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We have shown recently that the resummation of soft photon contributions leads to a nonexponential decay
of the fermion excitations in hot QED plasmas. The retarded propagator of a massless fermion was found to
behave asSR(t@1/gT);exp$2aTt@ln vpt1C#%, wherevp5gT/3 is the plasma frequency,a5g2/4p, andC is
a constant, independent ofg, which was left undefined. This term is computed in this paper. In gauges with
unphysical degrees of freedom, it is gauge-fixing independent provided an infrared regulator is introduced in
the gauge sector. We also extend our analysis to hot QCD and express the quark and gluon propagators in the
form of three-dimensional Euclidean functional integrals which may be evaluated on the lattice.
@S0556-2821~97!00624-3#

PACS number~s!: 11.10.Wx, 12.20.Ds, 52.60.1h

I. INTRODUCTION

The Bloch-Nordsieck~BN! approximation@1# offers an
economical description of the nonperturbative interactions
between charged particles and soft photons. At zero tempera-
ture, it provides the correct structure of the fermion propaga-
tor near the mass shell@2#. At finite temperature, the Bloch-
Nordsieck approximation has been used, by Weldon, to
verify the cancellation of the infrared divergences in the pro-
duction rate for soft photons@3#. The remarkable structure of
the ‘‘hard thermal loops’’~HTL’s! @4# emerges from similar
kinematical approximations, as clearly emphasized in the ki-
netic derivation of the HTL’s@5,6#. More recently, a similar
approximation has been used in Refs.@7,8# to eliminate the
infrared divergences in the computation of the fermion
damping rate@9–12#. As shown in Ref.@8#, this calculation
requires the resummation of an infinite class of multiloop
Feynman graphs of the type shown in Fig. 1. These are the
same diagrams as those of the quenched approximation~i.e.,
all fermion loops are ignored!, except for the fact that the
photon lines include the hard thermal loop correction.

Throughout this work, we shall be mainly interested in the
leading contribution of such diagrams to the propagator of a
hard fermion (p*T) near its mass shell (p0;p). As shown
in Ref. @8#, this leading contribution can be estimated in the
Bloch-Nordsieck approximation, that is, with the following
simplified Feynman rules:~i! the fermion propagator

G0~p2q!5
1

~p02q0!2v•~p2q!
; ~1.1!

~ii ! the photon-fermion vertexGm5vm, and ~iii ! the HTL
photon propagator* Dmn(q). Here,pm5(p0 ,p) is the external
hard momentum, withp0.p, v5p/p is the corresponding
velocity, vm[(1,v), andqm5(q0 ,q) is a linear combination
of the soft momenta of the internal photons. The above Feyn-
man rules govern the interactions between any kind of hard
charged~or colored! particles, irrespective of their spin, and

soft gauge fields, to leading order in an expansion in powers
of the soft momenta@13# ~see also Appendix C below for a
discussion of the non-Abelian case!. They lead to simplifica-
tions by ignoring those degrees of freedom—in this case,
spin and negative-energy states—which play no dynamical
role in the kinematical regime of interest.

The imaginary part of the fermion self-energy computed
with these rules exhibits infrared divergences near the mass
shell, to all orders in perturbation theory. For instance, in the
one-loop approximation we have

Im SR
~2!~v.p!.2aT ln

vp

uv2pu
, ~1.2!

wherea[g2/4p, vp5gT/3 ~the plasma frequency!, and the
approximate equality means that only the singular term has
been preserved. For two or more photon loops, the mass-
shell divergences are powerlike@8#. Such divergences pre-
vent us from computing the mass-shell structure of the
charged particles, and in particular from obtaining the fer-
mion lifetime in perturbation theory.

Note, however, that no infrared divergences are encoun-
tered when the perturbation theory is carried out directly in
the time representation: the inverse of the time acts then
effectively as an infrared cutoff. For instance, the one-loop
correction to the retarded propagatorSR(t,p) at large times is
given by

dSR
~2!~ t,p!.2 i t E

0

t

dt8eipt8SR
~2!~ t8,p!. ~1.3!

This expression is well defined although the limitt→` of
the integral overt8 @which is precisely the on-shell self-
energySR

(2)(v5p)# does not exist. We actually have@8#

SR
~2!~ t,p!.2 iaT

e2 ipt

t
for t@

1

vp
, ~1.4!

and, therefore,

dSR
~2!~ t,p!.2aTtE

1/vp

t dt8

t8
52aTt ln~vpt !. ~1.5!*Also at CNRS.

†Also at CNRS.
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As shown in Refs.@7,8#, this correction exponentiates in an
all-order calculation:

SR~ t,p!}exp~2aTt lnvpt ! for t@
1

vp
. ~1.6!

Note, however, that the approximations used in Refs.
@7, 8#, and which lead to Eq.~1.6!, are reliable only for
computing the leading large-time behavior displayed in Eq.
~1.6!. ~These approximations involve, aside from the Bloch-
Nordsieck approximation, also a restriction to the static pho-
ton mode.! The subleading term—i.e., the constant term un-
der the logarithm—could not be obtained in this way, and the
issue of its gauge~in!dependence remained an entirely open
problem.

In this paper, we improve the accuracy of our previous
calculation by also including the nonstatic photon modes
within the Bloch-Nordsieck calculation. This is sufficient to
fix the term of orderg2T in the exponential~1.6!. As we
shall see, this term, which receives contributions from both
the electric and the magnetic sectors, becomes gauge-fixing
independent when an infrared regulator is introduced in the
gauge sector. The final result, to be derived below, is

SR~ t@1/vp!}exp$2aTt@ ln~vpt !10.12652 . . .1O~g!#%.
~1.7!

This result applies to a massless fermion with momentum
p;T or larger. The extension to a massive (m@T) test par-
ticle is straightforward. The case of a soft fermion (p
;gT), on the other hand, requires the full machinery of the
HTL resummation@4#, and will be not addressed here~see
Ref. @8# for the leading order result in this case!.

In order to derive Eq.~1.7!, we shall use a finite-
temperature extension of the Bloch-Nordsieck~BN! model,
to be introduced in Sec. II. Formally, our construction is a
straightforward generalization of the corresponding model at
zero temperature, as described for example in Ref.@2#. How-
ever, unlike what happens at zero temperature, at finite tem-
perature, the BN model cannot be solved in closed form~see
also @8#!. The technical difficulty comes from the thermal
boundary conditions to be imposed on the BN propagator,
and more specifically from the thermal occupation factors for
the hard fermion. However, as it will be explained in Secs.
III and IV, this problem can be overcome, within the desired
accuracy, and this eventually yields the large-time behavior
indicated in Eq.~1.7!. The independence of this result with
respect to the choice of the gauge is further analyzed in Sec.

V. Finally, in Sec. VI, we consider an extension of the ther-
mal BN model to QCD. Because of the mutual interactions
of the soft gluons, the non-Abelian model cannot be solved
analytically. Our main result here is an expression of the
retarded propagator of a hard quark or gluon in the form of a
functional integral over three-dimensional Euclidean gauge
fields. This representation, which is reminiscent of the di-
mensional reduction sometimes performed in the computa-
tion of static thermal correlation functions@14,15#, is well
adapted to numerical calculations on a lattice.

II. THE BLOCH-NORDSIECK PROPAGATOR

As mentioned in the Introduction, we are interested in the
large time decay of the propagator of a hard fermion moving
through a QED plasma at very high temperatureT: T
@me , whereme is the electron mass in the vacuum. This
fermion can be either a thermal electron, with typical mo-
mentum p;T and ultrarelativistic dispersion relationEp
5p ~we neglect the electron mass relative toT!, or a ~gen-
erally massive! test charged particle, with three-momentum
p*T and dispersion relationEp5Ap21m2. By test particle,
we mean a particle which is distinguishable from the plasma
particles, and is therefore not part of the thermal bath. The
general formalism below will be developed for a thermal
particle. We shall indicate later how one can derive from it
the simpler case of the test particle. Also, we shall write the
general formulas for a massless fermion. The corresponding
formulas for a massive test particle will be presented only
briefly.

We are eventually interested in the retarded propagator

iSR~x2y![u~x02y0!^$c~x!,c̄~y!%&, ~2.1!

where the curly brackets denote the anticommutator of the
fermion field operators, and the angular braces, the thermal
expectation value. However, to calculate this propagator at
finite temperature, it is convenient to consider first the time-
ordered~or Feynman! propagator,

iS~x2y![^Tc~x!c̄~y!&5u~x02y0!S.~x2y!

2u~y02x0!S,~x2y!, ~2.2!

and to observe that the two two-point functions

S.~x2y![^c~x!c̄~y!&, S,~x2y![^c̄~y!c~x!&,
~2.3!

FIG. 1. A genericn-loop diagram~here,n56! which is responsible for infrared divergences in perturbation theory. All the photon lines
are soft and dressed by the hard thermal loop. The fermion line is hard and nearly on shell.
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are analytic functions of their time arguments. These func-
tions can be first computed in the imaginary-time formalism
@16#, and then continued to the real-time axis. Then, the re-
tarded propagator~2.1! can be obtained as

iSR~x2y!5u~x02y0!@S.~x2y!1S,~x2y!#. ~2.4!

This is a method that we have used in Ref.@8#, and we shall
use it again in Appendix A where we compute the propaga-
tor of a hard thermal fermion.

An alternative formalism, which permits a direct evalua-
tion of real-time Green’s functions, is based on the use of an
oriented contourC in the complex time plane, as shown in
Fig. 2 @16#. We define the contour-ordered propagator

iS~x2y![^TCc~x!c̄~y!&5uC~x0 ,y0!S.~x2y!

2uC~y0 ,x0!S,~x2y!, ~2.5!

where the time variablesx0 andy0 lie on C, andTC anduC
denote, respectively, the contour-ordering operator and the
contouru function. @If one gives a parametric representation
of the path,t5z(u), with u real and monotonically increas-
ing, then path ordering corresponds to the ordering inu, and
uC(t1 ,t2)5u(u12u2).# The contour propagator~2.5! satis-
fies the Kubo-Martin-Schwinger~KMS! boundary condition
@16#

S~ t02y0!52S~ t02y02 ib!. ~2.6!

~In this equation, and often below, we omit the spatial coor-
dinates, for simplicity.! It can be given the following spectral
representation@16#:

iS~x2y!5E d4p

~2p!4 e2 ip•~x2y!ŕ~p!@uC~x0 ,y0!2n~p0!#,

~2.7!

where ŕ(p) is the fermion spectral density andn(p0)
51/@exp(bp0)11#. Note that, once the spectral density is
known, the retarded propagator~2.1! can be obtained as

iSR~x2y!5u~x02y0!E d4p

~2p!4 e2 ip•~x2y!ŕ~p!.

~2.8!

In fact, in cases where we shall use the contour method be-
low, the relation betweenS and SR will be even simpler.
Indeed, in these cases—that of a test particle, and that of a
very energetic thermal particle, withp@T—the statistical
factor n(p0) can simply be ignored, so that Eqs.~2.7! and
~2.8! become identical forx0 andy0 real.

The large time behavior of the fermion propagator is gov-
erned by the interactions of the fermion with soft thermal
photons. These can be analyzed in the BN approximation.
The propagator has then the following functional integral
representation@2# ~see also Ref.@8#!:

S~x2y!5Z21E DAG~x,yuA!eiSC@A#, ~2.9!

whereG(x,yuA) is the solution of the equation

i ~v•Dx!G~x,yuA!5dC~x,y!, ~2.10!

where Dm5]m1 igAm , vm[(1,v), uvu51, dC(x,y) is the
contour delta function@16#, andSC@A# is the effective action
for soft photons in the hard thermal loop~HTL! approxima-
tion @4,6,16#

SC@A#5E
C
d4xH 2

1

4
FmnFmn2

1

2l
~]•A!2J

1E
C
d4xE

C
d4y

1

2
Am~x!Pmn~x,y!An~y!

[E
C
d4xE

C
d4y

1

2
Am~x!Dmn

21~x2y!An~y!.

~2.11!

We have written this equation in the covariant gauge with
parameterl. The Coulomb gauge“•A50 will also be used
in what follows.Pmn is the photon polarization tensor in the
HTL approximation@17,4#.

The gauge fields to be integrated over in Eq.~2.9! satisfy
the periodicity conditionAm(t0 ,x)5Am(t02 ib,x). Corre-
spondingly, the photon contour propagator satisfies

Dmn~ t02y0!5Dmn~ t02y02 ib!, ~2.12!

and can be given the following spectral representation:

Dmn~x2y!52 i E d4q

~2p!4 e2 iq•~x2y!rmn~q!

3@uC~x0 ,y0!1N~q0!#, ~2.13!

wherermn(q) is the photon spectral density in the HTL ap-
proximation@18# ~we follow here the notations in Ref.@8#!,
and N(q0)51/@exp(bq0)21# is the Bose-Einstein statistical
factor.

Equation~2.10! defines the BN propagator of a charged
particle in a classical background fieldAm(x). The vectorv
in this equation is to be identified with the particle velocity.
Then, the Feynman rules generated by the functional integral
~2.9! coincide with those given in the introduction. Since, in
the BN model,v is a fixed parameter, the underlying physi-
cal approximation is the lack of fermion recoil. This approxi-

FIG. 2. Complex-time contour for the evaluation of the thermal
expectation values:C5C1øC2øC0 . On C1 , t takes all the real
values betweent0 to t f ~eventually, we lett f→`!. On C2 , t→t
2 i01 , where t runs backward fromt f to t0 . Finally, on C0 , t
5t02 i t, with 0,t<b.
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mation is justified when the momentum transfer from the
background field is small, at most of order;gT. ~The
energy-momentum scalegT is set by the polarization tensor
Pmn ; see Sec. III below.!

In order to satisfy the KMS condition~2.6!, the BN equa-
tion ~2.10! has to be solved for antiperiodic boundary condi-
tions

G~ t0 ,y0uA!52G~ t02 ib,y0uA!, ~2.14!

and similarly fory0 . These conditions complicate the reso-
lution of the thermal BN model in general. There is a simple
case, however, where this complication is absent, namely,
the case of a test particle. For this case, the thermal BN
model can be exactly solved, as we discuss now.

A. The test particle

The propagator of a test particle has only one analytic
component, namely,S.(x2y); S, vanishes since the ther-
mal bath acts as the vacuum for the field operators of the test
particle. Therefore@cf. Eqs. ~2.1!–~2.4!#, S(x2y)5SR(x
2y)52 iu(x02y0)S.(x2y) and the KMS conditions~2.6!
do not apply. In the BN approximation,S(x,y) is still given
by Eq.~2.9!, but nowG(x,yuA) obeys retarded conditions in
real time, and not the conditions~2.14!. The solution to Eq.
~2.10! is then obtained in closed form@2# ~see also Ref.@8#!:

GR~x,yuA!52 iu~x02y0!d~3!
„x2y2v~x02y0!…U~x,y!

52 i E
0

`

dtd~4!~x2y2vt !U~x,x2vt !, ~2.15!

where the time variablesx0 and y0 are real. The three-
dimensionald function describes straightline propagation
with velocity v. The background gauge field only contributes
a phase factor:

U~x,x2vt ![expH 2 igE
0

t

ds v•A„x2v~ t2s!…J .

~2.16!

In momentum space, the free (Am50) retarded propagator
reads

GR
0~v,p!5

1

v2v•p1 ih
, ~2.17!

corresponding to the following free spectral density:

ŕ0~v,p![22 ImGR
0~v,p!52pd~v2v•p!. ~2.18!

According to these equations, the fermion mass shell in the
BN model corresponds tov5Ep[v•p. Since v is to be
identified with the velocityp/p of the massless fermion, the
free mass shell is atv5p, as it should.

In order to perform the functional integration~2.9!, we
first rewrite the parallel transporter~2.16! as

U~x,x2vt !5expH 2 i E d4z jm~z!Am~z!J ,

j m~z![gvmE
0

t

dsd~4!
„z2x1v~ t2s!…. ~2.19!

Then, a straightforward calculation yields

SR~ t,p!52 iu~ t !e2 i t ~v•p!D̃~ t !, ~2.20!

with

D̃~ t !5expH 2
i

2 E
C1

d4xE
C1

d4y jm~x!Dmn~x2y! j n~y!J ,

~2.21!

where the time integrals run onC1 only, in accordance with
Eq. ~2.19!.

By using Eqs.~2.19! and~2.13!, and after a simple calcu-
lation, we can rewriteD̃(t) in Eq. ~2.21! as

D̃~ t !5expH 2
g2

2 E d4q

~2p!4 E
0

t

ds1E
0

t

ds2e2 i ~q•v !~s12s2!r̃~q!

3@u~s12s2!1N~q0!#J , ~2.22!

with r̃(q)[vmrmn(q)vn. Note that Eq.~2.22! could have
been obtained from the corresponding expression in the
vacuum~see Ref.@2#! by simply replacing in the latter the
bare photon propagator by the corresponding thermal propa-
gator for a soft photon. Conversely, the zero-temperatureBN
propagator can be obtained from Eq.~2.22! by substituting
N(q0)→2u(2q0) and replacingrmn with the free photon
spectral density.

After performing thes1 ands2 integrations, and also us-
ing the parity propertyr̃(2q)52 r̃(q), we finally cast Eq.
~2.22! into the form

D̃~ t !5exp$ i tF~ t !%D~ t !, ~2.23!

where

F~ t ![g2E d4q

~2p!4

r̃~q!

2~v•q! F12
sint~v•q!

t~v•q! G , ~2.24!

and

D~ t ![expH 2g2E d4q

~2p!4 r̃~q!N~q0!
12cost~v•q!

~v•q!2 J .

~2.25!

In the derivation of the above formulas, Eqs.~2.22!–
~2.25!, there was no explicit restriction on the photon mo-
mentaqm. Since theBN model can only be trusted for soft
photons, we need to verify that the large time behavior of the
fermion propagator, as given by Eqs.~2.20!–~2.25!, is indeed
controlled by soft momenta,q!T.

In fact, the momentum integrals in Eqs.~2.24!–~2.25!
contain ultraviolet divergences coming from their zero-
temperature contributions. There is a linear UV divergence
in F(t), and a logarithmic divergence inD(t). These diver-
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gences can be absorbed respectively, by mass and field-
strength renormalizations@2#. However, the finite part of the
phaseF(t) remains dominated by hard momenta contribu-
tions, and therefore is not consistently determined by the
present approximation. SinceF(t) does not enter the calcu-
lation of the lifetime, we shall ignore it in what follows.

The damping effects are entirely described by the func-
tion D(t), Eq. ~2.25!, which extends our previous result
@7,8# by including the effects of the nonstatic (q0Þ0)
electric and magnetic field fluctuations. AtT50, DT50
} exp(2g2lnLt), whereL is the upper momentum cutoff@2#.
After UV renormalization, the cutoffL is replaced by the
physical electron mass, thus yielding

uS~ t !u;~mt!~32l!~a/2p!, ~2.26!

in the covariant gauge with gauge-fixing parameterl @see
Eq. ~4.11!#. Such a gauge-dependent, polynomial depen-
dence on time merely reflects the renormalization of the
wave function of the fermion due to its coupling to soft
virtual photons. This is not to be interpreted as a damping
phenomenon. The mechanism which takes place at high tem-
perature and which eventually gives rise to the damping of
the test particle excitation is the exchange of soft photons
between the test fermion and the thermal charged particles.
We shall verify in Sec. III that, for sufficiently large times
t@1/gT, such a collision involves dominantly soft photon
momentaq&gT.

For a fixed large timet, the function

f ~ t,v•q![
12cost~v•q!

~v•q!2 , ~2.27!

in Eq. ~2.25! is strongly peaked aroundv•q[q02v•q50,
with a width ;1/t. In the limit t→`, f (t,v•q)→ptd(v
•q). In the absence of infrared complications, we could use
this limit to obtain the large time behavior ofD(t). This
procedure would then yieldD(t→`);e2gt, with

g[pg2E d4q

~2p!4 r̃~q!N~q0!d~v•q!. ~2.28!

We recognize in Eq.~2.28! the one-loop damping rateg
52ImS (2)(v5p) @11,12#, which we know, however, to be
infrared divergent@cf. Eq.~1.2!#. Thus, in studying the large-
time behavior of Eq.~2.25!, one should keep the time finite
when performing the momentum integral. As already men-
tioned after Eq.~1.3!, the inverse time plays the role of an
infrared cutoff. This will become explicit in Sec. III below.

Equations~2.20!–~2.25! generalize trivially to a test par-
ticle with massm. The mass shell is shifted toEp[v•p
1m(12v2)1/2 ~which, sincev5p/Ep , corresponds indeed
to Ep5Ap21m2!, and the retarded propagator has the form
~2.20!:

uSR~ t,p!u5u~ t !Dv~ t !, ~2.29!

whereDv(t) is the function~2.25! with, however,uvu,1.

B. The thermal fermion

The case of a thermal electron with momentump;T is
physically more interesting, since this is a typical quasipar-
ticle of the plasma. Technically, however, this is more in-
volved, since the KMS boundary conditions~2.14! must be
taken into account.

To appreciate the difficulty, consider the free contour
propagator, as obtained by replacingŕ(p) with ŕ0(p)
52pd(v2v•p) in Eq. ~2.7!:

G0~ t2t8,p!52 ie2 i ~v•p!~ t2t8!@uC~ t,t8!~12np!

2uC~ t8,t !np#, ~2.30!

wherenp[n(v•p). By using this propagator, we can solve
the BN equation~2.10! as a series in powers ofgAm . To this
aim, one can first transform Eq.~2.10! into an integral equa-
tion:

G~x,yuA!5G0~x2y!

1gE
C
d4z G0~x2z!v•A~z!G~z,yuA!.

~2.31!

Then, by iteratively solving this equation, one generates the
perturbation series forG(x,yuA). However, in contrast to
what happens for the retarded propagator~2.15!, the result-
ing series for the contour propagatorG(x,yuA) does not ex-
ponentiate@8#. The exponentiation of the perturbative series
for GR(x,yuA) is related to the fact that the retarded free
propagator,

GR
0~ t,p!52 iu~ t !e2 i ~v•p!t, ~2.32!

satisfies the simple multiplication lawGR
0(t,p1)GR

0(t,p2)5

2GR
0(t,p11p2). The contour propagatorG0(t,p) does not

enjoy this property, because of the presence of the statistical
factors in Eq.~2.30!.

This argument suggests that the contour BN propagator
may exponentiate whenever the fermion occupation numbers
play no dynamical role. This is what happened for the test
particle in the previous subsection, and, more generally, this
will also happen for a thermalized fermion with very high
momentump@T whose thermal occupation number is expo-
nentially small:n(p).e2bp!1. In fact, whennp→0, the
free contour propagator~2.30! reduces to the retarded func-
tion ~2.32! ~for real time variables!. It is then easy to verify
that the previous solution of the BN model, as given by Eqs.
~2.20!–~2.25!, also applies to such a very energetic thermal
particle, up to corrections which are exponentially small
when p@T. In particular, the case of the test particle is
formally recovered as the limitp/T→`.

What is less obvious is that the same solution holds also
for a typical thermal fermion, with momentump;T. More
precisely, as will be verified in Appendix A, the thermal
fermion propagator decays according to the same law as
above, that is,

uSR~ t,p!u}D~ t ! ~2.33!
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@with D(t) as defined in Eq.~2.25!#, up to corrections of
order q/T&g. Physically, this reflects the fact~which has
been already mentioned at several places, and will be verified
in the next section! that the fermion decay at large times,t
@1/gT, is determined by its interactions with soft photons,
with momentaq&gT. Such interactions do not significantly
change the electron momentum, so that the associated ther-
mal occupation factors play no dynamical role.

III. LARGE TIME BEHAVIOR

We are now in a position to study the large-time behavior
of the fermion propagator, as described by the functionD(t),
Eq. ~2.25!. We shall verify below that the relevant energy
scale is hidden in the photon spectral densityrmn(q), and is
of the order gT. Therefore, ‘‘large times’’ means times
larger than 1/gT.

For the computation below, we shall use the photon spec-
tral density in the Coulomb gauge

r̃~q0 ,q!5r l~q0 ,q!1@12~v•q̂!2#r t~q0 ,q!. ~3.1!

~The issue of the gauge dependence will be addressed in the
next section.! The two piecesr l(q0 ,q) andr t(q0 ,q) of the
spectral density correspond, respectively, to longitudinal and
transverse photons, which are renormalized differently by
plasma effects@6,16#. They have the following structure
~with s5 l or t!:

rs~q0 ,q!52pe~q0!zs~q!d@q0
22vs

2~q!#

1bs~q0 ,q!u~q22q0
2!, ~3.2!

and involved functions associated to plasma waves at time-
like momenta (q0

25vs
2(q).q2), and smooth contributions

b l andb t at q0
2,q2 arising from Landau damping. For given

q0 andq, the energy-momentum scale in Eq.~3.2! is set by
the plasma frequencyvp[gT/3, for both the on-shell and
the off-shell spectral densities~see @18,6,16# for more de-
tails!.

For generic times, both pieces in Eq.~3.2! contribute to
Eq. ~2.25!.

~i! That involving d@q0
22vs

2(q)# describes the emission
or the absorption of an on-shell plasmon. By kinematics, this
is only possible if the fermion is sufficiently off shell,uv
2pu*gT: indeed, the plasmons propagate as massive par-
ticles, with ~momentum dependent! thermal masses of order
gT @17,6,16#.

~ii ! The contributions involvingb l andb t describe colli-
sional damping, where the fermion exchanges a virtual pho-
ton with the other charged particles of the plasma. Such pro-
cesses have no kinematical restrictions, and they are the only
one to contribute at very large timest@1/gT.

To study the large-time behavior, we restrict therefore
ourselves to collisional processes, i.e., retain onlyb l andb t
in the photon spectral functions. Also, we replaceH(q0)
.T/q0, as appropriate for softq0!T. From perturbation
theory, we know that the infrared complications are related
to the singular behavior of the magnetic spectral density as
q0!q→0 @8#:

1

q0
b t~q0!q!.

3p

2

vp
2q

q61~3pvp
2q0/4!2

→
2p

q2 d~q0! as q→0. ~3.3!

To isolate this singular behavior, we write

1

q0
b t~q0 ,q![2pd~q0!S 1

q22
1

q21vp
2D 1

1

q0
n t~q0 ,q!.

~3.4!

A contribution }1/(q21vp
2) has been subtracted from the

singular piece—and implicitly included inn t(q0 ,q)—to
avoid spurious ultraviolet divergences: written as they stand,
both terms in the right-hand side~RHS! of Eq. ~3.4! give
UV-finite contributions. Note that by neglecting the regular
piecen t(q0 ,q) in the right-hand side of Eq.~3.4!, one recov-
ers our previous result in Refs.@7, 8# @as also expressed in
Eqs.~3.6! and ~3.9! below#.

With Eq. ~3.4!, the integral in Eq.~2.25! may be separated
into two pieces:

F reg~ t ![E d3q

~2p!3 E
2q

q dq0

2pq0
@b l~q0 ,q!2cos2ub t~q0 ,q!

1n t~q0 ,q!#
12cost~v•q!

~v•q!2 , ~3.5!

and

F IR~ t ![E d3q

~2p!3 S 1

q22
1

q21vp
2D 12cost~v•q!

~v•q!2 .

~3.6!

The first piece,F reg(t), is infrared safe, and its large-time
limit can be taken by replacingf (t,v•q) by ptd(v•q) @see
Eq. ~2.27!#. This yields

F reg~ t ![
t

4p E
0

`

dq qE
2q

q dq0

2pq0
S b l~q0 ,q!2

q0
2

q2 b t~q0 ,q!

1n t~q0 ,q! D , ~3.7!

where we have used the delta functiond(q02q cosu) to per-
form the angular integration. The remaining integral occurs
also in Ref.@11#, as part of the one-loop damping rate, and
was computed there by using sum rules plus numerical inte-
gration. It is computed analytically in Appendix B, with the
result

F reg~ t !5
t

8p
ln3.

t

4p
30.54931. ~3.8!

Note that this result comes entirely from the electric piece
b l(q0 ,q): the two magnetic pieces (q0

2/q2)b t(q0 ,q) and
n t(q0 ,q), happen to cancel each other in the final result.
This is purely accidental, consequence of our specific choice
for the substracted term 1/(q21vp

2) in Eq. ~3.4!.
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The second piece,F IR(t), contains the potentially singular
magnetic contribution, so that we should take the large time
limit only after performing the integral overq. This has been
done in Ref.@8#, with the following result~gE is the Euler
constant!:

F IR~ t !5
t

4p
@ lnvpt1~gE21!1O~1/vpt !#. ~3.9!

Note that the energy scalevp inside the logarithm arises
from the large momentum (q*gT) behavior, where the sub-
tracted term 1/(q21vp

2) acts effectively as an UV cutoff.
The final result for the large-time propagator reads then

D~ t@1/vp!.exp$2aTt@ ln~vpt !10.12652 . . .

1O~g,1/vpt !#%. ~3.10!

For the consistency of our approximations, it is important to
observe that this result has been obtained by integrating, in
Eqs. ~3.7! and ~3.6!, over soft photon momentaq&gT.
While this is obvious for Eq.~3.6!, where the two terms
inside the parentheses mutually cancel asq@gT, it can be
also verified for Eq.~3.7!, by using the known behavior ofb l
andb t at large photon momenta@18,8#.

For completeness, let us also give the corresponding re-
sults for a massive test particle. After reinserting the appro-
priate factors ofv[uvu in the previous results, we get

Dv~vt@1/vp!.exp$2aTvt@ ln~vpvt !1~gE21!1C~v !#%,
~3.11!

whereC(v) is given by the following integral:

C~v !5
1

v2 E
0

`

dq qE
2vq

vq dq0

2pq0
S b l~q0 ,q!2

q0
2

q2 b t~q0 ,q!

1v2n t~q0 ,q! D . ~3.12!

For a very heavy particlem*T, we may consider the non-
relativistic limit v!1 ~this is consistent with our approxima-
tions as long asp>mv@gT!. At small v, the leading con-
tribution to Eq. ~3.12! comes from the electric sector. The
magnetic contribution involves a supplementary factor ofv2,
and vanishes asv→0. However, because of its infrared sen-
sitivity, the contribution of the magnetic sector is not ana-
lytic in v. We evaluate this contribution in Appendix B,
where we find

vC~v !5
1

2 S 11v ln
3pv

4
1

v
2

1O~v2! D , ~3.13!

where the first term, independent ofv, is the contribution of
the electric sector. Together with Eq.~3.11!, this yields

Dv~vt@1/vp!.expH 2
aT

2
tF11v lnS 3p

4
v3~vpt !2D

1v~2gE23/2!G J , ~3.14!

for v!1. In particular, asv→0 ~i.e.,m→`!, the damping is
purely exponential, with a damping rateg05aT/2 which

coincides with the one-loop result in Ref.@9#. As for the
v-dependent terms, the coefficient of the logarithm in Eq.
~3.14! is the same as for the infrared-divergent piece of the
corresponding one-loop result.1

IV. GAUGE DEPENDENCE

We show now that the same result~3.10! is obtained in
general covariant gauges provided the large time limit in Eq.
~2.25! is taken with an infrared cutoff in the gauge sector, in
order to eliminate the contribution of the spurious degrees of
freedom.

In the covariant gauge of Eq.~2.11!, the photon spectral
density reads

r̃~q0 ,q!5S q22q0~v•q!

q22q0
2 D 2

r l~q0 ,q!1@12~v•q̂!2#r t~q0 ,q!

1lrl~q0 ,q!. ~4.1!

The longitudinal and transverse spectral functionsr l andr t
are the same as in Eq.~3.1!, and

rl~q0 ,q![~q02v•q!22pe~q0!d8~q2!, ~4.2!

wheree(q0)[u(q0)2u(2q0) andd8(q2) is the derivative
of d(q2) with respect toq2.

The electric and magnetic spectral functions in Eq.~4.1!
yield the same contributions to Eq.~2.25! as the correspond-
ing functions in the Coulomb gauge@cf. Eqs.~3.6! and~3.8!#.
This is obvious for the magnetic sector. In the electric sector,
the large-time limit introduces the delta functiond(v•q) @see
Eq. ~2.27!#, and the projection factor multiplyingr l(q0 ,q) in
Eq. ~4.1! is equal to one forq05v•q. The same argument
applied in the gauge sector seems to imply that the contribu-
tion of rl(q0 ,q) does also vanish, because of the factor
(q02v•q)2 in Eq. ~4.2!. However, since the spectral func-
tion d8(q2) has support precisely at the integration limits
q056q, we should be more careful when taking the limit
v•q→0.

The contribution of the gauge sector toD(t) factorizes as
exp@2lg2TFl(t)#, where

Fl~ t ![E d3q

~2p!3 E dq0

2pq0
rl~q0 ,q!

12cost~v•q!

~v•q!2

5E d3q

~2p!3 E dq0

q0
e~q0!d8~q2!@12cost~v•q!#.

~4.3!

By noting thatd8(q2)5(1/2q0)(dd/dq0), we can perform
an integration by parts to compute the integral overq0 . After
also computing the angular integral, we obtain

Fl~ t !5
1

2p2 E
m

` dq

q2 H 12
sin2qt

2qt
2

12cos2qt

4 J .

~4.4!

1Actually, a different coefficient was reported in Refs.@9,11#, but
the difference is apparently due to an error in the calculations there.
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Although this last integral is infrared finite, we nevertheless
compute it with an infrared cutoffm. A straightforward cal-
culation then yields

Fl~ t !5
1

8p2m F322
sin2mt

2mt
2cos2mt G2

t

4p2 si~2mt !,

~4.5!

where si(x)[2*x
`dz(sinz/z) is the sine integral function

@19#.
If we remove the IR cutoff by lettingm→0 at fixed t,

then, by using si(0)52p/2, we get

Fl~ t !5
t

8p
, ~4.6!

so thatD(t) becomes@cf. Eq. ~3.10!#

D~ t@1/vp!.exp$2aTt@ ln~vpt !10.12652•••1l/2#%.
~4.7!

~The gauge-dependent piece in the exponent coincides with
the corresponding piece of the one-loop damping rate,gl

5laT/2 @20,21#.!
However, if we consider the large-time behavior at fixed

m, then we can use the asymptotic expansion of si(x), that is

2si~x@1!;
1

x S cosx1
sinx

x
1O~1/x2! D , ~4.8!

to obtain

Fl~ t@1/m!5
1

8p2m F32
sin2mt

2mt
1O~1/m2t2!G . ~4.9!

In this case, the sole effect of the gauge-dependent piece
Fl(t) at timest@1/m is to change the normalization of the
propagator, by a factor

exp@2lg2TFl~ t !#.expS 2l
3a

2p

T

m D[z~T,m,l!,

~4.10!

which is both gauge dependent and cutoff dependent.
The gauge-dependent contribution to the damping rate,

Eq. ~4.6!, arises because the on-shell fermion is kinemati-
cally allowed to ‘‘decay’’ with the emission, or the absorp-
tion, of a massless gauge ‘‘photon.’’ AtT50, such an emis-
sion process cannot occur: by kinematics, the emitted photon
must be colinear~u50, q05q!, and the corresponding phase
space vanishes. But this is not so at finite temperature, be-
cause of the Bose-Einstein factorN(q0);T/q0 which di-
verges asq0→0 ~see Appendix B of Ref.@8# for an explicit
calculation!. After HTL resummation, the gauge sector is the
only one to contain massless fields. The unphysical decay
channel can be suppressed by giving the gauge photon a
small massm, as originally proposed by Rebhan@21# ~see
also Refs.@22, 23#!. As we have seen, this procedure ensures
the gauge independence of the damping rate, to the order of
interest.

Further insight may be gained by a comparison with the
corresponding results at zero temperature@2#. After ultravio-
let renormalization, the retarded BN propagator at zero tem-
perature is given by

S~ t,p!}e2 iEptexpH ~32l!
a

2p
ln~mt!J

5~mt!~32l!~a/2p!e2 iEpt. ~4.11!

Thus, in the energy representation, the mass-shell singularity
is generally a branch point, rather than a simple pole:

S~p!}
1

u•p2m S m

u•p2mD ~32l!~a/2p!

, ~4.12!

whereum5(u0 ,u) is the fermion four-velocityum5pm/m,
with u251.

Note that both the physical and the gauge sectors of the
photon propagator contribute to the mass-shell behavior in
Eq. ~4.12!: at T50, the gauge field quanta are massless in
both sectors. Furthermore, no infrared regulator is necessary:
in deriving Eqs.~4.11!–~4.12!, one encounters no IR diver-
gences, and the position of the mass shell is gauge indepen-
dent, as it should. Still, if one wishes to perform soft-photon
computations in perturbation theory in any other gauge than
the Yennie gauge (l53), it is convenient to introduce an
infrared regulator, so as to recover the simple-pole structure
of the mass shell. When the photon is given a small massm,
the propagator~4.12! is replaced by

S~p!}
z~m,l!

u•p2m
, ~4.13!

where the residue

z~m,l!5expH ~32l!
a

2p
ln~m/m!J , ~4.14!

is gauge-fixing dependent and also cutoff-dependent. It may
be compared to the finite-temperature normalization factor in
Eq. ~4.10!.

We see that, as a consequence of the Bose-Einstein en-
hancement of the soft photon processes, the divergence of
the ‘‘residue’’ z(T,m,l) as m→0 is linear atT.0, rather
than just logarithmic atT50. Moreover, if atT50 the in-
troduction of a photon mass is just a matter of convenience,
at T.0 the use of an infrared regulator in the gauge sector is
compulsory in order to eliminate the contribution of the non-
physical degrees of freedom and avoid the gauge dependence
of the mass shell.

V. SOME RESULTS FOR QCD

We consider now the generalization of the previous argu-
ments to the non-Abelian case, that is, to the high-
temperature, weakly coupled@g(T)!1# quark-gluon
plasma. The self-interactions of the soft gluons prevent us
from getting in this case an explicit solution. However, it is
expected@24# that these interactions generate screening of
the static magnetic fields. If this is so, the corresponding
screening length, typically of order 1/g2T, provides then a
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natural IR cutoff of orderg2T in the perturbation theory for
g.

We shall investigate this possibility in the next subsec-
tion, in the framework of a toy model which is QED with an
infrared cutoffm;g2T in the magnetic sector. By solving
this model in the BN approximation, we shall obtain a quali-
tative picture of the effects of the magnetic mass on the
large-time behavior of the fermion propagator.

Then, we shall propose a functional integral representa-
tion for the propagator of a hard quark or gluon which, being
formulated in three-dimensional Euclidean space, isa priori
well suited for lattice calculations. This formulation allows
for a direct numerical study of the particle decay in real time.

A. QED with a magnetic mass

To implement magnetic screening in QED, we replace the
massless static transverse propagator by its massive version

Di j ~0,q!5
d i j 2q̂i q̂ j

q21m2 , ~5.1!

with m;g2T. Of course, such an infrared behavior could not
occur in QED, where the correct magnetic polarization ten-
sor P t(0,q) vanishes asq2 whenq→0, to all orders in per-
turbation theory@25#. We simply use ‘‘massive QED,’’ as
defined by Eq.~5.1!, as a crude parametrization of the non-
perturbative screening effects in QCD.

Strictly speaking, whenm.0 we have no infrared diver-
gences. However, as long asm&g2T, the dominant contri-
bution to the damping rate is still given by the static mag-
netic photons. For instance, to one loop order the static mode
yields

gst5aT ln
vp

m
;g2T ln~1/g!, ~5.2!

which is enhanced by a factor ln(1/g) as compared to the
contribution of the nonstatic modes@which is ;g2T, as in
Eq. ~3.10!#. Moreover, the higher-loop diagrams contribute
terms of relative order (aT/m)n21, wheren is the number of
loops, so that the perturbation theory breaks down form
&g2T @8#. This is why a nonperturbative calculation is nec-
essary even in the presence of an infrared cutoffm&g2T.

In order to get the leading contribution to the damping
factor, we can restrict ourselves to the interactions with static
(q050) magnetic photons@7,8#. In practice, such a calcula-
tion amounts to preserve only the contributionF IR(t) in Eq.
~3.6!, where however, the massive propagator~5.1! must
now be used. This gives

Dm~ t !.expH 2g2TE d3q

~2p!3

1

q21m2

12cost~v•q!

~v•q!2 J .

~5.3!

As explained in Sec. III, the integral in Eq.~5.3! has to be
computed with an upper cutoffvp;gT, to account approxi-
mately for the effect of the neglected nonstatic modes.„In
Eq. ~3.6!, the upper cutoff was provided by the subtracted
term 1/(q21vp

2). In Eq. ~5.4! below, we shall find conve-
nient to introduce this cutoff in a different way. At large
timesvpt@1, the leading contribution to the damping factor

is indeed insensitive to the precise value of the UV cutoff,
and also to the specific procedure which is used for its imple-
mentation@8#.…

To perform the integral in Eq.~5.3!, we write Dm(t)
5exp@2g2TFm(t)#, with

Fm~ t !5
1

2 E
0

t

ds1E
0

t

ds2E d3q

~2p!3

ei ~v•q!~s12s2!

q21m2

5
1

8p E
0

t

ds1E
0

t

ds2

e2mus12s2u

us12s2u
u~ us12s2u21/vp!

5
1

4p E
1/vp

t

ds
t2s

s
e2ms

5
t

4p H E
m/vp

mt dx

s
e2x2

e2m/vp2e2mt

mt J . ~5.4!

In this calculation, the ultraviolet cutoff has been introduced,
in the second line, in the functionu(us12s2u21/vp). For the
purpose of a graphical representation~see Fig. 3!, we rewrite
the final expression above asFm(t)[(t/4p)L(x,y), with x
[mt, y[m/vp , and

L~x,y![E1~y!2E1~x!2
e2y2e2x

x
, ~5.5!

where E1(x) is the exponential-integral function@19#,
E1(x)5*1

`dz(e2xz/z). For m;g2T, we havey;g!1. We
recall that the above calculation only makes sense for large
enough times,vpt@1 or x@y.

Since the expression in Eq.~5.4! involves two energy
scales, namely,vp and m, with m!vp , we distinguish be-
tween two regimes of time:~i! very large times,t@1/m ~i.e.,
x@1!, where

Fm~ t !.
t

4p S ln
vp

m
1O~1! D , ~5.6!

and ~ii ! intermediate times, 1/vp!t!1/m ~i.e., y!x!1!,
where

FIG. 3. The functionL(x,y), Eq. ~5.5!, is represented as a func-
tion of x for fixed y50.01 ~continuous line!. We have also repre-
sented the asymptoticsL1(x,y)[ ln(x/y)21 ~dotted line! and
L2(x,y)[ ln(1/y)2gE ~dashed line!. These are good approxima-
tions toL(x,y) in the domainsy!x!1 andx@1, respectively.

56 7885BLOCH-NORDSIECK PROPAGATOR AT FINITE TEMPERATURE



Fm~ t !.
t

4p
@ ln~vpt !1O~1!#. ~5.7!

Thus, the ‘‘magnetic mass’’m is only felt at sufficiently
large times—whereDm(t) decays exponentially in agree-
ment with the one-loop result~5.2!—while it has no effect at
intermediate times. We remark at this point that, when dis-
cussing the lifetime of the excitation, it is rather the interme-
diate times which matter, since for asymptotically large
times t*1/g2T;1/m the excitation has already decayed.
This behavior, Eqs.~5.6! and ~5.7!, can be also observed in
Fig. 3, where we have representedL(x,y) as a function ofx
for a fixed, small, value ofy ~namely,y50.01!. For x of
order one, one clearly sees on this figure the transition be-
tween the two types of behavior, as described by Eqs.~5.6!
and ~5.7!, respectively.

It has been suggested, first by Lebedev and Smilga@10#,
that when computing the damping rate to one-loop order, the
damping rate itself should be self-consistently resummed in
the internal hard line. The usual argument goes as follows.
Sinceg;g2T is of the same order as the infrared cutoffm, it
should be taken into account when studying the infrared be-
havior of the integrand. If we do that, by following Ref.@11#,
then the one-loop result~5.2! is modified to

g.
aT

2
ln

vp
2

m212mg
. ~5.8!

~Up to appropriate color factors, the same result is obtained
in QCD, for both quarks and gluons@11#.! However, this is
not correct: the self-energy resummation advocated in the
procedure leading to Eq.~5.8! should be accompanied by a
corresponding resummation in the vertex function, so as to
respect gauge symmetry. As discussed in Ref.@8#, the vertex
corrections generate new infrared divergences, and, when
added to the self-energy corrections, conspire to give a
leading-order estimate for the damping rate which has pre-
cisely the form indicated in Eq.~5.2!. ~See Appendix C in
Ref. @8# for more details.! At this point, it might be useful to
emphasize that the BN calculation provides precisely a self-
consistent resummation of the fermion propagator near the
mass shell, together with the appropriate resummation of the
vertex function, as required by gauge symmetry.

B. QCD

Going now to QCD, we first observe that the Bloch-
Nordsieck approximation remains relevant to discuss the
large-time ~or mass-shell! behavior of the quasiparticle
propagator, and this for both quarks and~transverse! gluons.
~We consider here a hard quasiparticle, with momentump
*T.! While for quarks this approximation is easy to justify,
by analogy to QED, the case of gluons requires more care
and is discussed in Appendix C. Moreover, we expect the
leading large-time behavior to be given by the quasiparticle
interactions with static (q050) and very soft (q→0) mag-
netic gluons: indeed, these are the interactions which gener-
ate the infrared divergences of the perturbation theory@8#.

What is new with respect to QED, is that the relevant
self-energy corrections also include the mutual interactions
of the internal gluons, expected, in particular, to lead to mag-

netic screening. A typical Feynman graph contribution to the
self-energy is depicted in Fig. 4. The continous line in this
diagram is hard, and may represent either a quark, or a gluon.
The wavy lines denote static magnetic gluons, and all the
loop integrations are three-dimensional. As explained in Sec.
III, these integrations involve an upper cutoffvp . In QCD
@6#,

vp
25

g2T2

18
~2N1Nf !, ~5.9!

for N colors andNf flavors of thermal quarks.~Note that the
gluonic loops attached to soft internal lines would be finite
even in the absence of the ultraviolet cutoff.!

In the BN approximation, all such diagrams are formally
resummed by the following functional integral@the gauge-
fixing terms are not written here explicitly; see the discussion
below, after Eq.~5.14!#:

S~x2y!5Z21E DAG~x,yuA!expH 2
1

4T E d3xFi j
a Fi j

a J ,

~5.10!

where Aa(x) is a static color field, Fi j
a 5] iAj

a2] jAi
a

2g fabcAi
bAj

c ~f abc are the structure constants of the color
group!, andG(x,yuA) satisfies the equation

i ~v•Dx!G~x,yuA!5d~4!~x2y!, ~5.11!

whereDm5]m1 igAm , Am5(0,A), andAi[Ai
aTa is a color

matrix in either the adjoint or the fundamental representation
~for gluons or quarks, respectively!. The plasma effects do
not modify the gluonic action in Eq.~5.10! ~recall that the
HTL corrections vanish for static magnetic fields@4#!, but
only enter through the upper cutoffvp;gT.

The solution of the BN equation~5.11! with retarded
boundary conditions is immediate@6#:

GR~x,yuA!52 iu~x02y0!d~3!@x2y2v~x02y0!#U~x,y!,

U~x,x2vt !5P expH igE
0

t

ds v•A@x2v~ t2s!#J ,

~5.12!

where the path-ordering operatorP is necessary since the
color matricesA~x! at different points along the path do not
commute with each other.

The retarded propagatorSR(x2y) is calculated by insert-
ing Eq. ~5.12! in the functional integral~5.10!. It can be
written as

FIG. 4. A generic self-energy diagram in QCD which yields
infrared divergences on the mass shell. The continuous line is a
hard particle~quark or gluon!. The wavy lines are soft magneto-
static gluons. All the loop integrations are three dimensional.
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SR
ab~ t,p!52 idabu~ t !e2 i t ~v•p!D~ t !, ~5.13!

with

D~ t ![NE DA Tr U~x,x2vt !expH 2
1

2T E d3x B2J ,

~5.14!

B25Bi
aBi

a , and Bi
a5(1/2)e i jkF jk

a is the chromomagnetic
field. In order for Eq.~5.14! to be well defined, it is further
necessary to choose a gauge within the functional integral.
@Recall that the parallel transporter TrU(x,x2vt) is not in-
variant under the gauge transformations of the background
color field.# However, we shall argue below that the domi-
nant large-time behavior should be independent of the
gauge-fixing condition.

The functional integral~5.14! cannot be computed ana-
lytically becauseBa is nonlinear in the gauge potentials.
However, we may expect the large-time behavior ofD(t) to
be similar to that of the model discussed in Sec. V A, that is
@cf. Eqs.~5.6! and ~5.7!#,

D~1/vp!t!1/m!.expH 2Cr

g2T

4p
t@ ln~vpt !1O~1!#J ,

~5.15!

at intermediate times, and, respectively,

D~ t@1/m!.expH 2Cr

g2T

4p
tS ln

vp

m
1O~1! D J ,

~5.16!

at very large times. In these equations,Cr is the Casimir
factor of the appropriate color representation@i.e., Cq5(N2

21)/2N for a hard quark, andCg5N for a hard gluon#, and
the magnetic massm;g2T is expected to come out from the
soft gluon mutual interactions. Note that the order 1 terms in
the above equations are not consistently determined by the
present approximation: Indeed, from the experience with
QED, and also from the one-loop calculations in QCD@10–
12#, we know that such terms receive contributions from the
non-static gluon modes, and that they may be sensitive to the
gauge-fixing condition~see Sec. IV!.

To verify this picture, one could rely on a lattice compu-
tation of the Euclidean functional integral~5.14!. The paral-
lel transporter TrU(x,x2vt) is easily implemented as a
product of link operators.@Recall thatv is a fixed unit vector,
e.g.,v5(0,0,1), so thatU(x,x2vt) is a product of link op-
erators in thez direction, fromz02t to z0 , with z0 an arbi-
trary site on the lattice.# Since the expression~5.14! is de-
fined with an upper cutoffvp;gT, the lattice spacinga is
fixed: a;1/vp . From perturbation theory, we expect the de-
cay ofD(t) at timest@a to be only logarithmically sensitive
to the precise value ofa @cf. Eqs.~5.15! and ~5.16!#.

The objective of a lattice calculation would be then to
verify the large-time behavior predicted in Eqs.~5.15! and
~5.16!. By observing the interplay between these two re-
gimes, one may verify what is the typical scale for the emer-
gence of magnetic screening: indeed, we expect the transi-
tion between two regimes to occur fort;1/m. However, this

could not be sufficient for a quantitative measure of the mag-
netic mass, because of the theoretical uncertainty on the sub-
leading term of order 1.

The main limitation against an explicit calculation comes
from the lattice size: indeed, in order to verify the aforemen-
tioned picture, one needs a small coupling constantg!1—to
ensure a clean separation between the scalesg2T and
gT—together with large values of time, up totmax@1/g2T
;a/g. Thus, the lattice should have at leastN3 sites, with
N*tmax/a@1/g.

VI. CONCLUSIONS

In this paper, we have completed the analysis of the
Bloch-Nordsieck propagator in hot QED, and we have also
discussed the usefulness of such an approximation for a
high-temperature QCD plasma.

As compared to Refs.@7,8#, several points have been
clarified by the present analysis. First, the three-dimensional
model of@7,8# suffers from a spurious ultraviolet divergence
coming from the restriction to the static photon mode. We
have shown here that the contribution of the nonstatic modes
provides a dynamical cutoff at momenta;gT. Not only this
justifies the cutoff procedure used in Refs.@7,8#, but it also
allows one to compute explicitly the subleading term in the
large time behavior@cf. Eq. ~3.10!#.

Secondly, the effects of the gauge-fixing procedure only
enter at the level of the subleading term. Thus, by computing
this term in different gauges, one can study the gauge
~in! dependence of the large-time decay. We have performed
this computation in the Coulomb gauge, and in a generic
covariant gauge, with conclusions which agree with the one-
loop calculations in Refs.@20,21#; namely, the subleading
term is gauge independent if computed in the presence of an
infrared cutoff in the gauge sector. Physically, such a cutoff
separates the particle mass shell from the threshold for the
spurious emission or absorption of massless gauge photons.
With a nonzero infrared regulatorm, the gauge-dependent
contribution to the damping vanishes in a vicinity;m of the
mass shell or, equivalently, for timest@1/m. Thus, to avoid
spurious gauge contributions over a particle lifetime, one
should choosem*g, whereg;g2T ln(1/g).

Concerning QCD, we have argued that the BN model may
still be a relevant approximation for the study of the quasi-
particle mass shell. As compared to QED, the non-Abelian
model is complicated by the soft gluon self-interactions. The
problem simplifies considerably when one considers only the
dominant contribution due to the static magnetic gluon
modes: then, not only all the HTL corrections vanish, but the
needed path integral can in principle be computed on a three-
dimensional lattice, with a fixed lattice spacinga;1/gT.
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APPENDIX A

In this appendix, we construct the BN propagator for a
thermal fermion with momentump;T. The final result turns
out to be essentially the same as that obtained in Sec. III in
the casep@T.

We use the imaginary-time formalism which has been de-
veloped in Ref.@8#. In this formalism, we have to solve the
imaginary-time BN equation@cf. Eq. ~2.10!#

2~v•Dx!G~x,yuA!5dE~x,y!, ~A1!

with antiperiodic boundary conditions@cf. Eq. ~2.14!#

GE~tx50,tyuA!52GE~tx5b,tyuA!, ~A2!

and similarly forty . In these equations, the time variables
are purely imaginary@x05t02 i tx and y05t02 i ty , with 0
<tx , ty<b and dE(x2y)5d(tx2ty)d(x2y)#, and the
gauge fields are periodic in imaginary time:Am(t50)

5Am(t5b). In Ref. @8#, we have solved this equation ex-
plicitly in perturbation theory, i.e., as a series in powers of
gA, and then we have performed the functional integration
over the gauge fields@cf. Eq. ~2.9!#. The resulting propagator
can be written as@cf. Eq. ~2.5!#

iS~x02y0 ,p!5u~t!S.~t,p!2u~2t!S,~t,p!, ~A3!

where the analytic functionsS. andS, are obtained in the
form @8#

S,~t,p!5e2tEpṼ~Ep ;u52t! for 2b<t<0,

S.~t,p!5e~b2t!EpṼ~Ep ;u5b2t! for 0<t<b.
~A4!

In this equation,Ep[v•p is the BN mass-shell and the func-
tion Ṽ(Ep ;u) is given, for 0<u<b, as a formal series in
powers ofg2 @8#:

Ṽ~Ep ;u!5n~v•p!1 (
n>1

~21!n
g2n

n! E @dq1dq2 ...dqn#
D̃~q1!D̃~q2!•••D̃~qn!

~v•q1!2~v•q2!2•••~v•qn!2 $n~v•p!2n@v•~p1q1!#e2u~v•q1!

2n@v•~p1q2!#e2u~v•q2!1•••1~21!nn@v•~p1q11q21•••1qn!#e2uv•~q11q21•••1qn!%, ~A5!

with D̃(q)[vm* Dmn( ivm ,q)vn. In this and the following
equations, the photon energiesqi

0 are discrete and purely
imaginary: q05 ivm5 i2pmT, with integer m ~Matsubara
frequencies!. The measure in the momentum integrals is de-
noted by

E @dq#[T(
vm

E d3q

~2p!3 . ~A6!

The thermal factors make the momentum integrals in Eq.
~A5!, such as

E d3q

~2p!3 n@v•~p1q!#eu~v•q!, ~A7!

convergent for any 0,u,b. This, in turn, ensures the ana-
lyticity of the functionsS,(t) andS.(t) in Eq. ~A4! @16#.
By analytically continuing these functions toward the real-
time axis~i.e., by replacingt→ i t with real t!, one constructs
the retarded propagator

SR~ t,p!52 iu~ t !@S.~ t,p!1S,~ t,p!#

52 iu~ t !e2 i tEp$ebEpṼ~Ep ;u5b2 i t !

1Ṽ~Ep ;u52 i t !%. ~A8!

Note, however, that the analytic continuation to real time can
be done only after performing the Matsubara sums in all the
terms of the series in Eq.~A5!.

Fortunately, this can be done easily in the relevant regime
of large time (t@1/gT). According to the discussion in Sec.
III, we expect then the momentum integrals to be dominated

by soft photon momentaq&gT. Indeed, the photon propa-
gator D̃(q), which can be rewritten as@with r̃(q)
[vmrmn(q)vn; cf. Eq. ~3.1!#:

D̃~ ivm ,q!5E
2`

` dv

2p

r̃~v,q!

v2 ivm
, ~A9!

provides, through the spectral densityr̃(v,q), an effective
upper cutoff;gT for the integrals overq. @Recall that the
functionsb l(v,q) andb t(v,q) in Eq. ~3.2! are rapidly de-
creasing forq@gT.# Strictly speaking, this cutoff becomes
effective only afteru is continued tob2 i t or 2 i t . However,
we may anticipate for its effect and supply the integrals over
qi in Eq. ~A5! with an upper cutoff;gT. Then the photon
momenta are limited to valuesuqu!upu;T, and we can re-
place n@v•(p1q)# by n(v•p) up to terms of orderq/T
&g. The fermion occupation factorn(v•p) in Eq. ~A5! then
factorizes, and the resulting expression can be resummed
into an exponential:

Ṽ~Ep ;u!'n~Ep!D,~u!,

D,~u![expH 2g2E @dq#D̃~q!
12e2u~v•q!

~v•q!2 J .

~A10!

At this stage, we can then perform the Matsubara sum over
q05 ivm @by using the spectral representation in Eq.~A9!,
together with contour integration#, and obtain
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D,~u!5expH 2g2E d4q

~2p!4 r̃~q0 ,q!F @11N~q0!#

3
12e2u~v•q!

~v•q!2 2@11N~v•q!#
u

v•qG J , ~A11!

wherev•q5q02v•q ~we have renamedq0 the real energy
v!. The last expression can be now continued tou→2 i t ,
with the result

D,~2 i t ![expH 2g2E d4q

~2p!4 r̃~q!F @11N~q0!#

3
12eit ~v•q!

~v•q!2 1@11N~v•q!#
i t

v•qG J
5exp$2 i tF~ t !%D~ t !, ~A12!

which involves the same functionsF(t) andD(t) as in Sec.
III @cf. Eqs.~2.24! and~2.25!#. At this point, the momentum
integral in Eq.~A12! is ultraviolet finite and the cutoff can be
removed. Recalling Eq.~A4!, we can finally write

S,~ t,p!5e2 i tEpn~Ep!D~ t !, ~A13!

where we have ignored the inconsistent phaseF(t).
To computeS.(t,p), we start with@cf. the second Eq.

~A4!#:

ebEpṼ~Ep ;u5b2t!'@12n~Ep!#D.~t!,

D.~t![expH 2g2E @dq#D̃~q!
12et~v•q!

~v•q!2 J , ~A14!

where 12n(Ep)[ebEpn(Ep) has been factorized by the
same approximations as above. After performing the Mat-
subara sum and the analytic continuationt→ i t , we finally
obtain @within the same accuracy as in Eq.~A13!#

S.~ t,p!5e2 i tEp@12n~Ep!#D~ t !. ~A15!

Thus, for sufficiently large times, both functionsS,(t) and
S.(t) decay asD(t), Eq. ~2.25!. The same is therefore true
for the retarded propagator, as given by Eqs.~A8!, ~A13!,
and ~A15!:

uSR~ t,p!u}D~ t !, ~A16!

which is the result quoted in Eq.~2.33!.

APPENDIX B

In this appendix, we calculate the double integral in Eq.
~3.7!, thus proving the result quoted in Eq.~3.8!. The method
to be used here was suggested to us by Jean-Yves Ollitrault
~see also@26#!. We first write

I[E
0

`

dq qE
2q

q dq0

2pq0

3S b l~q0 ,q!2
q0

2

q2 b t~q0 ,q!1n t~q0 ,q! D
[I 11I 21I 3 , ~B1!

where the three piecesI s , s51,2,3, correspond to the three
terms within the integrand. To illustrate the method, we com-
pute the second piece in detail:

I 252E
0

`

dq qE
2q

q dq0

2pq0

q0
2

q2 b t~q0 ,q!

52E
0

` dq

q H 122E
q

`

dq0q0d@q0
22q22P t~q0 ,q!#J .

~B2!

In going to the second line, we have used the familiar sum
rule @16#

E
2`

` dq0

2p
q0r t~q0 ,q!51, ~B3!

together with the parity propertyr t(2q0 ,q)52r t(q0 ,q),
to write

E
2q

q dq0

2p
q0b t~q0 ,q!5122E

q

` dq0

2p
q0r t~q0 ,q!;

~B4!

then we have related the on-shell magnetic spectral density
to the plasmon pole in the transverse photon propagator
r t(q0.q)52pd@q0

22q22P t(q0 ,q)#. We also recall that,
in the hard thermal loop approximation,P t(q0 ,q) is a func-
tion of q0 /q alone.

The integral overq in Eq. ~B2! is well defined as it
stands. However, in order to work out separately the two
terms within the braces, it is necessary to introduce, at inter-
mediate steps, an ultraviolet cutoffL and also an infrared
cutoff m. The first term reads then

I 21~L,m![2E
m

L dq

q
52 ln

L

m
. ~B5!

The second term

I 22~L,m![2E
m

L dq

q E
q

`

dq0q0d@q0
22q22P t~q0 /q!#,

~B6!

involves an integral along the transverse plasmon dispersion
relationq05v t(q) with v t

2(q)5q21P t(v t /q). To perform
the integral, we use the following change of variables:

x[q0 /q, y[q0
22q2, dq dq05

dx dy

2~x221!
, ~B7!

and get
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I 22~L,m!5E dxE dy
x

x221
d@y2P t~x!#5E

xm

xM
dx

x

x221

5
1

2
ln

xM
2 21

xm
2 21

. ~B8!

The integration limitsxm andxM are obtained as follows: As
q→m, x→v t(m)/m. The dispersion relationv t(q) can be
found, e.g., in Refs.@18,6,16#. For m→0, v t(m)→vp , and
x→xM(m)5vp /m. As q→L ~with large L@vp!, v t

2(L)
.L213vp

2/2, andx→xm(L)5113vp
2/4L2. Together with

Eqs.~B5! and ~B8!, this gives

I 25I 211I 2252 ln
L

m
1

1

2
ln

2L2

3m2 5
1

2
ln

2

3
. ~B9!

The remaining integralsI 1 andI 3 are evaluated similarly.
In the process, we need the following sum rules@11,8#:

E
2q

q dq0

2pq0
b l~q0 ,q!5

1

q22
1

q213vp
2

22E
q

` dq0

q0
d@q21P l~q0 /q!#,

E
2q

q dq0

2pq0
n t~q0 ,q!5

1

q21vp
222E

q

` dq0

q0
d@q0

22q2

2P t~q0 /q!#, ~B10!

whereP l and P t are the polarization functions in the hard
thermal loop approximation.~We use the same notations as
in Ref. @8#.! In the computation ofI 3—which involves
n t(q0 ,q)—we change the integration variables as in Eq.
~B7! above, and obtain

I 35
1

2
ln

3

2
, ~B11!

which happens to cancelI 2 , Eq. ~B9!. As for the electric
pieceI 1 , we write

I 152E
0

`

dq qH 1

q22
1

q213vp
2

22E
q

` dq0

q0
d@q21P l~q0 /q!#J

5 ln
)vp

m
22E

m

`

dq qE
q

` dq0

q0
d@q21P l~q0 /q!#,

~B12!

where an infrared cutoffm was introduced when separating
the terms inside the braces. In the second term, we change
the variables according to

x[q0 /q, y[q2, dq dq05
1

2
dx dy, ~B13!

and get

2E
1

xM dx

x E dyd@y1P l~x!#52 lnxM52 ln
vp

m
.

~B14!

The upper limit was obtained asxM(m)5v l(m)/m.mp /m
for m→0. From Eqs.~B12! and ~B14!, we finally obtain

I 15
1

2
ln3, ~B15!

which is the result quoted in Eq.~3.8!.
We finally evaluate the momentum integral in Eq.~3.12!

in the nonrelativistic limit v!1. Since uq0u<vq!q, we
need the spectral functionsb l ,t(q0 ,q) only for very small
frequencies@18#:

b l~q0!q!.
3pvp

2~q0 /q!

~q213vp
2!2 ,

b t~q0!q!.
3pvp

2~q0/2q!

q41~3pvp
2q0/4q!2 . ~B16!

Corresponding to the three terms in Eq.~3.12!, we write
C(v)5C1(v)1C2(v)1C3(v).

The electric contribution is evaluated as

C1~v !5
1

v2 E
0

`

dq qE
2vq

vq dq0

2pq0
b l~q0 ,q!

.
1

v2 E
0

`

dq q
3vp

2v

~q213vp
2!2 5

1

2v
, ~B17!

where the neglected terms are smaller, at least, by two pow-
ers ofv @sinceb l(q0 ,q) is an odd function ofq0#.

The first magnetic contribution is

C2~v !52
1

v2 E
0

`

dq qE
2vq

vq dq0

2pq0

q0
2

q2 b t~q0 ,q!

.2
8

3p2vp
2v E

0

`

dq qF12
arctany~q;v !

y~q;v ! G ,
~B18!

where we have used the approximate expression~B16! for
b t(q0 ,q) to perform the integral overq0 , and we have de-
noted y(q;v)[3pvp

2v/(4q2). In the remaining integral
over q, we make the obvious change of variablesy(q;v)
[t, with dq/q5dt/(2t), and obtain

C2~v !5
1

p E
0

` dt

t2 F12
arctant

t G
5

1

p E
0

`

dy@12y arccoty#5
1

4
, ~B19!

which is independent ofv.
Finally, the second magnetic contribution reads
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C3~v !5E
0

`

dq qE
2vq

vq dq0

2pq0
n t~q0 ,q!

.E
0

` dq

q F 2

p
arctany~q;v !2

vp
2

q21vp
2G , ~B20!

where we have also used the definition~3.4! of n t(q0 ,q).
Note that, for anyv.0, the remaining integral overq is well
defined, and saturated by soft momentaq&vp . Still, the
limit v→0 is not well defined~because of potential infrared
singularities!, so that we need to perform the momentum
integral before studying the smallv behavior. By using the
same change of variables as above, we rewrite Eq.~B20! as

C3~v !.E
0

` dt

2t F 2

p
arctant2

t

t1 ṽ G
5E

0

1

dt
arctant

pt
1E

1

` dt

pt Farctant2
p

2 G1
1

2
lnṽ,

~B21!

with ṽ[3pv/4. The two integrals in the second line mutu-
ally cancel, as can be seen by changingt→1/t in any of
them, and then using arctan1/t5p/22arctant. Finally,

C3~v !.
1

2
lnṽ. ~B22!

By putting together the above results in Eqs.~B17!, ~B19!,
and ~B22!, one obtains the result quoted in Eq.~3.13!.

APPENDIX C

In Sec. V above, we have used a non-Abelian version of
the Bloch-Nordsieck model to study the interactions between
hard quasiparticles~quarks or gluons! and soft virtual gluons
in hot QCD. In this appendix, we examine the validity of this
approximation for the case where the hard quasiparticle is a
transverse gluon.

The dominant contributions to the hard (p*T) gluon
propagator near the mass shell atv5p ~i.e., the leading
infrared divergences forv→p! come from the diagrams il-
lustrated in Fig. 4. The continuous line there represents the
hard gluon and the wavy lines denote very soft (q!gT)
static (q050) magnetic gluons. Once again, our strategy is
to consider first the interactions with a classical, static, color
field Aa(q). Then, a typical diagram looks as in Fig. 5. The

self-energy corrections in Fig. 4 will be eventually recovered
by functional integration, as shown in Eq.~5.10!.

A noteworthy feature of Figs. 5 and 4 is that the hard
particle is involved only in three-gluon~but not in four-
gluon! vertices.@Of course, the four-gluon vertices do also
enter the self-energy diagrams—see, e.g., Fig. 4—but they
couple only soft internal gluons; cf. Eq.~5.10!.# The reason
is that, to a given order in perturbation theory, the diagrams
which involve the hard particle in four-gluon vertices are less
infrared singular. This can be easily verified by power count-
ing: Consider, e.g., the two two-loop graphs in Fig. 6. For
v5p, the diagram in Fig. 6~a!, with only three-gluon verti-
ces, gives rise to a linear infrared singularity. That is, its
contribution to the damping rate is of the orderg (2a)

;g4T2/m ~up to logarithms ofgT/m!, which for m;g2T
givesg (2a);g2T; i.e., it is of the same order as the one-loop
contribution.~This leading divergence can be isolated by us-
ing the simplified BN Feynman rules to be derived below.
See Appendix C in Ref.@8# for a detailed analysis.! The
diagram in Fig. 6~b!, which also involves one four-gluon
vertex, may give rise, at most, to logarithmic mass-shell sin-
gularities. We thus expectg (2b);g4T2/p;g4T, which
stands beyond our present accuracy, and should be discarded
for consistency. We shall verify shortly that, for the problem
at hand, neglecting the four-gluon vertices is indeed consis-
tent with gauge symmetry.

Consider the diagram in Fig. 5, with only three-gluon ver-
tices. The latter are linear in the external gluon momenta:

2 ig f abcG i j l ~p,q,k!52 ig f abc@~p2q! ld i j 1~q2k! id j l

1~k2p! jd i l #, ~C1!

wherep1q1k50. Remember that all the external lines in
Fig. 5 are of the magnetic type, so that we need just the
spacial components of the vertex function. Furthermore,
color indices play no special role for the subsequent kine-
matic approximations, and will be omitted in intermediate
formulas.

For all the vertices in Fig. 5, one of the external momenta
is soft, since it is carried by the classical color field. Ifq is
the soft momentum in Eq.~C1!, then

G i j l ~p,q,k!.G i j l ~p,0,2p!5pld i j 1pid j l 22pjd i l .
~C2!

Since the approximate three-gluon vertex~C2! is indepen-
dent of the soft momentumq, the Ward identities are con-
sistent with setting the four-gluon vertex to zero, which is
what we did before.

FIG. 5. A typical diagram contributing toG(x,yuA) to ordergn

in perturbation theory. This diagram involvesn gluon field inser-
tions, andn11 free propagatorsG0 ~including the external lines!.
The external fields are purely static and magnetic.

FIG. 6. Some two-loop self-energy corrections in QCD. The
continuous line represents a hard gluon, which is nearly on shell.
The wavy lines are soft magnetostatic gluons. In the on-shell limit,
diagram~b!, which also involves a four-gluon vertex, is less infra-
red singular than diagram~a!.

56 7891BLOCH-NORDSIECK PROPAGATOR AT FINITE TEMPERATURE



Consider now a typical internal gluon line in Fig. 5: It is
necessarily hard and nearly on shell. In the Coulomb gauge,
the associated propagator reads~recall thatq050!

Di j ~v,p1q!5
d i j 2~ p̂i1q̂i !~ p̂ j1q̂ j !

v22~p1q!2 .
1

2p

d i j 2v iv j

v2v•~p1q!
,

~C3!

where p̂i5pi /p[v i and the approximate equality holds
since q!p and v;p. That is, Di j (v,p1q)
.(1/2p)Pi j G0(v,p1q), wherePi j 5d i j 2v iv j is a trans-
verse projector, andG0 is the BN propagator@cf. Eq. ~1.1!#:

G0~v,p1q!5
1

v2v•~p1q!
. ~C4!

In Fig. 5, all the three-gluon vertices such as Eq.~C2! appear
between projectors such asPi j . By using the identity

PimGm jn~p,0,2p!Pnl522~d i l 2v iv l !pj522pPi l v j ,
~C5!

it can then be easily verified that the leading contribution of
the diagram 5 to the hard gluon propagator can be evaluated
with the following simplified Feynman rules~we reintroduce
here the color indices!: ~i! the hard particle propagator
dabG0(v,p1q), and ~ii ! the hard particle-soft gluon vertex
ig f abcv i . These are the Feynman rules which have been
used to define the non-Abelian Bloch-Nordsieck model in
Sec. VI. For a hard quark, the color indices in the above
Feyman rules should be replaced by the corresponding indi-
ces in the fundamental representation.
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