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In this paper we deal with defects inside defects in systems of two scalar fields in 311 dimensions. The
systems we consider are defined by potentials containing two real scalar fields, and so we are going to
investigate domain ribbons inside domain walls. After introducing some general comments on the possibility
of finding defects that support internal structure in two specific systems, we introduce thermal effects to show
how the picture for domain walls hosting domain ribbons appears at high temperature.
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PACS number~s!: 11.10.Lm, 11.27.1d, 98.80.Cq

I. INTRODUCTION

The possibility that the early universe may have experi-
enced symmetry breaking phase transitions resulting in the
formation of defects has provided a motivation for studies of
several possible defect configurations — see, for instance,
Ref. @1#. In this route to defect formation we can single out
the case that considers the presence of defects inside defects.
This possibility was initiated in@2#, first within the context of
superconducting strings, where one requires a model engen-
dering a U(1)3U(1) symmetry, and after in@3,4#. Other
more recent works on the same issue can be found in@5–8#.

To implement the idea of finding defects inside defects, in
general one considers systems of two scalar fields, in which
the first field plays the usual role one finds in the standard
route to defect formation, and the second field enters the
game via a potential that couples it to the first field, in a way
such that the system now allows for the presence of defects
inside the defect originated by the first scalar field. This idea
is usually implemented by introducing a general potential,
depending on the two scalar fields and containing several
parameters that area posteriori tuned to allow for the pres-
ence of defects inside defects. Despite this general picture, it
was recently shown in@8# that models belonging to a class of
systems of two real scalar fields@9–11# also appear suitable
to develop the idea related to internal structure of topological
defects. In this case the model is controlled by a reduced
number of parameters, and this may guide us toward a
clearer understanding of some physical aspects of the sys-
tem.

The systems we shall investigate are defined with two real
scalar fields in 311 dimensions and presentZ23Z2 symme-
try that implements spontaneous symmetry breaking in the
two independent field directions. Thus we shall be dealing
with the presence of domain ribbons inside domain walls.
Although domain walls may conflict with observations, be-
cause of wall domination within cosmological scenarios,
there exist mechanisms that allow an avoidance of wall
domination. One such mechanism relies on allowing the ex-
act discrete symmetry to be replaced by an approximate dis-
crete symmetry, and this can occur, for example, as a conse-
quence of supersymmetry breaking in supersymmetric
theories@12#. When there are no fermions present, then the
regions of higher energy density tend to shrink, allowing

closed domain walls bubbles to collapse away. The presence
of domain ribbons within walls is not expected to qualita-
tively change this process, although there may be a release of
boson radiation from the ribbon.

When fermions are present, however, the situation may be
a little more complicated. It has been pointed out@13#
~within the context of a model containing no domain rib-
bons! that if fermions are coupled strongly to a domain wall
field, and if the fermions, which are massive in the vacuum,
become massless within the domain wall, then the Fermi gas
within the wall can contribute a degeneracy pressure which
tends to stabilize the surface area of the wall. However, the
vacuum bag can flatten and fragment, ultimately producing
tiny fermionically stabilized bags of false vacuum called
‘‘Fermi balls.’’ The domain walls in this type of model can
ultimately be replaced by Fermi balls, which can be cosmo-
logically acceptable. It has been argued that this type of
model can be obtained from a supersymmetric domain wall
model @12#, where supersymmetry-breaking terms cause the
exact wall-producing discrete symmetry to be replaced by an
approximate one.

Consider now a system accommodating fermions and do-
main ribbons. A specific model is the supersymmetric system
already investigated in Ref.@14#. In this model the fermions
become massless inside the ribbons, but are massive outside
the ribbons — both inside the domain wall and in the
vacuum. Therefore there is a strong force attracting the fer-
mions into the ribbons from the domain wall. Thus, fermions
that are initially present within the wall may quickly be ab-
sorbed into the ribbons. A Fermi gas of massless fermions
develops within a ribbon, allowing a closed ribbon loop to
stabilize inside the wall.

Now let us again suppose that a small energy difference in
the initially degenerate vacuum states develops, so that the
exact discrete symmetry giving rise to the domain walls is
replaced by an approximate discrete symmetry. As before,
we expect the space to fill with closed bags of false vacuum,
which tend to collapse. There are now two possibilities:~i!
Either the typical vacuum bag will collapse away before any
ribbons form within it, or~ii ! ribbons will form before the
bag collapses completely. In case~i!, the end result may be
the production of stable Fermi balls. In case~ii !, closed rib-
bon loops form within the typical vacuum bag, and the rib-
bons tend to absorb the fermions from the wall, so that a
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stable ribbon loop can reside in the vacuum bag. The above
scenario serves to demonstrate the possible importance of
finite temperature effects, since the dynamical pathways and
intermediate states involved in cases~i! and ~ii ! leading to
the possible end states may depend strongly on the difference
between the critical temperatures for domain wall and do-
main ribbon formation.

To explore some of the above issues, in this work we shall
first deal with classical features of the system introduced in
@8# and of another system, presented in@6#. This last system
is defined by a potential that is usually considered to develop
the idea of introducing internal structure to topological de-
fects, and so we shall be also offering a comparison between
the standard procedure@6# and the alternative approach in-
troduced in@8#. Owing to direct interest in cosmology, we
shall calculate the effective potential, from which we obtain
the high temperature effects in each one of these systems.
The thermal effects are obtained by following the standard
works @15–17#, and here we remark that the above systems
are defined by potentials that depend on two fields, and so
the effective potential or, better, the thermal effects in gen-
eral introduce two critical temperatures, driving symmetry
breaking in each one of the two independent field directions.
These investigations are organized as follows. In the next
section we introduce general considerations concerning the
presence of domain ribbon inside domain wall in two spe-
cific systems. We also investigate the classical or linear sta-
bility of the solutions we need to implement the idea of
introducing defects inside defects. In Sec. III we calculate
the effective potential and present the high temperature cor-
rections to the classical potential. Here we obtain explicit
expressions for the critical temperatures in each one of the
two systems under consideration. We end the work in Sec.
IV, where we comment on conclusions and possible gener-
alizations of the present investigations.

II. GENERAL CONSIDERATIONS

We are interested in systems of two real scalar fields. In
this case the general Lagrangian density is given by

L5
1

2
]af ]af1

1

2
]ax ]ax2U~f,x!. ~1!

Here we are using natural units, in which\5c51, and the
metric tensorgab is diagonal, with elements@1,21,21,
21#. U5U(f,x) is the potential, in general a nonlinear
function of the two fields. In the following we shall comment
on some systems of two coupled real scalar fields described
via the above Lagrangian density.

A. Class of systems

The class of systems of two real scalar fields that we are
interested in is defined by the following potential, as was
already stressed in@9–11#:

U~f,x!5
1

2
Hf

2 1
1

2
Hx

2 , ~2!

whereH5H(f,x) is a smooth but otherwise arbitrary func-
tion of the fieldsf andx, andHf5]H/]f, Hx5]H/]x. In

this case, systems defined by the functionH(f,x) present
some general and very interesting properties, mainly in 1
11 dimensions. For instance, the second-order equations of
motion for static solutions,

d2f

dx2
5HfHfx1HxHfx , ~3!

d2x

dx2
5HfHfx1HxHxx , ~4!

are solved by field configurations satisfying the following set
of first-order differential equations:

df

dx
5Hf , ~5!

dx

dx
5Hx . ~6!

The energy is bounded from below, and for configurations
obeying the above first-order equations the energy gets to its
minimum value, given by

EB5H„f~`!,x~`!…2H„f~2`!,x~2`!…. ~7!

Furthermore, the set of first-order differential equations can
be seen as a dynamical systems, and we can take advantage
of all the mathematical tools available to dynamical systems
to deal with those equations. In particular, one sees that the
singular points of the corresponding dynamical system are
all the possible minimum energy states of the field system,
and so they are identified to the true vacuum states of the
system. On the other hand, all static configurations we can
find in the above class of systems are classically or linearly
stable. This is interesting and shows that perturbative quan-
tum corrections about static configurations can be done by
just following the standard procedure — see, for instance,
Ref. @18#.

B. First system of two fields

As a first example, let us focus attention on the system
defined by

H~f,x!5lS 1

3
f32a2f D1mfx2. ~8!

In this case the potential is given by

U~f,x!5
1

2
l2~f22a2!21lm~f22a2!x212m2f2x2

1
1

2
m2x4. ~9!

This is the system already investigated in@8#, and here we
return to it to show that it engenders some very specific
features, unrealized in Ref.@8#. To see this, let us first search
for the vacuum states: There are four, two atx50
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andf0
25a2, and two atf50 andx0

25ra2. For simplicity,
here we are usingl5mr , and r is a real, positive, and di-
mensionless parameter.

The potential presents the following typical forms:

U~f,0!5
1

2
m2r 2~f22a2!2, ~10!

U~0,x!5
1

2
m2~x22ra2!2. ~11!

In this case we see that bothU(f,0) andU(0,x) present
spontaneous symmetry breaking, and this is all we need for
building defects inside defects in the above system. In this
case we can introduce meson masses

mf
2 ~f0

2,0!54m2r 2a2, ~12!

mx
2~0,x0

2!54m2ra2, ~13!

and somf
2 (f0

2,0)5r mx
2(0,x0

2). On the other hand, the po-
tential also gives

U~f0
2 ,x!52m2a2x21

1

2
m2x4, ~14!

U~f,x0
2!52m2ra2f21

1

2
m2r 2f4. ~15!

Here we can also introduce meson masses

mf
2 ~f,x0

2!54m2ra2, ~16!

mx
2~f0

2 ,x!54m2a2, ~17!

and nowmf
2 (f,x0

2)5r mx
2(a2,x). We also havemf

2 (f0
2,0)

5r mf
2 (f,ra2) andmx

2(0,x0
2)5r mx

2(f0
2 ,x). The parameter

r controls the meson masses, and we see that forr 51 ~that
is, l5m) the above mass values degenerate to the single
value 4m2a2.

At this point we realize that forrÞ1, that is, forlÞm,
the system presents discreteZ23Z2 symmetry. The limit
r→1 introduces theZ4 symmetry, and this means that the
two fields have the same physical significance. This seems to
pose the question of whether the system will choose the field
to host the other field, to lead to defects inside defects. How-
ever, a closer investigation shows that this question is in fact
nonsense since the limitr→1 should be avoided, because in
this case the system of two coupled fields degenerates into
two systems of a single field each one. To see how this
works explicitly, let us rotate the (f,x) plane to the
(f1 ,f2) plane, wheref65221/2(x6f). In this caseH
can be cast in the form

H~f1 ,f2!5221/2m@Fr~f1 ,f2!2Fr~f2 ,f1!#,
~18!

where the functionF is given by

Fr~f6 ,f7!5
1

2S 11
1

3
r Df6

3 2ra2f61
1

2
~12r !f6

2 f7 .

~19!

Here we see that the limitr→1 decouplesf1 from f2 , and
so there is no interaction between the two fields. A lesson to
learn is then that although the original system has two inde-
pendent parameters, namely,l andm, only their ratiol/m or
r is physically relevant to the issues under consideration, and
this ratio should only take values in each one of the two
distinct regionsr P(0,1) or r P(1,̀ ).

Let us now focus attention on defect formation. We see
that the potentialU(f,0) presents spontaneous symmetry
breaking, and so we can have the kink solution

f~x!5a tanh~mr ax!, ~20!

with energy Ef5(4/3)mr a3. However, fromU(0,x) we
also have the kink solution

x~y!5ar1/2 tanh~mr 1/2 ay!, ~21!

with energy Ex5(4/3)mr 3/2 a3. Here we have Ex

5r 1/2 Ef , and so the parameterr also controls the energy
ratio for defect formation. The picture is then the following:
The domain wall generated by the kink of one of the two
fields will host the domain ribbon generated by the kink of
the other field; the host and the nested fields are determined
by the value of the single parameterrÞ1, which is the same
parameter that controls how mesons of the nested field prefer
to live inside or outside the domain wall.

C. Second system of two fields

As a second example, let us now consider the potential

V~f,x!5
1

2
m2r 2~f22a2!21m2~f22a2!x2

1m2a2b2x21
1

2
m2c2x4. ~22!

Here r , b, andc are real and positive parameters, and now
the system is of the form considered in@6#. This potential
presents the following typical forms:

V~f,0!5
1

2
m2r 2~f22a2!2, ~23!

V~0,x!5
1

2
m2r 2a42m2a2~12b2!x21

1

2
m2c2x4.

~24!

We shall assume that 0,b2,1. In this case we see that both
V(f,0) andV(0,x) present spontaneous symmetry breaking.
However, while the valuesf0

25a2 and x50 are true
vacuum states, the valuesf50 andx0

25@(12b2)/c2#a2 are
just local minima of the potential. We make these local
minima to be true vacuum states by reducing the number of
independent parameter, requiring thatr 2c25(12b2)2. For
simplicity we set 12b25s2 and the potential is now written
in terms of two parameters, namely,r P(0,̀ ) andsP(0,1).
In particular,V(0,x) can be cast to the form

V~0,x!5
1

2
m2

s4

r 2S x22
r 2

s2
a2D 2

, ~25!
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and now there are true vacuum states also atf50 andx0
2

5(r 2/s2)a2. Here we note that the potentialV(f,x), written
in terms of these two parametersr ands, does not reproduce
the potentialU(f,x) of the former system anymore. Thus,
this second system is different from the first system in the
entire region of parametersr P(0,̀ ) andsP(0,1).

In this case we have the meson masses

mf
2 ~f0

2,0!54m2r 2a2, ~26!

mx
2~0,x0

2!54m2s2a2, ~27!

and somf
2 (f0

2,0)5(r 2/s2) mx
2(0,x0

2). On the other hand, the
potential also gives

V~f,x0
2!5m2a2

r 2

s2
~12s2!f21

1

2
m2r 2f4, ~28!

V~f0
2 ,x!5m2a2~12s2!x21

1

2
m2

s4

r 2
x4, ~29!

and we can also introduce the meson masses

mf
2 ~f,x0

2!52m2
r 2

s2
~12s2!a2, ~30!

mx
2~f0

2 ,x!52m2a2~12s2!, ~31!

and now mf
2 (f,x0

2)5(r 2/s2) mx
2(f0

2 ,x). We also have
mf

2 (f0
2,0)5@2s2/(12s2)# mf

2 (f,x0
2) and mx

2(0,x0
2)

5@2s2/(12s2)# mx
2(f0

2 ,x). Here we notice thatr and s
control the meson masses, and there are many possible
choices for these parameters.

Let us now investigate defect formation. From the poten-
tial V(f,0) we can construct the kink solutionf(x)
5a tanh(mrax), which has the same energy we have already
calculated in the former system, namely,Ef5(4/3)mra3. In
this case, however, fromV(0,x) we have

x~y!5~r /s!a tanh~msay!, ~32!

and the corresponding energy isEx5(4/3)mr (r /s)a3. Here
we get Ex5(r /s)Ef , and so we can control this energy
relation by just controlling the ratio between the two param-
etersr ands.

Here the picture is richer than the one that appears in the
former system, evidently. For instance, from the above cal-
culations we see that values ats5r in the range (0,1) are
interesting values. Furthermore, the values251/3 is very
peculiar and imposes no restriction onr : This appears from
the meson masses, which allow introducing the function

g~s2!5
2s2

12s2
. ~33!

This function depends only ons2 and controls the ratio be-
tween meson masses of the field to be nested inside the do-
main wall. However, sinceg(s2)<1 for s2<1/3 andg(s2)
.1 for s2.1/3, we see that evaporation of domain ribbons
@6# into elementary mesons may or may not induce a back

reaction on the domain ribbon, and this appears to be con-
trolled by the parameters. As we have already shown, this is
not the case in the former model since there we have just one
parameter, and so there is no other parameter to be tuned
anymore. Fors251/3 the above function becomes unity, and
the meson masses degenerate into a single value, irrespective
of the meson being inside or outside the domain wall.

D. Classical stability

Since we are interested in implementing the idea of intro-
ducing internal structure to topological defects, we should
also investigate if the topological defects are classically or
linearly stable. Such an investigation seems to be important
because it put forward results that may unveil the range of
parameters where perturbative quantum corrections can be
implemented standardly.

This is the main motivation to investigate classical stabil-
ity of the pairs of solutions we have already introduced. Be-
fore doing that, however, we recall that the defects one is
dealing with come from kinks that appear in the correspond-
ing (111)-dimensional systems, and so the information we
are requiring can be obtained by just investigating these 111
systems. Furthermore, we already know@10,11# that the first
system presents stable solutions. Thus, we are left with the
issue of investigating classical stability only for the second
system.

This system is identified by the following potential:

V~f,x!5
1

2
m2r 2~f22a2!21m2f2x22m2a2s2x2

1
1

2
m2

s4

r 2
x4. ~34!

As we have already shown, it presents the two pairs of solu-
tions

f1~x!5a tanh~mrax!, x1~x!50, ~35!

x2~x!5~r /s!a tanh~msax!, f2~x!50. ~36!

We consider fluctuations about each one of these two pairs
of solutions, in the formf(x,t)5f(x)1( ih i cos(wit) and
x(x,t)5x(x)1( ij i cos(wit). We proceed standardly, and
we get the following Schro¨dinger operators, which respond
for classical or linear stability:

Sd
~1,2!52

d2

dx2
1Vd

~1,2!~x!, ~37!

whered5ff or d5xx, and

Vff
~1! ~x!54m2r 2a216m2r 2~f1

22a2!, ~38!

Vxx
~1!~x!52m2a2~12s2!12m2~f1

22a2!, ~39!

Vff
~2! ~x!52m2

r 2

s2
a2~12s2!12m2S x2

22
r 2

s2
a2D , ~40!
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Vxx
~2!~x!54m2s2a216m2

s4

r 2 S x2
22

r 2

s2
a2D . ~41!

The above problems were already solved in quantum me-
chanics. They are identified to modified Po¨schl-Teller sys-
tems, and everything one needs is given in Ref.@19#. The
general results can be resumed as follows: For the first pair
of solutions that connects (2a,0) to (a,0) by a straight line
with x50 we have to introduce the condition

2s41r 2s2<r 2, ~42!

in order to ensure stability of this pair of solutions. For the
second pair of solutions that connects„0,2(r /s)a… to
„0,(r /s)a… by a straight line withf50 we have to introduce
the condition

2r 21s2<1. ~43!

These conditions appear after investigating the minimum en-
ergy eigenvalue of each one of the four Schro¨dinger opera-
tors just introduced.

The above results (42) and (43) show that there is room
for choosing the parametersr ands without changing stabil-
ity of the solutions. In particular, if one setss251/3, Eqs.
(42) and (43) imply thatr 251/3, also. Here we recall that
the values251/3 was already shown to be peculiar, since it
makes the field that generates defects to be nested inside the
domain wall to have the same mass, irrespective of being
inside or outside the wall. Furthermore, if one setsr 5s, one
sees from Eqs. (42) and (43) that now one has stable solu-
tions only in the ranger 25s2P(0,1/3#. Recall thatr 5s
makes the energy of each one of the two solutions we are
considering to collapse into a single value. These results are
interesting and will be further considered in the next section,
where we deal with high temperature effects.

III. HIGH TEMPERATURE EFFECTS

The above investigations lead us to pictures for building
defects inside defects at zero temperature. However, to
present investigations appropriate to the standard cosmologi-
cal scenario we think that we should consider thermal ef-
fects, since one knows that cosmic evolution occurs via ex-
pansion and cooling. Toward this goal, let us now deal with
the effective potential, in order to investigate how the
vacuum states of the system of two coupled real scalar fields
change when high temperature corrections are introduced.

In the following we shall first review the main steps to get
to the thermal effects in the general system of two real scalar
fields. In the sequel, we introduce the results for the specific
class of systems of two scalar fields, defined via the function
H(f,x). Our investigation follows with two subsections, in
which we calculate the critical temperatures for each one of
the two systems introduced in the former section.

A. General calculations

We follow the standard route to symmetry breaking at
high temperature, as we have already learned from the works
@15–17#. In this case the one-loop contributions to the effec-
tive potential can be cast to the general form

U15
1

2E dnk

~2p!n
ln det M , ~44!

where the matrixM is given by

M5S k21Uff Ufx

Uxf k21Uxx
D , ~45!

where the derivative of the potential has to be calculated at
constant and uniform field configurations. We can rewrite
this result as

U15
1

2E dnk

~2p!n
@ ln~k21M 1

2 !1 ln~k21M 2
2 !#, ~46!

where

M 6
2 5

1

2
~Uff1Uxx!6

1

2
A~Uff1Uxx!224UfxUxf.

~47!

To get to the thermal effects we should set

E dk0→
1

2b (
n52`

`

, k0→
2np

b
, b5

1

T
. ~48!

In this case we have

Ub
15

1

2b(
i

(
n52`

` E dn21k

~2p!n21
lnS 4p2n2

b2
1EMi

2 D ,

~49!

where we have setEMi

2 5kW21Mi
2 , with the understanding

that M15M 1 andM25M 2 .
Let us now work in the (311)-dimensional spacetime. In

this case, after performing summation and integration we
get, taking into account only the high temperature effects,

Ub
15

1

24b2
~M 1

2 1M 2
2 !. ~50!

We use the values presented in Eq.~47! to obtain

Ub
15

1

24b2
~Uff1Uxx!, ~51!

and so we get to the final result

Ub5U~f,x!1
1

24b2
~Uff1Uxx!. ~52!

Symmetry exists when there is no spontaneous symmetry
breaking. However, since we are dealing with two fields, we
have to impose conditions for the two independent field di-
rections, and this will lead us to two critical temperatures.
Here the results are

~Tf
c !25224

Ūff

Ūffff1Ūxxff

, ~53!
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~Tx
c !25224

Ūxx

Ūffxx1Ūxxxx

, ~54!

where the bar over the potential indicates that after deriving
the potential we should setf50 andx50.

For systems defined byH(f,x), the above expressions
for the critical temperatures can be written in a better form,
in terms of the functionH. In this case we have to replace,
for instance,

Uff→Hff
2 1HfHfff1Hfx

2 1HxHffx , ~55!

Uxx→Hxx
2 1HxHxxx1Hfx

2 1HfHfxx . ~56!

The other terms can be written straightforwardly. However,
if one takes the point of view that perhaps the most interest-
ing systems are defined by potentials that contain at most the
fourth power in the fields, then we should only consider
functionsH(f,x) that contain at most the third power in the
fields. In this case we have simpler expressions for the quar-
tic derivative of the potential, and they are, explicitly,

Uffff→3~Hfff
2 1Hffx

2 !, ~57!

Uxxxx→3~Hxxx
2 1Hfxx

2 !, ~58!

Uffxx→2~Hffx
2 1Hfxx

2 !1HfffHfxx1HxxxHffx .
~59!

The above results are general results, and now we focus at-
tention on the two systems already introduced in Sec. II to
calculate explicit expressions for their critical temperature.

B. Critical temperature in the first system

We are interested in investigating the system defined via
the functionH(f,x) introduced in Eq.~8!. Here the critical
temperatures are given by

~Tf
c !25

12r 2a2

3r 21r 12
, ~60!

~Tx
c !25

12r 2a2

r ~r 15!
. ~61!

These results show that

~Tf
c !25~Tx

c !2 f ~r !, ~62!

where f (r ) is given by

f ~r !5
r ~r 15!

3r 21r 12
. ~63!

We see thatf (0)50, f (1)51, andf (`)51/3. Furthermore,
f (r ) is monotonically increasing forr P(0,1), and monotoni-
cally decreasing forr P(1,̀ ), with f (1)51 as its maximum
value. This leads to the result that (Tf

c )2 is always lesser than
(Tx

c)2, irrespective of the value ofr . We remark thatTf
c and

Tx
c cannot coincide becauserÞ1.

C. Critical temperature in the second system

Let us now focus attention on the second system, defined
via the potential given by Eq.~34!. Here the critical tempera-
tures are given by

~ T̄f
c !25

12r 2a2

113r 2
, ~64!

~ T̄x
c !25

12r 2s2a2

r 213s4
. ~65!

We can write

~ T̄f
c !25~ T̄x

c !2 f ~r ,s!, ~66!

where the functionf (r ,s) is given by

f ~r ,s!5
1

113r 2S r 2

s2
13s2D . ~67!

This function presents the following two interesting possi-
bilities of being unity: forr 5s, in the interval (0,1), and for
s251/3, irrespective of the value ofr . However, from stabil-
ity results of the former section we see that the two critical
temperatures may collapse into a single one in the ranger 2

5s2P(0,1/3#.

D. High temperature considerations

The high temperature results obtained for the first system
show that such system breaks the symmetry first in one field
direction, and it is only after this symmetry breaking that the
second symmetry breaking will appear. On the other hand,
we know that this system allows the presence of defects in-
side defects only after the occurrence of the second symme-
try breaking. These critical temperatures areTx

c andTf
c , re-

spectively, and so we see that there is a temperature range,
which can be written viat5T/Tx

c asAf (r )<t<1, in which
the system only supports structureless domain walls. In the
second system there is a range in parameter space wherer 2

5s2P(0,1/3# that makes the two temperaturesT̄f
c andT̄x

c to
collapse into a single one.

Another interesting issue concerns structureless domain
walls versus domain walls that support domain ribbons. To
shed some light on this, let us first recall thatU(f,x) given
by Eq. (9) has the following single-field limits:

U~f,0!5
1

2
m2r 2~f22a2!2, ~68!

U~0,x!5
1

2
m2~x22ra2!2. ~69!

However, from the results for the critical temperature in the
first model we see that (Tx

c)2 is always greater than (Tf
c )2.

Thus, if one thinks of defect formation within the cosmologi-
cal scenario, it is not unreasonable to suppose that the host
domain wall is generated by thex field. To compare this to
structureless domain walls we focus attention on the~single-
field! system defined byU(0,x).
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We recall thatr is real and positive, and so we see that the
above potentialU(0,x) presents the standard domain wall as
structureless. For this system the critical temperature can be
written as

Tc
254ra2, ~70!

and so we can get

~Tx
c !25S 3

51r D Tc
2 . ~71!

The above result compares the critical temperature for the
formation of structureless domain walls in a system of just
one field to the critical temperature for the formation of do-
main walls that support domain ribbons in the first system of
two fields. This result shows that the presence of the second
field, which responds for nesting defects inside the wall, con-
tributes to reducing the critical temperature. The reduction
depends onr , and this parameter can be controlled to directly
affect the picture for defect formation within the cosmologi-
cal scenario.

Another high temperature result can be introduced in the
following way: In the first system of two fields we still con-
sider r real and positive, but now we makel52mr . This
possibility was already considered in@20#, but there the mo-
tivation is directly related to investigations of an enlarged
system where the symmetryZ23Z2 is changed to become
Z23U(1), with U(1) implemented globally. The present in-
terest is, however, to keep the symmetry as the discreteZ2
3Z2. In this case the potentialU(f,x) given by Eq. (9)
changes to

Ū~f,x!5
1

2
m2r 2~f22a2!22m2r ~f22a2!x212m2f2x2

1
1

2
m2x4. ~72!

Now it is not hard to realize that spontaneous symmetry
breaking gets implemented only from theZ2 symmetry asso-
ciated with thef field. This means that domain walls gen-
erated by thisf field cannot host domain ribbons. Although
in this new model domain ribbons cannot be nested inside
domain walls anymore, we believe that it is still interesting
to investigate how the high temperature effects enter the
game in this case too. Here we take advantage of the inves-
tigations already done to introduce the ratio between the
critical temperatures in this system and in the~single-field!
system defined byŪ(f,0). This ratio is controlled by
@3r 2/(3r 22r 12)#1/2. It is lesser or equal to unity forr
P(0,2# and greater forr P(2,̀ ), and so the critical tempera-
ture in the system of two fields defined byŪ(f,x) is lesser
or equal to the critical temperature in the system of one field
defined byŪ(f,0) for r lesser or equal to 2 and greater for
r greater than 2.

IV. COMMENTS AND CONCLUSIONS

In this work we have investigated the possibility of intro-
ducing defects inside defects in systems of two real scalar

fields. After presenting some general considerations, we have
investigated the high temperature thermal effects on the clas-
sical potential. These investigations were done on two spe-
cific systems, the first being defined by a functionH
5H(f,x), and the other defined by a more general poten-
tial, as occurs in models usually considered to build defects
inside defects. The basic motivation for investigating these
two systems is to provide a comparison between the standard
approach to defects inside defects and the alternative route
recently introduced in@8#.

The present investigations show that systems belonging to
a general class of systems of two real scalar fields present all
the features one needs to implement the idea of nesting do-
main ribbons inside domain walls. These systems are simpler
because they are defined via the functionH(f,x), are con-
trolled by a reduced set of parameters, present stable con-
figurations, and can be extended to become supersymmetric
@20# very naturally. This is interesting since one keeps the
underlying features of systems clearer than the features that
appear in the standard approach. As we have seen, however,
in this system there are two critical temperatures, driving
symmetry breaking in each one of the two independent field
directions. The possibility of having two distinct critical tem-
peratures implies that the internal structure of the domain
wall cannot appear simultaneously with the domain wall it-
self. This is in distinction to results in the second system, in
which it is possible to introduce a single critical temperature
to drive symmetry breaking in the two field directions simul-
taneously. The relation between the two critical temperatures
in the first system is (Tf

c )25@r (r 15)/(3r 21r 12)#(Tx
c)2

and depends onr , the ratio between the two parametersl
and m that defines the system. In connection with issues
discussed in Sec. I we see thatr is directly related to distinct
possibilities of productions of~i! Fermi balls or~ii ! ribbon
loops. For instance, forr'1 the system seems to favor rib-
bon loops instead of Fermi balls. This samer also controls
the relation between the critical temperatures for the forma-
tion of structureless domain walls (Tc) and domain walls
that support domain ribbons (Tx

c). The specific relation is
given byTx

c /Tc5@3/(51r )#1/2.
The systems of two coupled real scalar fields introduced

in Sec. II can be seen as the real bosonic sector of a super-
symmetric theory@20#. Within this context, if we follow the
point of view of supersymmetry to implement the idea of
nesting domain ribbons inside domain walls, we can very
naturally introduce fermions into the system. Thus super-
symmetry may be very naturally used to guide investigations
to more realistic models. For instance, instead of considering
the Z23Z2 symmetry we may use theZ23U(1) symmetry,
and this may make the domain wall charged, or yet the
U(1)3U(1) symmetry that is the way to get to the string
territory, where the original idea of introducing internal
structure to topological defects was first implemented. Some
investigations are connected to ideas presented in Sec. I.
Other investigations are directly related to the recent works
@21,22#. For instance, in@22# a Z23U(1) surface current-
carrying domain wall model was investigated, but there the
system is defined by a general potential of the form of our
second system of two coupled fields, and all the results are
implemented numerically due to difficulties in finding ana-
lytical solutions to the corresponding equations of motion.
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These works seem to deserve further consideration, now by
an alternate way that considers systems defined viaH(f,x),
because in this case there are interesting general situations
where we can find explicit analytical solutions@20# to the
equations of motion. The several motivations@22# for calcu-
lating internal quantities to such domain walls broaden with
the fact that they may be calculated analytically. These and
other related issues are presently under consideration.
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