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Domain ribbons inside domain walls at finite temperature
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In this paper we deal with defects inside defects in systems of two scalar fields Inddmensions. The
systems we consider are defined by potentials containing two real scalar fields, and so we are going to
investigate domain ribbons inside domain walls. After introducing some general comments on the possibility
of finding defects that support internal structure in two specific systems, we introduce thermal effects to show
how the picture for domain walls hosting domain ribbons appears at high temperature.
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[. INTRODUCTION closed domain walls bubbles to collapse away. The presence
of domain ribbons within walls is not expected to qualita-
The possibility that the early universe may have experitively change this process, although there may be a release of
enced symmetry breaking phase transitions resulting in thboson radiation from the ribbon.
formation of defects has provided a motivation for studies of When fermions are present, however, the situation may be
several possible defect configurations — see, for instance little more complicated. It has been pointed 48]
Ref.[1]. In this route to defect formation we can single out (within the context of a model containing no domain rib-
the case that considers the presence of defects inside defedteng that if fermions are coupled strongly to a domain wall
This possibility was initiated ifi2], first within the context of  field, and if the fermions, which are massive in the vacuum,
superconducting strings, where one requires a model engebecome massless within the domain wall, then the Fermi gas
dering a U(1xU(1) symmetry, and after if3,4]. Other  within the wall can contribute a degeneracy pressure which
more recent works on the same issue can be fouf-#8].  tends to stabilize the surface area of the wall. However, the
To implement the idea of finding defects inside defects, invacuum bag can flatten and fragment, ultimately producing
general one considers systems of two scalar fields, in whictiny fermionically stabilized bags of false vacuum called
the first field plays the usual role one finds in the standard'Fermi balls.” The domain walls in this type of model can
route to defect formation, and the second field enters theltimately be replaced by Fermi balls, which can be cosmo-
game via a potential that couples it to the first field, in a waylogically acceptable. It has been argued that this type of
such that the system now allows for the presence of defect®odel can be obtained from a supersymmetric domain wall
inside the defect originated by the first scalar field. This ideanodel[12], where supersymmetry-breaking terms cause the
is usually implemented by introducing a general potentialexact wall-producing discrete symmetry to be replaced by an
depending on the two scalar fields and containing severapproximate one.
parameters that am@ posteriorituned to allow for the pres- Consider now a system accommodating fermions and do-
ence of defects inside defects. Despite this general picture, ihain ribbons. A specific model is the supersymmetric system
was recently shown if8] that models belonging to a class of already investigated in Reff14]. In this model the fermions
systems of two real scalar fielfl8—11] also appear suitable become massless inside the ribbons, but are massive outside
to develop the idea related to internal structure of topologicathe ribbons — both inside the domain wall and in the
defects. In this case the model is controlled by a reducestacuum. Therefore there is a strong force attracting the fer-
number of parameters, and this may guide us toward aions into the ribbons from the domain wall. Thus, fermions
clearer understanding of some physical aspects of the syfhat are initially present within the wall may quickly be ab-
tem. sorbed into the ribbons. A Fermi gas of massless fermions
The systems we shall investigate are defined with two readlevelops within a ribbon, allowing a closed ribbon loop to
scalar fields in 3-1 dimensions and presen X Z, symme-  stabilize inside the wall.
try that implements spontaneous symmetry breaking in the Now let us again suppose that a small energy difference in
two independent field directions. Thus we shall be dealinghe initially degenerate vacuum states develops, so that the
with the presence of domain ribbons inside domain wallsexact discrete symmetry giving rise to the domain walls is
Although domain walls may conflict with observations, be-replaced by an approximate discrete symmetry. As before,
cause of wall domination within cosmological scenarios,we expect the space to fill with closed bags of false vacuum,
there exist mechanisms that allow an avoidance of wallvhich tend to collapse. There are now two possibilitigs:
domination. One such mechanism relies on allowing the exEither the typical vacuum bag will collapse away before any
act discrete symmetry to be replaced by an approximate digibbons form within it, or(ii) ribbons will form before the
crete symmetry, and this can occur, for example, as a conséag collapses completely. In cadg the end result may be
guence of supersymmetry breaking in supersymmetri¢the production of stable Fermi balls. In cagg, closed rib-
theories[12]. When there are no fermions present, then thebon loops form within the typical vacuum bag, and the rib-
regions of higher energy density tend to shrink, allowingbons tend to absorb the fermions from the wall, so that a
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stable ribbon loop can reside in the vacuum bag. The abovihis case, systems defined by the functle(, y) present
scenario serves to demonstrate the possible importance sbme general and very interesting properties, mainly in 1
finite temperature effects, since the dynamical pathways and 1 dimensions. For instance, the second-order equations of
intermediate states involved in cas@sand (ii) leading to  motion for static solutions,

the possible end states may depend strongly on the difference

between the critical temperatures for domain wall and do- d?¢

main ribbon formation. — =HyHg tH Hgy, ©)
To explore some of the above issues, in this work we shall dx

first deal with classical features of the system introduced in

[8] and of another system, presented @i This last system d?x B

is defined by a potential that is usually considered to develop & =HoHg FHH )

the idea of introducing internal structure to topological de-

fects, and so we shall be also offering a comparison betweegye solved by field configurations satisfying the following set
the standard procedufé] and the alternative approach in- of first-order differential equations:

troduced in[8]. Owing to direct interest in cosmology, we

shall calculate the effective potential, from which we obtain de

the high temperature effects in each one of these systems. &=H¢, 5)
The thermal effects are obtained by following the standard

works[15—17], and here we remark that the above systems d

are defined by potentials that depend on two fields, and so _X:H _ (6)
the effective potential or, better, the thermal effects in gen- dx X

eral introduce two critical temperatures, driving symmetry _ ) )
breaking in each one of the two independent field directionsThe energy is bounded from below, and for configurations
These investigations are organized as follows. In the nexPeying the above first-order equations the energy gets to its
section we introduce general considerations concerning th@inimum value, given by

presence of domain ribbon inside domain wall in two spe-

cific systems. We also investigate the classical or linear sta- Eg=H(¢(),x())—H(¢(—=),x(—*)). (7)

bility of the solutions we need to implement the idea of i ) ) )
introducing defects inside defects. In Sec. Ill we calculatd Urthermore, the set of first-order differential equations can
the effective potential and present the high temperature coR2® S€€n as a dynamical systems, and we can take advantage
rections to the classical potential. Here we obtain explicit®f &ll the mathematical tools available to dynamical systems
expressions for the critical temperatures in each one of thi? deal with those equations. In particular, one sees that the
two systems under consideration. We end the work in Secingular points of the corresponding dynamical system are

IV, where we comment on conclusions and possible gener"il1II the possible minimum energy states of the field system,
alizations of the present investigations. and so they are identified to the true vacuum states of the

system. On the other hand, all static configurations we can

find in the above class of systems are classically or linearly

stable. This is interesting and shows that perturbative quan-

We are interested in systems of two real scalar fields. Ifum corrections about static configurations can be done by

this case the general Lagrangian density is given by J'US]E f[0||8§>Win9 the standard procedure — see, for instance,
Ref.[18].

Il. GENERAL CONSIDERATIONS

1 1
=— “h+ — “y— .
£ Za“q& ¢ Zﬁ“X x=U(é.x) @ B. First system of two fields
As a first example, let us focus attention on the system

Here we are using natural units, in whiék=c=1, and the i
defined by

metric tensorg®? is diagonal, with element§l,—1,—1,
—1]. U=U(¢,x) is the potential, in general a nonlinear
function of the two fields. In the following we shall comment H(p,x)=A\
on some systems of two coupled real scalar fields described

via the above Lagrangian density.

+udx. )

1
§¢>3—32¢>

In this case the potential is given by

A. Class of systems 1, o 2y ) s 92 2
The class of systems of two real scalar fields that we are U(¢.x0= 5)\ (¢7=af) "+ hu($"—af)x"+2p7¢"x
interested in is defined by the following potential, as was

Lo A, 1
already stressed if9—11]: n EMZXA- 9)
U 24 Ih2 2
(bx)= 2 ot 27X @ This is the system already investigated[8], and here we

return to it to show that it engenders some very specific
whereH=H (¢, x) is a smooth but otherwise arbitrary func- features, unrealized in RdB]. To see this, let us first search
tion of the fields¢ andy, andH ,=dH/d¢, H,=dH/dx.In  for the vacuum states: There are four, two g0
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and ¢3=a?, and two at¢=0 andy3=ra?. For simplicity,
here we are using=ur, andr is a real, positive, and di-
mensionless parameter.

The potential presents the following typical forms:

U(90)= ulr(¢2—a?), (10

U0x)= %Mz(Xz_raz)z- (11

In this case we see that both(¢,0) andU(0,y) present

spontaneous symmetry breaking, and this is all we need for
building defects inside defects in the above system. In thig"

case we can introduce meson masses
2 2
m2( 65,0 =4u’ra’ (12

m3(0,xg) = 4u’ra’, (13

and somj(¢5,0)=r m2(0,x5). On the other hand, the po-

tential also gives

U(¢5,x)=2uax*+ %sz“, (14
U(¢,x5)=2ura¢?+ 1# r2gt. (15)

Here we can also introduce meson masses
M (b, x5) =4u’ra?, (16)
me( 5. x) = 4u?a’ (17)

and nowm¢,(¢> Xo)—r m (a X)- We also havem;(¢5,0)
=r my(¢,ra’) andmy (O,Xo)_r m2(¢5.x). The parameter
r controls the meson masses, and we see that-fdr (that

7871

Here we see that the limit—1 decouplesp, from ¢_, and
so there is no interaction between the two fields. A lesson to
learn is then that although the original system has two inde-
pendent parameters, namelyand w, only their ratio\/u or
r is physically relevant to the issues under consideration, and
this ratio should only take values in each one of the two
distinct regions € (0,1) orr e (1,0).

Let us now focus attention on defect formation. We see
that the potentiall(¢,0) presents spontaneous symmetry
breaking, and so we can have the kink solution

d(x)=a tanh ur ax), (20

with energy E ,= (4/3)ur a. However, fromU(0,y) we

also have the kink solution

1/2

x(y)=ar¥? tank(ur'? ay), (21)
32 43

with energy E,=(4/3)ur*<a*. Here we have E,

=r1? E,., and so the parameteralso controls the energy
ratio for defect formation. The picture is then the following:
The domain wall generated by the kink of one of the two
fields will host the domain ribbon generated by the kink of
the other field; the host and the nested fields are determined
by the value of the single parametet 1, which is the same
parameter that controls how mesons of the nested field prefer
to live inside or outside the domain wall.

C. Second system of two fields

As a second example, let us now consider the potential

V() = 3P @2-a?) 2w gad)y

1
+ pPatby P+ 2 ey, (22)

Herer, b, andc are real and positive parameters, and now

is, A\=u) the above mass values degenerate to the singlthe system is of the form considered [i8]. This potential

value 4u%a?
At this point we realize that for # 1, that is, for\ # u,
the system presents discrefg X Z, symmetry. The limit

presents the following typical forms:

(23

r—1 introduces th&Z, symmetry, and this means that the

V(8.0)= g (gi-ad)

two fields have the same physical significance. This seems to
pose the question of whether the system will choose the field
to host the other field, to lead to defects inside defects. How-
ever, a closer investigation shows that this question is in fact
nonsense since the limit—1 should be avoided, because in
this case the system of two coupled fields degenerates inid/e shall assume thatOb®< 1. In this case we see that both
two systems of a single field each one. To see how thi&/(¢,0) andV(0,x) present Spontaneous symmetry breaking.
works explicitly, let us rotate the #,y) plane to the However, while the valuespj=a? and x=0 are true
(¢4 .,4_) plane, wherep. =2 Y4 y+¢). In this caseH  vacuum states, the values=0 andy3=[(1—b?)/c?]a® are
can be cast in the form just local minima of the potential. We make these local
minima to be true vacuum states by reducing the number of
H(¢. ¢ )=2"Y2u[F (¢d:.d_)~F(d_.0.)], independent parameter, requiring thdt?=(1—b?)2. For

1 1
V(0x) = 5 uPr?at— p?a(1-b%) x>+ 5 uPe?x*.
(24

(18 simplicity we set 1 b?=s? and the potential is now written
. o in terms of two parameters, namelys (0,0) andse (0,1).
where the functiorf- is given by In particular,V(0,y) can be cast to the form
)= 1+—r S —ral¢p.+=(1-r . 1 s r2 \?
Fi(de dz)= ¢S —ralep. ( )% b+ Vo= S| - et 5
s

(19 r?
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and now there are true vacuum states als¢pat0 andy;  reaction on the domain ribbon, and this appears to be con-
=(r?/s?)a®. Here we note that the potentM( ¢, x), written  trolled by the parametes. As we have already shown, this is
in terms of these two parametersinds, does not reproduce not the case in the former model since there we have just one
the potentialU(¢,y) of the former system anymore. Thus, parameter, and so there is no other parameter to be tuned
this second system is different from the first system in theanymore. Fos®= 1/3 the above function becomes unity, and

entire region of parameters= (02) andse (0,1). the meson masses degenerate into a single value, irrespective
In this case we have the meson masses of the meson being inside or outside the domain wall.
2 2 — 2,2,2
m($o,0) =4ureas, (26) D. Classical stability

m)z((O,X(z)):4MZSZaZ, (27) Since we are interested in implementing the idea of intro-
ducing internal structure to topological defects, we should
and sa’nﬁ,(d)é,O):(rZ/sz) mi(o,xg). On the other hand, the also investigate if the topological defects are classically or
potential also gives linearly stable. Such an investigation seems to be important
because it put forward results that may unveil the range of
r2 1 parameters where perturbative quantum corrections can be
V(¢ x5)=n’a?—(1-5) ¢+ §M2f2¢4, (28 implemented standardly.
S This is the main motivation to investigate classical stabil-
ity of the pairs of solutions we have already introduced. Be-
fore doing that, however, we recall that the defects one is
dealing with come from kinks that appear in the correspond-
ing (1+1)-dimensional systems, and so the information we
and we can also introduce the meson masses are requiring can be obtained by just investigating thes#& 1
systems. Furthermore, we already knjd@,11] that the first

1 s
V(g3 =utat(l-Shxtt gt oyt (29

2

) 5 o o o system presents stable solutions. Thus, we are left with the
mig( &, x0) =2u g(l_s )as, (30 issue of investigating classical stability only for the second
system.
This system is identified by the following potential:
mi(¢5,x)=2p%a%(1- %), (3 Y Y ap
1
and now mi(gs,xé) =2(r2/s§) mi(zqs%,x). We also have V(¢.x)= 5 u?ri(¢7—a) 2+ u??x*— uPa’s’y?
Mg(#0,.0)=[2s7(1-s)] my(b.xg)  and  mi(0xp)
=[2s%/(1—-s%)] m2(¢5.x). Here we notice that and s 1 s
control the meson masses, and there are many possible +§,u2—2x4. (39
r

choices for these parameters.
Let us now investigate defect formation. From the poten- ] ]
tial V(4,0) we can construct the kink solutiom(X) As we have already shown, it presents the two pairs of solu-
=a tanhurax), which has the same energy we have already!0ns
calculated in the former system, namd5/¢=(4/3)ura3. In
this case, however, frond(0,y) we have ¢1(x)=a tani(urax), x.1(x)=0, (35

x(y)=(r/s)a tanf(usay), (32 x2(X)=(r/s)a tanHusax), ¢,(x)=0. (36)

: - 3

and the corresponding energylis=(4/3)ur(r/s)a”. Here  \ye consider fluctuations about each one of these two pairs
we get Exz.(r/s)E(,,, "’,‘”d SO we can control this energy of solutions, in the forme(x,t) = ¢(x) + = n; cos@vt) and
relation by just controlling the ratio between the two param-, (x t)= y(x)+3;& cos@t). We proceed standardly, and

etersr ands. o _we get the following Schidinger operators, which respond
Here the picture is richer than the one that appears in thg,, cjassical or linear stability:

former system, evidently. For instance, from the above cal-

culations we see that values &tr in the range (0,1) are 42
intere_sting va_llues. Furthermo_re,_ the vali_;%:-— 1/3 is very Sihd=— _2+Vglv2>(x), (37)
peculiar and imposes no restriction onThis appears from dx

the meson masses, which allow introducing the function

whered= ¢ ¢ or d= xy, and
2

2s
2\ —

9s)="T"2 (33 V() =4pr2a2+6u’r2(¢i-a%),  (39)
This function depends only os? and controls the ratio be- vg(lx)(x)z2M2a2(1—52)+2M2(¢§—a2), (39
tween meson masses of the field to be nested inside the do-
main wall. However, sincg(s?)<1 for s?><1/3 andg(s?) .2 .2

2 . . .

>1 for s">1/3, we see that evaporation of domain ribbons V%(X)Zzﬂz_zaz(l_sz)JrzMz X2— _232) . (40)
[6] into elementary mesons may or may not induce a back S s
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4

2
S
2
V;X)(X) =4u’s?a’+ 6M2—r2

2o (41) ut 1f K detm (44)
——a|. == n ae ,
X 2) (2m>

The above problems were already solved in quantum mewhere the matrixM is given by
chanics. They are identified to modified debl-Teller sys-

tems, and everything one needs is given in R&€l]. The _ k2+U¢>¢ Uy 45

general results can be resumed as follows: For the first pair B U,o k2+ U’ (45

of solutions that connects—a,0) to (a,0) by a straight line

with y=0 we have to introduce the condition where the derivative of the potential has to be calculated at
constant and uniform field configurations. We can rewrite

2s*+r2s?<r?, (42)  this result as
in order to ensure stability of this pair of solutions. For the 11 d’k
second pair of solutions that connect§,—(r/s)a) to Ul:zf (2m)” [In(k?+M?2)+In(k*+M?)],  (46)

(0,(r/s)a) by a straight line withgp=0 we have to introduce

the condition where

2r2+s°<1. (43

1 1
M2=2(Uyu+U, ) *= J(Uyy+tU, )2—4U, U, ,.
These conditions appear after investigating the minimum en- 2UsstUnd =5 VUsst Ui IxTxe
ergy eigenvalue of each one of the four Sclinger opera- 47
tors just introduced.

The above results (42) and (43) show that there is room To get to the thermal effects we should set

for choosing the parametersands without changing stabil- 1 = onar 1

ity of the solutions. In particular, if one ses#=1/3, Egs. j dko— = 2 , ko——, B==. (48
(42) and (243) imply that2=1/3, also. Here we recall that 2Bn=== B T

the values==1/3 was already shown to be peculiar, since it :

makes the field that generates defects to be nested inside thnethls case we have

domain wall to have the same mass, irrespective of being 1 o dv—1k 47202

inside or outside the wall. Furthermore, if one setss, one Up=52> > — In( —+Em |,
sees from Egs. (42) and (43) that now one has stable solu- 2BT n=me ) (2m)" B '

tions only in the range?=s?e(0,1/3]. Recall thatr=s (49

makes the energy of each one of the two solutions we are 2 oo 5 _
considering to collapse into a single value. These results awhere we have seky =k“+ M7, with the understanding
interesting and will be further considered in the next sectionfhatM =M, andM,=M_.

where we deal with high temperature effects. Let us now work in the (3- 1)-dimensional spacetime. In
this case, after performing summation and integration we
Ill. HIGH TEMPERATURE EFFECTS get, taking into account only the high temperature effects,

The above investigations lead us to pictures for building 1
defects inside defects at zero temperature. However, to Up=——(MZ+M2). (50
present investigations appropriate to the standard cosmologi- 245
cal scenario we think that we sh_ould cor_15|der thermal ef-We use the values presented in E4{) to obtain
fects, since one knows that cosmic evolution occurs via ex-
pansion and cooling. Toward this goal, let us now deal with 1
the effective potential, in order to investigate how the U;la:_(u¢¢>+ U, (51)
vacuum states of the system of two coupled real scalar fields 42
change when high temperature corrections are introduced. )

In the following we shall first review the main steps to get@nd so we get to the final result
to the thermal effects in the general system of two real scalar
fields. In the sequel, we introduce the results for the specific
class of systems of two scalar fields, defined via the function
H(¢,x). Our investigation follows with two subsections, in
which we calculate the critical temperatures for each one of Symmetry exists when there is no spontaneous symmetry

Ug=U(,x)+ (UggtU,,). (52)

2432

the two systems introduced in the former section. breaking. However, since we are dealing with two fields, we
have to impose conditions for the two independent field di-
A. General calculations rections, and this will lead us to two critical temperatures.

) Here the results are
We follow the standard route to symmetry breaking at

high temperature, as we have already learned from the works U,
[15—-17. In this case the one-loop contributions to the effec- (T)?=— p) B L E— (53
tive potential can be cast to the general form UsgpetUxxos
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U, C. Critical temperature in the second system
(TC)2= —24 XX
X — — ’

(54
ddxx +U XXXX

Let us now focus attention on the second system, defined
via the potential given by Ed34). Here the critical tempera-

where the bar over the potential indicates that after derivinUres are given by
the potential we should set=0 andy=0.

2.2
For systems defined b (¢, x), the above expressions (F)zzlzr a (64)
for the critical temperatures can be written in a better form, 1432
in terms of the functiorH. In this case we have to replace,
for instance, - 12r2s2a2
2 2 (T r2+3s*’ (69
Ugs—HgstHoHgge T Hy THHGgy (59
We can write
UXX_)H)Z(X+HXHXXX+H2¢X+H¢H¢XX' (56)
TC\2_ (TC)2
The other terms can be written straightforwardly. However, (Ty)"=(T)7 1(r.s), (66)
@f one takes the poir_1t of view that _perhaps the most interestynere the functiorf (r,s) is given by
ing systems are defined by potentials that contain at most the
fourth power in the fields, then we should only consider r2
functionsH( ¢, x) that contain at most the third power in the f(r,s)= 5 —24—352 . (67)
fields. In this case we have simpler expressions for the quar- 1+3r%\s

tic derivative of the potential, and they are, explicitly, This function presents the following two interesting possi-

bilities of being unity: forr =s, in the interval (0,1), and for

U 3(H3,,+H3,.), 5
a0 30T Higy) ®7 s?=1/3, irrespective of the value of However, from stabil-
2 2 ity results of the former section we see that the two critical
U= 3(Hn t Higed), (58 temperatures may collapse into a single one in the raAge
2 2 =s?¢e(0,1/3].
Uggnx=2(H50, T Ho) T HogeH ot HyH o -

(59 D. High temperature considerations
The above results are general results, and now we focus at- The high temperature results obtained for the first system
tention on the two systems already introduced in Sec. Il tshow that such system breaks the symmetry first in one field
calculate explicit expressions for their critical temperature. direction, and it is only after this symmetry breaking that the

B. Critical temperature in the first system

We are interested in investigating the system defined vi
the functionH( ¢, x) introduced in Eq(8). Here the critical
temperatures are given by

(15y2= 22 (60
32442’
TH)?= 1ra 61
(T r(r+5)° (6D
These results show that
(T5)2=(T%)? f(r), (62)
wheref(r) is given by
Hr) r(r+5) 63
rN=———.
3r2+r+2

We see thaf(0)=0, f(1)=1, andf(e«)=1/3. Furthermore,
f(r) is monotonically increasing fare (0,1), and monotoni-
cally decreasing for e (1,0), with f(1)=1 as its maximum
value. This leads to the result thaﬁ;()2 is always lesser than
(T;)Z, irrespective of the value of. We remark thaffg, and
T; cannot coincide becauset 1.

second symmetry breaking will appear. On the other hand,
we know that this system allows the presence of defects in-

é:,ide defects only after the occurrence of the second symme-

try breaking. These critical temperatures @fgandTg,, re-
spectively, and so we see that there is a temperature range,
which can be written viazT/T; as/f(r)<t<1, in which

the system only supports structureless domain walls. In the
second system there is a range in parameter space where

=se(0,1/3] that makes the two temperaturg§ and TS to
collapse into a single one.

Another interesting issue concerns structureless domain
walls versus domain walls that support domain ribbons. To
shed some light on this, let us first recall thafe, x) given
by Eqg. (9) has the following single-field limits:

U(60)= g uir(d2-a?), (68)

U(0x)= %,uz(xz— ra?)?. (69
However, from the results for the critical temperature in the
first model we see thafT()? is always greater thanT(,)?.
Thus, if one thinks of defect formation within the cosmologi-
cal scenario, it is not unreasonable to suppose that the host
domain wall is generated by thefield. To compare this to
structureless domain walls we focus attention on(tiegle-

field) system defined by (0,x).
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We recall that is real and positive, and so we see that thefields. After presenting some general considerations, we have
above potential (0,y) presents the standard domain wall asinvestigated the high temperature thermal effects on the clas-
structureless. For this system the critical temperature can b&cal potential. These investigations were done on two spe-
written as cific systems, the first being defined by a functiéh

=H(¢,x), and the other defined by a more general poten-
T2=4ra?, (70)  tial, as occurs in models usually considered to build defects
inside defects. The basic motivation for investigating these
and so we can get two systems is to provide a comparison between the standard
approach to defects inside defects and the alternative route
2 71) recently introduced inf8].
¢ The present investigations show that systems belonging to
. a general class of systems of two real scalar fields present all
The above result compares the critical temperature for thghe features one needs to implement the idea of nesting do-
formation of structureless domain walls in a system of jusimain ribbons inside domain walls. These systems are simpler
one field to the critical temperature for the formation of do-pecause they are defined via the functie@d, y), are con-
main walls that support domain ribbons in the first system orqjled by a reduced set of parameters, present stable con-
two fields. This result shows that the presence of the secongyyrations, and can be extended to become supersymmetric
field, which responds for nesting defects inside the wall, confa] very naturally. This is interesting since one keeps the
tributes to reducing the critical temperature. The reduction nderlying features of systems clearer than the features that
depends om, and this parameter can be controlled to directlygppear in the standard approach. As we have seen, however,
affect the picture for defect formation within the cosmologi- jn this system there are two critical temperatures, driving
cal scenario. _ _ symmetry breaking in each one of the two independent field

Another high temperature result can be introduced in thgjirections. The possibility of having two distinct critical tem-
following way: In the first system of two fields we still con- peratures implies that the internal structure of the domain
siderr real and positive, but now we make=—ur. This  \all cannot appear simultaneously with the domain wall it-
possibility was already considered [i20], but there the mo-  se|f, This is in distinction to results in the second system, in
tivation is directly related to investigations of an enlargedwhich it is possible to introduce a single critical temperature
system where the symmet&,X 7, is changed to become tg drive symmetry breaking in the two field directions simul-
Z,XU(1), with U(1) implemented globally. The present in- taneously. The relation between the two critical temperatures
terest is, however, to keep the symmetry as the dis@gte i the first system is TS)2=[r(r +5)/(3r2+r+2)](T¢)?

XZ,. In this case the potentidl(¢,x) given by Eq. (9)  and depends on, the ratio between the two parameters
changes to and u that defines the system. In connection with issues
discussed in Sec. | we see thas directly related to distinct
U_(¢,X)= Euzrz(qsz—az)z—,uzr((ﬁz—a2)X2+2,u2d>2X2 possibilitieg of productions ofi) Fermi balls or(ii) ribbon_
2 loops. For instance, far~1 the system seems to favor rib-
1 bon loops instead of Fermi balls. This samealso controls
+ = a2y (72)  the relation between the critical temperatures for the forma-
2 tion of structureless domain wallsT{) and domain walls
that support domain ribbonsTf(). The specific relation is
given by TS/ T =[3/(5+r)]"2

ciated with the¢ field. This means that domain walls gen- . The systems of two coupled real scalf_ir fields introduced
in Sec. Il can be seen as the real bosonic sector of a super-

erated by this field cannot host domain ribbons. Although symmetric theory20]. Within this context, if we follow the

in this new model domain ribbons cannot be nested insideOint of view of supersvmmetry to implement the idea of
domain walls anymore, we believe that it is still interesting Eestin domain ribt?onsyinside ydomainp walls. we can ver
to investigate how the high temperature effects enter the g ' Y

game in this case too. Here we take advantage of the inveg_aturally introduce fermions into the system. Thus super-

tigations already done to introduce the ratio between th(%ymmetry may be very nature_llly used to guide investigations
" e . . : 0 more realistic models. For instance, instead of considering
critical temperatures in this system and in lsingle-field

i - : . the Z,XZ, symmetry we may use th&, X U(1) symmetry,
sysgem Zdeflned Bgu(d’;o)- This ratio is controlled by gang this may make the domain wall charged, or yet the
[3ro/(3re—r+2)]7% It is lesser or equal to unity for  1)xU(1) symmetry that is the way to get to the string
€(0,2] and greater for € (2,), and so the critical tempera- territory, where the original idea of introducing internal
ture in the system of two fields defined bl ¢, ) is lesser structure to topological defects was first implemented. Some
or equal to the critical temperature in the system of one fieldnvestigations are connected to ideas presented in Sec. I.
defined byU_(qS,O) forr lesser or equal to 2 and greater for Other investigations are directly related to the recent works

c\2_
(TX) \5+r

Now it is not hard to realize that spontaneous symmetr
breaking gets implemented only from tde symmetry asso-

r greater than 2. [21,22. For instance, if22] a Z,XU(1) surface current-
carrying domain wall model was investigated, but there the
V. COMMENTS AND CONCLUSIONS system is defined by a general potential of the form of our

second system of two coupled fields, and all the results are
In this work we have investigated the possibility of intro- implemented numerically due to difficulties in finding ana-
ducing defects inside defects in systems of two real scaldytical solutions to the corresponding equations of motion.
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