was an-
ticipated in Ref[1]. Another independent check is the fact
that the anomaly part of the central char@e., the coeffi- ) ", . . .
cient in front of W2) is proportional toN;—N_. If we start It is n_ot difficult to solve this equation with the boundary
from N;=0 and gradually increase this parameter, we, evenconditionsa(—«)=0, a(»)= /2. The wall profile thus ob-
tually, come to a point wherd; =N, ; here the coefficientin tained is

front of the anomaly part vanishes. The vanishing of the

w

d,a=2m sin 2a(z). (40)

anomaly part alN;=N_; could have been expected. Indeed, 1+jedmz—2p)
from Ref.[15] we know that atN;<N. a nonperturbative X(2)= X« Nk (41)

superpotential is generated in the massless SQCD, while at

N;=N., although the superpotential could have appeared, it . . .
is not generated. In our approach this is due to the vanishingne energy density of this wall is
of the coefficient in front ofW? in the central charge.

8
_ 5\1/2
V. SQCD IN THE WEAK COUPLING REGIME &= —ﬁ(mA )7 (42)
(HIGGS PHASE)

If the mass parametan, in Eq. (20) is small and the  twice the value in Eq(34). The reason is quite obvious. The
characteristic values of the matter fidltl are assumed to be wall (42) is not similar to the walls discussed in the previous
large, the Higgs description of the model is more appropriatsections. The latter interpolate between the vacuum with
[15]. In this case théS superfield can be integrated out, the (A%)=0 and the standard chirally asymmetric vacuum, while
superfieldM is light (at the classical leve¥l describes a flat the former interpolates between two different chirally asym-
direction if my=0), and one can obtain a genuinely Wilso- metric vacudin the SU(2) theor}.

nian effective Lagrangian for the fieM (certain restrictions An interesting question is what happens with the W8
apply in the domain of smalM). We recall that the VY in the case when the ratfo/A is not sent to zero, but has a
Lagrangians are not Wilsonian constructions. finite value. We do not have an analytic solution in this case.
The superpotential of the low energy theory for theBut, as was the case for the walls interpolating between a
would-be moduli fieldM is chirally asymmetric vacuum and the chirally symmetric one
_ which we discussed in the preceding section, the solution can
2 A® m be found numerically20]. Not dwelling on details, we only
W=- 3IM EM' (38 mention here that the BPS equatiof8) admit the wall

solutiong only in some range of massegm|<m,
In the fundamental theory it is generated by instanfdd  =4.67059.A. At m>m,, the BPS solution disappears.
(for a review see Ref11]). Note that the superpotenti8)  Moreover, if m>m,, ~4.83, nonontrivial complex wall
has a discret&, invarianceM ——M, as it ought to. The connecting different chirally asymmetric vacua exists within
region of smallM is not legitimate for consideration in this the framework of the VY effective Lagrangian.
language; therefore, we will consider the wall solution inter-
polating between the vacua wittM)= + (4A%/3m)?=

* x4 , anticipating that this solution will never go through ®Though the existence of the wall solution of the equations of
the region of smalM. motion is obvious, the statement that the wall satisfies also the first

The superpotentidB8) can be obtained from E@25) by  order BPS equations is nontrivial. There is no theorem that the
eliminating S through the equation of motion, BM=0.  domain walls are always BPS saturated. A simple model example
Note that no trace is left of the two-sector structure characwhen it is not the case was given[ia1].
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VI. DECAY OF THE FALSE VACUUM Note a rather small numerical factor in the exponent. The
quasiclassical formul#46) is valid whenm, /g3<0.0Z2,

Let us now discuss what happens if we softly break su—t lies both t tric aluod : qt
persymmetry by adding to the Lagrangian a gluino mas applies both to supersymmetric giuodynamics and 1o

term QCD. . .
If the gluino mass term has a phase if 9+ 0, which is
m the samg
N
ALn=—[Tr\*+H.c]. (43 i
g5 my—|my |e',

Note that in our notation[see Eq.(3)] Tra? is a the parametem, in the exponent of Eq46) is substituted

renormalization-group-invariant operator, and so is the ratid®y

m, /g3 (to the leading ordér We will briefly comment on |m, cosal.

the impact of subleading terms later. It is assumed ithais

real and positivéthe phase ofn, is equivalent to a¥ angle At a= /2 the exponent becomes infinite. The reason is ob-

and is irrelevant vious: For a purely imaginary gluino mass term the vacuum
The degeneracy of the three vacuum states of thelegeneracy is not lifted, and there is no false vacuum decay.

SU(2)-supersymmetric gluodynamics is lifted. We will limit ~ The false vacuum decay rate is a physical quantity, and as

ourselves to the effects linear in the soft supersymmetnguch it must be independent of the normalization ppintt

breaking. In the linear im, approximation the chirally sym- was already mentioned thatis renormalization-grougRG)

metric vacuum stays at zero, the energy density of one of thmvariant. The raticm)\/gg is RG invariant only in the lead-

chirally asymmetric vacua becomes positive and that of aning logarithmic approximation. Beyond the leading approxi-

other negative, mation the exact RG-invariant combination[ &3]
2m,3 ( 11 )
i:i ] (44) m)\ —_— — . (47)
9 g5 4n’
where Therefore,m, /g3 in the exponent in Eq(46) is actually
) substituted by the combinatiqd7); see[23] for further de-
2=(TrA\%., tails.

and the subscript in this definition of2, indicates that here

. . . . VII. WALLS VS TORONS
we mean the gluino condensate in the vacuum with the posi-

tive value of (Tr A2). In other words,S is a real positive All the previous discussion was based on the assumption

parameter of dimensiomass>. that the topological charge can only be an integer. There is a
Thus, we deal with two false vacuum states that can decakasting controversy in the literature as to the question of ex-

into the true vacuum through formation of “bubble$22]. istence of configurations with fractional topological charge

The decay rate of the false vacuum into the genuinén pure glue SUN) gauge theories.
vacuum can be easily evaluated using the general results of In supersymmetric SW{) Yang-Mills theories the ques-
Ref.[22]. According to this work, the decay rate of the false tion of the existenc€or nonexistenceof domain walls in-

vacuum is proportional to terpolating between different chirally asymmetric vacua is in
one-to-one correspondence with the question of the proper
27, g4 quantization of the topological chard@). If the minimal
lecexp — o el (49 nontrivial topological charge is unity, the presencebéif-

ferent vacuum states implies the spontaneous breaking of the
nphysical discrete symmetrg,n— Z, and, correspondingly,

whereA¢£ is the difference of the vacuum energy densities i . : .
9y the appearance of domain walls. An alternative, with a new

the false and true vacua, ards the surface energy densit . . : . .
9y y superselection rule replacing the physi@ly invariance,

of the domain wall. The estimai@5) is valid with the ex- ) ; . .
ponential accuracy in the “thin wall limit,” i.e., when the arises if fractional values of the topological charge are pos-
' ' sible. Let us elucidate this assertion in more detail.

radius of the critical bubble is much larger than the charac= ) . "
teristic thickness of the wall or, in other words, when the I the SQ(N) Yang-Mll_Is the_or_y IS compaciified on a
four-dimensional torus, with a finite side, the topological

absolute value of the exponent in E¢5) is large. : . ) !
To find the decay rate of the chirally symmetric Vacuumcharge is quantized fractionally. The so-called toron field
configurations, withv being multiple integer of M., do

in the true vacuum with negative energy dengitlye one . . i . .
with positive energy density would decay in two stagege exist [24]. An assumptionthat such configurations survive

have to substitute in Eq45) the expressioid4) for A€ and and contribute in the path integral in the large-volume limit
the expressior2) for & (assumingN=2, (Tr \2).=3 and L—o leads to the conclusion that th#&, transformation
(Tr\?)_.,=0). We then obtain ’ * connects vacua with different rather than physically dis-

tinct degenerate vacua. If large gauge transformations can
F{ 27 s ] change the winding number of the gauge field configuration
I« .

(46) by 1N., while the vacuum anglé is defined in the “old”

4096r° (M, /g5)* way [see Eq(3)], then the vacuum angl@ varies within the
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range 0<9=<2wN., and the sectors with differert do not  the domain wall remains finite. Then the torons must be ir-
communicate with each other. A new superselection ruleelevant in supersymmetric gluodynamics too.

should be imposed. Alternatively one may say that a new Finally, the exact solution dl=2 supersymmetric gluo-
vacuum angle should be definedi=N_*9. Thend would  dynamics found recentl29] shows no traces of the pres-
vary between zero ands, as is appropriate for the vacuum €nce of torons and fractional topological charges. Although
angle. N, chirally asymmetric vacua of supersymmetric this solution is not rigorously proved, it is perfectly self-

gluodynamics with Tr \ 2)exp(2mik/N) would correspond consistent and goes through numerous indirect checks.
to different values ofd=0 2a/N. 4m/N and could Our present viewpoint is that the domain walls are real —
- y c Cr -

not coexist in one and the same univefsee Refs[25] and they do exist in supersymmetric gluodynam|c§ and_ SQCD.
: : . : The cleanest argument comes from the consideration of the

[26] for a detailed discussignlf it were true, one could not ) } ) L~
speak of domain walls between the different supersymmetrigh€ory with matter in the weak coupling regime<A. In
vacua. In particular, the expressio#6) for the decay rate of this case the VaQUﬁZZZ/\/% and x*= —2//3 acquire a
the metastable vacuum in a theory where supersymmetry 18rge classical Higgs vacuum average, and the walls separat-
slightly broken would not make sense. ing them exist by the same token as in the most trivial model

The most serious argument in favor of this viewpoint©f one real scalar field with the double-well potentigs)
comes from the calculation of the gluino condensate on thé& N(p?—v?%)>.
small torus[27]. In the SUN)-supersymmetric gluodynam- In the theory with fundamental matter there is no place for
ics the gluino condensate turns out to be saturated by th@n argument: Field configurations with fractional topological

toron field configurations. The expression has the form  charges do not exist no matter how the theory is compacti-
fied since the twisted boundary conditions on a torus neces-

(Tra?)~ oxpl — 8?2 (48) sary for their existence cannot be consi_stently imposed._A
L3g2(L) Ng2(L) ’ remarkable corollary of supersymmetry is the holomorphic
dependencé¢d?) of the wall energy density on the mass. As
whereL<A " 1. Using the exact NSVZ3 function[18] we  was explained before, the energy dengiypressed via the
find that the condensate actually does not depend;aine  physical scalg35)] remains finite in the limitm—c when
toron result is equal to a numerical constant timés From  the matter fields decouple and we are left with the pure su-
this one could tentatively conclude that the toron contribupersymmetric gluodynamics. This means that in this case,
tion to the condensate survives for largd 28,25. the proper topological classification should involve only in-
Clearly, if we allow the toron configurations, tifg, as a  teger topological charges.
physical symmetry disappears from the VY Lagrangian. Say, It is very instructive to confront this situation with a
in the SU(2) theory, Eq6) must be modified: Zin on the  simple(nonsupersymmetricwo-dimensional model where a
right-hand side must be replaced byi. Correspondingly, similar question can be posed and exactly answered, but the
instead of two sectors of the scalar potenfiggle Eq(9) and  answer is precisely opposite. Consider two-dimensional
the following discussiohwe will have just one sector ex- QED (the Schwinger modglwith two fermion flavors, a
tending in the interval aigye (— 7, 7). This scalar potential massless fermios with the chargee, and a massive fer-
would have only two minima: one chirally asymmetric at mion ¥ with the chargee/2:
¢=1 and the second chirally symmetric minimumdgat 0.

. . , 1 —
. Now_, the argument in favor of torons is _not frge of incon- L=— ZF#VF#V+ iy, d,— ey, AP
sistencies(see Ref.[10] for a recent detailed discussion
First, the existence of the field configurations with fractional e
topological charge relies on the fact that the theory is com- +\I7( 1,0,— 57“A”_ M |W, (49

pactified on the torus. If the theory is compactified $h
only field configurations with integer topological charge are
admissible and there are no torons. But the physics shoul
not depend on whether the theory is compactified on a Fuo=0.,A,—d,A,=€,F.
sphere, on a torus, or on some other manifold, if the size of . . .
the manifold is much larger than the characteristic scale In the Euclidean version of the theory, the topological
A-L charge

Second, in the theories with higher orthogonal and excep- el2 )
tional groups, configurations with fractional topological szﬂf F(x)d*x=Z (50
charge do not exist even on a torus, and ihds possible to
interpret the vacuum degeneracy in these theories in the lais quantized. The minimal flux is determined by the bound-
guage of new superselection rules. ary condition on the field?, i.e., by the charge/2 of the

Third, if the matter fields in the fundamental representa-heavy fermion field. The minimal topological charge is
tion are introduced, torons disappear since the twistednity.
boundary conditions on a torus necessary for their existence In the limit M—«, heavy fermions decouple. We must
cannot be imposed. When the matter mass term tends wonsider now only the boundary conditions on the figld
infinity we return back to supersymmetric gluodynamics. If The gauge field configurations with half-integer flux be-
the transition is smooth — and we have seen that, for theome allowed. This simulates the situation in four-
walls connecting a chirally asymmetric vacuum and thedimensional supersymmetric gauge theories with and with-
chirally symmetric one, it is smooth — the energy density ofout fundamental matter. When SQCD involves dynamical

here
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fields in the fundamental representation, only integer topo- In the context of our discussion here, two facts are impor-
logical chargeg7) are admissible. In the limih—c, we are  tant. The light quark condensat¢¢¢,>x<cos(z¢;¢)>

left with the adjoint gauge fields and adjoint fermidigdui-  changes sign in passing from=—« to x=« along the
nos, and, on a torus, gauge field configurations with frac-soliton solution. Thereby, these solitons are very much
tional topological charge show up. analogous to the four-dimensional supersymmetric domain

Let us now address the question of “domain walls” in walls separating different vacua. Indeed, the Lagranan
our two-dimensional model. Quotation marks are used abovivolves a discret&, symmetry corresponding to the posi-
to recall the reader that due to the lack of extra two dimendtive or negative sign of the light quark condensate. This sym-
sions these objects are not really “walls,” but rather local-metry is broken spontaneousfy.
ized soliton configurations. The existence of such solitons Now, we come to a crucial distinction of this two-
was recently discovered [i80]. It is best seen by bosonizing dimensional model as compared to the four-dimensional su-

the theory according to the rul§31,37) persymmetric theory. In the two-dimensional model at hand,
whenM is large, the energy of the soliton is of order of the

o 1 o 1 mass of the heavy fermiolM (the “constituent quark” has

by p— —€,,0,0, Vy,¥——e,,d,.x, an energy of order oé<_M). This means t_hat, in the limit
\/; \/; M —oeo, the mass of solitons becomes infinite. Correspond-

o o ingly, the sectors with different signs ¢fy¢/) cease to talk
bip——py cog2\md), VW —puy cog2\my), to each other, which nicely conforms with the standard topo-
(52 logical classification of the Schwinger model with one dy-
namical massless fermion of chargewhere the flux50) (a
where the constanta carrying the dimension of mass de- half of the standard fluxis quantized to half-integer values.
pend on a particular normalization procedure for the scalar AS Was repeatedly mentioned, in the four-dimensional
fermion bilinears. Assumingl>e and integrating out the >U(2)-supersymmetric Yang-Mills theorgoththe walls in-

gauge fields, one arrives at the bosonized Lagrangian invoh/€'Polating between chirally symmetric and asymmetric
ing only the physical degrees of freedom: vacuaand the walls interpolating between different chirally

asymmetric vacua are BPS saturated. By virtue of the exact

1 1 o2 2 theorem(1) a_nd its cqrolla_lry(Z) that.guaranf[ee.s that their
Lpo==(3,0)%+ =(0 X)Z__(¢+ _) energy density remains finite also in the linmt—oo. By
2 2 2m 2 combining two walls of the type we found — one interpo-
lating between 1 and 0, and another between 0-ahd— we
+cM?[cog2ymy) —1]. (52 may build a wall interpolating between two chirally asym-
metric vacua in the S(2)-supersymmetric gluodynamics.
In contrast to the four-dimensional case where the effectivahis wall just consists of two independent components. This
boson Lagrangians are approximate, here the Lagrangidfsuperposition” of two BPS-saturated solutions in the
(52) is exactlyequivalent to Eq(49) in the sense that the SU(2)-supersymmetric gluodynamics, going througk 0O
spectrum and all other physical properties of the theorieslong the real axis, is almost a BPS-saturated solution in
(49) and (52) coincide!® itself. That is, the energy of this configuration approaches the
We see that the potential in E¢52) involves an infinite  BPS bound when the two components of the wall are far
set of minima aty= — 2¢=n+/7 with integern. The theory  apart. For SU(3) and higher groups superimposing two so-
admits finite energy static solutions which interpolate beJUZ“Ci’/RS (one goes from 1 to 0, and another goes from 0 to
tween ¢=y=0 at x=— and, say,y=—2¢= J7 at x e.’T along the straight lines in the compl@x plar_le also.
=, The physical meaning of such a soliton is clear. It is adlves a two-component dpmalnlwall V.V'th the Interacting
kind of a “heavy meson”(cf. Ref. [33] where such meson components. Strictly speaking, this configuration is not a so-

solutions were obtained in a theory where the charges of thIUtIon of equations of motion, although it approaches a solu-

. X D fion in the limit of infinitely large separations between the
light and heavy fields were eqyalomposed of the ongmal components of such a wall. The truly BPS-saturated walls, if
heavy quark¥ and a cloud of massless fermion fielgs

; . . . o > they exist in this case, should go through the compfex
which neutralize its charg@ “constituent quark” in termi- plane in a nontrivial manner.
nology of Ref.[33]). The fact that integer-charged light fer- * Retyming to the torons, our consideration implies that, for
mions manage to screen a heavy fractional ch8#e30  |arge volumes, the relevant topological classification in
crucially depends on the masslessness of the light fermion. §Usy gluodynamics is exactly the same as in SQCDhe-
m,# 0, the energy of such a “meson” becomes infinite and
heavy fractional charges are confined.

For those interested in the in-depth coverage we note that the
spontaneous breaking takes place only at zero temperature. At any
10Generally speaking, the Lagrangiés®) is not quite correct. AS  nonzero temperature, the “domain walls” which mix the distinct

in the case of the standard Schwinger mddél] we have to sepa- vacua appear in the heat bath and the symmetry is restored. The
rate the zero spatial Fourier harmonics of the “massive photon”density of the soliton states isexp{—Es,/T}. The “domain
field ¢+ x/2 and write down a “glued” Lagrangian similar to that walls” have finite energy here due to the absence of extra trans-
in SUSY gluodynamics, invariant under the transformatién verse dimensions. The situation is exactly the same as in the one-
+ x/2— ¢+ x/2+ \=/2. This is irrelevant for the discussion which dimensional Ising modefsee, e.g., Ref[35]) and in QCDQ with
follows: The combinationp+ x/2 inside the wall does not cross the adjoint fermions for higher unitary groug40]: In all these cases
boundary,| ¢+ x/2| is always less thar/m/2. we have a first-order phase transitionTat 0.
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topological charge (7) is strictly integer and there are no
torons

DOMAIN WALLS IN SUPERSYMMETRIC YANG-MILLS ...

7989

When a small supersymmetry-breaking mass is added to
the SUSY gluodynamics Lagrangian, the degeneracy be-

The arguments presented here, although rather convincintgveen the vacua is lifted. All vacuum states except for one
to our mind, are unfortunately indirect. To resolve the parabecome metastable. We have calculated the decay rate of
dox completely one should explain why the toron configurathese false vacua to leading order in the SUSY-breaking

tions which are essential for small tdgee Eq.(48)] disap-
pear in the limitL — . We think that is very much probable,
but at the moment do not see a technical reason for it.

VIIl. CONCLUSIONS

mass. It is an interesting question whether some of these
metastable states survive at large mass and therefore exist
also in pure nonsupersymmetric Yang-Mills theory.

Although the explicit calculations in this paper were per-
formed for the gauge group $P), the exact relation, Eq.
(2), is valid for any SUN) group and we do not expect any

In this work we have studied domain walls in supersym-qyjitative changes in the character of the wall solutions for
metric gluodynamics and in SQCD. There are two bas'onigherN.

types of walls in these theories: a wall that interpolates be-

tween two chirally asymmetric vacua and a wall that inter-
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