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We present a detailed analysis of the domain walls in supersymmetric gluodynamics and SQCD. We use the
~corrected! Veneziano-Yankielowicz effective Lagrangians to explicitly obtain the wall profiles and check
recent results of Dvali and Shifman:~i! the BPS-saturated nature of the walls and~ii ! theexactexpressions for
the wall energy density which depend only on global features of dynamics~the existence of a nontrivial central
extension ofN51 superalgebra in the theories which admit wall-like solutions!. If supersymmetry is softly
broken by the gluino mass, the degeneracy of the distinct vacua is gone, and one can consider the decay rate
of the ‘‘false’’ vacuum into the genuine one. We do this calculation in the limit of the small gluino mass.
Finally, we comment on the controversy regarding the existence ofN distinct chirally asymmetric vacua in
SU(N) SUSY gluodynamics.@S0556-2821~97!02224-8#

PACS number~s!: 11.27.1d, 11.30.Pb, 12.60.Jv

I. INTRODUCTION

Recently it was noted@1# that some supersymmetric
gauge theories possess domain walls with rather remarkable
properties. The energy density of these domain walls is ex-
actly calculable, in spite of the fact that the theories under
consideration are in the strong coupling regime. For super-
symmetric gluodynamics, the theory of gluons and gluinos
with no matter, the calculation of the energy density was
carried out in Ref.@1#, in an indirect way. The key ingredient
is the central extension of theN51 superalgebra,

$Qȧ
†
Qḃ

†
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N

4p2
~sW !ȧḃE d3x¹W ~Tr l2!, ~1!

where Qȧ
† is the supercharge,l is the gluino field, and

(sW ) ȧḃ5$s3,2 i ,2s1%ȧḃ is a set of matrices converting the
vectorial index of the representation (1,0) of the Lorentz
group in the spinorial indices.1 The commutator~1! is given
for the SU(N) gauge group; the parameterN reflects this
choice of the group. The integral over the full derivative on
the right-hand side is zero for all localized field configura-
tions; it does not vanish, however, for the domain walls.
Equation~1! implies that the energy density of the domain
wall is

«5
N

8p2
u^Tr l2&`2^Tr l2&2`u, ~2!

where the subscript6` marks the values of the gluino con-
densate at spatial infinities~say, atz→6` assuming that the
domain wall lies in thexy plane!. The existence of the exact
relation~2! is a consequence of the fact that the domain wall
in the case at hand is a Bogomol’nyi-Prasad-Sommerfield-
~BPS-! saturated configuration preserving 1/2 of the original
supersymmetry.

In this paper we will explore in more detail the issue of
the domain walls both in supersymmetric gluodynamics
~Sec. II! and in a supersymmetric extension of QCD~SQCD,
supersymmetric Yang-Mills theory with matter!; see Secs.
III–V. We will consider the profiles of the domain wall so-
lutions, and calculate the energy density directly, by analyz-
ing these profiles. The expressions obtained in this way will
be confronted with the general results of Ref.@1#. Another
issue of interest, to be discussed below, is the dependence of
the central charge on the mass parameter of the matter field
m0. The central charge is a chiral quantity; therefore, the
dependence onm0 should be holomorphic, as in Ref.@2#.
The holomorphy implies that as far as the energy density of
a BPS-saturated domain wall is concerned, the transition
from the weak coupling Higgs regime to the strong coupling
supersymmetric gluodynamics is smooth.

If supersymmetry is explicitly~softly! broken, say, by the
gluino mass term, the vacuum degeneracy is lifted — we find
ourselves in a classical situation with a false vacuum. Now,
instead of the domain wall, one can study the decay rate of
the false vacuum. If supersymmetry breaking is small, so that
it is legitimate to work in the leading order in this parameter,
one can obtain an explicit expression for the decay rate of the
false vacuum. This problem is discussed in Sec. VI.

Section VII is devoted to an issue which, although related
to the domain wall solutions, can be formulated in wider
terms. Questioned is the very existence ofN distinct chirally
asymmetric vacua in the SU(N)-supersymmetric gluody-
namics. The chiralZ2N symmetry is a remnant of the anoma-
lous R0 symmetry of the model. The presence of this sym-
metry is due to quantization of the topological charge. If the
topological charge is quantized in a nonstandard way~i.e.,

*On leave of absence from PPARC.
†Permanent address: Institute of Theoretical and Experimental

Physics, Moscow 117259, Russia.
1Equations~9! and ~11! in the original version of Ref.@1# con-

tained a misprint; the factorN/4p2 was omitted. Further comments
regarding Eq.~1! are presented in Sec. IV.
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fractional topological charges are allowed2!, then the global
structure of the theory changes. In particular, only one
chirally asymmetric vacuum survives, notN. The extra states
disappear as a result of a new superselection rule. This is
clearly seen within the effective Lagrangian approach. The
issue is being debated in the literature. We discuss the impact
of new arguments associated with supersymmetry~SUSY!
and smooth~and calculable! behavior of the wall energy den-
sity.

II. SUPERSYMMETRIC GLUODYNAMICS

To begin with, we will concentrate on supersymmetric
generalization of pure gluodynamics — i.e., the theory of
gluons and gluinos. The Lagrangian of the model at the fun-
damental level has the form@3#

L52
1

4g0
2

Gmn
a Gmn

a 1
q

32p2 Gmn
a G̃mn

a 1
1

g0
2 @ ilaaDaḃ l̄ aḃ#,

~3!

where the spinorial notation is used. In the superfield lan-
guage the Lagrangian can be written as

L5Re
1

2g2
Tr E d2uW2, ~4!

where
1

g2
5

1

g0
2

2
iq

8p2
.

In what follows the vacuum angleq will play no role and
can be set equal to zero. Our conventions regarding the su-
perfield formalism are summarized, e.g., in a recent review
@4#. We will limit ourself to the SU(N) gauge group@the
generators of the groupTa are in the fundamental represen-
tation, so that Tr(TaTb)5(1/2)dab].

SU(N)-supersymmetric gluodynamics has a discrete sym-
metry, Z2N , a ~nonanomalous! remnant of the anomalous
axial symmetry generated by the phase rotations of the
gluino field. The formation of the gluino condensate^ll& ~it
follows from certain supersymmetric Ward identities com-
bined with explicit instanton calculations@5#! breaks this dis-
crete chiral symmetry down toZ2. Therefore, there exists a
set of distinct vacua labeled by the value of the gluino con-
densate. The field configurations interpolating between dif-
ferent values of̂ ll& at spatial infinities are topologically
stable domain walls.

A formal description of these domain walls can be given
in the framework of the effective Lagrangian approach. We
will exploit the so-called Veneziano-Yankielowicz~VY ! ef-
fective Lagrangians@6,7#. The original VY Lagrangian does
not possess@8# the discreteZN invariance of supersymmetric
gluodynamics~3!. Recently it was shown that the VY ex-
pression is incomplete; it was amended to become compat-
ible with all symmetries of supersymmetric gluodynamics in
Ref. @9#. The corrected expression exhibitsN minima of the

scalar potential corresponding toZ2N→Z2 breaking,plus an
additional minimum at the origin where the gluino conden-
sate vanishes.

For simplicity from now on, if not stated to the contrary,
we will consider the case of SU(2), although this restriction
is not of any conceptual importance and can be easily lifted.

The Lagrangian realizing the anomalous Ward identities
is constructed in terms of the chiral superfield

S5
3

32p2
Tr W2, ~5!

namely,

L5
1

4E d4uC~ S̄S!1/31
1

3E d2uSS ln
S2

s2
12p in D

1
1

3E d2 ū S̄S ln
S̄2

s̄2
22p in D , ~6!

wheres is a numerical parameter,

s5eL3eiq/2,

andL is the scale parameter, a positive number of dimension
of mass which we will set equal to unity in the following.

A new element in the Lagrangian~6! is an integer-valued
Lagrange multipliern. In calculating the partition function
and all correlation functions the sum overn is implied. The
variablen takes only integer values and is not a local field. It
does not depend on the space-time coordinates and, there-
fore, integration over it imposes a global constraint on the
topological charge. It is easy to see that~after the Euclidean
rotation! the constraint takes the form

n5
1

32p2E d4xGmn
a G̃mn

a 5Z. ~7!

While theF term in Eq.~6! is unambiguously fixed, theD
term is not specified by the anomalous Ward identities. First,
the effective Lagrangian at hand is not Wilsonian; therefore,
there are no reasons to discard terms with higher derivatives,
generally speaking. A possible example of this type is

~]m S̄1/3]mS1/3!

~ S̄S!1/3 U
D

. ~8!

Even leaving aside higher derivatives, one is free to choose
any value of the numerical constantC in Eq. ~6!. As we will
see shortly, these ambiguities do have an impact on the pro-
file of the wall. The surface energy density, however, re-
mains intact, in full accordance with the general arguments
of Ref. @1#. For the time being we will putC51.

The extra term added to the Veneziano-Yankielowicz La-
grangian is clearly supersymmetric and is also invariant un-
der all global symmetries of the original theory. The single
valuedness of the scalar potential and theZ2 invariance are
restored.3 The chiral phase rotation by the anglepk with

2Another way to make the same statement is to say that noncon-
tractable cycles in the space of the gauge fields are shorter than is
usually believed.

3The explicit invariance here isZ2 rather than the completeZ4 of
the original SUSY gluodynamics, since we have chosen to write our
effective Lagrangian for the superfield which is invariant under
l→2l.
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integerk just leads to the shift ofn by k units. Sincen is
summed over in the functional integral, the resulting La-
grangian forS is indeedZ2 invariant.

The constraint on@S2 S̄#F following from the Lagrang-
ian ~6! results in a peculiar form of the scalar potential. The
expression for the scalar potential is given in Eq.~13! of Ref.
@9#. It can be considerably simplified in the infinite volume
limit. Eliminating, as usual, theF component ofS with the
help of classical equations of motion at fixedn, the effective
potential can be written as

U~f!52V21 lnF(
n

exp$216V~f* f!2/3@ ln2ufu

1~a1pn!2#%G . ~9!

HereV is the total space-time volume of the system,f is the
lowest component of the superfieldS, anda5arg(f). In the
limit V→` only one term in the sum overn contributes for
every value ofa. Thus, for2p/2,a,p/2 the only contri-
bution comes fromn50, while for p/2,a,3p/2 from n
521. Therefore in the right half-plane,

U~f![U0~f!516~f* f!2/3 ln f ln f*

at argfPS 2
p

2
,
p

2 D , ~10!

while in the left half-plane, when argfP(p/2,3p/2),

U~f!5U0~fe2 ip!. ~11!

In other words, the complexf plane is divided into two
sectors. The scalar potential in the second sector is just that
in the first sector rotated by2p. The scalar potential itself is
continuous, but its first derivative in the angular direction
experiences a jump at argf56p/2. The scalar potential is
‘‘glued’’ out of two pieces.4 The Z2 symmetry is explicit in
this expression. It is quite obvious that the problem at hand
has three supersymmetric minima — two atf561, corre-
sponding to a nonvanishing value of the gluino condensate
~spontaneously broken discrete chiral symmetry!, and a
minimum atf50 ~unbroken chiral symmetry!.5

III. DOMAIN WALLS IN SUPERSYMMETRIC
GLUODYNAMICS

We will now consider the domain wall interpolating be-
tween

f50 and f51

at spatial infinities.
For definiteness, the domain wall is assumed to be in the

xy plane. The profile to be determined is a function of one
coordinate,z. The corresponding domain wall is purely real
~Im f will vanish on the wall profile! and lies completely
inside the first sector. In other words, we will only need the
potential on the real positive semiaxis off.

It is convenient to perform a rescaling

S5F3,

which casts the kinetic term of the scalar field in the canonic
form. Correspondingly,

f5w3,

wherew is the lowest component of the superfieldF.
The scalar potential in the right half-plane off then is

U~w!5U]W~w!

]w U2

, ~12!

where

W~w!5
2

3
w3 ln

w6

e2
. ~13!

The domain wall is the planar static field configuration
w(z) satisfying the boundary conditionsw(2`)50,w(`)
51 and minimizing the energy functional. Hence,w(z) sat-
isfies the classical equations of motion with the inversed sign
of the potential:

]z
2w5

]2W̄
]w̄2

]W
]w

. ~14!

As we will now show the domain wall we deal with is a
BPS-saturated state@1#. This means that a linear combination
of supercharges, acting on the wall, annihilates it. One-half
of supersymmetry is preserved. The general formula for the
supersymmetry transformation is

dca5A2i ~]ḃaw! ē ḃ1A2eaF,

dc̄ ȧ52A2i ~]ȧaw̄ !ea1A2 ē ȧF̄ . ~15!

If the parameter of the transformationea is chosen in such a
way that

s1e* 56 i e,

thendc50 provided that

]zw56F, ~16!

whereF52]W̄/]w̄ .
Equation ~16! is the first-order differential equation, a

‘‘square root’’ of the general Eq.~14!. The solution with the

4Similar ‘‘glued’’ potentials appear due to the quantization of to-
pological charge in the Schwinger model@10#.

5The existence of thisadditional vacuum state with vanishing
gluino condensate, which does not follow from any symmetry con-
siderations, is probably the most surprising and nontrivial finding of
Ref. @9# and is also a very important element of the present study of
domain walls. We want to draw an analogy here with the situation
in two-dimensional QCD with adjoint fermion studied in Ref.@10#.
There too vacuum structure is nontrivial and ‘‘domain walls’’ in-
terpolating between the vacua with different values of the fermion
condensate exist. For SU(N) gauge groups with evenN>4, the
existence of different vacua did not follow from symmetry consid-
erations. In Ref.@10#, this was formulated as a paradox. It seems
now that it is not a logical paradox, but rather a surprising phenom-
enon which takes place in some sophisticated enough two-
dimensional and four-dimensional gauge theories.
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boundary conditions we are interested in corresponds to the
plus sign in Eq.~16!;6 under our choice of parameters it is
obviously purely real. Therefore,W̄5W. Even without
knowing the explicit form of the solution, the energy density
of the wall can be readily calculated. Indeed,

«5E
2`

`

dzF ]zw̄]zw1
]W
]w

]W̄
]w̄

G
52E

2`

`

dz~]zw̄ !S 2
]W̄
]w̄

D , ~17!

where Eq.~16! is used. The right-hand side evidently reduces
to

«52~W̄2`2W̄`!5
8

3
, ~18!

where the values of the superpotential~13! at z56` ~i.e.,
w50 and 1) are substituted. This result is in full agreement
with Eq. ~2!.7

Let us discuss now the wall profile. Combining Eqs.~13!
and ~16! we arrive at the relation

E
1/w

2 dx

ln x
512~z2z0!, ~19!

wherez0 is the wall center. The left-hand side is expressible
in terms of the integral logarithm. This does not help us find
the explicit form w(z) and we therefore will not use this
expression in the following. The asymptotic behavior of the
solution is, however, transparent. At large positivez, w(z)
approaches unity exponentially,

w~z!→12const3e212~z2z0!.

At large negativez, w(z) approaches zero as

w;
1

12

1

z02z

modulo logarithms. This type of behavior was anticipated.
Indeed, for positivez we are in the phase with the spontane-
ous breaking of the chiral symmetry and a mass gap. Hence,
the approach is exponential. On the other hand, the phase at
z→2` has no mass gap@9#, and the asymptotics is power
like.

Figure 1 presents the profile of the domain wall for the
field w(z).

Note that the wall energy density calculated above is in-
sensitive to the particular choice of the kinetic term. Equa-
tion ~17! illustrates this insensitivity. Let us return to Eq.~6!
and restore the constantC in the kinetic term,CÞ1, as an
example of possible ambiguity. It is quite clear that the con-

stantC is immediately absorbed in a rescaling ofz, and the
final expression~18! remains intact.

IV. SQCD WITH ONE FLAVOR

What happens with the domain walls when the matter
fields are added? In this section we will consider SU(2)
theory with one flavor~two subflavors!. The matter fields
belong to the fundamental representation of SU(2). This
model is described in great detail in a review paper@11#, and
so we omit all explanations. At the fundamental level the
matter sector has the form

LM5
1

4E d2ud2 ū 2Q̄feVQf1S m0

4 E d2uQa fQa f1 H.c.D ,

~20!

wherea is the color andf the subflavor index,a, f 51,2; Q
is the quark superfield. Furthermore,m0 is the matter mass
term. The subscript 0 indicates that it is the bare mass that
enters the Lagrangian; this parameter is complex. Certain
quantities depend onm0 in a holomorphic way, which will
allow us to exactly trace the evolution of the wall parameters
under variations ofm0 @2,12#.

By examining the symmetries of the model one derives
the corresponding VY effective Lagrangian@7#. TheR0 cur-
rent, the superpartner of the energy-momentum tensor and
supercurrent@13#, generates

la→eibla , ca
f→e2~ i /3!bca

f , fa
f→e~2i /3!bfa

f ,
~21!

wherec andf are the quark and squark fields, respectively.
The R0 current is anomalous at the quantum level. The
anomaly-freeR current is a linear combination of theR0
current and the Konishi current@14#. At the one-loop level it
corresponds to@15#8

la→eibla , ca
f→e22ibca

f , fa
f→e2 ibfa

f . ~22!

The R current is conserved in the massless limitm050.
6The corresponding supertransformation parameterea is e1,2

5$1,2 i %.
7We recall thatL is set equal to unity, so that 3(32p2)21Tr l2

51 in the vacuum with the broken chiral invariance.

8In higher orders the form of the conservedR current becomes
more complicated@16#, but this is unimportant for our purposes.

FIG. 1. The domain wall profile in SUSY gluodynamics.
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The VY Lagrangian is constructed in terms of two chiral
superfieldsS @see Eq.~5!# andM ,

M5Qa fQa f . ~23!

Omitting irrelevant constants one can write

L5
1

4E d4u~ S̄S!1/31
1

4E d4u~M̄M !1/2

1F1

3E d2uSS ln
SM

eL̃5
12p in D 1

m

4 E d2uM1 H.c.G .

~24!

Following Ref. @9#, we introduced the Lagrange multiplier
~integer-valued constant ‘‘field’’n) in the original expres-
sion which can be borrowed, e.g., from@17#, to ensure proper
quantization of the topological charge. As before, summation
over n is implied. A priori the mass parameter~the coeffi-
cient in front of MF) is proportional to the quark massm0.
The coefficient of proportionality (11) was established

from the Konishi anomaly@14#; see below. Furthermore,L̃
is the scale parameter of SQCD with one flavor. Its relation
to L, the scale parameter of supersymmetric gluodynamics,
will be established later. Again, as in supersymmetric gluo-
dynamics, theD terms in the Lagrangian~24! are not deter-
mined completely by the symmetries of the theory. We have
chosen the simplestD term which is as good as any other
one for the purpose of illustrating our point.

In the massless limit,m0→0, the Lagrangian~24! is ob-
viously invariant under theR transformation,u→eibu,
S→e2ibS, andM→e22ibM . The variation of the Lagrang-
ian ~24! under the anomalousR0 transformation is

20

9
ib~S2 S̄!F ,

while that of Eq.~6! is

8

3
ib~S2 S̄!F ,

in full accordance with the fact that the first coefficients of
theb functions are 5 and 6 in SU(2) SQCD with one flavor
and supersymmetric gluodynamics, respectively. Ifm0Þ0,
the only chiral invariance left in the Lagrangian~6! is the
discrete~anomaly free! Z4 chiral transformation

la→ep ik/2la , ca
f→ca

f , fa
f→ep ik/2fa

f ,

wherek is an integer. In the VY Lagrangian~24!, amended
in accordance with Ref.@9#, the discrete chiral symmetry is
realized asZ2,

u→ep ik/2u, S→ep ikS, M→ep ikM .

The scalar potential, being properly calculated from Eq.~24!,
is composed of two sectors, much in the same way as in
supersymmetric gluodynamics, Sec. II.

The fundamental theory described by the Lagrangian~3!
and~20! is in the unified Higgs-confinement phase, since the
Higgs field is in the fundamental representation. One can
distinguish the strong coupling regime versus the weak cou-

pling regime. If the expectation value of the fieldM is small
~this happens either for large values ofm0 or in the addi-
tional vacuum found in Ref.@9#!, we are in the strong cou-
pling regime, where the VY effective Lagrangian is expected
to properly capture the qualitative picture of the emerging
dynamics. If the expectation value of the fieldM is large, we
are in the weak coupling regime@15#. Here the VY Lagrang-
ian provides a good description of the moduli fieldsM , but
does not properly describe the dynamics of the massiveW
bosons characteristic of the weak coupling regime. Yet it
reproduces correctly the vacuum structure in both cases. Cor-
respondingly, the profile of the domain wall following from
Eq. ~24! will be qualitatively realistic. In this section we will
consider the wall solution interpolating betweenf51 and
f50. The solution that interpolates between two chirally
noninvariant vacua at smallm0 will be treated separately in
Sec. V. As in supersymmetric gluodynamics, the energy den-
sity of the walls will be exact.

Again, we will be interested here in a solution interpolat-
ing between the vacuum at the origin and that at finite values
of S,M . Therefore, it is sufficient to consider only one sector
of the theory. The corresponding vacuum structure is ob-
tained by minimizing the superpotential

W5
2

3
S ln

SM

eL̃5
1

m

2
M . ~25!

From]W/]M50 we conclude that, in the standard vacuum,

^S&52
3

4
m^M &. ~26!

Given our definitions ofS andM , this is nothing but a con-
sequence of the Konishi relation@14#

D̄2Q̄a feVQa f5(
f

S 4Qf
]W
]Qf

1
1

2p2
Tr W2D

54m0Qa fQa f1
1

2p2
Tr W2. ~27!

This explains our choice of the mass parameter in Eq.~24!.
The condition]W/]S50 implies that the vacuum states

are at ^S&^M &51 ~in the units of L̃ which will be used
hereafter, if not stated to the contrary!. It is seen that it is
convenient to assume the mass parameterm to be real and
negative. Then the vacuum value ofM will be real. The
phase of the parameterm can be adjusted arbitrarily by an
appropriate rotation of the fieldsS andM . From now on we
will assume thatm is a real negative number; for conve-
nience we will introduce

m̃52m.

Thenm̃ is real and positive.
It is convenient to pass to the superfields with the canonic

kinetic terms,

S→F3, M→X2. ~28!

The lowest component ofF is denoted byw, as in Sec. II;
the lowest component ofX is x. The superpotential~25!
generates the scalar potential
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U~w,x!5U]W

]w U2

1U]W

]x U2

54uw2 ln~w3x2!u2

1UxS m̃2
4w3

3x2D U2

. ~29!

It is zero at the origin and at the standard minima~26!.
Let us analyze the profile of the domain wall connecting

the minimum at the origin and one of the standard minima
~with the positive sign of̂ M &5^x2&). It is again a BPS-
saturated state, preserving two out of four supercharges; see
Eq. ~15!. The corresponding equations are

]zw56FF , ]zx56FX , ~30!

where

F̄F52
]W~w,x!

]w
, F̄X52

]W~w,x!

]x
.

The following boundary conditions are imposed:

w5x50 at z→2`;

w→w* , x→x* at z→`, ~31!

where ~the real positive! parametersw* ,x* are defined
through the expressions

x
*
2 5

2

A3

1

Am̃
, w

*
3 5

A3

2
Am̃,

and the scale parameterL̃ is put to unity, temporarily. These
boundary conditions correspond to the plus sign in Eq.~30!.
After the rescalingx5m̃21/4x̃ , w5m̃1/6w̃ , Eqs.~30! take the
form

]zw̃522m̃1/6w̃2 ln~ w̃3x̃2!,

]zx̃5 x̃ S m̃2
4w̃3

3x̃2D . ~32!

These equations can be solved analytically in two interesting
cases,m̃→` andm̃→0.

When the mass is large, the behavior of the solution is
qualitatively evident. In this case, we can integrate out the
heavy matter fields, after which the dynamics of the light
~gauge! sector is the same as in supersymmetric gluodynam-
ics. Indeed, atz5` the curve starts atw* ,x* ; then it fol-
lows the trajectory on whichw3 is ~almost! equal to 3m̃x2/4,
and the solution forw is ~almost! the same as in Sec. II —
exponentially close tow* — then quicklyw andx approach
zero as (z02z)21 modulo logarithms. The conditionw3

53m̃x2/4 nullifies the~large! second term in the scalar po-
tential ~29! and exactly corresponds to freezing the heavy
degree of freedom in the spirit of the Born-Oppenheimer
approach.

The situation is somewhat nontrivial in the opposite limit
when the matter fields are very light. A standard procedure
would be to freeze the gauge degrees of freedom, which
amounts to imposing the conditionw3x251 ~so that the
‘‘large’’ first term in the scalar potential would disappear!.

After this, the effective potential for the light matter fields is
obtained@15# which gives a valid description of the ‘‘Higgs’’
phase,uxu@1. We will analyze in more detail the physics of
the Higgs phase in the subsequent section and will show, in
particular, that BPS-saturated domain walls which interpo-
late between two Higgs vacua~26! with different phases ofx
do exist. However, the domain walls interpolating between
one of the standard vacua and the new vacuum at the origin
disappear in this approach.

We want to emphasize that Eqs.~30! and ~32! with the
boundary conditions~31! do have a solution at any value of
m̃. In the limit m̃→0, the solution acquires, however, a pe-
culiar singular form being composed of two pieces. The first
piece corresponds to moving from the minimumw5x50 at
z52` to the pointw50, x5x* at z5z0 according to the
law

x~z!5x* em̃~z2z0!.

Then the trajectory abruptly turns:x(z) does not change
anymore, but w(z) starts rising from w(z0)50 to
w(`)5w* as is dictated by the first equation in Eqs.~32!
with frozenx(z)5x* ~it has the same functional form as the
wall equation in supersymmetric gluodynamics!. This second
half of the wall is much broader than the first one. Its width
is of orderm̃21/6 compared to the width;1/m̃ of the section
of the wall with negativez2z0.

It is clear why this solution is lost in the Born-
Oppenheimer analysis. The scalar potential~29! involves a
rather high barrier between the Higgs vacua and the origin.
The new wall corresponds to climbing this ‘‘mountain
ridge.’’ In the vicinity of the ridge the relationw3x251 is
not valid and the naive Born-Oppenheimer analysis breaks
down.

It is not surprising as such that a solution going over this
ridge still exists. What is rather remarkable and very specific
for the supersymmetric case is that the surface energy den-
sity of this nonstandard BPS-saturated wall is not high. It is
determined by the generalization of Eq.~17!,

«5E
2`

`

dzF ]zw̄]zw1]zx̄ ]zx1
]W
]w

]W̄
]w̄

1
]W
]x

]W̄
] x̄

G
52~W̄2`2W̄`!. ~33!

Using Eq.~25! for the superpotential we conclude that

«5
4

A3
~m̃L̃5!1/2, ~34!

where the scale parameterL̃ is restored. The relation~34!
holds for anym̃. It is amusing that, in the limiting case
m̃→0, half of the energy density~33! comes from the region
z,z0 ~a narrow section of the wall! and another half from
the regionz.z0 ~a broad section!.

When the mass is neither too large nor too small, Eqs.
~30! do not have analytic solutions. They can be solved nu-
merically, however. As an illustration the results forw̃(z),
x̃ (z) and the parametric plot in thew,x plane withm̃51.0
are presented in Figs. 2, 3, and 4.

56 7983DOMAIN WALLS IN SUPERSYMMETRIC YANG-MILLS . . .



We solved also the equations for other values ofm̃ and
observed how the profiles approach the asymptotic curves in
the limit when the mass parameter tends to zero or infinity.

If m̃ is large, the quarks can be integrated out, and SQCD
reduces to supersymmetric gluodynamics. It is not difficult to
obtain a relation between the scale parametersL̃ andL. In
the fundamental theory this can be done by exploiting the
Novikov-Shifman-Vainshtein-Zakharov~NSVZ! b function
@18#; in the effective theories one compares to this end the
expressions for̂ S& in the standard vacuum in SQCD and
supersymmetric gluodynamics, respectively. In this way we
arrive at

L35
A3

2
~m̃L̃5!1/2. ~35!

The scale parameters are introduced via Eqs.~6! and ~24!,
respectively. Thanks to holomorphy, the square root depen-
dence in Eq.~35! is exact, not approximate. This relation is
exact. Equation~35! implies, in turn, that in SQCD«
5(4p2)21Tr l2 — this is exactly the same relation we ob-
served in supersymmetric gluodynamics. The fact that the
explicit m dependence disappears — it is completely hidden
in the gluino condensate — is no coincidence. The reason is
rather transparent: The central extension of superalgebra~1!
in SU(N) SQCD with matter takes the form

$Qȧ
†
Qḃ

†
%54~sW !ȧḃE d3x¹W H (

fl
Fm0

2
Qa fQa f

1
1

16p2
Tr W2G2

N

16p2
Tr W2J

u50

, ~36!

plus full ~super!derivatives. The sum over flavors on the
right-hand side assumes that one may have an arbitrary num-
ber of flavors~the expression above refers to the fundamental
representation; we recall that each flavor requires two sub-
flavors!. Note that the expression in the square brackets is the
Konishi anomaly~27! itself, and as such, is a full super-
derivative that gives no contribution in the central charge.
Thus, in the theory with any number of flavors the central
charge is given by the last term in the braces; i.e., we return
to Eq.~1!, which holds universally, irrespective of the values
of Nf andm.

A brief remark is in order here concerning derivation of
Eq. ~36!. The commutator consists of two parts. The first,
tree-level part is proportional to the matter superpotential
and is entirely due to the matter fields. It is trivially obtained
from the canonic commutation relations. The part containing
Tr W2 is an anomaly. In principle, it could be obtained by a
direct calculation of the relevant one-loop graphs, with both
the matter and gauge fields in the loop, provided these graphs
are regularized in the ultraviolet and infrared in such a way
that all symmetries of the model~including supersymmetry!
are preserved. We did not attempt to carry out this program
in full ~although some steps in this direction are reported in
Ref. @19#!. An indirect way is based on the observation that
there are no essentially new ‘‘geometric’’ anomalies other
than that in the divergence of theR0 current and the trace of
the energy-momentum tensor. A superfield expression for
this standard ‘‘geometric’’ anomaly is

D̄ ȧJaȧ5
1

3
DaH F3W2(

i
Qi

]W
]Qi

G
2F3N2Nf

16p2
Tr W21

1

8(i
g i D̄

2~Q̄i
1eVQi !G J ,

~37!

FIG. 2. The profile of the fieldw inside the domain wall in
SUSY QCD form̃51.

FIG. 3. The profile of the fieldx inside the domain wall in
SUSY QCD form̃51.

FIG. 4. The parametric plot ofx vs w inside the domain wall in
SUSY QCD form̃51.
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whereg i are the anomalous dimensions of the quark super-
fields Qi ,

g i52] lnZi /] ln m52
N221

2N

a

p
1•••

@see, e.g., Eq.~26! in Ref. @16##. First, one may discard the
last term in the second square brackets, since this term is a
full superderivative. To make the tree-level part of this stan-
dard anomaly compatible with Eq.~36! one must subtract
from the former full superderivatives which obviously does
not affect the value of the central charge anyway. The appro-
priate superderivative is the Konishi relation~27! itself. In
this way we arrive at Eq.~36!; see Ref.@19# for further
details. An independent check is that atNf50 Eq. ~36! co-
incides with Eq.~1!, which, in turn, can be readily derived,
e.g., from the VY Lagrangian. Equation~36! guarantees the
smooth transition to the largem limit, with no explicit m
dependence of the wall energy density. This feature was an-
ticipated in Ref.@1#. Another independent check is the fact
that the anomaly part of the central charge~i.e., the coeffi-
cient in front ofW2) is proportional toNf2Nc . If we start
from Nf50 and gradually increase this parameter, we, even-
tually, come to a point whereNf5Nc ; here the coefficient in
front of the anomaly part vanishes. The vanishing of the
anomaly part atNf5Nc could have been expected. Indeed,
from Ref. @15# we know that atNf,Nc a nonperturbative
superpotential is generated in the massless SQCD, while at
Nf5Nc , although the superpotential could have appeared, it
is not generated. In our approach this is due to the vanishing
of the coefficient in front ofW2 in the central charge.

V. SQCD IN THE WEAK COUPLING REGIME
„HIGGS PHASE…

If the mass parameterm0 in Eq. ~20! is small and the
characteristic values of the matter fieldM are assumed to be
large, the Higgs description of the model is more appropriate
@15#. In this case theS superfield can be integrated out, the
superfieldM is light ~at the classical levelM describes a flat
direction if m050), and one can obtain a genuinely Wilso-
nian effective Lagrangian for the fieldM ~certain restrictions
apply in the domain of smallM ). We recall that the VY
Lagrangians are not Wilsonian constructions.

The superpotential of the low energy theory for the
would-be moduli fieldM is

W52
2

3

L̃5

M
2

m̃

2
M . ~38!

In the fundamental theory it is generated by instantons@15#
~for a review see Ref.@11#!. Note that the superpotential~38!
has a discreteZ2 invarianceM→2M , as it ought to. The
region of smallM is not legitimate for consideration in this
language; therefore, we will consider the wall solution inter-
polating between the vacua witĥM &56(4L̃5/3m̃)1/2[
6x

*
2 , anticipating that this solution will never go through

the region of smallM .
The superpotential~38! can be obtained from Eq.~25! by

eliminating S through the equation of motion, lnSM50.
Note that no trace is left of the two-sector structure charac-

teristic of the VY Lagrangian in the SU(2) theory. The su-
perpotential forM is perfectly holomorphic.

Let us again introduce the superfieldX5M1/2 with the
standard kinetic term. The BPS wall equations corresponding
to the superpotential~38! for the wall between the vacua
^x2&56x

*
2 have the form

]zx5
]W̄
] x̄

52m̃x̄ 1
4L̃5

3x̄ 3
, ~39!

and its complex conjugate@there is, of course, also a pair of
equations with negative sign with a solution which is the
mirror image of the solution of Eq.~39!#. Substituting here
x(z)5r(z)eia(z), one observes after some simple transfor-
mations thatr(z)5x* is just constant and the phasea(z)
satisfies the equation

]za52m̃ sin 2a~z!. ~40!

It is not difficult to solve this equation with the boundary
conditionsa(2`)50, a(`)5p/2. The wall profile thus ob-
tained is

x~z!5x*
11 ie4m̃~z2z0!

A11e8m̃~z2z0!
. ~41!

The energy density of this wall is

«5
8

A3
~mL̃5!1/2, ~42!

twice the value in Eq.~34!. The reason is quite obvious. The
wall ~42! is not similar to the walls discussed in the previous
sections. The latter interpolate between the vacuum with
^l2&50 and the standard chirally asymmetric vacuum, while
the former interpolates between two different chirally asym-
metric vacua@in the SU(2) theory#.

An interesting question is what happens with the wall~42!

in the case when the ratiom̃/L̃ is not sent to zero, but has a
finite value. We do not have an analytic solution in this case.
But, as was the case for the walls interpolating between a
chirally asymmetric vacuum and the chirally symmetric one
which we discussed in the preceding section, the solution can
be found numerically@20#. Not dwelling on details, we only
mention here that the BPS equations~30! admit the wall
solutions9 only in some range of masses,umu<m*
54.67059...L̃. At m̃.m* , the BPS solution disappears.
Moreover, if m̃.m** '4.83, nonontrivial complex wall
connecting different chirally asymmetric vacua exists within
the framework of the VY effective Lagrangian.

9Though the existence of the wall solution of the equations of
motion is obvious, the statement that the wall satisfies also the first
order BPS equations is nontrivial. There is no theorem that the
domain walls are always BPS saturated. A simple model example
when it is not the case was given in@21#.
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VI. DECAY OF THE FALSE VACUUM

Let us now discuss what happens if we softly break su-
persymmetry by adding to the Lagrangian a gluino mass
term

DLm5
ml

g0
2 @Tr l21H.c.#. ~43!

Note that in our notation@see Eq. ~3!# Tr l2 is a
renormalization-group-invariant operator, and so is the ratio
ml /g0

2 ~to the leading order!. We will briefly comment on
the impact of subleading terms later. It is assumed thatml is
real and positive~the phase ofml is equivalent to aq angle
and is irrelevant!.

The degeneracy of the three vacuum states of the
SU(2)-supersymmetric gluodynamics is lifted. We will limit
ourselves to the effects linear in the soft supersymmetry
breaking. In the linear inml approximation the chirally sym-
metric vacuum stays at zero, the energy density of one of the
chirally asymmetric vacua becomes positive and that of an-
other negative,

E656
2mlS

g0
2

, ~44!

where

S5^Tr l2&1 ,

and the subscript1 in this definition ofS indicates that here
we mean the gluino condensate in the vacuum with the posi-
tive value of ^Tr l2&. In other words,S is a real positive
parameter of dimension~mass! 3.

Thus, we deal with two false vacuum states that can decay
into the true vacuum through formation of ‘‘bubbles’’@22#.

The decay rate of the false vacuum into the genuine
vacuum can be easily evaluated using the general results of
Ref. @22#. According to this work, the decay rate of the false
vacuum is proportional to

G}expH 2
27

2
p2

«4

~DE!3J , ~45!

whereDE is the difference of the vacuum energy densities in
the false and true vacua, and« is the surface energy density
of the domain wall. The estimate~45! is valid with the ex-
ponential accuracy in the ‘‘thin wall limit,’’ i.e., when the
radius of the critical bubble is much larger than the charac-
teristic thickness of the wall or, in other words, when the
absolute value of the exponent in Eq.~45! is large.

To find the decay rate of the chirally symmetric vacuum
in the true vacuum with negative energy density~the one
with positive energy density would decay in two stages!, we
have to substitute in Eq.~45! the expression~44! for DE and
the expression~2! for « ~assumingN52, ^Tr l2&`5S and
^Tr l2&2`50). We then obtain

G}expH 2
27

4096p6

S

~ml /g0
2!3 J . ~46!

Note a rather small numerical factor in the exponent. The
quasiclassical formula~46! is valid whenml /g0

2!0.02S1/3.
It applies both to supersymmetric gluodynamics and to
SQCD.

If the gluino mass term has a phase~or if qÞ0, which is
the same!,

ml→umlueia,

the parameterml in the exponent of Eq.~46! is substituted
by

uml cosau.

At a5p/2 the exponent becomes infinite. The reason is ob-
vious: For a purely imaginary gluino mass term the vacuum
degeneracy is not lifted, and there is no false vacuum decay.

The false vacuum decay rate is a physical quantity, and as
such it must be independent of the normalization pointm. It
was already mentioned thatS is renormalization-group~RG!
invariant. The ratioml /g0

2 is RG invariant only in the lead-
ing logarithmic approximation. Beyond the leading approxi-
mation the exact RG-invariant combination is@23#

mlS 1

g0
2

2
1

4p2D . ~47!

Therefore,ml /g0
2 in the exponent in Eq.~46! is actually

substituted by the combination~47!; see@23# for further de-
tails.

VII. WALLS VS TORONS

All the previous discussion was based on the assumption
that the topological charge can only be an integer. There is a
lasting controversy in the literature as to the question of ex-
istence of configurations with fractional topological charge
in pure glue SU(N) gauge theories.

In supersymmetric SU(N) Yang-Mills theories the ques-
tion of the existence~or nonexistence! of domain walls in-
terpolating between different chirally asymmetric vacua is in
one-to-one correspondence with the question of the proper
quantization of the topological charge~7!. If the minimal
nontrivial topological charge is unity, the presence ofN dif-
ferent vacuum states implies the spontaneous breaking of the
physical discrete symmetryZ2N→Z2 and, correspondingly,
the appearance of domain walls. An alternative, with a new
superselection rule replacing the physicalZ2N invariance,
arises if fractional values of the topological charge are pos-
sible. Let us elucidate this assertion in more detail.

If the SU(N) Yang-Mills theory is compactified on a
four-dimensional torus, with a finite sizeL, the topological
charge is quantized fractionally. The so-called toron field
configurations, withn being multiple integer of 1/Nc , do
exist @24#. An assumptionthat such configurations survive
and contribute in the path integral in the large-volume limit
L→` leads to the conclusion that theZN transformation
connects vacua with differentq rather than physically dis-
tinct degenerate vacua. If large gauge transformations can
change the winding number of the gauge field configuration
by 1/Nc , while the vacuum angleq is defined in the ‘‘old’’
way @see Eq.~3!#, then the vacuum angleq varies within the
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range 0<q<2pNc , and the sectors with differentq do not
communicate with each other. A new superselection rule
should be imposed. Alternatively one may say that a new
vacuum angle should be defined,q̃5Nc

21q. Thenq̃ would
vary between zero and 2p, as is appropriate for the vacuum
angle. Nc chirally asymmetric vacua of supersymmetric
gluodynamics witĥ Tr l2&}exp(2pik/Nc) would correspond
to different values ofq̃50,2p/Nc ,4p/Nc , . . . and could
not coexist in one and the same universe~see Refs.@25# and
@26# for a detailed discussion!. If it were true, one could not
speak of domain walls between the different supersymmetric
vacua. In particular, the expression~46! for the decay rate of
the metastable vacuum in a theory where supersymmetry is
slightly broken would not make sense.

The most serious argument in favor of this viewpoint
comes from the calculation of the gluino condensate on the
small torus@27#. In the SU(N)-supersymmetric gluodynam-
ics the gluino condensate turns out to be saturated by the
toron field configurations. The expression has the form

^Tr l2&;
1

L3g2~L !
expH 2

8p2

Ng2~L !
J , ~48!

whereL!L21. Using the exact NSVZb function @18# we
find that the condensate actually does not depend onL; the
toron result is equal to a numerical constant timesL3. From
this one could tentatively conclude that the toron contribu-
tion to the condensate survives for largeL @28,25#.

Clearly, if we allow the toron configurations, theZN as a
physical symmetry disappears from the VY Lagrangian. Say,
in the SU(2) theory, Eq.~6! must be modified: 2p in on the
right-hand side must be replaced by 4p in. Correspondingly,
instead of two sectors of the scalar potential@see Eq.~9! and
the following discussion# we will have just one sector ex-
tending in the interval argfP(2p,p). This scalar potential
would have only two minima: one chirally asymmetric at
f51 and the second chirally symmetric minimum atf50.

Now, the argument in favor of torons is not free of incon-
sistencies~see Ref.@10# for a recent detailed discussion!.
First, the existence of the field configurations with fractional
topological charge relies on the fact that the theory is com-
pactified on the torus. If the theory is compactified onS4,
only field configurations with integer topological charge are
admissible and there are no torons. But the physics should
not depend on whether the theory is compactified on a
sphere, on a torus, or on some other manifold, if the size of
the manifold is much larger than the characteristic scale
L21.

Second, in the theories with higher orthogonal and excep-
tional groups, configurations with fractional topological
charge do not exist even on a torus, and it isnot possible to
interpret the vacuum degeneracy in these theories in the lan-
guage of new superselection rules.

Third, if the matter fields in the fundamental representa-
tion are introduced, torons disappear since the twisted
boundary conditions on a torus necessary for their existence
cannot be imposed. When the matter mass term tends to
infinity we return back to supersymmetric gluodynamics. If
the transition is smooth — and we have seen that, for the
walls connecting a chirally asymmetric vacuum and the
chirally symmetric one, it is smooth — the energy density of

the domain wall remains finite. Then the torons must be ir-
relevant in supersymmetric gluodynamics too.

Finally, the exact solution ofN52 supersymmetric gluo-
dynamics found recently@29# shows no traces of the pres-
ence of torons and fractional topological charges. Although
this solution is not rigorously proved, it is perfectly self-
consistent and goes through numerous indirect checks.

Our present viewpoint is that the domain walls are real —
they do exist in supersymmetric gluodynamics and SQCD.
The cleanest argument comes from the consideration of the
theory with matter in the weak coupling regimem̃!L̃. In
this case the vacuax252/A3m̃ andx2522/A3m̃ acquire a
large classical Higgs vacuum average, and the walls separat-
ing them exist by the same token as in the most trivial model
of one real scalar field with the double-well potentialV(f)
5l(f22v2)2.

In the theory with fundamental matter there is no place for
an argument: Field configurations with fractional topological
charges do not exist no matter how the theory is compacti-
fied since the twisted boundary conditions on a torus neces-
sary for their existence cannot be consistently imposed. A
remarkable corollary of supersymmetry is the holomorphic
dependence~42! of the wall energy density on the mass. As
was explained before, the energy density@expressed via the
physical scale~35!# remains finite in the limitm→` when
the matter fields decouple and we are left with the pure su-
persymmetric gluodynamics. This means that in this case,
the proper topological classification should involve only in-
teger topological charges.

It is very instructive to confront this situation with a
simple~nonsupersymmetric! two-dimensional model where a
similar question can be posed and exactly answered, but the
answer is precisely opposite. Consider two-dimensional
QED ~the Schwinger model! with two fermion flavors, a
massless fermionc with the chargee, and a massive fer-
mion C with the chargee/2:

L52
1

4
FmnFmn1 c̄ ~ igm]m2egmAm!c

1C̄S igm]m2
e

2
gmAm2M DC, ~49!

where

Fmn5]mAn2]nAm[emnF.

In the Euclidean version of the theory, the topological
charge

n25
e/2

2pE F~x!d2x5Z ~50!

is quantized. The minimal flux is determined by the bound-
ary condition on the fieldC, i.e., by the chargee/2 of the
heavy fermion field. The minimal topological charge is
unity.

In the limit M→`, heavy fermions decouple. We must
consider now only the boundary conditions on the fieldc.
The gauge field configurations with half-integer fluxn2 be-
come allowed. This simulates the situation in four-
dimensional supersymmetric gauge theories with and with-
out fundamental matter. When SQCD involves dynamical
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fields in the fundamental representation, only integer topo-
logical charges~7! are admissible. In the limitm→`, we are
left with the adjoint gauge fields and adjoint fermions~glui-
nos!, and, on a torus, gauge field configurations with frac-
tional topological charge show up.

Let us now address the question of ‘‘domain walls’’ in
our two-dimensional model. Quotation marks are used above
to recall the reader that due to the lack of extra two dimen-
sions these objects are not really ‘‘walls,’’ but rather local-
ized soliton configurations. The existence of such solitons
was recently discovered in@30#. It is best seen by bosonizing
the theory according to the rules@31,32#

c̄gmc→
1

Ap
emn]nf, C̄gmC→

1

Ap
emn]nx,

c̄c→2mc cos~2Apf!, C̄C→2mC cos~2Apx!,
~51!

where the constantsm carrying the dimension of mass de-
pend on a particular normalization procedure for the scalar
fermion bilinears. AssumingM@e and integrating out the
gauge fields, one arrives at the bosonized Lagrangian involv-
ing only the physical degrees of freedom:

Lbos5
1

2
~]mf!21

1

2
~]mx!22

e2

2pS f1
x

2D 2

1cM2@cos~2Apx!21#. ~52!

In contrast to the four-dimensional case where the effective
boson Lagrangians are approximate, here the Lagrangian
~52! is exactlyequivalent to Eq.~49! in the sense that the
spectrum and all other physical properties of the theories
~49! and ~52! coincide.10

We see that the potential in Eq.~52! involves an infinite
set of minima atx522f5nAp with integern. The theory
admits finite energy static solutions which interpolate be-
tween f5x50 at x52` and, say,x522f5Ap at x
5`. The physical meaning of such a soliton is clear. It is a
kind of a ‘‘heavy meson’’~cf. Ref. @33# where such meson
solutions were obtained in a theory where the charges of the
light and heavy fields were equal! composed of the original
heavy quarkC and a cloud of massless fermion fieldsc
which neutralize its charge~a ‘‘constituent quark’’ in termi-
nology of Ref.@33#!. The fact that integer-charged light fer-
mions manage to screen a heavy fractional charge@34,30#
crucially depends on the masslessness of the light fermion. If
mcÞ0, the energy of such a ‘‘meson’’ becomes infinite and
heavy fractional charges are confined.

In the context of our discussion here, two facts are impor-
tant. The light quark condensatêc̄c&}^cos(2Apf)&
changes sign in passing fromx52` to x5` along the
soliton solution. Thereby, these solitons are very much
analogous to the four-dimensional supersymmetric domain
walls separating different vacua. Indeed, the Lagrangian~52!
involves a discreteZ2 symmetry corresponding to the posi-
tive or negative sign of the light quark condensate. This sym-
metry is broken spontaneously.11

Now, we come to a crucial distinction of this two-
dimensional model as compared to the four-dimensional su-
persymmetric theory. In the two-dimensional model at hand,
whenM is large, the energy of the soliton is of order of the
mass of the heavy fermionM ~the ‘‘constituent quark’’ has
an energy of order ofe!M ). This means that, in the limit
M→`, the mass of solitons becomes infinite. Correspond-
ingly, the sectors with different signs of^ c̄c& cease to talk
to each other, which nicely conforms with the standard topo-
logical classification of the Schwinger model with one dy-
namical massless fermion of chargee, where the flux~50! ~a
half of the standard flux! is quantized to half-integer values.

As was repeatedly mentioned, in the four-dimensional
SU(2)-supersymmetric Yang-Mills theory,both the walls in-
terpolating between chirally symmetric and asymmetric
vacuaand the walls interpolating between different chirally
asymmetric vacua are BPS saturated. By virtue of the exact
theorem~1! and its corollary~2! that guarantees that their
energy density remains finite also in the limitm→`. By
combining two walls of the type we found — one interpo-
lating between 1 and 0, and another between 0 and21 — we
may build a wall interpolating between two chirally asym-
metric vacua in the SU(2)-supersymmetric gluodynamics.
This wall just consists of two independent components. This
‘‘superposition’’ of two BPS-saturated solutions in the
SU(2)-supersymmetric gluodynamics, going throughf50
along the real axis, is almost a BPS-saturated solution in
itself. That is, the energy of this configuration approaches the
BPS bound when the two components of the wall are far
apart. For SU(3) and higher groups superimposing two so-
lutions ~one goes from 1 to 0, and another goes from 0 to
e2p i /N along the straight lines in the complexf plane! also
gives a two-component domain wall with the interacting
components. Strictly speaking, this configuration is not a so-
lution of equations of motion, although it approaches a solu-
tion in the limit of infinitely large separations between the
components of such a wall. The truly BPS-saturated walls, if
they exist in this case, should go through the complexf
plane in a nontrivial manner.

Returning to the torons, our consideration implies that, for
large volumes, the relevant topological classification in
SUSY gluodynamics is exactly the same as in SQCD —the

10Generally speaking, the Lagrangian~52! is not quite correct. As
in the case of the standard Schwinger model@10# we have to sepa-
rate the zero spatial Fourier harmonics of the ‘‘massive photon’’
field f1x/2 and write down a ‘‘glued’’ Lagrangian similar to that
in SUSY gluodynamics, invariant under the transformationf
1x/2→f1x/21Ap/2. This is irrelevant for the discussion which
follows: The combinationf1x/2 inside the wall does not cross the
boundary,uf1x/2u is always less thanAp/2.

11For those interested in the in-depth coverage we note that the
spontaneous breaking takes place only at zero temperature. At any
nonzero temperature, the ‘‘domain walls’’ which mix the distinct
vacua appear in the heat bath and the symmetry is restored. The
density of the soliton states is}exp$2Esol /T%. The ‘‘domain
walls’’ have finite energy here due to the absence of extra trans-
verse dimensions. The situation is exactly the same as in the one-
dimensional Ising model~see, e.g., Ref.@35#! and in QCD2 with
adjoint fermions for higher unitary groups@10#: In all these cases
we have a first-order phase transition atT50.
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topological charge (7) is strictly integer and there are no
torons.

The arguments presented here, although rather convincing
to our mind, are unfortunately indirect. To resolve the para-
dox completely one should explain why the toron configura-
tions which are essential for small tori@see Eq.~48!# disap-
pear in the limitL→`. We think that is very much probable,
but at the moment do not see a technical reason for it.

VIII. CONCLUSIONS

In this work we have studied domain walls in supersym-
metric gluodynamics and in SQCD. There are two basic
types of walls in these theories: a wall that interpolates be-
tween two chirally asymmetric vacua and a wall that inter-
polates between a chirally asymmetric vacuum and a sym-
metric vacuum at the origin of the field space. We have
shown explicitly that both those types of walls are BPS-
saturated. The energy density of BPS-saturated walls in su-
persymmetric theories is unambiguously determined by the
difference between the asymptotic values of the chiral con-
densate on the two sides of the wall. We have calculated this
energy density explicitly from the~corrected! Veneziano-
Yankielowicz effective Lagrangian and found that it indeed
conforms with the exact relation, Eq.~2!.

When a small supersymmetry-breaking mass is added to
the SUSY gluodynamics Lagrangian, the degeneracy be-
tween the vacua is lifted. All vacuum states except for one
become metastable. We have calculated the decay rate of
these false vacua to leading order in the SUSY-breaking
mass. It is an interesting question whether some of these
metastable states survive at large mass and therefore exist
also in pure nonsupersymmetric Yang-Mills theory.

Although the explicit calculations in this paper were per-
formed for the gauge group SU(2), the exact relation, Eq.
~2!, is valid for any SU(N) group and we do not expect any
qualitative changes in the character of the wall solutions for
higherN.
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