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Colliding axion-dilaton plane waves from black holes

Patricia Schwarz
Caltech 452-48, Pasadena, California 91125
(Received 4 August 1997

The colliding plane wave metric discovered by Ferrari and ézaio be locally isometric to the interior of
a Schwarzschild black hole is extended to the case of general axion-dilaton black holes. Because the transfor-
mation maps either black hole horizon to the focal plane of the colliding waves, this entire class of colliding
plane wave spacetimes only suffers from the formation of spacetime singularities in the limits where the inner
horizon itself is singular, which occur in the Schwarzschild and dilaton black hole limits. The supersymmetric
limit corresponding to the extreme axion-dilaton black hole yields the Bertotti-Robinson metric with the axion
and dilaton fields flowing to fixed constant values. The maximal analytic extension of this metric across the
Cauchy horizon yields a spacetime in which two sandwich waves in a cylindrical universe collide to produce
a semi-infinite chain of Reissner-Nordstrom-like wormholes. The focusing of particle and string geodesics in
this spacetime is explorefiS0556-282(197)00224-3

PACS numbd(s): 04.70.Bw, 04.50+h

[. INTRODUCTION lar plane wave spacetime. The metric can be extended across
this horizon in an intuitively appealing manner, but the price
A static, spherically symmetric black hole spacetime isof avoiding the singularity is the loss of global hyperbolicity.
only static in the regions wheré/dt is timelike. In the This is consistent with Hawking-Penrose singularity theo-
trapped region between the two horizons, the metric is quitéems in that geodesic focusing forces a choice between a
violently dependent on the timelike radial coordinate, whilelocal or global pathology.
alat anddld¢ act as a pair of purely spacelike commuting  In Sec. Ill we review the work done by Yurtsever on the
Killing vectors. A violently time-dependent spacetime with asymptotic structure of colliding plane wave spacetimes, and
two commuting spacelike Killing vectors is also a potentialwe show where the transformed black hole solutions fit in
description of the spacetime of two colliding plane symmet-this general classification scheme.
ric gravitational waves. This idea was first recognized and In Sec. IV we compare the asymptotic causal structure of
explored in the in the Einstein-Maxwell limit by Chan- axion-dilaton colliding plane waves with that of general col-
drasekhar in 198f1]. A colliding plane wave metric locally liding plane wave solutions of the vacuum Einstein and
isometric to the interior of a Schwarzschild black hole wasMaxwell-Einstein-dilaton equations.
obtained by Ferrari, Ibaz, and Bruni in 19872,3]. The In Sec. V we show that the maximal analytic extension of
direct transformation from a Schwarzschild black hole to athe general axion-dilaton colliding plane wave spacetime is
colliding plane wave spacetime was described by Yurtseveiwo collinearly polarized waves propagating in a cylindrical
in 1988[4,5]. universe to create a black hole with the same causal structure
The purpose of this paper is to extend this analysis to th@s an infinite chain of wormholes in Reissner-Nordstrom
case of axion-dilaton black hol¢6—9] that areN=4 super- spacetime. In the event that either of the incoming waves has
symmetric solutions of low-energy string theory, and to com-2 ¢ function profile in the incoming regions, the maximal
pare string and particle propagation in the resulting spaceanalytic extension degenerates to the extreme dilaton super-
times. symmetric configuration with 1/2 oN=4 supersymmetry
In Sec. Il, we display the transformation between aunbroken.
Schwarzschild trapped region and a colliding plane wave In Sec. VI we compare particle and string propagation in
spacetime elucidated by Yurtsever. Then we extend thig@n exact plane wave background and plot the effects of vio-
transformation to the general case of axion-dilaton blackation of the principle of equivalence by strings. We also
holes found in low-energy string theory. We show how thesdriefly examine the issue of more realistic finite-sized
plane wave collisions end in the formation of singularitiesalmost-plane waves.
only when they represent transformations of black hole

spacetimes where the singularity is touching the trapped re- || COLLIDING WAVES OUT OF BLACK HOLES
gion, as in the case of the Schwarzschild and the singular . ) ]
dilaton black holes. Inside the trapped regionr £2M) of a Schwarzschild

The nonsingular colliding wave spacetimes have Killing-black hole the metric can be written:
Cauchy horizons instead of singularities. The curvature at the
Killing-Cauchy horizon is equal to the curvature of the ap- 2 r dr2+r2d92+2M —r
propriate black hole horizon locally isometric to that particu- 2M—r r

dt?+r?sirf6d ¢2.
1)

*URL address: http://www.theory.caltech.edu/people/patricia  On the other hand, the metric for the interaction region of

0556-2821/97/5@.2)/783313)/$10.00 56 7833 © 1997 The American Physical Society



7834

PATRICIA SCHWARZ 56

Either a singularity or a Cauchy horizon
occurs as o(u,v) —> 0 here
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FIG. 1. Spacetime diagram of two colliding plane waves.

two colliding, collinearly polarized, plane symmetric gravity ds?=

waves(Fig. 1) can be written in the form

ds?=—e MUdudy + e~ V1) (eVUdx? + e~ VU )dy?).

The former spacetime can be put in the form of the latteof —a

using the coordinate transformatioh,5]

r—M[1l-sin(u+uv)],

y

d)—>1+ M,

T
0— E-I—v—u, t—X,

Length scales for the colliding wave system are intro-
duced viau—u/a, v—uv/b. The requirement that the metric
be continuous with flat spacetime @at=v =0 relates the fo-
cal lengths and amplitudes of the incoming waves through
ab=4M?2, which we will see more of later. The spacelike
Killing vector d/ 9x becomes singular whana+uv/b— /2,
and moreoverRWVBR"“”ﬁeoo there, indicating a space-
time singularity. The incoming wave metrics obtained by the
above Khan-Penrose prescription heWngR““”Bzo but
the Weyl tensor component

—3[cogu/2a)+sin(u/2a)]?

Cuxux=732 [cogu/2a)—sin(u/2a)]*

(6)

blows up asu— ma/2, showing that the incoming waves are
singular in some sense before they collide.

A better-behaved metric can be obtained by sending
(u,v) to (—u,—v):

cos(u+v)
[1+sin(u+v)]?
+cog(u—v) [1+sin(u-+v)]?dy?. (7)

—4M?[1+sin(u+v)]?dudy +

2

This metric is also locally isometric to the trapped region

Schwarzschild  black hole, except that
RuarpR**"#=3/4M* in the limit u/a+v/b—m/2. The
spacelike Killing vecto/dx becomes null there, signalling
a Cauchy horizoribecause initial data that are spatially ho-
mogenous in th& direction cease to be so whehix is no
longer spacelike The incoming waves extended from this
collision region have

@ —3[cogu/2a)—sin(u/2a)]?

Cuxux= a’[coqu/2a)+sin(u/2a)]* "’

®

for u=0,v=0, andu+v=<w/2. To make a colliding plane

wave spacetime we have to analytically continupast the
cyclic boundary conditions orp. Therefore the resulting

metric

ds?=—4M?[1-sin(u+v)]?dudv +

+cof(u—v)[1—sin(u+v)]?dy?

is locally, but not globally, isometric to Eq1).

There is one slight problem with this metric: it serves as a
good description of the interaction region for two colliding
plane waves, but it does not describe the spacetime befo
the two waves have met. Penrose and Khah came up
with an effective yet slightly flawed prescription for con-
structing incoming waves from a metric for a colliding wave
interaction region: replace andv, respectively, byuH(u)
andvH(v), whereH(x) is the Heaviside step function. Thus
an incoming wave in the regiom>0,v <0 can be written

ds’=—4M?[1—sin(u)]>dudv +

+cog(u)[1—sin(u)]2dy?.

cos(u+v)
[1-sin(u+v)]?

o (u)
— dx
[1-sin(u)]?

which vanishes on the incoming focal plame 7wa/2. These
waves are called “sandwich waves,” the curvature being
neatly sandwiched between the past wave front and the focal
plane to the future. The incoming waves in Ef) are not
sandwich waves in this sense.

A. Axion-dilaton black holes

(4)

In order to better understand this pattern of singular and
nonsingular behavior, we will extend the coordinate transfor-
mation made for the Schwarzschild black hole to the general
case of an axion-dilaton black hole =4 with N U(1)
I%auge fields, with the action

1 1 a,N0"N
=— | d*/—g| —R+ = £
Sef 1677de 9| ~R¥3 (Im\)2
N
_2 FM+Empr | (9)
=1 M
5 whereF#"=e 2#*F#"—jyF#” The axion ) and dilaton

(¢) fields are combined inta.=y+ie 2¢, and * is the
spacetime dual operation.
(5) In the trapped region the metric can be written
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(r’=[Y[?)
d?=— ——— — _dr2+(r2—|Y|?)d6?
(r—n(r—r_) Yl
(ry—r)(r—r_) '
F— e d 2+ (r2— | Y|?)sir?0d ¢?, !
(re=[Y[% (==Y ¢ "’:‘:"
" )
(10 "‘-, i
¢ RS
where :":':‘:::‘:":fs‘t“‘
(X O
2 2 2 2 ‘:“:‘:‘:"‘s:‘
r.=M=rq, ra=M2+|Y|2-4> [I™}?, BN
i
1
r(n)ZE(Qm)Hp(n)), (12)
and
2 N
oS A~ (n)y2
Y=3-iA Mn§=:1 (rtvy=. (12) dilaton

. . FIG. 2. These contours of constagiy show how the axion and
{Q™,P™M} are the U1) electric and magnetic charges, re- . ; .

. ; h . ton fields | their d d d d flow to fixed
spectively. The entropy of the axion-dilaton black hole is llaton fields lose their dependence ¢f andy, and flow to

) . values on the horizon of an extreme axion-dilaton black hole. Here
given by 1/4 of the area of the horizon the coordinate measures distance from the extreme horizon.

S= é =7l (r)2—|Y|?] (13) The axion and dilaton fields add to this interesting behav-
4 " ' ior at the horizon in the,=0 limit (Fig. 2). At the extreme
horizon they lose all dependence on their values
It is important to remember that the coordinatés now ) =y, +ie 2% at spatial infinity and depend only on the
measuring time, so this is a highly time-dependent spaceyalues of quantized conserved charges. For a single extreme

time, not the p|aC|d exterior of a classical black hole. In theb|ack hole of this type witiN electric and magnetic Charges
extreme limit ofr ,—r_—M, or ro—0, the region over (i)+ip(i):e¢0(n,_)\—w1,), with (n,,m)eZ, the axion
which r is timelike shrinks to zero, and so the amount of : '

and dilaton fields at the horizon reduce[i®
violent time dependence inside the black hole shrinks away (D)

as well. The area of the extreme black hole is 5 12
> nm 2 (nim;—n;m;)
s _Aextr_ﬂ_(Mz |Y|2) (14) Y= , e 2= J
extr— 4 - .
4 > m > m
In general these axion-dilaton black holes have fascinat- (19

ing properties and relationships to deep symmetries in string
theory[6—9]. The parameter, measures how far the black B. Axion-dilaton colliding waves

holg is from the extremgl limit, =r_, where the_trappgd The coordinate transformation fromr,@,t,¢) to

region threatens to vanish and reveal a naked singularity tt)u v,%,y) givesr(u,v)—r. for the (=) branch of the so-

the universe. The parametey also measures the breaking of Iut’ior,1 ,asu/a+v/b$ 2

supersymmetries in the=4 supergravity theory underlying

the action(9). The conditionr,=0 corresponds to the satu- (u v T [u v

ration of the supersymmetry (SUSY) bound via r—Mz=resin 5+5 ; HHEi(g_B)’

M =|z,|>|z,| or M =|z,|>|z;| between the black hole mass (16)

and the largest of the eigenvalues, (z,) of the central txro/(M2=|Y|2)¥2,  ¢—1+y/(M2—|Y[D)V2.

charge matrix of th& =4 theory, restoring 1/4 of the broken

N=4 supersymmetry. The area of the extreme horizon iSThe trapped region of the black hole is only locally isometric

proportional to the square of the largest central charge at th® the interaction region of the colliding plane wave space-

“fixed point” where the other central charge vanishes. time, because we are sending the cyclic coordigate the
The full saturationM =|z,|=|z,| restores 1/2 of the bro- noncyclic coordinatg, to represent a plane wave infinite in

ken N=4 supersymmetry. The,—O0 limit of the corre- both thex andy directions.

sponding black hole is an extreme dilaton black hole with The axion-dilaton black hole metric in the trapped region

M=|Y|, zero entropy and a singular horizon. Hence supernow takes the form

symmetry serves as a cosmic censor for these black holes as

long as not more than 1/4 of the=4 supersymmetry is _ —2{[M=rgsin(u/a+u/b)’~|Y]?) a
restored. uw ab ’
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__(M?=|Y[*)coqu/a+v/b)> Yo APH[S+r(u0)]?}—2e *PA 1o (uv)
9o M =rgsin(ula+v/b) 12— | Y2 Ylu.v)= AZ4+[3S+r.(u,v)]?

{IM=rgsin(u/a+v/b)]1?—|Y|?} (19)

M2—|Y|? ' and

v

u
Oyy= c0§<5 ~5

Requiringg,,,= 7, for u=v =0 constrains the incoming

g T2 (UV)2— (32447
parametera andb to satisy 0

e 26(U)_ g2 '
AZ+[S+r1.(u,v)]?

(20

4Sextr

ab=4(M?—|Y|?)= (18)  whereX andA are given by Eq(12).

Transforming from {, ¢) to (x,y) by Eq.(16), theN U(1)
Thus only when the mass is larger than the axion-dilatorPotentials with electric and magnetic charg@",P(™) are
charge and the entropy of the relevant black hole is not vantransformed from A" ,A() to
ishing are both parametessandb nonvanishing. This con-

straint is significant because the conditivh>|Y]| is a su- e?or{ P™ A+ Q[ +r.(u,w)]}

. - AN — (21)
persymmetry bound that helps enforce cosmic censorship in X 21V 2 2_A2_vw27 "’
the black hole system. This bound in the colliding plane M= Y r=(u0)"=A%=27
wave system tells us that the effective focal length of the o (n)
colliding axion-dilaton plane wave system is not negative (m_ _ €7°PMcosu/a—uv/b)

_ _ A= : (22)
(f=m/ab/2=0) and only approaches zero in the singular YMZ=|Y|?

extreme dilaton limitM =|Y|. This looks and acts like a

supersymmetric enforcement of cosmic censorship, although The value ofRM,,pxR‘”PA in the limit u/a+v/b—#/2 is
in the context of the colliding-wave problem, it was derivedequal to value ofR,,,\R**”* for the equivalent axion-
by requiring that the spacetime be exactly flat before thalilaton black hole, evaluated B=r..=M *=r,. One can see

arrival of each incoming wave. from the following equation that this quantity will only blow
Abbreviating r. (u,v)=M*rgsinWa+uv/b), the axion up in two limits: the Schwarzschild limitY'|=0,r=r_=0
and dilaton fields become and the extreme dilaton limit_=|Y]|:

8(M4+4M2 rg2+12Mr o3+ 7 ro*— 2M2|Y|2+2r 2| Y |2+ Y|

VpN —
a7~ GEEioE |

(23

C. Extreme limit of axion-dilaton colliding waves and reduce to Eq.15) when written in terms of the Dirac-
For axion-dilaton black holes the limit— 0 corresponds quantized conserved charges. The axion and dilaton are con-

to the apparent vanishing of the trapped region betweentant and take their critical values over the entire Bertotti-
r.=M-+r, andr_=M~—r,. This also corresponds to the Robinson spacetime, even in the flat region before either

restoration of 1/4 of the brokeN=4 supersymmetry in the Wave has passed. Note that the axion and dilaton fields for

background supergravity theory and fixed values for the axto” 0 also take their fixed constant values in the'flat region
ion and dilaton fields at the extreme horizon. For axion_before the waves have arrived, but evolve to their values at

dilaton colliding waves the,—0 limit gives the Bertotti- r=on the foca_tl planes of thelincoming and colliding waves.
Robinson colliding plane wave spacetime The incoming wave obtained from the above Bertotti-

Robinson metric via the Khan-Penrose prescription for
v u>0, v<0is

ds’=—du dv+cog 5

u
—+
a

dx®+ cosz(g - —) dy?.
(29

u u
ds’=—du dv+cosz(a dx2+cos?(a)dy2. (26)
In this limit the axion and dilaton fields reduce to
(The other incoming wave is the same as above with

) 5 24 u—v, a—b.) Using the coordinate transformation
:wo[A +(Z+M)“]—2e “%AM

f

A%+ (3 +M)2 ’ u=u,
M2—(32+A?) 1 [u
—2¢s _p—2¢g = T T —\/_ Tlix2ay2
e 2%1=g 2%0 IR FAVIEE (25) v=V ata a (X°+Y9),

(27)



56 COLLIDING AXION-DILATION PLANE WAVES FROM . ..

u
x=X/cos<—),

a
=Y/ !
y=Y/co 2l

and settingAU= 7ra/2, the wave metri¢27) becomes

(28)

2
ds’=—-dudVv— L) (X2+Y?)dU?+dX2+dY?,

2AU

ds?=—-dUdV+dX?+dY?, U<O0,U>AU. (29

7837

where e(B) is determined by an integral over the boundary
between the interaction region and the incoming waves.

The B dependence in the metric is ignorable if we are
only looking at the structure of the singular terms in the
metric for «—0. Counting powers o& and then changing
coordinates from ¢, 8) to (t,z), the metric behaves like the
Kasner homogeneous, anisotropic cosmology:

This incoming wave extension of a Bertotti-Robinson and
spacetime is a pulse of constant curvature of duration

AU=ma/2 and magnitude &P=(w/2AU)2. The focal

length of the wave i$ =AU = wa/2, meaning that null geo-
desics from an event d = —« focus at the edge of the

wave itself. The relation for colliding waveab=4(M?

—|Y|?) is a relation between the curvatures of the incoming

waves in ther,—0 limit and the mean focal length of the
colliding system. It is curious that this relationship is also

enforced away fronmy=0.

ds®~ — dt?+t?P1dx?+ t2P2d y? + t2P3d 22, (36)
where the Kasner exponerifg;} satisfy
2(1+e€) 2(1—¢) e—1
pl_ﬁ' P2= e+3 "’ p3_62+3’
> p=> p=1. (37
This metric has curvature squared
on_ AP1P2P3
R,u,Vp)\R'u P = t4 ’ (38)

We will compare plots of test particle and test string null@nd so is singular as—0 unlesse(B) = =1, in which limit

geodesics for this metric truncatedde-3 in Sec. IV.
I1l. PROPERTIES OF GENERAL COLLIDING PLANE
WAVE SPACETIMES
A. Properties of vacuum solutions

In the interaction regionu>0, v >0) any collinearly po-

the Kasner metric reduces to a slice of Rindler spacetime.

B. How this applies to axion-dilaton colliding waves

Axion-dilaton colliding plane waves do not obey the
vacuum Einstein equations. However, the metric obtained
through the transformatiofi6) fits the form of the metri¢2)
and the coordinate transformati@B1) is still valid. (This

larized colliding plane wave spacetime can be written in thansformation determines the existence of a foliation of the

form [5]

Il
d32=1TZeQ(""B)’2(—da2+ dB?) + a(eV*Adx?
o

+ e~ Vi@hdy?), (30)

where the coordinate transformation from) in Eq. (2) to
(a,B) is defined by

a=e VW) B =—a,, B,=a,. (31
The vacuum Einstein equations reduce to:
Va
Vot ;—Vﬁ,fo, (32
Qa=—a(V,*+ Vg7, (33
Qp=—2aV, Vg, (34)

plus constraints for the initial data alonga£€0v) and
(u,v=0). Equations(32)—(34) are solved by functions
whose limits ase— 0 are singular like

V(a,B)~e(B)Ina+u(B),

Q(a,B)~—€(B) Ina+5(B), (35

interaction region into spacelike hypersurfaees const and
works forR,,#0 as long as the plane waves are collinearly
polarized)

Remarkably enougkbut not so remarkable once one re-
calls that this is still essentially a two-dimensional problem
the functionsV(«,8) andQ(«,B) still behave like Eq(35)
in the limit «—0. Therefore, the Kasner asymptotic limit
also applies to axion-dilaton colliding plane waves.

Combining(31) and (35), we see how to calculate(8)
without integrating over the initial data:

(B) =~ V(@ B)/U = lim 1o 19

. 39
w0 NGuxtIngyy (39

a—0

The coordinate transformatio31) for the metric under
consideration can be solved exactly, giving

B 1 2u+ 2v
a(u,v)—i cos; COSF ,

B 1 2u 2v 40
,B(u,v)—i —cos;JrcosF , (40

and this is easily invertible to givieu(«,B),v(a,B)]. Tak-
ing the limit (39) yields e(B)=1, which means that these
metrics are in general nonsingular. However, the nonvanish-
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ing part ofV(«,B) asa— 0 consists of the singular function Kg=—a(N A+ QfTaTﬁ), (49
~€(B) Ina plus a functionu(B), which for this metric is
and the constantf,,a; , xy obey
(1-B)(M?—|Y]?)
#(B)=In (M=ro?— Y] (41) foaia,= k3(aza,— aas)>. (50)

This term results in a curvature singularity in two limits: the Since(a,f) and\(«,f) obey Eq.(32), asa—0

Schwarzshild limit where,=M andY =0, and the extreme m(a,B)~€e(B)na, N a,B)~e(B)na,  (51)
dilaton limit wherer,=0 and M=|Y|. This happens be-
cause the coordinate transformatidr6) maps either .. or k(a,8)~—[d:%€:%(B) + €:2(B) ]Ina. (52

r_ to «=0. The value olR,,,,\R**** asa—0 is the same N _ _
as RMVP)\R#VP}\ at eitherr. . The only axion-dilaton black There are two conditions under which the metric and

holes where the curvature at. is not finite are the fields given above exhibit the same nonsingular Kasner
Schwarzschild and singular dilaton black holes, with spaceasymptotic limit as exhibited by th&l=1, =0 limit of
time singularities as—r _ , as described above. axion-dilaton colliding waves. The Schwarzschild limit with
constant dilaton and Maxwell potential requigs=q, and

N a,B8)=—0q,7(a,B), with e5(«,8)=1 or 0. The Einstein-
Maxwell dilaton limit of axion-dilaton colliding waves is
reachable only ifj,= —q; and ex(@,8)=|q,€1(a,8)|=1.

IV. RELATION TO EINSTEIN-MAXWELL-DILATON
COLLIDING PLANE WAVE SPACETIMES

Breton, Matos, and Garai[12] discovered a large class of

colliding plane wave metrics that also obey the equations of V. MAXIMAL ANALYTIC EXTENSIONS
motion for the action OF AXION-DILATON COLLIDING PLANE WAVES
1 4 o - In Sec_. 1] we showe(_j t_hat the asymptotic cau_sal structure
S=16-] d X\V—g{—R+2(VD)2+e 20%F  Furl, of the axion-dilaton colliding plane wave spacetime near the
(42) KiIIing-Cguchy horizon at/a+v/b= /2 is that of the Kas-
ner metric

which for a=1 is the same as thid=1, /=0 limit of the

action (9). The metric takes the form ds”= — dt*+t?P1dx®+ t?Pady’+ t?Pad 22 (53

k(e p)12 in the limit p;=1, p,=p3=0, corresponding to the wedges
ds?= (—da?+dBd)+(a?f)dx2+fdy? (43  of Minkowski spacetime in Rindler coordinates that are “be-
f hind the horizon” for the usual constantly accelerating ob-

. . . , . server. This insight was derived using the general asymptotic
For solutlons_ that overlap with those discussed in thisgcture of colliding plane graviational waves[&1, but it is
paper, the functiori(a,8) has the form more easily derived using black hole coordinates. The proper
time fromr=r_. as measured by a nearby freely falling ob-

f e)\(axﬂ) i .
S — (44) ~ server is approximately
(121 +a,2))
: 2= [Y]?
the dilaton field is 7 (r)~2(ry—r) et
k’=e ?*=i2(a;3+a,3,)e, (45) (2 _|y2
, Tz_(r)~2(r—r_)(‘—). (54)
and the Maxwell potential has the form o
(as31+a,35) Changing coordinates by assigning. =trq/(r3—|Y|?),
A= Y (a3t ay,) (46)  the metric becomes
42242 2
The functionsX ; , that reproduce thl=1, /=0 limit of ds’~—dri + 7dxe +R(r.)dQ. (59
axion-dilaton colliding waves are In the (r,x) plane the metric is the wedge of Rindler space-
S, —elr@h) 3 g Brap), 47 time defined in Minkowski coordinates by
X
For this class of solutions, the functiongx, 8), \(«,B), T2-X%=72, T =tanhy.. . (56)

andk(«a,B) satisfy

The axion-dilaton colliding plane wave maps to the
Ta Aq i ; ; “ ; ”
oL 72=0 A+ ——Nps=0 (48  Wedges of Rindler spacetime in the “trapped regions” Il and
aa BB ’ aa BB 1 . . ) )
@ @ IV and the maximal analytic extension across=0 gives
back the parts of Rindler space that correspond to the non-
trapped regions | and lll. It is important to remember that

o
— 2 2 2 2 2
Ka 2()\“ A AL 70, is proportional tox, and that the spacelike Killing vector
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u/a+vib=mn/2

o /))o
K\ te)
& %,
) ©,
& )
&L A A\ %
N N £ @
Flat spacetime
T.=constant

(a) (b)

FIG. 3. (a) shows the wave collision in thei(v) or (7,z) plane.(b) shows how the metric neaVa+v/b— /2 looks in the ¢, x) plane.
The linesy.. =const are lines of constartthat cross on the Killing-Cauchy horizons =0, whered/ 9x becomes null.

dl 9x becomes null on the Killing-Cauchy horizonat=0. ity of the gravitational field to cause light cones to focus in
This signals the breakdown of spatial translation invariancen themselve$13]. Hawking-Penrose-type singularity theo-
in thex direction just ag)/dt becoming null in regions | and rems chiefly express the conflict in general relativity when
Il of Fig. 3(b) below signals the breakdown of time- the local existence and uniqueness of extremal length curves
translation invariance there. breaks down due to the above focusing and threaten the ex-

From this point the maximal analytic extension of theistence of some desired global causal structure in that space-
axion-dilaton colliding plane wave metric follows the sametime.
steps as for the generic axion-dilaton black hole, which has A simple illustration of this breakdown is gravitational
the same causal structure and maximal analytic extension &énsing with multiple images. Suppose we are looking at a
a Reissner-Nordstrom black hole, except in the extreme dispacetime where this occurs. A light flashes at spacetime
laton limit to which we will return later. The Schwarzschild eventE; = (t;,x;) and the light leavincE; is lensed by the
limit was described by Yurtsever ib].

There is, however, one problem — we have broken the
cyclic boundary conditions o in the coordinate transfor-
mation ¢—1+y/(M?—|Y|?)¥2. The cyclic boundary con-
ditions on¢, as extended across the surfaees=0, can be
restored by compactifying spacetime in thedirection for
the incoming waves on a circle of radiy®12—[Y[?. If we
insist that the maximal extension of the axion-dilaton collid-
ing plane wave spacetime be analytic, compactification of
the y-direction is forced on the incoming wavgs).

The maximal analytic extension of the axion-dilaton col-
liding plane wave metric has two sandwich waves with trans-
lation symmtery in thex andy directions propagating in a
universe where thg coordinate lives on a circle of radius
JYMZ=]Y|2. The waves collide to form either an event ho-
rizon atr, or a Cauchy horizon at_ of an axion-dilaton
black hole spacetime, from which the spacetime extends into
the relevant nontrapped region of the relevant black hole
spacetime. In the diagram above, thie)(region is where the
(+) branch of the axion-dilaton colliding plane wave metric
extends to the black hole spacetime to give an asymptotically
flat universe plus an axion-dilaton black hole to the future
(Fig. 4). The (—) region is where the ) branch of the
colliding wave metric extends from the trapped region Il into
the axion-dilaton black hole spacetime to the fut(Fa. 4).

VI. PARTICLE VS STRING PROPAGATION
IN THIS SPACETIME

A. How do test particles propagate

th h the focal plane? . . .- . .
rough fhe focal plane FIG. 4. The axion-dilaton colliding plane wave metrics analyti-

The source of nearly all singularities and causal patholoeally extend from the shaded regions of the above Penrose diagram
gies that occur in classical general relativity is the inevitabil-into the black hole metric above it.



7840 PATRICIA SCHWARZ 56

spacetime geometry so that an obse®eat spatial location a spacetime singularity and is accompanied by the blowing
Xo sees two images of the flash frof. The two images UP of curvature invariants in that region.

seen byO represent two different null geodesigs and y,, In the axion-dilaton colliding wave spacetime, a null vec-
both of which leaveX; att=t;. The geodesiy, crosses,  ©" N tangent to a null geodesig can be written
att=t, and the geodesig, crosses?o att=t,. A n_ui+.i+&i+&i (59

If t,>t; there is a problem. The events; (xo) and “ou Yo Oxx OX  Qyy Y’

(tz,io) cannotbothlie on the future light cone of the event
E;, because the timelike observéd experiences both
events. Therefore the geodesic must lie on the future light

wherep, andp, are constants of motion along The con-
dition n-n=0 vyields

cone ofE;, while y, started out on the future light cone of . p2  p2
E; and somehow left it. Since the problem goes away only 29 ,Uv=— —X+—y). (60)
whent,;=t,, it must be true that this is where the problem 9xx  Gyy

starts and where null geodesics begin to fail to determings e |ook at null geodesics along whigh,= p,=0, then we

causal boundaries in spacetime. . can choose =0, andn=u(d/du). The geodesic equation
In general, if two null geodesicg, andy, intersect once U 2 O )
at some spacetime evef® and then reintersect at later YT 1wy U"=0 is solved byu=—g™, and the expansion sca-
spacetime everE,, then bothy, andy, leave the “bound- &'
ary of the causal future” oE; when they cross again &, 1
-1 9
and any evenE; att;>t. alongy, or y, can be reached by 6=V nd=— —
a timelike curve fronE; . g du
This geodesic focusing is not a problem as long as there
exists a discrete number of multiple images. Geodesic focus- _ 1 i N
ing at the continuum level is more dangerous and hence _|9uU| Gy au( GroGyy) =
more interesting. In general relativity the expansion scélar
determines when geodesic focusing is going to interfere witlasu/a+uv/b— 7/2, wherea andb are the focal lengths de-
the unique delimitation of causal boundariesn#fis a tan-  fined in Sec. II.
gent vector to a null geodesig, then ¢ is defined by This focusing of initially parallel light rays defines the
6=V ,n?. The rotationw,, and shearo,, tensors are the Killing-Cauchy horizon on the focal plane of the collision
antisymmetric and symmetric parts Bfn,,, respectively- region. Parallel light rays delimit causal boundaries of events
The evolution equation fos with respect to the affine to the infinite past, so information from the infinite past of

(\Vgg™)

(61)

parameterr along vy is the colliding wave spacetime is focused together on the focal
plane. This spacetime is on the edge of being singular. In-

o o do 1 ab ab ced stead of having infinite curvature at the focal plane, the cur-
NVeb=q-= = 50"~ 0ap0 ™+ 0apo™" ~ Regé"E" vature is finite and coordinates can be extended across it, but

(57)  there is instead the global pathology of a Killing-Cauchy
horizon. Small plane-symmetric perturbations of the incom-

Spacetimes withw,,# 0 are not foliatable into spacelike hy- N9 waves lead to the generic singular solutions. _
persurfaces and hence are not stably causal, so that term is Note thatV, = yg,.9,,=|cost/a+v/b)cos@fa—v/b)| is

zero if we exclude such spacetimes from considerationindependent of,, so the focusing is controlled by the su-
Sincea,p0??=0, if R,y N°n=0, it follows that persymmetric limitr,— O of the Bertotti-Robinson colliding
plane wave system. Therefore comparisons of test particle
and test string propagation can be made using the incoming

%Jr 392<0 — 6=, 1+ ET. (580  wave extended from the Bertotti-Robinson collision region
dr 2 2 via the Khan-Penrose prescription, and the results should ap-
ply to axion-dilaton colliding plane waves withy# 0.
Since 6~ (1/V )(dV, /d7), whereV, is the transverse In order to plot these geodesics, it is convenient to trun-

volume of a bundle of “nearby geodesics,” we do not wantcate the metri¢25) to d=3. Changing to harmonic coordi-
the right-hand sidéRHS) of the above inequality to cross nates gives the metric

through zero. If the expansiafy<<0 at some proper time,
along some geodesic, thefi— —~ along that geodesic ds’=dUdV+h(U)X?dU?—dx?,
within a proper timer<2/|6,|. SoV, —0 in a finite amount

of proper time after the bundle begins to focus, or converge, h(U)=(
at 7. When this happens to geodesics that are initially in-
tersecting at some previous proper time 7y, either the

initial value problem breaks down or the geodesics fail to beyhere AU = 7a/2. The geodesic equations are
extendible past the focal plane. The latter alternative defines

2

o

m) O<U<AU=0, U<0, U>AU,
(62)

v+mx2u2+4h(U)uxx=o, u=o0,
These quantities are defined on the two-dimensional quotient

space of vectors orthogonal tomodulo multiples ofn. X+h(U)U2X=0, (63
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1000 although the quantum theory of a scalar field in a single
plane wave background is easily calculable and yields no
particle creation, the theory itself becomes singular at the
focal plane where the Cauchy horizon can no longer be ne-
glected.

B. How do test strings propagate through the focal plane?

Plane gravitational waves are interesting string back-
grounds to explore because the metric fields provide exact
conformally invariant couplings on the string world sheet.
This is because all the higher-derivative terms that could add
(worldsheet quantum corrections vanish identicalfyL6].
String propagation through gravity waves has been fruitfully
explored in the past in the context of scattering amplitudes.
A notion of “stringy singularity” based on infinite string
excitation was examined by Horowitz and St¢if7,18,
Sanchez and de Ved49] and others. While this looks like a
good operational definition of singular string propagation, it
does not shed light on the nature of causal volume delimita-

FIG. 5. Null geodesics from «1000,0,0) pass through the tion in string theory and the potential physically relevant
wave betweerlJ=0 andU=200 and are focused to a point. A pathologies that could occur when causal volumes are delim-
similar picture was shown by Penrose[i]. ited by solutions to worldsheet rather than world line math-
ematics. For this reason, we step back to that earlier work
and reexamine it from a geodesic rather thanSamatrix
point of view.

In extending the geodesic picture to string theory, the test
article geodesics that define the boundary of the test particle

The above equations are invariant under rescaling the a ;
d g ight cone are represented by the zero mode of the string.

fine parameter b , S0 the paths of massless test par-_>." . .
P y—ar P P This is the center-of-mass coordinate that obeys that standard

ticles are the same for particles of all energies, a general desi tion. If we onlv look at th desi  test
feature of Einstein relativity. Therefore it is convenient ang9eodesic equation. € only look at In€ geodesics of tes

proper to choose for the above spacetithe 7, after which string zero modes, then the singularities and causal patholo-

the equations are easily solved. Null geodesics passin Izsc(;fsgznvsgr(raeﬁgvtlrtz;tetrgslB;\cl:llihrrgijr;]%r ?%%Iggrzﬁ:aocram roxi-
through this wave take the form . 9 P PP
mation, at leas}.

and the null condition gives

U V+h(U)X2 U2-X2=0. (64)

U<0, X(7)=por, V(7)=p3T, This is basically telling us that test particles propagate in
“stringy general relativity” rather similarly to how they
0<U<AU, X(7)=CqsiNwor)+decos wy7), propagate in ordinary general relativity. The biggest differ-

ence comes from the rescaling of the stringy affine parameter

o relative to the test particle affine parameter éy??. This
V(T):J X(7)* d7+ vy, has a noticeable effect mainly in the case of a dilaton black
hole with purely electric chargel7].
U>AU, X(r)=p; 7+%;, V(7= pfz r+v, (65) If we take all string modes into account, the counterpart to

a geodesic equation in string theory becomes

wherewo= 7w/2AU and the parametgy, represents the test
particle momentum in the direction. The six constants
above are determined by the continuityX¢7), X(7), and
V(7) [but notV(7)] across the surfacd$=0 andU=AU.
The geodesics were plotted below USMETHEMATICA . . Jh ot ) o

In Fig. 5 the plane wave passes betwedn-0 and V-V'+ TR —U"9)+4h(U)X(UX-U'X")=0,
U=200. After the null geodesics focus ldt~216, they fail
to determine the boundary of the causal future of the initial . , . , Co 1v2
event, and the light cone is expanded out along the direction U-U"=0, X-X"+h(U)(U°-U"9)X=0. (67)

parallel to the wave. Null geodesics from an event at ) o
U= —o would focus exactly af =AU =200. The mass shell constraints come from the vanishing of the

Because of the extreme distortion of the light cone by thé/vorld'sheet stress tensor and automatically satisfy the first
plane wave, every spacelike hypersurface in this spacetim@duation above. If we choose the gauge U(7) we get
intersects at least one null geodesic more than once. A global o ) ) ) )

Cauchy surface cannot be defined, but for local calculations ~ UV=—h(U)X?U?+(X?+X'?), UV'=2XX' (68)
one can define a partial Cauchy surface and compute field
theory Bogolyubov coefficients. Gibbori45] showed that and the remaining second order equation reduces to

OXA+TH [X(7,0)]dX X =0. (66)

In the single plane wave metri@5) the equations reduce to
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X—X"+h(U)U2X=0. (69)

f,=ap| sin(nAU/p)coq w,AU)

These equations do not allow the rescaling of string

proper affine parameter, so if we further fix the gauge by wnpp .
U=pr and try to rescale out of the equations through ~| | cotnAU/p)sin(wnAU)
7' =pr, factors of p end up in theX’' terms. Setting
Lsring=1 and expanding in open string modes using
X(7,0)==X,(7)cosho), we get by cognAU/pjcodwaal)
. n? . .
Xn(7)==| 5z +h(U) [Xe(7), (70 *\op sin(nAU/p)sin(w,AU) |. (79

with V(7,0) =2V, (7)coso) obtainable by straightforward Transforming back to the basisr(,«_,) by undoing Eq.
integration of Eq.(68). As pointed out in[20], string null  (76), the Bogolyubov coefficient8, obtained match those
trajectories are momentum dependent and hence fail to sa@btained ford=4 in [21], which according to the conven-
isfy the principle of equivalence observed in particle geodetions used here is
sics. So causal boundaries as determined by propagating 1 p |2
strings become momentum-dependent. o~ P4

Assigningw,= /n?/p2+hy andwe= Vhy=7/2AU, it is [Bnl _4( ) woSIT(wpAU). (79)
convenient to expand in the basis:

It is significant that this coefficient is zero in scalar quantum

U<0 Xqo(7)=poT, field theory[15]. As Gibbons explained, there is no mixing
between in and out bases in that case because there is a
Xn(1)=acogn7/p)+b,sin(n7/p), (71 global null Killing vector guaranteeing that frequencies can

be measured in the same way before and after the wave's
0<U<AU Xqy(7)=cesin(wor)+docog wyr), (72)  passage. Strings are excited because they have extended
structure. String in and out bases are getting mixed in out-

Xn(7)=cpsin(w,7) + d,cos w,7), (73) right defiance of this target space Killing vector that has such
a powerful restrictive effect on quantum fields.
U>AU  Xo(7)=psr+X;, The Ilimit AU—O0 leads to a wave profile
h(U)—(7/2)8(U), which in [17,2]] was shown for
Xn(7)=encognr/p)+f,sin(n7/p), (74) ~ bosonic strings to satisfy the definition of a singularity in

terms of string propagation because the mass operator for the
with U= and theV,(7) obtained by integrating Eq68). “out” state in the “in” vacuum diverges likeZ(1/n).
This is related to the more common expansion for strings in  For the single wave under consideratidh) = 7a/2. The
flat spacetime axion-dilaton colliding wave metric requireab=4(M?
—|Y|?), so the limit in which one or both incoming waves
_ _ O % _ins has the profildh(U)— (7/2)8(U) is also the limit in which
U=p7  X(7,0)=Xo( TH'; T & cogno) the maximal analytic extension of the collision region gives
(75) an extreme dilaton black hole with zero entropy but infinite
curvature at the horizon and 1/2 of the=4 supersymmetry

through unbroken[6].
String motion through the wave represented by &%)
2p 2p looks the same globally as the particle motion when plotted
ap=——Ima,, by=——Rea,. (76)  at the same scale as in Fig. 5. The main difference becomes

visible in the focusing region when the momentum is varied,
Applying continuity equations across the wave boundariegs shown in Fig. 6. _ _
atU=0 andU =AU gives the linear transformation between ~ The plot above shows that the focal region as determined

incoming and outgoing mode constands, (b,,) and ,,f,): by strings becomes smeared by strings as the momentum
decreases. This does not mean that string trajectories are no

longer leaving the boundary of the causal future after they
cognAU/p)cog w,AU) cross. This still has to be true at large distances. String ef-
fects obscure the location of the focal plane but not the ef-
wn P . . fects of geodesic focusing itself.
T) S'F'(”AU/p)S'”(“’nAU)} The geodesic focusing that determines the location of the

eh=a,

_|_
focal plane of the extreme single plane wave in &4) was
. shown in Eq.(61) to control the focusing of the Killing-
by —sin(nAU/p)cogw,AU) Cauchy horizon in the collision region aga+uv/b— /2.
The Killing-Cauchy horizon for axion-dilaton colliding plane
n . wave system is mapped to=r.. in the axion-dilaton black
* wn p)cos{nAU/p)sm(wnAU)}, 77 hole via the coordinate transformatigti6). The quantity
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based argument for this: The proper time in the collision

demonstrates a relationship between infinite geodesic focusegion for the singularity or Cauchy horizon to form is

ing in the colliding wave system and the infinite red shift in
the black hole system.

Consider the “stringy stretched horizon” as elucidated in
[22]. An observer accelerating at constanfa fiducial ob-

A7~f. So if Ly>f, the asymptotic evolution becomes
dominated byinfinite plane wave dynamics before gravita-
tional shock waves containing the information that the in-
coming waves ardinite in extent could have time to reach

server(FIDO)] near a black hole event horizon sees a passthe collision region.
ing freely falling string with a time resolution that decreases The mass-energy density contained in each incoming

like e~e =t with c=(r, —r_)/2(r2 —|Y|?). But we know
that a measurement of the size of a string cut off at méde
grows like IrN, i.e., strings fill more space as we try to
measure them with greater time resolution. Since the resol
tion e ~1/N, the FIDO would see the passing string begin to
grow like ct until it filled the horizon area. 1122] the au-
thors fixedp=1 and looked at(N). In the plots in Fig. 6
we fixedN=1 and varied instead, finding that as we try to
look at the string with decreasing resolutien=p/N, the
string gets longer and fills more space.

The Killing-Cauchy horizon formed by axion-dilaton col-
liding plane waves maps to past horizon of an axion-
dilaton black hole(See Fig. 4. So the “stringy stretched

u_

wave of thickness; and average curvature R; would be
on the order of E; /(aiL$)~Ri . The focal length
fi~a;/(a’R;), which givesE;~L2/f;. (So the mass energy
per unit area in a finite, nearly plane symmetric gravity wave
is E;/A;~1/f;.) The total mass energy in the collision re-
gion then would beEcy~ VE{E,~ L2/ \f,f,=L2/f, so the
conditionL>f impliesEcy>L+. In other words, the mass
energy in the colliding wave system is contained well within
its Schwarzschild radius when the two waves meet and the
finaé product of this collision ought to be a black hole of size
~Lg/f.

I; the case of axion-dilaton colliding waves, these space-

focal plane” can be viewed as the time-reversed version ofimes are in general nonsingular and hence are believed to be

the “stringy stretched horizon” described [22]. In other

unstable, in that small plane-symmetric perturbations on the

words, suppose we are in the maximally extended collidingnitial data propagate to cause the Killing-Cauchy horizon to
plane wave spacetime described in Sec. V, where two wave2ecome singular. Howevef = 7\ab/2= 7\M?~[Y[2. For

in a cylindrical universe collide to produce the axion-dilaton
black hole spacetime in Fig. 4 at=r . . A FIDO close tor
in region | would see a test string emerging from the colli-

the incoming wavesR;~1/a?. Thereforef,~a;, and the
limit f;—0 is also the limitR;—c. The conditionL>f
implies Eqy>L1>f=7M?=[Y|2. This suggests that the

sion region att=— filling the past horizon of the white collision of these finite waves could nucleate not one, but
hole created by the collision and then shrinking rapidly. Thisseveral axion-dilaton black holes, and in the maximally su-
is the time-reversed version of what the FIDO at the futurgpersymmetric limit ofM —|Y|, the result could be an explo-
horizon sees. sion of extreme dilaton black holes, which are not really
It is important to remember, however, that these nonsinblack holes because the event horizon is singular. For that to
gular colliding plane wave metrics are unstable. The singulahappen at least one of the incoming waves would have zero
term in the curvaturg38) only vanishes when the product thickness and infinite curvature. Such an incoming wave is
p1p2P5 is precisely zero everywhere, which only happens ifalready singular if we use the operative definition of a sin-
the initial data is specified with an arbitrarily high precision. gular wave in string theory as a background in which the
Bogolyubov coefficient for string excitation becomes infi-

C. Scattering of almost-plane waves nite.

It was shown by Yurtseve23,24 that two finite-sized

. . - VIl. CONCLUSIONS
gravity waves that are “nearly plane symmetric” over some

transverse sizé ~L,t~Lot will collapse through plane-
symmetric processes if the average focal lerfgth/f, f, of
the incoming waves satisfids;>f. There is a causality-

The local coordinate transformation between the trapped
region of a Schwarzschild black hole and a colliding plane
gravitational wave discovered by Ferrari and Tean2,3]
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extends naturally to the class of axion-dilaton black holeslack hole has become infinitesimal. The prodabtof the
that are classical solutions to the electric-magnetic dualitynonvanishing parameters describing the colliding waves is

invariant action(9):
19, N5\

—R+
2 (Imn)?

1
Seﬁzﬁf d4X v—0

N
_ F(n)*'i':'(n)nv .
nzl wy
The local coordinate transformati@h6)

v

— 4+ —

v u u v
r—M=r, sin
0 a b

a b

0 T
1 _)E_ 1

t—xro/(M2=|Y[5)12  p—1+y/(M?=|Y]?)*?

transforms an axion-dilaton black hole metric characterize
by massM and complex axion-dilaton char@é to the col-
lision region of a colliding axion-dilation plane wave metric

(17)

_ —2{[M=*rgsin(u/a+v/rb)]>—|Y|?}
B ab :

uv

_(M?=|Y[*)cogu/a+u/b)?
GoT M= rsin(ula+ v/b) 2= [Y|?

|

The constantsaa and b represent the focal lengths of the

{IM=*rgsin(u/a+uv/b)]?>—|Y|?}
M2_|Y|2

v

b

u
Oyy= COSZ(E -

related to the entropy of a nonsingular extreme black hole
with 1/4 unbrokerN=4 supersymmetry through

4 Sextr

ab=

(80)

v

An incoming wave obtained from the Bertotti-Robinson
collision region can be described in harmonic coordinates as
a shock wave of thicknessU = wra/2, wherea is the focal
length of that wave, and constant curvature of magnitude
1/a?=(w/2AU)?. If we senda— 0 while keeping the other
incoming focal length b finite, then the constraint
ab=4(M?—|Y|?) says thaM =|Y|. The limita—0 corre-
sponds to & function incoming wave. The black hole cor-
desponding to thé =|Y| limit has a singular horizon, zero
entropy and 1/2 oN=4 supersymmetry unbroken. This cor-
respondence betweendafunction gravity wave and this ex-
treme dilaton configuration with zero entropy is like a type
of wave-particle duality in string theory, albeit not the usual
one.

The maximal analytic extension of the met(ic7) across

the Killing-Cauchy horizon gives back the nontrapped re-
gions of the corresponding axion-dilaton hole, but requires
that they coordinate live on a circle of radiugM?—[Y|2.
The resulting spacetime has two plane-symmetric single
waves propagating in a cylindrical universe that collide and
form a past horizon of an axion-dilaton black hole, shown in
Fig. 4.

The propagation of test particle and test strings in a plane

incoming waves obtained from above through the Khan Qgravitational wave were compared. Geodesic focusing for the
Penrose prescription[11] and satisfy the relation axion-dilaton colliding wave system is controlled by the su-
ab=4(M2—|Y|2). This metric has a Killing-Cauchy hori- persymmetric Bertotti-Robinson limit. The single plane

zon atu/a+uv/v= /2, where the spatial translation Killing
vector d/dx becomes null. The curvature at the Killing-
Cauchy horizon is equal to the curvatureratr.. of the
correspoonding axion-dilaton black hole and so is finite ex

cept in the Schwarzschild and extreme electrically or mag

netically charged dilaton limits where the curvaturerat
diverges.
The limit rp— 0, which for the black hole metrics corre-

sponds to an extreme black hole, takes the axion-dilaton cof

liding plane wave metric to the Bertotti-Robinson metric
(25

ds’=—dudy +cog

u v u v
20 gy i P
2t 5 dx +co§(a b)dy,

which has a finite average focal lengitb=4(M?—|Y|?)

waves obtained from this collision region metric therefore
make good toy backgrounds to study stringy geodesic focus-
ing. The string equivalent of a massless geodesic equation
does not allow for rescaling the affine parameter; conse-
quently light cones as delimited by strings depend on mo-
mentum. This introduces a time resolution dependence into
string geodesic focusing that is the same time resolution de-
pendence that was analyzed in the stretched black hole hori-
zon by Susskind ih22], suggesting that a “stretched focal
plane” is the colliding plane wave analog of a stretched ho-
rizon for the black hole.
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