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Bloch-Nordsieck propagator at finite temperature
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We have shown recently that the resummation of soft photon contributions leads to a honexponential decay
of the fermion excitations in hot QED plasmas. The retarded propagator of a massless fermion was found to
behave aSz(t> 1/gT) ~exp— aT{In w,t+C[}, wherew,=gT/3 is the plasma frequency,=g?/4, andC is
a constant, independent gf which was left undefined. This term is computed in this paper. In gauges with
unphysical degrees of freedom, it is gauge-fixing independent provided an infrared regulator is introduced in
the gauge sector. We also extend our analysis to hot QCD and express the quark and gluon propagators in the
form of three-dimensional Euclidean functional integrals which may be evaluated on the Ilattice.
[S0556-282197)00624-3

PACS numbsdps): 11.10.Wx, 12.20.Ds, 52.66h

[. INTRODUCTION soft gauge fields, to leading order in an expansion in powers
of the soft momentf13] (see also Appendix C below for a

- > T . __discussion of the non-Abelian cas&hey lead to simplifica-
economical description of the nonperturbative mteractlon%ions by ignoring those degrees of freedom—in this case

between charged particles and soft photons. At zero tempera- . . R ;
ture, it provides the correct structure of the fermion propaga:%‘pln and negative-energy states—which play no dynamical

- role in the kinematical regime of interest.
tor near the mass shéR]. At finite temperature, the Bloch- . . . 3
Nordsieck approximation has been used, by Weldon, to The imaginary part of the fermion self-energy computed

verify the cancellation of the infrared divergences in the pro-W'th these rules exhibits infrared divergences near the mass

duction rate for soft photor{]. The remarkable structure of sheIII, to all order§ mtperturb?]tlon theory. For instance, in the
the “hard thermal loops"(HTL's) [4] emerges from similar One-loop approximation we have

kinematical approximations, as clearly emphasized in the ki- »

netic derivation of the HTL'§5,6]. More recently, a similar Im 3@ (w=p)=—aT In ——, (1.2
approximation has been used in Rgf8,8] to eliminate the |o=pl

infrared divergences in the computation of the fermio”whereazgzmm wp=gT/3 (the plasma frequengyand the
damping rat§9-12. As shown in Ref{8], this calculation  55hr0ximate equality means that only the singular term has
requires the resummation of an infinite class of multilooppeen preserved. For two or more photon loops, the mass-

Feynman graphs of the type shown in Fig. 1. These are thgne| divergences are powerlik8]. Such divergences pre-
same diagrams as those of the quenched approximaon  yent us from computing the mass-shell structure of the

all fermion loops are ignorgdexcept for the fact that the cnarged particles, and in particular from obtaining the fer-
photon lines include the hard thermal loop correction. mion lifetime in perturbation theory.

Throughout this work, we shall be mainly interested in the  Note, however, that no infrared divergences are encoun-
leading contribution of such diagrams to the propagator of ered when the perturbation theory is carried out directly in
hard fermion p=T) near its mass shelpo~p). As shown  the time representation: the inverse of the time acts then
in Ref. [8], this leading contribution can be estimated in theeffectively as an infrared cutoff. For instance, the one-loop

Bloch-Nordsieck approximation, that is, with the following cqrrection to the retarded propagaBx(t,p) at large times is
simplified Feynman rulegi) the fermion propagator given by

The Bloch-NordsieckBN) approximation[1] offers an

1 .
(p°-q%—-v-(p—q)’

t int!
Golp—a)= @y ofLp)=itfover s, a3
(i) the photon-fermion verteX*=yv*, and (iii) the HTL This expression is well defined although the limit-c of
photon propagatcfo,,,(a). Here,p*=(po,p) is the external the mteggal overt’ [which is precisely the on-shell self-
hard momentum, wittpy=p, v=p/p is the corresponding €Nergy=’(w=p)] does not exist. We actually hay8]
velocity,v#=(1yv), andg*=(qq,q) is a linear combination

—ipt
of the soft momenta of the internal photons. The above Feyn- S@t,p)=—iaT < for t> i (1.4)
man rules govern the interactions between any kind of hard t wWp
charged(or colored particles, irrespective of their spin, and
and, therefore,
t !
*Also at CNRS. 6S2(t,p)=— ath —=—aTtIn(wpt). (1.5
TAlso at CNRS. Loyt
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FIG. 1. A generim-loop diagram(here,n=6) which is responsible for infrared divergences in perturbation theory. All the photon lines
are soft and dressed by the hard thermal loop. The fermion line is hard and nearly on shell.

As shown in Refs[7,8], this correction exponentiates in an V. Finally, in Sec. VI, we consider an extension of the ther-
all-order calculation: mal BN model to QCD. Because of the mutual interactions
of the soft gluons, the non-Abelian model cannot be solved
analytically. Our main result here is an expression of the
retarded propagator of a hard quark or gluon in the form of a
functional integral over three-dimensional Euclidean gauge
Note, however, that the approximations used in Refsfields. This representation, which is reminiscent of the di-
[7, 8], and which lead to Eq(1.6), are reliable only for mensional reduction sometimes performed in the computa-
computing the leading large-time behavior displayed in Eqtion of static thermal correlation functiof44,15, is well
(1.6). (These approximations involve, aside from the Bloch-adapted to numerical calculations on a lattice.
Nordsieck approximation, also a restriction to the static pho-
ton mode) The subleading term—i.e., the constant term un- II. THE BLOCH-NORDSIECK PROPAGATOR
der the logarithm—could not be obtained in this way, and the
issue of its gaugéin)dependence remained an entirely open As mentioned in the Introduction, we are interested in the
problem. large time decay of the propagator of a hard fermion moving
In this paper, we improve the accuracy of our previousthrough a QED plasma at very high temperatire T
calculation by also including the nonstatic photon modes>m,, wherem, is the electron mass in the vacuum. This
within the Bloch-Nordsieck calculation. This is sufficient to fermion can be either a thermal electron, with typical mo-
fix the term of orderg®T in the exponential1.6). As we mentum p~T and ultrarelativistic dispersion relatiok,
shall see, this term, which receives contributions from both=p (we neglect the electron mass relativeTtp or a(gen-
the electric and the magnetic sectors, becomes gauge-fixirgyally massivg test charged particle, with three-momentum
independent when an infrared regulator is introduced in th@g=T and dispersion relatioB,= Jp%+m?. By test particle,

1
Sr(t,p)xexp(—aTt Inwpt) for t> e (1.6
p

gauge sector. The final result, to be derived below, is we mean a particle which is distinguishable from the plasma
particles, and is therefore not part of the thermal bath. The
Sr(t>1lwy)xexp{ —aTt[In(wpt) +0.1262 . . .+ O(g9) 1} general formalism below will be developed for a thermal

(1.7 particle. We shall indicate later how one can derive from it
the simpler case of the test particle. Also, we shall write the
| h . , nZ}eneral formulas for a massless fermion. The corresponding
pNT orfarger. The extension to a massivex T) test Par  formulas for a massive test particle will be presented only

ticle is straightforward. The case of a soft fermiop ( briefly

~gT), on the other hand, requires the full machinery of the ™ \yie are eventually interested in the retarded propagator

HTL resummation4], and will be not addressed hefgee y propag

Ref.[8] for the leading order result in this case iSo(X—V)= 0(xa— X) (. 21
In order to derive Eq.(1.7), we shall use a finite- ROCY) =000 Yo {00, ¥ ()}, @

temperature extension of the Bloch-Nordsi¢8N) model,  \yhere the curly brackets denote the anticommutator of the
to be introduced in Sec. Il. Formally, our construction is afermion field operators, and the angular braces, the thermal

straightforward generalization of the corresponding model aéxpectation value. However, to calculate this propagator at

zero temperature, as described for example in R&fHow-  finjte temperature, it is convenient to consider first the time-
ever, unlike what happens at zero temperature, at finite te”b‘rdered(or Feynmai propagator

perature, the BN model cannot be solved in closed f(zee
also [8]). The technical difficulty comes from the thermal Sy —y)= TN — _ >0
boundary conditions to be imposed on the BN propagator, ISOEYI=(TUXH(Y)) = 000~ Y0 S™(x—Y)

and more specifically from the thermal occupation factors for — 0(Yo—Xg)S™(X—Y), (2.2
the hard fermion. However, as it will be explained in Secs.

Il and 1V, this problem can be overcome, within the desiredand to observe that the two two-point functions
accuracy, and this eventually yields the large-time behavior _ _

indicated in Eq.(1.7). The independence of this result with ST(X=Y)=(H(X)h(Y)), ST(X=Y)=(h(y) (X)),
respect to the choice of the gauge is further analyzed in Sec. (2.

This result applies to a massless fermion with momentu

3
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| Im ¢ In fact, in cases where we shall use the contour method be-
low, the relation betweeis and Sy will be even simpler.
Indeed, in these cases—that of a test particle, and that of a
very energetic thermal particle, with>T—the statistical
to (€,) ty Ret factor n(py) can simply be ignored, so that Eq2.7) and
(2.8 become identical foky andy, real.
() The large time behavior of the fermion propagator is gov-
(Co) erned by the interactions of the fermion with soft thermal
photons. These can be analyzed in the BN approximation.
to- iP The propagator has then the following functional integral
representatiof2] (see also Ref.8]):
FIG. 2. Complex-time contour for the evaluation of the thermal
expectation valuexC=C,UC_UC,. OnC,, t takes all the real oN_ -1 iSe[A
values between, to t; (eventually, we let;—»). OnC_, t—t Sx=y)=2 J DAG(x.y|A)e e 2.9

—i0,, wheret runs backward front; to ty. Finally, onCg, t . ) .
=to—ir, with 0<r<pg. whereG(x,y|A) is the solution of the equation

are analytic functions of their time arguments. These func- i(v-DG(XY|A)=dc(x.Y), (210
tions can be first computed in the imaginary-time formahsmWhere D,=d,+igA,, vi=(1y), V=1, 5c(xy) is the

ggégn; ;ng actalrﬂztlgusg nt% éhoeb{gﬁ::ém; SaX'S' Then, the "€ Contour delta functiolfi16], andSc[A] is the effective action

for soft photons in the hard thermal lo¢HTL) approxima-
ISR(X—Y) = 0(X0~Yo)[S”"(x—y) + 8 (x~y)]. (24 onl461d

This is a method that we have used in H&f, and we shall SC[A]ZJ d4x[ 1 F,Fe— 1 (9-A)?
use it again in Appendix A where we compute the propaga- C 4 2\
tor of a hard thermal fermion. 1

An alternative formalism, which permits a direct evalua- +f d4xf ddy = A*(X)TT (X, y)A"(Y)
tion of real-time Green'’s functions, is based on the use of an c C 2 mr
oriented contouC in the complex time plane, as shown in 1
Fig. 2[16]. We define the contour-ordered propagator Ef 4 f 4, = Am Loy v

Cd X Cd y 5 A“(X)D,, (X=y)AY(Y).

IS(X—y) =(Tey () #(¥))= Oc(X0,Y0) S~ (X~Y) (219

— < [—
Oc(Yo, X0)S™(X=Y), 29 \we have written this equation in the covariant gauge with
where the time variableg, andyy, lie on C, andT¢ and 6 parametei. The Coulomb gaug¥ - A=0 will also be used

denote, respectively, the contour-ordering operator and thi What follows.I1,,, is the photon polarization tensor in the

contour @ function.[If one gives a parametric representation HTL approximation[17,4]. _ _
of the patht=2z(u), with u real and monotonically increas- | "€ gauge fields to be integrated over in E3j9) satisfy

ing, then path ordering corresponds to the ordering,iand ~ the Periodicity conditionA,,(to,x)=A,(to—iB,x). Corre-
0c(ty,t,)=6(u,—Us).] The contour propagata®.5) satis- spondingly, the photon contour propagator satisfies

fies the Kubo-Martin-SchwingglkKMS) bound diti .
[Ileﬁs] e Kubo-Martin-Schwingel ) boundary condition D,..(to—Yo) =D .(to—Yo—iB), (2.12

and can be given the following spectral representation:

S(to—Yo)=—S(to=Yo—iB). (2.6
d* 4
(In this equation, and often below, we omit the spatial coor- D, (x—y)=—i q4 e 1Yy (q)
dinates, for simplicity). It can be given the following spectral (2m)
representatio16] X[ 0c(X0,Yo) +N(do)], (2.13

dp where i ity i -
Sy —ip-(x=y)” _ p.,(0) is the photon spectral density in the HTL ap
IS(x=y) J' (2m)* € P(P)LOc(X0,Yo) = N(Po) ], proximal{ion[18] (we follow here the notations in Rdfg]),

(2.7 and N(qgg) = 11 exp(Bay)—1] is the Bose-Einstein statistical

factor.
where p(p) is the fermion spectral density and(po) Equation(2.10 defines the BN propagator of a charged
= 1[exp(Bpo) +1]. Note that, once the spectral density is particle in a classical background fiefd,(x). The vectorv
known, the retarded propagat@.1) can be obtained as in this equation is to be identified with the particle velocity.
A Then, the Feynman rules generated by the functional integral
d*p (2.9 coincide with those given in the introduction. Since, in

i —V)= — —ip-(X=y)7
ISr(X=Y)=6(Xg yO)J' 2m?* € P(p). the BN modely is a fixed parameter, the underlying physi-

(2.8)  cal approximation is the lack of fermion recoil. This approxi-
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mation is justified when the momentum transfer from the o
background field is small, at most of ordefrgT. (The U(x,x—vt)=ex —IJ d*zj(2)A*(2) |,
energy-momentum scatgT is set by the polarization tensor

IT,,; see Sec. Ill below. _ too
In order to satisfy the KMS conditio(2.6), the BN equa- JM(Z)EQUMJ dsé®(z—x+v(t—s)). (2.19
tion (2.10 has to be solved for antiperiodic boundary condi- 0
tions Then, a straightforward calculation yields
G(to,YolA)=—~G(to~iB,YolA), (2.14 Sr(t,p)=—i0(t)e " PA(), (2.20

with
and similarly foryy. These conditions complicate the reso-
lution of the thermal BN model in general. There is a simple ~ [ 4 A .,
case, however, where this complication is absent, namelyA(t) =ex _EJ d Xf d?y J#(X)D ., (X=Y)j"(¥) |,
C, C,
the case of a test particle. For this case, the thermal BN 2.21)
model can be exactly solved, as we discuss now. '
where the time integrals run dd, only, in accordance with
A. The test particle Eq.(2.19.
By using Eqs(2.19 and(2.13, and after a simple calcu-

The propagator of a test particle has only one analythatIon we can rewnté&(t) in Eq. (2.2 as

component, namely§~ (x—y); S~ vanishes since the ther-
mal bath acts as the vacuum for the field operators of the test g2

particle. Therefore[cf. Egs. (2.1)—(2.4)], S(x—y)=Sg(x  A()= exp{ (277)4 J dslf dsye (@ ve1=2)p(q)
—y)=—i60(Xo—Yo)S (Xx—Y) and the KMS condition§2.6)

do not apply. In the BN approximatio®(x,y) is still given

by Eq.(2.9), but nowG(x,y|A) obeys retarded conditions in X[O(sy—sz) + N(Qo)]} : (2.22
real time, and not the conditior{2.14). The solution to Eq.

(2.10 is then obtained in closed forf2] (see also Ref.8)): with ;(q)zvﬁpw(q)vy_ Note that Eq.(2.22 could have

been obtained from the corresponding expression in the
vacuum(see Ref[2]) by simply replacing in the latter the
(= " bare photon propagator by the corresponding thermal propa-
=—i fo dts(x—y—vt)U(x,x—vt), (219  gator for a soft photon. Conversely, the zero-temperaBiNe
propagator can be obtained from HG.22 by substituting
_ _ N(do)— — 6(—qo) and replacingp,,,, with the free photon
where the time variablex, andy, are real. The three- gpectral density.
dimensional & function describes Straight”ne propagation After perforn'“ng thesl and S, |ntegrat|0ns and also us-
with velocityv. The background gauge field only contributesng the parity propertsp(—q) = —p(q), we finally cast Eq.

Gr(X,Y|A)= =1 0(x°—y%) 6 (x—y—v(x°—y°))U(x,y)

a phase factor: (2.22 into the form

t A(t) explitd(t)}A(1), (2.23

U(x,x—vt)zexp{ —igJ dsv-AxX—v(t—s9))t.
0 where
(2.1
‘q  p(a) sint(v-q)
In n;omentum space, the freé\ (=0) retarded propagator P ()= f (2m)* 2(v-q) [ t(v-q) } (2.24
reads
and
0 _ 1 d*q _ 1—cod(v-q)
CrlwP) =ty (217 A(t)zexp[—ng Gy PN iz j
(2.29

corresponding to the following free spectral density: o
In the derivation of the above formulas, Eq2.22—

(2.25, there was no explicit restriction on the photon mo-

mentag”. Since theBN model can only be trusted for soft

photons, we need to verify that the large time behavior of the

According to these equations, the fermion mass shell in théermion propagator, as given by E¢8.20—(2.25), is indeed

BN model corresponds ta=E,=v-p. Sincev is to be controlled by soft momenta<T.

identified with the velocityp/p of the massless fermion, the  In fact, the momentum integrals in Eq&.24—(2.25

free mass shell is ab=p, as it should. contain ultraviolet divergences coming from their zero-
In order to perform the functional integratiq®.9), we  temperature contributions. There is a linear UV divergence

first rewrite the parallel transport¢2.16) as in ®(t), and a logarithmic divergence iu(t). These diver-

po(®,p)=—21IMG(w,p)=278(w—V-p). (2.18



56 BLOCH-NORDSIECK PROPAGATOR AT FINITE TEMPERATURE 7881
gences can be absorbed respectively, by mass and field- B. The thermal fermion

strength renormalizatior]2]. However, the finite part of the
phase®(t) remains dominated by hard momenta contribu-ppy sically more interesting, since this is a typical quasipar-
tions, and therefore is not consistently determined by thei o of the plasma. Technically, however, this is more in-

present approximation. Sinek(t) does not enter the calcu- \jyeqd, since the KMS boundary conditiof®.14 must be
lation of the lifetime, we shall ignore it in what follows. taken into account.

The damping effects are entirely described by the func- 14 appreciate the difficulty, consider the free contour

tion A(t), Eqg. (2.25, which extends our previous result propagator, as obtained by replacifgp) with po(p)
[7,8] by including the effects of the nonstatiaqd+ 0) =278(w—v-p) in Eq. (2.7

electric and magnetic field fluctuations. At=0, A{_g

The case of a thermal electron with momentpm T is

x exp(—ginAt), Wh_ere_A is the upper momentum cutdf2]. Go(t—t',p)=— ie‘i("'p)(“")[ac(t,t’)(l— Np)

After UV renormalization, the cutoff\ is replaced by the

physical electron mass, thus yielding —0c(t,t)ny], (2.30
|S(t)] ~ (mt) @~ (el2m) (2.26 wheren,=n(v-p). By using this propagator, we can solve

the BN equation2.10 as a series in powers gfA,, . To this

. . . . aim, one can first transform E¢R.10 into an integral equa-
in the covariant gauge with gauge-fixing parametelsee tion: ®10 g g

Eq. (4.11)]. Such a gauge-dependent, polynomial depen-
dence on time merely reflects the renormalization of the
wave function of the fermion due to its coupling to soft
virtual photons. This is not to be interpreted as a damping
phenomenon. The mechanism which takes place at high tem- +9f d*z Go(x—2)v-A(2)G(z,y|A).

perature and which eventually gives rise to the damping of ¢

the test particle excitation is the exchange of soft photons (2.3)
between the test fermion and the thermal charged patrticles.

We shall verify in Sec. Ill that, for sufficiently large times Then, by iteratively solving this equation, one generates the
t>1/gT, such a collision involves dominantly soft photon perturbation series foG(x,y|A). However, in contrast to

G(x,y|A)=Go(x—y)

momentag=<gT. what happens for the retarded propagathd5), the result-
For a fixed large time, the function ing series for the contour propagatd(x,y|A) does not ex-
ponentiatd 8]. The exponentiation of the perturbative series
1-cog(v-q) for Gr(x,y|A) is related to the fact that the retarded free
f(t,v~q)EW, (2.2 propagator,

GR(t,p)=—if6(t)e "vV-PL, (2.32
in Eqg. (2.29 is strongly peaked around-q=qy—Vv-q=0, R(LP) W

with a width ~1£. In the limit t—o, f(t,v-q)—7ts(v g ; TR 0 0 _
-@). In the absence of infrared complications, we could usdausfies the simple multiplication [aBg(t, p;) G(t,po)

> ~0
this limit to obtain the large time behavior @ (t). This .GR(tt’hlerpZ)' '{hebcontour p;r;)hpagatdﬁo(t,p)fc:ﬁes tn?t fical
procedure would then yield (t—o)~e %, with enjoy this property, because of the presence of the statistica

factors in Eq.(2.30.

This argument suggests that the contour BN propagator
may exponentiate whenever the fermion occupation numbers
play no dynamical role. This is what happened for the test
particle in the previous subsection, and, more generally, this
will also happen for a thermalized fermion with very high
momentump>T whose thermal occupation number is expo-
nentially small:n(p)=e #P<1. In fact, whenn,—0, the
free contour propagatd®.30 reduces to the retarded func-
tion (2.32 (for real time variables It is then easy to verify
that the previous solution of the BN model, as given by Egs.
(2.20—(2.29, also applies to such a very energetic thermal
particle, up to corrections which are exponentially small
when p>T. In particular, the case of the test particle is

d*q _
yere? | S HAN@N). (229

We recognize in Eq(2.28 the one-loop damping ratg
=—Im2®@(w=p) [11,12, which we know, however, to be
infrared divergenfcf. Eq.(1.2)]. Thus, in studying the large-
time behavior of Eq(2.25, one should keep the time finite
when performing the momentum integral. As already men
tioned after Eq(1.3), the inverse time plays the role of an
infrared cutoff. This will become explicit in Sec. Il below.
Equations(2.20—(2.295 generalize trivially to a test par-
ticle with massm. The mass shell is shifted t&,=v-p -
+m(1-v4)* (which, sincev=p/E,, corresponds indeed formally recovered as the limp/T—co.

I v ey What is less obvious is that the same solution holds also
Ecz) 58)_ p~+m), and the retarded propagator has the formfor a typical thermal fermion, with momentuprT. More

precisely, as will be verified in Appendix A, the thermal

fermion propagator decays according to the same law as
|Sk(t,p)[=6(t)A, (1), (229  above, that is,

whereA (1) is the function(2.29 with, however,|v|<1. |Sr(t,p)|*=A(t) (2.33
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[with A(t) as defined in Eq(2.25], up to corrections of 1 37 wsq
order g/T=<g. Physically, this reflects the factvhich has — ﬁt(qo<q)27 51 (3rwlqyd)?
been already mentioned at several places, and will be verified Go q 7@pb0

in the next sectionthat the fermion decay at large timds, 20

>1/gT, is determined by its interactions with soft photons, —— 8(qp) as g—0. (3.9
with momentag=gT. Such interactions do not significantly g

change the electron momentum, so that the associated thefy isolate this singular behavior, we write

mal occupation factors play no dynamical role.

1
+ q_o vi(do,d).
(3.4

1 1 1
Il. LARGE TIME BEHAVIOR do B‘(qo’q)zzwg(%)(?_ 9+ o),

We are now in a position to study the large-time behavior

of the fermion propagator, as described by the funcli§t), A contribution «1/(q%+ »?) has been subtracted from the
Eq. (2..25): We §hal| verify below that the relevant energy gingular piece—and impplicitly included in(qo,q)—to
scale is hidden in the photon spectral denpity(q), and s ayid spurious ultraviolet divergences: written as they stand,
of the ordergT. Therefore, “large times” means times poih terms in the right-hand sid&®RHS) of Eq. (3.4 give

larger than 9T. UV-finite contributions. Note that by neglecting the regular
For th_e cqmputanon below, we shall use the photon SP€Gsiecer,(dy,q) in the right-hand side of E3.4), one recov-
tral density in the Coulomb gauge ers our previous result in Refg7, 8] [as also expressed in
_ A Egs.(3.6) and (3.9 belowl.
p(do.@)=pi(do,q) +[1—(v-)%Ipi(do,q). (3.9 With Eq. (3.4), the integral in Eq(2.25 may be separated

into two pieces:
(The issue of the gauge dependence will be addressed in the

3
next section. The two piece,(qq,q) andp(dq,q) of the ZJ' d°q J'q ddo _
spectral density correspond, respectively, to longitudinal andFreg(t)_ (2m)° | _q 27 [81(do,q) —coS 630, Q)

transverse photons, which are renormalized differently by

plasma effectd6,16]. They have the following structure 1-cog(v-q)
(W|th s=| or t) +Vt(q01q)] (U.q)Z ’ (35)
ps(00,Q) =27e(00) 2:(Q) AL G5~ w3(Q)] and
+ Bs(do, ) 6(9%— q5). (3.2 Fo()= J d’q ( 1 1 | 1-cod(vq)
R em®\d® ¢?+wy  (v-0)°
and involved functions associated to plasma waves at time- (3.6

like momenta 3= w2(q)>g?), and smooth contributions
B, and B, atqi<q? arising from Landau damping. For given
go andg, the energy-momentum scale in E§.2) is set by
the plasma frequency,=gT/3, for both the on-shell and
the off-shell spectral densitieisee[18,6,1 for more de- t (e 1 dg q(z,
tails). _t J j ( _%

For generic times, both pieces in E®.2) contribute to Fredt 4w Jo da q ~q 2m0p A(%.q) q° Al do. @)
Eq. (2.25.

(i) That involving 8[qa— w2(q)] describes the emission

| he emission. + v(do. 1) | (37

or the absorption of an on-shell plasmon. By kinematics, this
is only possible if the fermion is sufficiently off shellw )
—p|=gT: indeed, the plasmons propagate as massive paf¥here we have used the delta functiéfy,—q cost) to per-
ticles, with (momentum dependenthermal masses of order form the angular integration. The remaining integral occurs
gT [17,6,18. also in Ref.[11], as part of the one-loop damping rate, and

(i) The contributions involving, and g, describe colli- Was compgted there by using sum _rules plus.numen‘cal inte-
sional damping, where the fermion exchanges a virtual phogration. It is computed analytically in Appendix B, with the
ton with the other charged particles of the plasma. Such prgesult
cesses have no kinematical restrictions, and they are the only ( ¢
one to contribute at very large timés 1/gT. e

To study the large-time behavior, we restrict therefore Fred ! 8w In3 47TX0'54931' S
ourselves to collisional processes, i.e., retain ggjlyand B,
in the photon spectral functions. Also, we repladéq,) Note that this result comes entirely from the electric piece
~T/qo, as appropriate for softiy<T. From perturbation Bi(do.0): the two magnetic piecesqf/q?)B:(do.q) and
theory, we know that the infrared complications are relatedv(0o.d), happen to cancel each other in the final result.
to the singular behavior of the magnetic spectral density aghis is purely accidental, consequence of our specific choice
go<<q—0 [8]: for the substracted term 4+ wf,) in Eq. (3.4).

The first pieceF (1), is infrared safe, and its large-time
limit can be taken by replacinf(t,v-q) by wté(v-q) [see
Eq. (2.27)]. This yields
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The second piecé; z(t), contains the potentially singular coincides with the one-loop result in RR]. As for the
magnetic contribution, so that we should take the large time-dependent terms, the coefficient of the logarithm in Eq.
limit only after performing the integral ovey. This has been (3.14) is the same as for the infrared-divergent piece of the

done in Ref[8], with the following result(yg is the Euler  corresponding one-loop resdlt.
constank
IV. GAUGE DEPENDENCE

t
Fir()= 7 [INopt+(yvg=1)+O0(Lwpt)]. (3.9 We show now that the same res(® 10 is obtained in
general covariant gauges provided the large time limit in Eq.
Note that the energy scale, inside the logarithm arises (2.2 is taken with an infrared cutoff in the gauge sector, in
from the large momentungizgT) behavior, where the sub- order to eliminate the contribution of the spurious degrees of
tracted term 14§°+ »2) acts effectively as an UV cutoff.  freedom.
The final result for the large-time propagator reads then In the covariant gauge of E¢2.11), the photon spectral

A(t> Lw,) =exp — a Tt In(wpt) +0.1262 . . . density reads

+0(g, Lagh)]}. (3.10 9> —qo(v-q)\?

p(do,0)= W) p1(do, @) +[1—(v-)?1pi(do.q)

For the consistency of our approximations, it is important to 0

observe that this result has been obtained by integrating, in +Apy(Qo,q). (4.1

Egs. (3.7) and (3.6), over soft photon momentg=<gT.

While this is obvious for Eq(3.6), where the two terms The longitudinal and transverse spectral functipnsind p;

inside the parentheses mutually cancelgasgT, it can be  are the same as in E(B.1), and

also verified for Eq(3.7), by using the known behavior ¢ ,

and B3, at large photon momen{d8,8g]. Pr(do,0)=(Ao— V- 0)*27€(0p) 8" (0°),
For completeness, let us also give the corresponding re-

sults for a massive test particle. After reinserting the appro-

priate factors oty =|v| in the previous results, we get

4.2

where e(dg) = 0(qo) — 6(— qo) and &' (g?) is the derivative
of 5(g?) with respect tag?.
The electric and magnetic spectral functions in Egl)
A, (vt>Lwy) =exp,— aTot[In(wyut) + (yg— 1)+ C(v) 1}, yield the same contributions to E€.25 as the correspond-
(3.1 ing functions in the Coulomb gaudef. Egs.(3.6) and(3.9)].
This is obvious for the magnetic sector. In the electric sector,
whereC(v) is given by the following integral: the large-time limit introduces the delta functiétv - ) [see
1 ¢ dg o Eq. (2.27], and the projection factor multiplying;(gq,q) in
_ < v 0 _Ho Eqg. (4.1 is equal to one fogg=v-g. The same argument
C) v? jo da qqu 2m( (,8|(qo,q) Ez Ao, ) applied in the gauge sector seems to imply that the contribu-
tion of PAZ(QO,Q) does also vanish, because of the factor
P (go—V-g)° in Eq. (4.2. However, since the spectral func-
o V‘(qo’q))' (312 tion &'(g?) has support precisely at the integration limits
=+(, we should be more careful when taking the limit
For a very heavy particlen=T, we may consider the non- v-q—0.
relativistic limitv <1 (this is consistent with our approxima-  The contribution of the gauge sectorAgt) factorizes as
tions as long ap=mv>gT). At smallv, the leading con-  exd —\g?TF,(t)], where
tribution to Eq.(3.12 comes from the electric sector. The

magnetic contribution involves a supplementary factos gf d3q dgo 1—cod(v-q)
and vanishes as—0. However, because of its infrared sen- FA(D= | ——3 f 57q. o d) — T
o N . , ( w) 0o (v-q)
sitivity, the contribution of the magnetic sector is not ana-

lytic in v. We evaluate this contribution in Appendix B, dqo L

where we find (277)3 f €(90) 8" (q9)[1—cod(v-q)].

4.3

ik
vCv)=3 4

3mv v
1+v In —+ §+O(”2))' (3.13
By noting that 8’ (q?) = (1/2q,)(d&/dq), we can perform
where the first term, independentof is the contribution of ~ an integration by parts to compute the integral ayer After

the electric sector. Together with E@.11), this yields also computing the angular integral, we obtain
aT 37 i
_ _ 1 © dq singt  1—cosyt
A,(vt>llow )—exp{ ——t|1+v In(— v t)z) - f ek i I _
p 2 4 p F)\(t) u qZ 1 2qt 4 .
4.4
+v(2’yE—3/2)“, (3.19

for v<1. In particular, a® —0 (i.e.,m—x), the damping is  Actually, a different coefficient was reported in Reff8,11], but
purely exponential, with a damping ratg,=aT/2 which  the difference is apparently due to an error in the calculations there.
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Although this last integral is infrared finite, we nevertheless Further insight may be gained by a comparison with the

compute it with an infrared cutoffi. A straightforward cal- corresponding results at zero temperaf@i After ultravio-

culation then yields let renormalization, the retarded BN propagator at zero tem-
perature is given by

sin2ut t
Fa(t)=g—=—1[3-2 —cosut|— — si(2ut), _
MO~ g7 2ut 4 S(t,p)e Erlexp (3—\) =— In(mt)
(4.5) 2m
_ (3= N)(al2m) o—IE ot
where sik)=— [;dz(sinzz) is the sine integral function =(my e “.13

[19].
If we remove the IR cutoff by lettingt— 0 at fixedt,
then, by using si(0F — /2, we get

Thus, in the energy representation, the mass-shell singularity
is generally a branch point, rather than a simple pole:

( m (3= \)(al2m)
S(p) = , 4.1
FA(t)=L, (4.6) (P) u-p=miu-p—m .42
8
whereu#=(ug,u) is the fermion four-velocityu*= p#/m,
so thatA(t) becomegcf. Eq.(3.10] with u?=1.
Note that both the physical and the gauge sectors of the
A(t>lwp)=exp{— aTt[In(wpt) +0.12652- - + \/2]}. photon propagator contribute to the mass-shell behavior in

4.7 Eqg. (4.12: at T=0, the gauge field quanta are massless in
both sectors. Furthermore, no infrared regulator is necessary:
(The gauge-dependent piece in the exponent coincides witim deriving Egs.(4.11)—(4.12), one encounters no IR diver-
the corresponding piece of the one-loop damping rete, gences, and the position of the mass shell is gauge indepen-
=AaT/2[20,21).) dent, as it should. Still, if one wishes to perform soft-photon
However, if we consider the large-time behavior at fixedcomputations in perturbation theory in any other gauge than
u, then we can use the asymptotic expansion of)sithat is  the Yennie gaugeN=3), it is convenient to introduce an
infrared regulator, so as to recover the simple-pole structure

) 1 Sinx ) of the mass shell. When the photon is given a small mass
—Si(x>1)~ | cox+ ——+O(1IX) |, (48  the propagatof4.12 is replaced by
to obtain Z(u.M)
S(p)mu.p_m, (4.13
F(t>1up)= ! 3 sinzut +0O(1/p?t? 4.9  where the residue
o
In this case, the sole effect of the gauge-dependent piece Z(,u,)\)=exp{(3—?\) > In(m/w) (4.149

F\(t) at timest>1/u is to change the normalization of the

propagator, by a factor is gauge-fixing dependent and also cutoff-dependent. It may

be compared to the finite-temperature normalization factor in
exp[—ngTFA(t)]zexp( e I) =2(T, . \) Eq. (4.10.
27 u e We see that, as a consequence of the Bose-Einstein en-
(4.10 hancement of the soft photon processes, the divergence of
the “residue” z(T,u,\) as u—0 is linear atT>0, rather
which is both gauge dependent and cutoff dependent. than just logarithmic af=0. Moreover, if atT=0 the in-
The gauge-dependent contribution to the damping rateroduction of a photon mass is just a matter of convenience,
Eq. (4.6), arises because the on-shell fermion is kinematiat T>0 the use of an infrared regulator in the gauge sector is
cally allowed to “decay” with the emission, or the absorp- compulsory in order to eliminate the contribution of the non-

tion, of a massless gauge “photon.” At=0, such an emis-  physical degrees of freedom and avoid the gauge dependence
sion process cannot occur: by kinematics, the emitted photogf the mass shell.

must be colineatd=0, gqo=q), and the corresponding phase

space vanishes. But this is not so at finite temperature, be- V. SOME RESULTS FOR QCD
cause of the Bose-Einstein factdl(gg)~T/qe which di-
verges agjy— 0 (see Appendix B of Ref.8] for an explicit We consider now the generalization of the previous argu-

calculation. After HTL resummation, the gauge sector is thements to the non-Abelian case, that is, to the high-
only one to contain massless fields. The unphysical decaiemperature, weakly coupledg(T)<1] quark-gluon
channel can be suppressed by giving the gauge photon @asma. The self-interactions of the soft gluons prevent us
small massu, as originally proposed by Rebh4B1l] (see from getting in this case an explicit solution. However, it is
also Refs[22, 23)). As we have seen, this procedure ensuresxpected[24] that these interactions generate screening of
the gauge independence of the damping rate, to the order tie static magnetic fields. If this is so, the corresponding
interest. screening length, typically of orderd@T, provides then a
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natural IR cutoff of ordeg?T in the perturbation theory for L

Y- L eeeemeee
We shall investigate this possibility in the next subsec-5 -----------------
tion, in the framework of a toy model which is QED withan | ..
infrared cutoff u~g?T in the magnetic sector. By solving
this model in the BN approximation, we shall obtain a quali-
tative picture of the effects of the magnetic mass on the3}
large-time behavior of the fermion propagator.
Then, we shall propose a functional integral representa-; |
tion for the propagator of a hard quark or gluon which, being
formulated in three-dimensional Euclidean space, fwiori
well suited for lattice calculations. This formulation allows
for a direct numerical study of the particle decay in real time.

4 e il

X
1 2 3 4 5

A. QED with a magnetic mass
Q g FIG. 3. The functiorL(x,y), Eq.(5.5), is represented as a func-

To implement magnetic screening in QED, we replace thejon of x for fixed y=0.01 (continuous ling We have also repre-
massless static transverse propagator by its massive versigented the asymptotics(x,y)=In(xy)—1 (dotted lin@ and
L,(x,y)=In(1ly)— yg (dashed ling These are good approxima-
tions toL(x,y) in the domaingy<x<1 andx>1, respectively.

Dy(0, )—"Tq'q’, 5.0
)72

is indeed insensitive to the precise value of the UV cutoff,
with u~g?T. Of course, such an infrared behavior could notand also to the specific procedure which is used for its imple-
occur in QED, where the correct magnetic polarization tenmentation[8].)
sorII,(0,g) vanishes ag? wheng—0, to all orders in per- To perform the integral in Eq(5.3, we write A ,(t)
turbation theory{25]. We simply use “massive QED,” as =ex{d— ngFM(t)] with
defined by Eq(5.1), as a crude parametrization of the non-
perturbative screening effects in QCD. E ()= E ftds J'td f

Strictly speaking, when.>0 we have no infrared diver- B 1 2

gences. However, as long as<g®T, the dominant contri-

d3q ei(v-q)(sl—sz)
(2m)*  q*+u’

bution to the damping rate is still given by the static mag- d e Hlsims | I~
netic photons. For instance, to one loop order the static mode Sl ds, o5 dlsi—s, p)
yields
t—s s
w Ss——e¢€
ye=aT In 7"~ng In(1/g), (5.2 “ar Ju, s
t ptodx e Her—e
which is enhanced by a factor Inf)/ as compared to the “an L/w S & | (5.9

contribution of the nonstatic modéwhich is ~g°T, as in
Eqg. (3.10]. Moreover, the higher-loop diagrams contribute |n this calculation, the ultraviolet cutoff has been introduced,
terms of relative Orderc(T/,u)” L , wheren is the number of in the second line, in the func“cﬂ”sl 32| ]_/wp) For the
loops, so that the perturbation theory breaks down for purpose of a graphical representatisee Fig. 3, we rewrite
=<g?T [8]. This is why a nonperturbative calculation is nec- the final expression above &,(t)=(t/4m)L(x,y), with x

essary even in the presence of an infrared cyioffg?T. =put, y=ulw,, and
In order to get the leading contribution to the damping
factor, we can restrict ourselves to the interactions with static g Y—e*
(0o=0) magnetic photong7,8]. In practice, such a calcula- Lxy)=Ei(y)—Es(X) = ———, (5.9

tion amounts to preserve only the contributieg(t) in Eq.
(3.6), where however, the massive propagatbrl) must where E;(x) is the exponential-integral functiofl19],

now be used. This gives E.(x)=/7dz(e *¥z). For u~g°T, we havey~g<1. We
recall that the above calculation only makes sense for large
A (D)~ exp[ ZTJ 1-cod(v-q) enough timesw,t>1 or x>y.
(27 2+,u (v-q)? |- Since the expression in Eq5.4) involves two energy

(5.3  scales, namelyy, and u, with u<w,, we distinguish be-

) ) i i tween two regimes of timdi) very large timest>1/u (i.e.,
As explained in Sec. lll, the integral in E¢5.3) has to be x>1), where

computed with an upper cutoé,~gT, to account approxi-

mately for the effect of the neglected nonstatic modés. t wp

Eq. (3.6), the upper cutoff was provided by the subtracted Fﬂ(t)zﬂ ('” 7+O(1))' (5.6
term 1/@*+ 3). In Eq. (5.4 below, we shall find conve-

nient to introduce this cutoff in a different way. At large and (ii) intermediate times, &,<t<1l/u (i.e., y<x<1),
timeswpt>1, the leading contribution to the damping factor where
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t
F#(t)zﬂ[ln(wpt)JrO(l)]. (5.7
Thus, the “magnetic mass’u is only felt at sufficiently
large times—whereA ,(t) decays exponentially in agree- (J\/\/L)

ment with the one-loop resuls.2—while it has no effect at . ) . . .
intermediate times. We remark at this point that, when dis- F'G- 4. A generic self-energy diagram in QCD which yields
cussing the lifetime of the excitation, it is rather the interme-nfrared divergences on the mass shell. The continuous line is a
diate times which matter, since for asymptotically large"@"d particle(quark or gluop. The wavy lines are soft magneto-
times tZl/ng~ 1/u the excitation has already decayed. static gluons. All the loop integrations are three dimensional.

This behavior, Eqs(5.6) and (5.7), can be also observed in
Fig. 3, where we have representefk,y) as a function ok
for a fixed, small, value ofy (namely,y=0.01). For x of
order one, one clearly sees on this figure the transition b
tween the two types of behavior, as described by Eg$)
and(5.7), respectively.

netic screening. A typical Feynman graph contribution to the
self-energy is depicted in Fig. 4. The continous line in this
diagram is hard, and may represent either a quark, or a gluon.
She wavy lines denote static magnetic gluons, and all the
loop integrations are three-dimensional. As explained in Sec.

It has been suggested, first by Lebedev and Sniil@ ”é] these integrations involve an upper cutoff,. In QCD
that when computing the damping rate to one-loop order, thg '
damping rate itself should be self-consistently resummed in g2
the internal hard line. The usual argument goes as follows. wf): 18
Sincey~g°T is of the same order as the infrared cutaffit

should be taken into account when studying the infrared be;
havior of the integrand. If we do that, by following REL1], for N colors and\; flavors of thermal quarkgNote that the

) : o gluonic loops attached to soft internal lines would be finite
then the one-loop resulb.2) is modified to even in the absence of the ultraviolet cutpff.

(2N+Ny), (5.9

2 In the BN approximation, all such diagrams are formally
aT ® . . ;
y=—1In 2—p (5.8) resummed by the following functional integrgthe gauge-
2 ptt2upy fixing terms are not written here explicitly; see the discussion

. i _ below, after Eq(5.14)]:
(Up to appropriate color factors, the same result is obtained

in QCD, for both quarks and gluorjd1].) However, this is 1

not correct: the self-energy resummation advocated in theS(X—Y)=Zflf DAG(x,ylA)exp{ a7 f d3XF}"}Fﬂ],
procedure leading to Eq5.8) should be accompanied by a (5.10
corresponding resummation in the vertex function, so as to ‘
respect gauge symmetry. As discussed in B8if.the vertex \ynere A%(x) is a static color field, F2=gA%—g:A2
czgegtions hgenerl?te new infrareq divergence_s, and, .WheﬂgfabcAibA]@: (f2b¢ are the structure consti’;mts ojf thJe color
added to the self-energy corrections, conspire to give g :

leading-order estimate for the damping rate which has pre%rOUp)’ andG(x,y|A) satisfies the equation

cisely the form indicated in Eq5.2). (See Appendix C in . — )y

Ref.[8] for more detail9. At this point, it might be useful to i(v-Dx)G(x,y|A)= 8 (x—y), (5.11
emphasize that the BN calculation provides precisely a Self\'/vhereD —a,+igA,, A,=(0A), andA,
consistent resummation of the fermion propagator near th B B M ' ;
mass shell, together with the appropriate resummation of th
vertex function, as required by gauge symmetry.

=A?T?is a color
fhatrix in either the adjoint or the fundamental representation
8or gluons or quarks, respectivelyThe plasma effects do
not modify the gluonic action in Eq5.10 (recall that the
HTL corrections vanish for static magnetic fielp#]), but

B. QCD only enter through the upper cutaff,~gT.

Going now to QCD, we first observe that the Bloch- The solution of the BN equatio5.11) with retarded
Nordsieck approximation remains relevant to discuss th&oundary conditions is immediafé]:
large-time (or mass-shell behavior of the quasiparticle ) 3)
propagator, and this for both quarks aficnsversegluons.  GrROGYIA)=—16(Xo=Y0) ¥ [X—y=V(Xo=Yo) JU(XY),
(We consider here a hard quasiparticle, with momenpm .
=T.) While for quarks this approximation is easy to justify, IRV ; e
by analogy to QED, the case of gluons requires more care Uixx=v)=P exp{lgfodst[x vt=s)],
and is discussed in Appendix C. Moreover, we expect the (5.12
leading large-time behavior to be given by the quasiparticle
interactions with staticd,=0) and very soft §—0) mag- where the path-ordering operatbr is necessary since the
netic gluons: indeed, these are the interactions which genecolor matricesA(x) at different points along the path do not
ate the infrared divergences of the perturbation th¢8ty commute with each other.

What is new with respect to QED, is that the relevant The retarded propagat&(x—Y) is calculated by insert-
self-energy corrections also include the mutual interactionsng Eq. (5.12 in the functional integrak5.10. It can be
of the internal gluons, expected, in particular, to lead to magwritten as
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S%b(t,p)z —i820g(t)e MV PIA(L), (5.13 could not be sufficient for a quantitative measure of the mag-
netic mass, because of the theoretical uncertainty on the sub-
with leading term of order 1.
The main limitation against an explicit calculation comes
1 from the lattice size: indeed, in order to verify the aforemen-
A(UENf DA Tr U(x,x—vt)exp{ o7 d*x BZ], tioned picture, one needs a small coupling consgasal —to
(5.14 ensure a clean separation between the scgf@ and
gT—together with large values of time, up tg,>1/g%T
B2=B3B?, and BP=(1/2)€;jF5 is the chromomagnetic ~alg. Thus, the lattice should have at leagt sites, with
field. In order for Eq.(5.14 to be well defined, it is further N=Ztmax/a>1/g.
necessary to choose a gauge within the functional integral.
[Recall that the parallel transporterUfx,x—vt) is not in-
variant under the gauge transformations of the background VI. CONCLUSIONS
color field] However, we shall argue below that the domi-

nant large-time behavior should be independent of the N this paper, we have completed the analysis of the
gauge-fixing condition. Bloch-Nordsieck propagator in hot QED, and we have also

lytically becauseB? is nonlinear in the gauge potentials. high-temperature QCD plasma.

However, we may expect the large-time behavioAgf) to As compared to Refs]7,8], several points have been
be similar to that of the model discussed in Sec. V A, that isclarified by the present analysis. First, the three-dimensional
[cf. Egs.(5.6) and (5.7)], model of[7,8] suffers from a spurious ultraviolet divergence
coming from the restriction to the static photon mode. We
g°T have shown here that the contribution of the nonstatic modes
A(Mw,<t< ll,u)zexr{ -C, P t[In(wpt) + O(l)]J , provides a dynamical cutoff at momentagT. Not only this

(5.15 justifies the cutoff procedure used in Reff8,8], but it also
allows one to compute explicitly the subleading term in the
large time behaviofcf. Eq. (3.10].
Secondly, the effects of the gauge-fixing procedure only
92T ® enter at the level of the subleading term. Thus, by computing
A(t»l/,u):exp{ —C, — t( In _P+O(1)) ] this term in different gauges, one can study the gauge
4m H (in) dependence of the large-time decay. We have performed
(516  this computation in the Coulomb gauge, and in a generic
. . ) .. covariant gauge, with conclusions which agree with the one-
at very large times. In these equatioi, is the Casimir  |o9p calculations in Refs[20,21); namely, the subleading
factor of the appropriate color representatfoe., Cq=(N"  term is gauge independent if computed in the presence of an
—1)/2N for a hard quazrk, an@y=N for a hard gluoh and  jnfrared cutoff in the gauge sector. Physically, such a cutoff
the magnetic masg~g°T is expected to come out from the separates the particle mass shell from the threshold for the
soft gluon mutual interactions. Note that the order 1 terms INspurious emission or absorption of massless gauge photons.
the above equqtion_s are not consistently determ.ined by .trwith a nonzero infrared regulatqu, the gauge-dependent
present approximation: Indeed, from the experience Wwithyontribution to the damping vanishes in a vicinityu of the
QED, and also from the one-loop calculations in QQD— 555 shell or, equivalently, for timeés 1/u. Thus, to avoid
12], we I_<now that such terms receive contrlbutlons.f.rom thespurious gauge contributions over a particle lifetime, one
non-static gluon m_qdes, and that they may be sensitive to thg,o1d choosg.= y, wherey~g?2T In(1/g).
gauge-fixing conditiorisee Sec. V. _ Concerning QCD, we have argued that the BN model may
To verify this picture, one could rely on a lattice compu- gjj| pe a relevant approximation for the study of the quasi-
tation of the Euclidean functional integré8.14. The paral-  particle mass shell. As compared to QED, the non-Abelian
lel transporter TW(x,x—vt) is easily implemented as a model is complicated by the soft gluon self-interactions. The
product of link operatorgRecall thatv is a fixed unit vector,  proplem simplifies considerably when one considers only the
e.g.,v=(0,0,1), so that)(x,x—vt) is a product of link 0p-  dominant contribution due to the static magnetic gluon
erators in the direction, fromz,—t to 2o, with zo an arbi-  modes: then, not only all the HTL corrections vanish, but the
trary site on the lattic¢.Since the expressio(b.14) is de-  peeded path integral can in principle be computed on a three-

fined with an upper cutofto,~gT, the lattice spacin@ is  gimensional lattice, with a fixed lattice spaciag-1/gT.
fixed:a~1/w,. From perturbation theory, we expect the de-

cay of A(t) at timest>a to be only logarithmically sensitive
to the precise value df [cf. Egs.(5.15 and(5.16)].

The objective of a lattice calculation would be then to
verify the large-time behavior predicted in Eq5.15 and It is a pleasure to thank S. Belyaev, A. Krasnitz, L.
(5.16. By observing the interplay between these two re-McLerran, J.-Y. Ollitrault, and B. Vanderheyden for discus-
gimes, one may verify what is the typical scale for the emersions and useful remarks on the manuscript. Service de Phy-
gence of magnetic screening: indeed, we expect the transsique Therique is Laboratoire de la Direction des Sciences
tion between two regimes to occur for 1/u. However, this  de la Matere du Commissariat BEnergie Atomique.

at intermediate times, and, respectively,
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APPENDIX A =A,(7=p). In Ref.[8], we have solved this equation ex-

In this appendix, we construct the BN propagator for aplicitly in perturbation theory, i.e., as a seri(_es in _powers_of
thermal fermion Witf,W momentump~T. The final result turns gA, and then we have performed the functional integration

out to be essentially the same as that obtained in Sec. lll igver the gauge fieldf. Eq. (2.9)]. The resulting propagator

the casey>T can be written acf. Eq. (2.5)]

We use the imaginary-time formalism which has been de- iS(Xo—VYo,p) = 0(7)S™(7,p)— 6(— 7)S<(7,p), (A3)
veloped in Ref[8]. In this formalism, we have to solve the
imaginary-time BN equatioficf. Eq. (2.10] where the analytic function§™ and S~ are obtained in the
form [8]
—(v-D)G(X,Y|A) = e(x,y), (A1)

< —a—7E = — _

with antiperiodic boundary conditiorfsf. Eq. (2.14)] ST (rp)=e "V(Epu=—7) for —p=<7<0,

Ge(7=0,7,|A) = — Ge(7=B,7,|A), (A2) S (r,p)=e¥ "ENV(E,;u=B—17) for 0=7=p.

(A4)

and similarly forr,. In these equations, the time variables _ . _
are purely imaginaryxo=to—i, andyo=to—i7,, with 0  In this equationE,=v-p is the BN mass-shell and the func-
<7, 7y<B and Sg(x—Yy)=3d(7c—7,)6(x—Yy)], and the tion V(E,;u) is given, for O<su<p, as a formal series in
gauge fields are periodic in imaginary timé,(7=0) powers ofg? [8]:

D(q1)D(gy)--D(y)
(v-q)(v-gx? - (v-q,

—n[v-(p+0z)]e " 2+ 4+ (= 1)"[V- (P+ Gy Gt -+ Q) JeT Y (TRt (A5)

2n
V(Ep;w=n(v-p)+ 2, (~1)" ?1—! f [da;dgp...day] 2 {n(v-p)—nlv-(p+ay)Je

with D(q)=v**D , (iwn,q)v”. In this and the following by soft photon momentg=gT. Indeed, the photon propa-
equations, the photon energig are discrete and purely gator D(g), which can be rewritten agwith p(q)
imaginary: Q°=iw,=i27mT, with integerm (Matsubara =v*p,,(q)v”; cf. Eq.(3.D]:

frequencies The measure in the momentum integrals is de-
noted by

B(iwm,q>=fw do ple.q) (A9)

0 2T W— i@y’

d3q
[ wa=TS [ ok (6)
) . provides, through the spectral densfifw,q), an effective
The thermal factors make the momentum integrals in Equpper cutoff~gT for the integrals oveq. [Recall that the
(AS), such as functions 8,(w,q) and B,(w,q) in Eq. (3.2) are rapidly de-
dq creasing forq>gT.] Strictly speaking, this cutoff becomes
f ———n[v-(p+q)]e"v, (A7) effective only afteu is continued tg3— it or —it. However,
(27) we may anticipate for its effect and supply the integrals over
g; in Eq. (A5) with an upper cutoff~gT. Then the photon
momenta are limited to valugg|<|p|~T, and we can re-
place n[v-(p+q)] by n(v-p) up to terms of ordery/T
=g. The fermion occupation factar(v- p) in Eq. (A5) then
factorizes, and the resulting expression can be resummed
into an exponential:

convergent for any &u< 8. This, in turn, ensures the ana-
lyticity of the functionsS=(7) andS”(7) in Eq. (A4) [16].

By analytically continuing these functions toward the real-
time axis(i.e., by replacingr— it with realt), one constructs
the retarded propagator

Sr(t,p)=—i6(t)[S™(t,p)+S(t,p)]

= —iH(t)e’“Ep{eﬁEpT/(Ep;uzﬂ_it) V(Ep;u)~n(E,)A=(u),

+V(E,;u=—it)}. (A8) _ 1—g U
: . , A<(U)EeXpr—92J[dq]D(q)—z :
Note, however, that the analytic continuation to real time can (v-q)
be done only after performing the Matsubara sums in all the (A10)
terms of the series in EGA5).
Fortunately, this can be done easily in the relevant regimét this stage, we can then perform the Matsubara sum over
of large time ¢=>1/gT). According to the discussion in Sec. q°=iw,, [by using the spectral representation in E49),

I, we expect then the momentum integrals to be dominatedogether with contour integrati¢nand obtain
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o d*q _ [ a dgg

A (u)—expl’—gzj WP(QO-Q) [1+N(qo)] |=JO dqg CIJq T

1-g U u o2
Xz ANl (ALY X| £i(do,@)~ oz Bi(do.@) +¥(Go,)

wherev -q=qy—V-q (we have renamed, the real energy =latlatls, (B1)

w). The last expression can be now continuedute — it

) where the three piecdg, s=1,2,3, correspond to the three
with the result

terms within the integrand. To illustrate the method, we com-
pute the second piece in detail:

d*q _
A<(—it)EeXD[ —gZJ ﬁ p(q)

1— It(v q) it
X—(v~q) +[1+N(v-q)] _qH

=exp{ —it®(t)}A(D), (A12)

[1+N(ao)] - e de @
i o= [Jaaaf” o % pwa

_ (*dgq * 2_ 2
==, F 1-2 qquCIofS[%_q —I1(do,9)]; -

(B2)

which involves the same functiorl(t) andA(t) as in Sec.
Il [cf. Egs.(2.24) and(2.29]. At this point, the momentum
integral in Eq.(A12) is ultraviolet finite and the cutoff can be

In going to the second line, we have used the familiar sum
rule [16]

removed. Recalling EqA4), we can finally write ® dq
f 2, GoPt(do, @) =1, (B3)
S<(t,p)=e "Ean(Ep)A(1), (A13) )
together with the parity propertg.(—do,q)=—p:(do.d).
where we have ignored the inconsistent ph&<¢). to write
To computeS~(t,p), we start with[cf. the second Eq.
(Ad)]: a dgp IR ddo )
f_q P doBi(do,q)=1 qu Py dop(do.d);
PENV(E,u= - 1) ~[1-n(Ep)]A~(7), (B4)
then we have related the on-shell magnetic spectral density
- e7v-a) to the plasmon pole in the transverse photon propagator
A~(7) exp{ f[dQJD(Q) ﬁ)_] (AlD)  p(qo>q)=27d 02— g2—I1,(do.q)]. We also recall that,

in the hard thermal loop approximatioH,(qq,q) is a func-
tion of gg/q alone.

The integral overq in Eq. (B2) is well defined as it
stands. However, in order to work out separately the two
terms within the braces, it is necessary to introduce, at inter-
mediate steps, an ultraviolet cutoff and also an infrared
cutoff . The first term reads then

where 1-n(E,)=effn(E,) has been factorized by the
same approximations as above. After performing the Mat-
subara sum and the analytic continuatior-it, we finally
obtain[within the same accuracy as in Ed13)]

S™(t,p)=e "Eo[1—n(E,)]A(1). (A15)

Ad A
|21(A,mz—f o S (B5)

Thus, for sufficiently large times, both functio®s (t) and v g

S”(t) decay asA(t), Eq.(2.25. The same is therefore true
for the retarded propagator, as given by E¢s8), (A13),  The second term

and(A15): rdg [
|22(A,M)52f — f d ool d5— g%~ Ti(do/q)],
|Sr(t,p)|=A(1), (A16) w4 Ja -
which is the result quoted in E¢2.33. involves an integral along the transverse plasmon dispersion
relationgy= w(q) with wf(q)=q2+ II,(w:/q). To perform
APPENDIX B the integral, we use the following change of variables:

In this appendix, we calculate the double integral in Eq. =g/ - ?  da da— dx dy B7)
(3.7), thus proving the result quoted in E&.8). The method =%/4. Y=0Go—a" q9d% 2(x2-1)’
to be used here was suggested to us by Jean-Yves Ollitrault
(see alsd26]). We first write and get
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X XM X xw dx wp
I22(A,M)=j dxf dy;z_—l 5[y—Ht(x)]=fxm dxm —Jl X j dyd[y+I1,(x)]=—Inxy=—1In 7
(B14)
1 x5-1
T2 In xa—1" (B8) The upper limit was obtained ag;(u) = (u)/ u=pun,/u

for u—0. From Eqs(B12) and (B14), we finally obtain
The integration limits,, andxy, are obtained as follows: As
g—u, X—o(u)/ . The dispersion relatiom;(q) can be 1
found, e.g., in Refs[18,6,16. For u—0, wt(,u)—>wp, and =3 I3, (B15)
X—Xp(u)=wp/p. As g—A (with large A>w,), wt(A)
=A2+30w}/2, andx—xp(A) =1+ 3wi/4A2. Together with  which is the result quoted in E¢3.9).

Egs.(B5) and(BS) this gives We finally evaluate the momentum integral in £8.12
1 242 1 2 in the nonrelativistic limitv<1. Since |go|<vq<q, we
Lo=loit o= —IN —+ =N == In = B9 need the spectral functiong, ((do,q) only for very small
2tz w 2 3u® 23 B9 frequencieg 18]:
The remaining integralk; andl; are evaluated similarly. 37w(qo/q)
In the process, we need the following sum rul&,g]: Bi(Go<q)= (qZTpBW
w
P
Yo Q)= —— ; )
—q 2mq T 9° g2 +30? 3Twh(0o/29)
a 0 P <Q)= : B16
g Bi(4o=<q) 0+ (3rwlagl4a)’ (B16)
o
—2f — >+ i(qo/a)], . _ _
q Yo Corresponding to the three terms in E§.12, we write
C(v)=C1(v) +Cy(v) +Cs(v).
Jq dgg 1 Jw dqp STaZ—q? The electric contribution is evaluated as
[y 0o 1(do,q) = 2"‘(03 K [do—a .
—TI(qo/9)], (B10) Cilv)=72 f q qf Bl(qe a)
wherell, andIl; are the polarization functions in the hard 302 2 1
thermal loop approximation\We use the same notations as f 99— 2> 3002 2" (B17)
in Ref. [8].) In the computation ofl ;—which involves (Q*+ ) v

v:(do,q)—we change the integration variables as in Eq.
(B7) above, and obtain where the neglected terms are smaller, at least, by two pow-

ers ofv [sinceB;(qq,q) is an odd function ofyy].

1 3 The first magnetic contribution is
ls==1n=, (B11)
2 2
QO a5
which happens to cancéh, Eq. (B9). As for the electric Caolv)==—2 f f_v 2700 Bi(do.q)
piecel ;, we write
f aq q[l arctary(q;v)
=_ = - 37%% Jo y(q;v)
I fo dq Q( RE q2+3w‘2) p 519
“ qu 2 .
—qu N alg°+11(go/a)] where we have used the approximate expres&Ri6) for

Bi(do,q) to perform the integral ovey,, and we have de-
= dqq noted y(q;v)E37rw,2)v/(4q2). In the remaining integral
—ZI dq QJ' N SLa®+11(do/q)], over g, we make the obvious change of variablg;v)
" a =t, with dg/q=dt/(2t), and obtain

Vo,

=In

(B12)

. . . 1 [=dt arctan
where an infrared cutoff. was introduced when separating Cy(v)=— —|1-

the terms inside the braces. In the second term, we change mJo t t
the variables according to

1 (= 1
, 1 = fo dy[1—vy arccoy]= 7 (B19)
x=Qo/q, y=q", dgdg=5dxdy (B13

which is independent af.
and get Finally, the second magnetic contribution reads
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ql q2 qn (sj’\)f—/,\//\f\\:\b\»\\j Hsj\/\/\/\\\
(a) (b)
- - - - . .
FIG. 6. Some two-loop self-energy corrections in QCD. The
, p , p+q, continuous line represents a hard gluon, which is nearly on shell.

The wavy lines are soft magnetostatic gluons. In the on-shell limit,
diagram(b), which also involves a four-gluon vertex, is less infra-
red singular than diagraita).

FIG. 5. A typical diagram contributing t&(x,y|A) to orderg"
in perturbation theory. This diagram involvesgluon field inser-
tions, andn+1 free propagator§, (including the external lings
The external fields are purely static and magnetic.

e} vQ
Cs(v):J o[o} qJ
0 —vq

self-energy corrections in Fig. 4 will be eventually recovered
by functional integration, as shown in E¢.10.

A noteworthy feature of Figs. 5 and 4 is that the hard
particle is involved only in three-gluoitbut not in four-
gluon) vertices.[Of course, the four-gluon vertices do also

ddo ( )
27Tq0 vi(Qo,Q

=dq |2 wpz) enter the self-energy diagrams—see, e.g., Fig. 4—but they
:JO o |7 arctay(giv) - o>+ wip .+ (B20 couple only soft internal gluons; cf. E¢.10.] The reason

is that, to a given order in perturbation theory, the diagrams
which involve the hard particle in four-gluon vertices are less
Note that, for any >0, the remaining integral oveyis well  infrared singular. This can be easily verified by power count-
defined, and saturated by soft momentg w,. Still, the  ing: Consider, e.g., the two two-loop graphs in Fig. 6. For
limit v—0 is not well definedbecause of potential infrared @=p, the diagram in Fig. @), with only three-gluon verti-
singularitie, so that we need to perform the momentumces, gives rise to a linear infrared singularity. That is, its
integral before studying the small behavior. By using the contribution to the damping rate is of the ordef?®
same change of variables as above, we rewrite(B20) as  ~9*T% u (up to logarithms ofgT/u), which for u~g?T
givesy?d~g?T; i.e., it is of the same order as the one-loop
© dt contribution.(This leading divergence can be isolated by us-
C3(U):JO 2t ing the simplified BN Feynman rules to be derived below.
1
[la
0

See Appendix C in Ref[8] for a detailed analysis.The
diagram in Fig. @), which also involves one four-gluon
vertex, may give rise, at most, to logarithmic mass-shell sin-

with v=3mv/4. The two integrals in the second line mutu-

ally cancel, as can be seen by changirgl/t in any of

them, and then using arctab/7/2— arctan. Finally,

where we have also used the definitih4) of »,(qq,q).

2 an t
—ar e
Waca t+v

= dt

g
1 Tt

arctan

tan
r —_—
arcta 2

+1I”
Env,

at
gularities. We thus expecty(*®)~g*T?/p~g*T, which
stands beyond our present accuracy, and should be discarded
for consistency. We shall verify shortly that, for the problem
at hand, neglecting the four-gluon vertices is indeed consis-
tent with gauge symmetry.

Consider the diagram in Fig. 5, with only three-gluon ver-
tices. The latter are linear in the external gluon momenta:

—igfaTy(p,q,k)=—igf*(p—a);8;+(a—k); 4
+(k=p);dil, (CY

(B21)

1
C(v)=5 Ino. (B22)

By putting together the above results in EqB17), (B19),
and (B22), one obtains the result quoted in E8.13.
wherep+qg+k=0. Remember that all the external lines in
Fig. 5 are of the magnetic type, so that we need just the
spacial components of the vertex function. Furthermore,
In Sec. V above, we have used a non-Abelian version otolor indices play no special role for the subsequent kine-
the Bloch-Nordsieck model to study the interactions betweemnatic approximations, and will be omitted in intermediate

APPENDIX C

hard quasiparticle@uarks or gluonsand soft virtual gluons

in hot QCD. In this appendix, we examine the validity of this

approximation for the case where the hard quasiparticle is
transverse gluon.

The dominant contributions to the hargg=£T) gluon
propagator near the mass shell at=p (i.e., the leading
infrared divergences fob— p) come from the diagrams il-

formulas.

For all the vertices in Fig. 5, one of the external momenta
& soft, since it is carried by the classical color fieldglis
the soft momentum in EqC1), then

[iji(p,9,k)=Tij; (p,0,— p) = p 6ij + P 6j — 2p; 6 -
(C2

lustrated in Fig. 4. The continuous line there represents the

hard gluon and the wavy lines denote very saft(@T)

Since the approximate three-gluon vert@g) is indepen-

static (@;=0) magnetic gluons. Once again, our strategy isdent of the soft momenturg, the Ward identities are con-
to consider first the interactions with a classical, static, colowsistent with setting the four-gluon vertex to zero, which is
field A%(q). Then, a typical diagram looks as in Fig. 5. The what we did before.
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Consider now a typical internal gluon line in Fig. 5: It is In Fig. 5, all the three-gluon vertices such as KZp) appear
necessarily hard and nearly on shell. In the Coulomb gaugdaetween projectors such & . By using the identity

the associated propagator reddecall thatqy,=0) P T (9.0 P)Poy= — 2( 8y — 010 Pi = — 2pPv;
Im+ mjn L} n I | ] I jo
(

D, (0.p+ )_5ij_(pi+qi)(pj+qj)~i ij —viv; C9)
jle.pra)= 0’—(p+q)?  2p o—V-(p+q)’ it can then be easily verified that the leading contribution of
(C3) the diagram 5 to the hard gluon propagator can be evaluated
N . ] with the following simplified Feynman rulgsve reintroduce
where p;=p;/p=v; and the approximate equality holds here the color indices (i) the hard particle propagator
since g<p and o~p. That is, Djj(o0,p+0q)  5°Gy(w,p+q), and(ii) the hard particle-soft gluon vertex
=(1/2p) P;jGo(w,p+0q), where P;=6;—vjv; is a trans- jgfa®%;. These are the Feynman rules which have been
verse projector, an, is the BN propagatofcf. Eq. (1.1)]: used to define the non-Abelian Bloch-Nordsieck model in
Sec. VI. For a hard quark, the color indices in the above

1 (C4) Feyman rules should be replaced by the corresponding indi-

G ptq)=——"""7—=. . .
ol@,p+q) w—V-(p+Qq) ces in the fundamental representation.
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