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The colliding plane wave metric discovered by Ferrari and Iban˜ez to be locally isometric to the interior of
a Schwarzschild black hole is extended to the case of general axion-dilaton black holes. Because the transfor-
mation maps either black hole horizon to the focal plane of the colliding waves, this entire class of colliding
plane wave spacetimes only suffers from the formation of spacetime singularities in the limits where the inner
horizon itself is singular, which occur in the Schwarzschild and dilaton black hole limits. The supersymmetric
limit corresponding to the extreme axion-dilaton black hole yields the Bertotti-Robinson metric with the axion
and dilaton fields flowing to fixed constant values. The maximal analytic extension of this metric across the
Cauchy horizon yields a spacetime in which two sandwich waves in a cylindrical universe collide to produce
a semi-infinite chain of Reissner-Nordstrom-like wormholes. The focusing of particle and string geodesics in
this spacetime is explored.@S0556-2821~97!00224-5#

PACS number~s!: 04.70.Bw, 04.50.1h

I. INTRODUCTION

A static, spherically symmetric black hole spacetime is
only static in the regions where]/]t is timelike. In the
trapped region between the two horizons, the metric is quite
violently dependent on the timelike radial coordinate, while
]/]t and]/]f act as a pair of purely spacelike commuting
Killing vectors. A violently time-dependent spacetime with
two commuting spacelike Killing vectors is also a potential
description of the spacetime of two colliding plane symmet-
ric gravitational waves. This idea was first recognized and
explored in the in the Einstein-Maxwell limit by Chan-
drasekhar in 1984@1#. A colliding plane wave metric locally
isometric to the interior of a Schwarzschild black hole was
obtained by Ferrari, Iban˜ez, and Bruni in 1987@2,3#. The
direct transformation from a Schwarzschild black hole to a
colliding plane wave spacetime was described by Yurtsever
in 1988 @4,5#.

The purpose of this paper is to extend this analysis to the
case of axion-dilaton black holes@6–9# that areN54 super-
symmetric solutions of low-energy string theory, and to com-
pare string and particle propagation in the resulting space-
times.

In Sec. II, we display the transformation between a
Schwarzschild trapped region and a colliding plane wave
spacetime elucidated by Yurtsever. Then we extend this
transformation to the general case of axion-dilaton black
holes found in low-energy string theory. We show how these
plane wave collisions end in the formation of singularities
only when they represent transformations of black hole
spacetimes where the singularity is touching the trapped re-
gion, as in the case of the Schwarzschild and the singular
dilaton black holes.

The nonsingular colliding wave spacetimes have Killing-
Cauchy horizons instead of singularities. The curvature at the
Killing-Cauchy horizon is equal to the curvature of the ap-
propriate black hole horizon locally isometric to that particu-

lar plane wave spacetime. The metric can be extended across
this horizon in an intuitively appealing manner, but the price
of avoiding the singularity is the loss of global hyperbolicity.
This is consistent with Hawking-Penrose singularity theo-
rems in that geodesic focusing forces a choice between a
local or global pathology.

In Sec. III we review the work done by Yurtsever on the
asymptotic structure of colliding plane wave spacetimes, and
we show where the transformed black hole solutions fit in
this general classification scheme.

In Sec. IV we compare the asymptotic causal structure of
axion-dilaton colliding plane waves with that of general col-
liding plane wave solutions of the vacuum Einstein and
Maxwell-Einstein-dilaton equations.

In Sec. V we show that the maximal analytic extension of
the general axion-dilaton colliding plane wave spacetime is
two collinearly polarized waves propagating in a cylindrical
universe to create a black hole with the same causal structure
as an infinite chain of wormholes in Reissner-Nordstrom
spacetime. In the event that either of the incoming waves has
a d function profile in the incoming regions, the maximal
analytic extension degenerates to the extreme dilaton super-
symmetric configuration with 1/2 ofN54 supersymmetry
unbroken.

In Sec. VI we compare particle and string propagation in
an exact plane wave background and plot the effects of vio-
lation of the principle of equivalence by strings. We also
briefly examine the issue of more realistic finite-sized
almost-plane waves.

II. COLLIDING WAVES OUT OF BLACK HOLES

Inside the trapped region (r<2M ) of a Schwarzschild
black hole the metric can be written:

ds252
r

2M2r
dr21r 2du21

2M2r

r
dt21r 2sin2udf2.

~1!

On the other hand, the metric for the interaction region of*URL address: http://www.theory.caltech.edu/people/patricia
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two colliding, collinearly polarized, plane symmetric gravity
waves~Fig. 1! can be written in the form

ds252e2M ~u,v !dudv1e2U~u,v !~eV~u,v !dx21e2V~u,v !dy2!.
~2!

The former spacetime can be put in the form of the latter
using the coordinate transformation@4,5#

r→M @12sin~u1v !#, u→
p

2
1v2u, t→x,

f→11
y

M
, ~3!

for u>0, v>0, andu1v<p/2. To make a colliding plane
wave spacetime we have to analytically continuey past the
cyclic boundary conditions onf. Therefore the resulting
metric

ds2524M2@12sin~u1v !#2dudv1
cos2~u1v !

@12sin~u1v !#2
dx2

1cos2~u2v !@12sin~u1v !#2dy2 ~4!

is locally, but not globally, isometric to Eq.~1!.
There is one slight problem with this metric: it serves as a

good description of the interaction region for two colliding
plane waves, but it does not describe the spacetime before
the two waves have met. Penrose and Khan@11# came up
with an effective yet slightly flawed prescription for con-
structing incoming waves from a metric for a colliding wave
interaction region: replaceu andv, respectively, byuH(u)
andvH(v), whereH(x) is the Heaviside step function. Thus
an incoming wave in the regionu.0, v,0 can be written

ds2524M2@12sin~u!#2dudv1
cos2~u!

@12sin~u!#2
dx2

1cos2~u!@12sin~u!#2dy2. ~5!

Length scales for the colliding wave system are intro-
duced viau→u/a, v→v/b. The requirement that the metric
be continuous with flat spacetime atu5v50 relates the fo-
cal lengths and amplitudes of the incoming waves through
ab54M2, which we will see more of later. The spacelike
Killing vector ]/]x becomes singular whenu/a1v/b→p/2,
and moreover,RmanbRmanb→` there, indicating a space-
time singularity. The incoming wave metrics obtained by the
above Khan-Penrose prescription haveRmanbRmanb50 but
the Weyl tensor component

Cuxux5
23 @cos~u/2 a!1sin~u/2 a!#2

a2 @cos~u/2 a!2sin~u/2 a!#4 ~6!

blows up asu→pa/2, showing that the incoming waves are
singular in some sense before they collide.

A better-behaved metric can be obtained by sending
(u,v) to (2u,2v):

ds2524M2@11sin~u1v !#2dudv1
cos2~u1v !

@11sin~u1v !#2
dx2

1cos2~u2v ! @11sin~u1v !#2dy2. ~7!

This metric is also locally isometric to the trapped region
of a Schwarzschild black hole, except that
RmanbRmanb53/4M4 in the limit u/a1v/b→p/2. The
spacelike Killing vector]/]x becomes null there, signalling
a Cauchy horizon~because initial data that are spatially ho-
mogenous in thex direction cease to be so when]/]x is no
longer spacelike!. The incoming waves extended from this
collision region have

Cuxux5
23@cos~u/2 a!2sin~u/2a!#2

a2@cos~u/2a!1sin~u/2 a!#4 , ~8!

which vanishes on the incoming focal planeu5pa/2. These
waves are called ‘‘sandwich waves,’’ the curvature being
neatly sandwiched between the past wave front and the focal
plane to the future. The incoming waves in Eq.~5! are not
sandwich waves in this sense.

A. Axion-dilaton black holes

In order to better understand this pattern of singular and
nonsingular behavior, we will extend the coordinate transfor-
mation made for the Schwarzschild black hole to the general
case of an axion-dilaton black hole ind54 with N U~1!
gauge fields, with the action

Seff5
1

16pE d4xA2gS 2R1
1

2

]ml]ml̄

~ Iml!2

2 (
n51

N

Fmn
~n!!F̃ ~n!mnD , ~9!

whereF̃mn5e22f!Fmn2 icFmn. The axion (c) and dilaton
(f) fields are combined intol5c1 ie22f, and ! is the
spacetime dual operation.

In the trapped region the metric can be written

FIG. 1. Spacetime diagram of two colliding plane waves.

7834 56PATRICIA SCHWARZ



ds252
~r 22uYu2!

~r 12r !~r 2r 2!
dr21~r 22uYu2!du2

1
~r 12r !~r 2r 2!

~r 22uYu2!
dt21~r 22uYu2!sin2udf2,

~10!

where

r 65M6r 0 , r 0
25M21uYu224( uG~n!u2,

G~n!5
1

2
~Q~n!1 iP ~n!!, ~11!

and

Y5S2 iD52
2

M (
n51

N

~G~n!!2. ~12!

$Q(n),P(n)% are the U~1! electric and magnetic charges, re-
spectively. The entropy of the axion-dilaton black hole is
given by 1/4 of the area of the horizon

S5
A

4
5p@~r 1!22uYu2#. ~13!

It is important to remember that the coordinater is now
measuring time, so this is a highly time-dependent space-
time, not the placid exterior of a classical black hole. In the
extreme limit of r 1→r 2→M , or r 0→0, the region over
which r is timelike shrinks to zero, and so the amount of
violent time dependence inside the black hole shrinks away
as well. The area of the extreme black hole is

Sextr5
Aextr

4
5p~M22uYu2!. ~14!

In general these axion-dilaton black holes have fascinat-
ing properties and relationships to deep symmetries in string
theory @6–9#. The parameterr 0 measures how far the black
hole is from the extremal limitr 15r 2 , where the trapped
region threatens to vanish and reveal a naked singularity to
the universe. The parameterr 0 also measures the breaking of
supersymmetries in theN54 supergravity theory underlying
the action~9!. The conditionr 050 corresponds to the satu-
ration of the supersymmetry ~SUSY! bound via
M5uz1u.uz2u or M5uz2u.uz1u between the black hole mass
and the largest of the eigenvalues (z1 ,z2) of the central
charge matrix of theN54 theory, restoring 1/4 of the broken
N54 supersymmetry. The area of the extreme horizon is
proportional to the square of the largest central charge at the
‘‘fixed point’’ where the other central charge vanishes.

The full saturationM5uz1u5uz2u restores 1/2 of the bro-
ken N54 supersymmetry. Ther 0→0 limit of the corre-
sponding black hole is an extreme dilaton black hole with
M5uYu, zero entropy and a singular horizon. Hence super-
symmetry serves as a cosmic censor for these black holes as
long as not more than 1/4 of theN54 supersymmetry is
restored.

The axion and dilaton fields add to this interesting behav-
ior at the horizon in ther 050 limit ~Fig. 2!. At the extreme
horizon they lose all dependence on their values
l05c01 ie22f0 at spatial infinity and depend only on the
values of quantized conserved charges. For a single extreme
black hole of this type withN electric and magnetic charges
Q( i )1 iP ( i )5ef0(ni2l 0̄mi), with (ni ,mi)PZ, the axion
and dilaton fields at the horizon reduce to@10#

c f5
( nimi

( mi
2

, e22f f5

S (
i , j

~nimj2njmi !
2D 1/2

( mi
2

.

~15!

B. Axion-dilaton colliding waves

The coordinate transformation from (r ,u,t,f) to
(u,v,x,y) gives r (u,v)→r 6 for the (6) branch of the so-
lution asu/a1v/b→p/2:

r→M6r 0sinS u

a
1

v
bD , u→

p

2
6S u

a
2

v
bD ,

~16!

t→xr0 /~M22uYu2!1/2, f→11y/~M22uYu2!1/2.

The trapped region of the black hole is only locally isometric
to the interaction region of the colliding plane wave space-
time, because we are sending the cyclic coordinatef to the
noncyclic coordinatey, to represent a plane wave infinite in
both thex andy directions.

The axion-dilaton black hole metric in the trapped region
now takes the form

guv5
22$@M6r 0sin~u/a1v/b!#22uYu2%

ab
, ~17!

FIG. 2. These contours of constantf0 show how the axion and
dilaton fields lose their dependence onf0 andc0 and flow to fixed
values on the horizon of an extreme axion-dilaton black hole. Here
the coordinater measures distance from the extreme horizon.
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gxx5
~M22uYu2!cos~u/a1v/b!2

@M6r 0sin~u/a1v/b!#22uYu2

gyy5cos2S u

a
2

v
bD $@M6r 0sin~u/a1v/b!#22uYu2%

M22uYu2 .

Requiringgmn5hmn for u5v50 constrains the incoming
parametersa andb to satisy

ab54~M22uYu2!5
4Sextr

p
. ~18!

Thus only when the mass is larger than the axion-dilaton
charge and the entropy of the relevant black hole is not van-
ishing are both parametersa andb nonvanishing. This con-
straint is significant because the conditionM.uYu is a su-
persymmetry bound that helps enforce cosmic censorship in
the black hole system. This bound in the colliding plane
wave system tells us that the effective focal length of the
colliding axion-dilaton plane wave system is not negative
( f 5pAab/2>0) and only approaches zero in the singular
extreme dilaton limitM5uYu. This looks and acts like a
supersymmetric enforcement of cosmic censorship, although
in the context of the colliding-wave problem, it was derived
by requiring that the spacetime be exactly flat before the
arrival of each incoming wave.

Abbreviating r 6(u,v)5M6r 0sin(u/a1v/b), the axion
and dilaton fields become

c~u,v !5
c0$D

21@S1r 6~u,v !#2%22e22f0D r 6~u,v !

D21@S1r 6~u,v !#2

~19!

and

e22f~u,v !5e22f0
r 6~u,v !22~S21D2!

D21@S1r 6~u,v !#2
, ~20!

whereS andD are given by Eq.~12!.
Transforming from (t,f) to (x,y) by Eq.~16!, theN U~1!

potentials with electric and magnetic charges (Q(n),P(n)) are
transformed from (At

(n) ,Af
(n)) to

Ax
~n!5

ef0r 0$P~n! D1Q~n!@S1r 6~u,v !#%

AM22uYu2@r 6~u,v !22D22S2#
, ~21!

Ay
~n!52

ef0P~n!cos~u/a2v/b!

AM22uYu2
. ~22!

The value ofRmnrlRmnrl in the limit u/a1v/b→p/2 is
equal to value ofRmnrlRmnrl for the equivalent axion-
dilaton black hole, evaluated atr 5r 65M6r 0 . One can see
from the following equation that this quantity will only blow
up in two limits: the Schwarzschild limituYu50, r 5r 250
and the extreme dilaton limitr 25uYu:

RmnrlRmnrl5
8~M414 M2 r 0

2112Mr 0
317 r 0

422M2uYu212r 0
2uYu21uYu4!

~r 6
2 2uYu2!4 . ~23!

C. Extreme limit of axion-dilaton colliding waves

For axion-dilaton black holes the limitr 0→0 corresponds
to the apparent vanishing of the trapped region between
r 15M1r 0 and r 25M2r 0 . This also corresponds to the
restoration of 1/4 of the brokenN54 supersymmetry in the
background supergravity theory and fixed values for the ax-
ion and dilaton fields at the extreme horizon. For axion-
dilaton colliding waves ther 0→0 limit gives the Bertotti-
Robinson colliding plane wave spacetime

ds252du dv1cos2S u

a
1

v
bDdx21cos2S u

a
2

v
bDdy2.

~24!

In this limit the axion and dilaton fields reduce to

c f5
c0@D21~S1M !2#22e22f0DM

D21~S1M !2
,

e22f f5e22f0
M22~S21D2!

D21~S1M !2 , ~25!

and reduce to Eq.~15! when written in terms of the Dirac-
quantized conserved charges. The axion and dilaton are con-
stant and take their critical values over the entire Bertotti-
Robinson spacetime, even in the flat region before either
wave has passed. Note that the axion and dilaton fields for
r 0Þ0 also take their fixed constant values in the flat region
before the waves have arrived, but evolve to their values at
r 6 on the focal planes of the incoming and colliding waves.

The incoming wave obtained from the above Bertotti-
Robinson metric via the Khan-Penrose prescription for
u.0, v,0 is

ds252du dv1cos2S u

aDdx21cos2S u

aDdy2. ~26!

~The other incoming wave is the same as above with
u→v, a→b.! Using the coordinate transformation

u5U,

v5V2
1

a
tanS u

aD ~X21Y2!,
~27!

7836 56PATRICIA SCHWARZ



x5X/cosS u

aD ,
~28!

y5Y/cosS u

aD ,

and settingDU[pa/2, the wave metric~27! becomes

ds252dUdV2S p

2DU D 2

~X21Y2!dU21dX21dY2,

0<U<DU

ds252dUdV1dX21dY2, U,0, U.DU. ~29!

This incoming wave extension of a Bertotti-Robinson
spacetime is a pulse of constant curvature of duration
DU5pa/2 and magnitude 1/a25(p/2DU)2. The focal
length of the wave isf 5DU5pa/2, meaning that null geo-
desics from an event atU52` focus at the edge of the
wave itself. The relation for colliding wavesab54(M 2

2uYu2) is a relation between the curvatures of the incoming
waves in ther 0→0 limit and the mean focal length of the
colliding system. It is curious that this relationship is also
enforced away fromr 050.

We will compare plots of test particle and test string null
geodesics for this metric truncated tod53 in Sec. IV.

III. PROPERTIES OF GENERAL COLLIDING PLANE
WAVE SPACETIMES

A. Properties of vacuum solutions

In the interaction region (u.0, v.0) any collinearly po-
larized colliding plane wave spacetime can be written in the
form @5#

ds25
l 1l 2

Aa
eQ~a,b!/2~2da21db2!1a~eV~a,b!dx2

1e2V~a,b!dy2!, ~30!

where the coordinate transformation from (u,v) in Eq. ~2! to
(a,b) is defined by

a5e2U~u,v !, bu52au , bv5av . ~31!

The vacuum Einstein equations reduce to:

Vaa1
Va

a
2Vbb50, ~32!

Qa52a~Va
21Vb

2!, ~33!

Qb522aVa Vb , ~34!

plus constraints for the initial data along (u50,v) and
(u,v50). Equations ~32!–~34! are solved by functions
whose limits asa→0 are singular like

V~a,b!;e~b!lna1m~b!,

Q~a,b!;2e2~b! lna1d~b!, ~35!

wheree(b) is determined by an integral over the boundary
between the interaction region and the incoming waves.

The b dependence in the metric is ignorable if we are
only looking at the structure of the singular terms in the
metric for a→0. Counting powers ofa and then changing
coordinates from (a,b) to (t,z), the metric behaves like the
Kasner homogeneous, anisotropic cosmology:

ds2;2dt21t2p1dx21t2p2dy21t2p3dz2, ~36!

where the Kasner exponents$pi% satisfy

p15
2~11e!

e213
, p25

2~12e!

e213
, p35

e221

e213
,

and

( pi5( pi
251. ~37!

This metric has curvature squared

RmnrlRmnrl5
4p1p2p3

t4 , ~38!

and so is singular ast→0 unlesse(b)561, in which limit
the Kasner metric reduces to a slice of Rindler spacetime.

B. How this applies to axion-dilaton colliding waves

Axion-dilaton colliding plane waves do not obey the
vacuum Einstein equations. However, the metric obtained
through the transformation~16! fits the form of the metric~2!
and the coordinate transformation~31! is still valid. ~This
transformation determines the existence of a foliation of the
interaction region into spacelike hypersurfacesa5const and
works forRmnÞ0 as long as the plane waves are collinearly
polarized.!

Remarkably enough~but not so remarkable once one re-
calls that this is still essentially a two-dimensional problem!,
the functionsV(a,b) andQ(a,b) still behave like Eq.~35!
in the limit a→0. Therefore, the Kasner asymptotic limit
also applies to axion-dilaton colliding plane waves.

Combining~31! and ~35!, we see how to calculatee(b)
without integrating over the initial data:

e~b!52 lim
a→0

V~a,b!/U5 lim
a→0

lngxx2 lngyy

lngxx1 lngyy
. ~39!

The coordinate transformation~31! for the metric under
consideration can be solved exactly, giving

a~u,v !5
1

2S cos
2u

a
1cos

2v
b D ,

b~u,v !5
1

2S 2cos
2u

a
1cos

2v
b D , ~40!

and this is easily invertible to give@u(a,b),v(a,b)#. Tak-
ing the limit ~39! yields e(b)51, which means that these
metrics are in general nonsingular. However, the nonvanish-
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ing part ofV(a,b) asa→0 consists of the singular function
;e(b) lna plus a functionm(b), which for this metric is

m~b!5 ln
~12b2!~M22uYu2!

~M6r 0!22uYu2
. ~41!

This term results in a curvature singularity in two limits: the
Schwarzshild limit wherer 05M andY50, and the extreme
dilaton limit where r 050 and M5uYu. This happens be-
cause the coordinate transformation~16! maps eitherr 1 or
r 2 to a50. The value ofRmnrlRmnrl asa→0 is the same
as RmnrlRmnrl at eitherr 6 . The only axion-dilaton black
holes where the curvature atr 6 is not finite are the
Schwarzschild and singular dilaton black holes, with space-
time singularities asr→r 2 , as described above.

IV. RELATION TO EINSTEIN-MAXWELL-DILATON
COLLIDING PLANE WAVE SPACETIMES

Bretón, Matos, and Garcı´a @12# discovered a large class of
colliding plane wave metrics that also obey the equations of
motion for the action

S5
1

16pE d4xA2g$2R12~¹F!21e22aFFmnFmn%,

~42!

which for a51 is the same as theN51, c50 limit of the
action ~9!. The metric takes the form

ds25
ek~a,b!/2

f
~2da21db2!1~a2/ f !dx21 f dy2. ~43!

For solutions that overlap with those discussed in this
paper, the functionf (a,b) has the form

f 5
f 0el~a,b!

~a1S11a2S2!
, ~44!

the dilaton field is

k25e22F5k0
2~a1S11a2S2!el, ~45!

and the Maxwell potential has the form

A5Ay5
~a3S11a4S2!

~a1S11a2S2!
. ~46!

The functionsS1,2 that reproduce theN51, c50 limit of
axion-dilaton colliding waves are

S15eq1t~a,b!, S25e2q2t~a,b!. ~47!

For this class of solutions, the functionst(a,b), l(a,b),
andk(a,b) satisfy

taa1
ta

a
2tbb50, laa1

la

a
2lbb50, ~48!

ka5
a

2
~la

21lb
2!1q1

2~ta
21tb

2!,

kb52a~lalb1q1
2tatb!, ~49!

and the constantsf 0 ,ai ,k0 obey

f 0a1a25k0
2~a3a22a1a4!2. ~50!

Sincet(a,b) andl(a,b) obey Eq.~32!, asa→0

t~a,b!;e1~b!lna, l~a,b!;e2~b!lna, ~51!

k~a,b!;2@q1
2e1

2~b!1e2
2~b!# lna. ~52!

There are two conditions under which the metric and
fields given above exhibit the same nonsingular Kasner
asymptotic limit as exhibited by theN51, c50 limit of
axion-dilaton colliding waves. The Schwarzschild limit with
constant dilaton and Maxwell potential requiresq15q2 and
l(a,b)52q1t(a,b), with e2(a,b)51 or 0. The Einstein-
Maxwell dilaton limit of axion-dilaton colliding waves is
reachable only ifq252q1 ande2(a,b)5uq1e1(a,b)u51.

V. MAXIMAL ANALYTIC EXTENSIONS
OF AXION-DILATON COLLIDING PLANE WAVES

In Sec. III we showed that the asymptotic causal structure
of the axion-dilaton colliding plane wave spacetime near the
Killing-Cauchy horizon atu/a1v/b5p/2 is that of the Kas-
ner metric

ds252dt21t2p1dx21t2p2dyz1t2p3dz2 ~53!

in the limit p151, p25p350, corresponding to the wedges
of Minkowski spacetime in Rindler coordinates that are ‘‘be-
hind the horizon’’ for the usual constantly accelerating ob-
server. This insight was derived using the general asymptotic
structure of colliding plane graviational waves in@5#, but it is
more easily derived using black hole coordinates. The proper
time from r 5r 6 as measured by a nearby freely falling ob-
server is approximately

t1
2 ~r !;2~r 12r !S r 1

2 2uYu2

r 0
D ,

t2
2 ~r !;2~r 2r 2!S r 2

2 2uYu2

r 0
D . ~54!

Changing coordinates by assigningx65tr 0 /(r 6
2 2uYu2),

the metric becomes

ds2;2dt6
2 1t6

2 dx6
2 1R~r 6!2dV. ~55!

In the (t,x) plane the metric is the wedge of Rindler space-
time defined in Minkowski coordinates by

T22X25t6
2 ,

X

T
5tanhx6 . ~56!

The axion-dilaton colliding plane wave maps to the
wedges of Rindler spacetime in the ‘‘trapped regions’’ II and
IV and the maximal analytic extension acrosst650 gives
back the parts of Rindler space that correspond to the non-
trapped regions I and III. It is important to remember thatx
is proportional tox, and that the spacelike Killing vector

7838 56PATRICIA SCHWARZ



]/]x becomes null on the Killing-Cauchy horizon att650.
This signals the breakdown of spatial translation invariance
in thex direction just as]/]t becoming null in regions I and
III of Fig. 3~b! below signals the breakdown of time-
translation invariance there.

From this point the maximal analytic extension of the
axion-dilaton colliding plane wave metric follows the same
steps as for the generic axion-dilaton black hole, which has
the same causal structure and maximal analytic extension of
a Reissner-Nordstrom black hole, except in the extreme di-
laton limit to which we will return later. The Schwarzschild
limit was described by Yurtsever in@5#.

There is, however, one problem — we have broken the
cyclic boundary conditions onf in the coordinate transfor-
mationf→11y/(M22uYu2)1/2. The cyclic boundary con-
ditions onf, as extended across the surfacest650, can be
restored by compactifying spacetime in they direction for
the incoming waves on a circle of radiusAM22uYu2. If we
insist that the maximal extension of the axion-dilaton collid-
ing plane wave spacetime be analytic, compactification of
the y-direction is forced on the incoming waves@5#.

The maximal analytic extension of the axion-dilaton col-
liding plane wave metric has two sandwich waves with trans-
lation symmtery in thex and y directions propagating in a
universe where they coordinate lives on a circle of radius
AM22uYu2. The waves collide to form either an event ho-
rizon at r 1 or a Cauchy horizon atr 2 of an axion-dilaton
black hole spacetime, from which the spacetime extends into
the relevant nontrapped region of the relevant black hole
spacetime. In the diagram above, the (1) region is where the
(1) branch of the axion-dilaton colliding plane wave metric
extends to the black hole spacetime to give an asymptotically
flat universe plus an axion-dilaton black hole to the future
~Fig. 4!. The (2) region is where the (2) branch of the
colliding wave metric extends from the trapped region II into
the axion-dilaton black hole spacetime to the future~Fig. 4!.

VI. PARTICLE VS STRING PROPAGATION
IN THIS SPACETIME

A. How do test particles propagate
through the focal plane?

The source of nearly all singularities and causal patholo-
gies that occur in classical general relativity is the inevitabil-

ity of the gravitational field to cause light cones to focus in
on themselves@13#. Hawking-Penrose-type singularity theo-
rems chiefly express the conflict in general relativity when
the local existence and uniqueness of extremal length curves
breaks down due to the above focusing and threaten the ex-
istence of some desired global causal structure in that space-
time.

A simple illustration of this breakdown is gravitational
lensing with multiple images. Suppose we are looking at a
spacetime where this occurs. A light flashes at spacetime
eventEi5(t i ,xW i) and the light leavingEi is lensed by the

FIG. 3. ~a! shows the wave collision in the (u,v) or (t,z) plane.~b! shows how the metric nearu/a1v/b→p/2 looks in the (t,x) plane.
The linesx65const are lines of constantx that cross on the Killing-Cauchy horizonst650, where]/]x becomes null.

FIG. 4. The axion-dilaton colliding plane wave metrics analyti-
cally extend from the shaded regions of the above Penrose diagram
into the black hole metric above it.
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spacetime geometry so that an observerO at spatial location
xWO sees two images of the flash fromEi . The two images
seen byO represent two different null geodesicsg1 andg2 ,
both of which leavexW i at t5t i . The geodesicg1 crossesxWO

at t5t1 and the geodesicg2 crossesxWO at t5t2 .
If t2.t1 there is a problem. The events (t1 ,xWO) and

(t2 ,xWO) cannotboth lie on the future light cone of the event
Ei , because the timelike observerO experiences both
events. Therefore the geodesicg1 must lie on the future light
cone ofEi , while g2 started out on the future light cone of
Ei and somehow left it. Since the problem goes away only
when t15t2 , it must be true that this is where the problem
starts and where null geodesics begin to fail to determine
causal boundaries in spacetime.

In general, if two null geodesicsg1 andg2 intersect once
at some spacetime eventEi and then reintersect at later
spacetime eventEc , then bothg1 andg2 leave the ‘‘bound-
ary of the causal future’’ ofEi when they cross again atEc ,
and any eventEf at t f.tc alongg1 or g2 can be reached by
a timelike curve fromEi .

This geodesic focusing is not a problem as long as there
exists a discrete number of multiple images. Geodesic focus-
ing at the continuum level is more dangerous and hence
more interesting. In general relativity the expansion scalaru
determines when geodesic focusing is going to interfere with
the unique delimitation of causal boundaries. Ifna is a tan-
gent vector to a null geodesicg, then u is defined by
u5¹ana. The rotationvab and shearsab tensors are the
antisymmetric and symmetric parts of¹anb , respectively.1

The evolution equation foru with respect to the affine
parametert alongg is

nc¹cu5
du

dt
52

1

2
u22sabs

ab1vabv
ab2Rcdj

cjd.

~57!

Spacetimes withvabÞ0 are not foliatable into spacelike hy-
persurfaces and hence are not stably causal, so that term is
zero if we exclude such spacetimes from consideration.
Sincesabs

ab>0, if Rcd ncnd>0, it follows that

du

dt
1

1

2
u2<0 → u21>u0

211
1

2
t. ~58!

Since u;(1/V')(dV' /dt), whereV' is the transverse
volume of a bundle of ‘‘nearby geodesics,’’ we do not want
the right-hand side~RHS! of the above inequality to cross
through zero. If the expansionu0,0 at some proper timet0
along some geodesic, thenu→2` along that geodesic
within a proper timet<2/uu0u. SoV'→0 in a finite amount
of proper time after the bundle begins to focus, or converge,
at t0 . When this happens to geodesics that are initially in-
tersecting at some previous proper timet,t0 , either the
initial value problem breaks down or the geodesics fail to be
extendible past the focal plane. The latter alternative defines

a spacetime singularity and is accompanied by the blowing
up of curvature invariants in that region.

In the axion-dilaton colliding wave spacetime, a null vec-
tor n tangent to a null geodesicg can be written

n5u̇
]

]u
1 v̇

]

]v
1

px

gxx

]

]x
1

px

gxx

]

]y
, ~59!

wherepx andpy are constants of motion alongg. The con-
dition n•n50 yields

2guvu̇v̇52S px
2

gxx
1

py
2

gyy
D . ~60!

If we look at null geodesics along whichpx5py50, then we
can choosev̇50, andn5u̇(]/]u). The geodesic equation
ü1Guu

u u̇250 is solved byu̇52guv, and the expansion sca-
lar

u5¹ana5
21

Ag

]

]u
~Agguv!

5
1

uguvuAgxxgyy

]

]u
~Agxxgyy!→2` ~61!

asu/a1v/b→p/2, wherea andb are the focal lengths de-
fined in Sec. II.

This focusing of initially parallel light rays defines the
Killing-Cauchy horizon on the focal plane of the collision
region. Parallel light rays delimit causal boundaries of events
to the infinite past, so information from the infinite past of
the colliding wave spacetime is focused together on the focal
plane. This spacetime is on the edge of being singular. In-
stead of having infinite curvature at the focal plane, the cur-
vature is finite and coordinates can be extended across it, but
there is instead the global pathology of a Killing-Cauchy
horizon. Small plane-symmetric perturbations of the incom-
ing waves lead to the generic singular solutions.

Note that V'5Agxxgyy5ucos(u/a1v/b)cos(u/a2v/b)u is
independent ofr 0 , so the focusing is controlled by the su-
persymmetric limitr 0→0 of the Bertotti-Robinson colliding
plane wave system. Therefore comparisons of test particle
and test string propagation can be made using the incoming
wave extended from the Bertotti-Robinson collision region
via the Khan-Penrose prescription, and the results should ap-
ply to axion-dilaton colliding plane waves withr 0Þ0.

In order to plot these geodesics, it is convenient to trun-
cate the metric~25! to d53. Changing to harmonic coordi-
nates gives the metric

ds25dUdV1h~U !X2dU22dX2,

h~U !5S p

2DU D 2

, 0,U,DU50, U,0, U.DU,

~62!

whereDU5pa/2. The geodesic equations are

V̈1
]h

]U
X2 U̇214h~U !U̇XẊ50, Ü50,

Ẍ1h~U !U̇2X50, ~63!

1These quantities are defined on the two-dimensional quotient
space of vectors orthogonal ton modulo multiples ofn.
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and the null condition gives

U̇ V̇1h~U !X2 U̇22Ẋ250. ~64!

The above equations are invariant under rescaling the af-
fine parameter byt→at, so the paths of massless test par-
ticles are the same for particles of all energies, a general
feature of Einstein relativity. Therefore it is convenient and
proper to choose for the above spacetimeU5t, after which
the equations are easily solved. Null geodesics passing
through this wave take the form

U,0, X~t!5p0t, V~t!5p0
2t,

0,U,DU, X~t!5c0sin~v0t!1d0cos~v0t!,

V~t!5E Ẋ~t!2 dt1v02,

U.DU, X~t!5pf t1xf , V~t!5pf
2 t1v f , ~65!

wherev05p/2DU and the parameterp0 represents the test
particle momentum in thex direction. The six constants
above are determined by the continuity ofX(t), Ẋ(t), and
V(t) @but not V̇(t)# across the surfacesU50 andU5DU.
The geodesics were plotted below usingMATHEMATICA .

In Fig. 5 the plane wave passes betweenU50 and
U5200. After the null geodesics focus atU;216, they fail
to determine the boundary of the causal future of the initial
event, and the light cone is expanded out along the direction
parallel to the wave. Null geodesics from an event at
U52` would focus exactly atf 5DU5200.

Because of the extreme distortion of the light cone by the
plane wave, every spacelike hypersurface in this spacetime
intersects at least one null geodesic more than once. A global
Cauchy surface cannot be defined, but for local calculations
one can define a partial Cauchy surface and compute field
theory Bogolyubov coefficients. Gibbons@15# showed that

although the quantum theory of a scalar field in a single
plane wave background is easily calculable and yields no
particle creation, the theory itself becomes singular at the
focal plane where the Cauchy horizon can no longer be ne-
glected.

B. How do test strings propagate through the focal plane?

Plane gravitational waves are interesting string back-
grounds to explore because the metric fields provide exact
conformally invariant couplings on the string world sheet.
This is because all the higher-derivative terms that could add
~worldsheet! quantum corrections vanish identically@16#.
String propagation through gravity waves has been fruitfully
explored in the past in the context of scattering amplitudes.
A notion of ‘‘stringy singularity’’ based on infinite string
excitation was examined by Horowitz and Steif@17,18#,
Sanchez and de Vega@19# and others. While this looks like a
good operational definition of singular string propagation, it
does not shed light on the nature of causal volume delimita-
tion in string theory and the potential physically relevant
pathologies that could occur when causal volumes are delim-
ited by solutions to worldsheet rather than world line math-
ematics. For this reason, we step back to that earlier work
and reexamine it from a geodesic rather than anS-matrix
point of view.

In extending the geodesic picture to string theory, the test
particle geodesics that define the boundary of the test particle
light cone are represented by the zero mode of the string.
This is the center-of-mass coordinate that obeys that standard
geodesic equation. If we only look at the geodesics of test
string zero modes, then the singularities and causal patholo-
gies of general relativity remain with minor modifications~in
the cases where we trust the background spacetime approxi-
mation, at least.!

This is basically telling us that test particles propagate in
‘‘stringy general relativity’’ rather similarly to how they
propagate in ordinary general relativity. The biggest differ-
ence comes from the rescaling of the stringy affine parameter
relative to the test particle affine parameter bye22f. This
has a noticeable effect mainly in the case of a dilaton black
hole with purely electric charge@17#.

If we take all string modes into account, the counterpart to
a geodesic equation in string theory becomes

hXm1Gnl
m @X~t,s!#]aXn]aXl50. ~66!

In the single plane wave metric~25! the equations reduce to

V̈2V91
]h

]U
X2~U̇22U82!14h~U !X~U̇Ẋ2U8X8!50,

Ü2U950, Ẍ2X91h~U !~U̇22U82!X50. ~67!

The mass shell constraints come from the vanishing of the
world sheet stress tensor and automatically satisfy the first
equation above. If we choose the gaugeU5U(t) we get

U̇V̇52h~U !X2U̇21~Ẋ21X82!, U̇V852ẊX8 ~68!

and the remaining second order equation reduces to

FIG. 5. Null geodesics from (21000,0,0) pass through the
wave betweenU50 and U5200 and are focused to a point. A
similar picture was shown by Penrose in@14#.
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Ẍ2X91h~U !U̇2X50. ~69!

These equations do not allow the rescaling of string
proper affine parameter, so if we further fix the gauge by
U5pt and try to rescalep out of the equations through
t85pt, factors of p end up in theX8 terms. Setting
Lstring51 and expanding in open string modes using
X(t,s)5(Xn(t)cos(ns), we get

Ẍn~t!52S n2

p2 1h~U ! DXn~t!, ~70!

with V(t,s)5(Vn(t)cos(ns) obtainable by straightforward
integration of Eq.~68!. As pointed out in@20#, string null
trajectories are momentum dependent and hence fail to sat-
isfy the principle of equivalence observed in particle geode-
sics. So causal boundaries as determined by propagating
strings become momentum-dependent.

Assigningvn5An2/p21h0 andv05Ah05p/2DU, it is
convenient to expand in the basis:

U,0 X0~t!5p0t,

Xn~t!5ancos~nt/p!1bnsin~nt/p!, ~71!

0,U,DU X0~t!5c0sin~v0t!1d0cos~v0t!, ~72!

Xn~t!5cnsin~vnt!1dncos~vnt!, ~73!

U.DU X0~t!5pft1xf ,

Xn~t!5encos~nt/p!1 f nsin~nt/p!, ~74!

with U5t and theVn(t) obtained by integrating Eq.~68!.
This is related to the more common expansion for strings in
flat spacetime

U5pt, X~t,s!5X0~t!1 i(
n

an

n
e2 intcos~ns!

~75!

through

an52
2p

n
Iman , bn5

2p

n
Rean. ~76!

Applying continuity equations across the wave boundaries
at U50 andU5DU gives the linear transformation between
incoming and outgoing mode constants (an ,bn) and (en , f n):

en5anFcos~nDU/p!cos~vnDU !

1S vn p

n D sin~nDU/p!sin~vnDU !G
1bnF2sin~nDU/p!cos~vnDU !

1S n

vn pD cos~nDU/p!sin~vnDU !G , ~77!

f n5anFsin~nDU/p!cos~vnDU !

2S vnp

n D cos~nDU/p!sin~vnDU !G
1bnFcos~nDU/p!cos~vnDU !

1S n

vnpD sin~nDU/p!sin~vnDU !G . ~78!

Transforming back to the basis (an ,a2n) by undoing Eq.
~76!, the Bogolyubov coefficientsBn obtained match those
obtained ford54 in @21#, which according to the conven-
tions used here is

uBnu25
1

4S p

nvn
D 2

v0
4sin2~vnDU !. ~79!

It is significant that this coefficient is zero in scalar quantum
field theory@15#. As Gibbons explained, there is no mixing
between in and out bases in that case because there is a
global null Killing vector guaranteeing that frequencies can
be measured in the same way before and after the wave’s
passage. Strings are excited because they have extended
structure. String in and out bases are getting mixed in out-
right defiance of this target space Killing vector that has such
a powerful restrictive effect on quantum fields.

The limit DU→0 leads to a wave profile
h(U)→(p/2)d(U), which in @17,21# was shown for
bosonic strings to satisfy the definition of a singularity in
terms of string propagation because the mass operator for the
‘‘out’’ state in the ‘‘in’’ vacuum diverges like((1/n).

For the single wave under considerationDU5pa/2. The
axion-dilaton colliding wave metric requiresab54(M2

2uYu2), so the limit in which one or both incoming waves
has the profileh(U)→(p/2)d(U) is also the limit in which
the maximal analytic extension of the collision region gives
an extreme dilaton black hole with zero entropy but infinite
curvature at the horizon and 1/2 of theN54 supersymmetry
unbroken@6#.

String motion through the wave represented by Eq.~25!
looks the same globally as the particle motion when plotted
at the same scale as in Fig. 5. The main difference becomes
visible in the focusing region when the momentum is varied,
as shown in Fig. 6.

The plot above shows that the focal region as determined
by strings becomes smeared by strings as the momentum
decreases. This does not mean that string trajectories are no
longer leaving the boundary of the causal future after they
cross. This still has to be true at large distances. String ef-
fects obscure the location of the focal plane but not the ef-
fects of geodesic focusing itself.

The geodesic focusing that determines the location of the
focal plane of the extreme single plane wave in Eq.~24! was
shown in Eq.~61! to control the focusing of the Killing-
Cauchy horizon in the collision region asu/a1v/b→p/2.
The Killing-Cauchy horizon for axion-dilaton colliding plane
wave system is mapped tor 5r 6 in the axion-dilaton black
hole via the coordinate transformation~16!. The quantity
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V'5Agxx gyy is locally identified with A2gtt gff. This
demonstrates a relationship between infinite geodesic focus-
ing in the colliding wave system and the infinite red shift in
the black hole system.

Consider the ‘‘stringy stretched horizon’’ as elucidated in
@22#. An observer accelerating at constantr @a fiducial ob-
server~FIDO!# near a black hole event horizon sees a pass-
ing freely falling string with a time resolution that decreases
like «;e2ct, with c5(r 12r 2)/2(r 1

2 2uYu2). But we know
that a measurement of the size of a string cut off at modeN
grows like lnN, i.e., strings fill more space as we try to
measure them with greater time resolution. Since the resolu-
tion «;1/N, the FIDO would see the passing string begin to
grow like ct until it filled the horizon area. In@22# the au-
thors fixedp51 and looked at«(N). In the plots in Fig. 6
we fixedN51 and variedp instead, finding that as we try to
look at the string with decreasing resolution«5p/N, the
string gets longer and fills more space.

The Killing-Cauchy horizon formed by axion-dilaton col-
liding plane waves maps to apast horizon of an axion-
dilaton black hole.~See Fig. 4.! So the ‘‘stringy stretched
focal plane’’ can be viewed as the time-reversed version of
the ‘‘stringy stretched horizon’’ described in@22#. In other
words, suppose we are in the maximally extended colliding
plane wave spacetime described in Sec. V, where two waves
in a cylindrical universe collide to produce the axion-dilaton
black hole spacetime in Fig. 4 atr 5r 1 . A FIDO close tor 1

in region I would see a test string emerging from the colli-
sion region att52` filling the past horizon of the white
hole created by the collision and then shrinking rapidly. This
is the time-reversed version of what the FIDO at the future
horizon sees.

It is important to remember, however, that these nonsin-
gular colliding plane wave metrics are unstable. The singular
term in the curvature~38! only vanishes when the product
p1p2p3 is precisely zero everywhere, which only happens if
the initial data is specified with an arbitrarily high precision.

C. Scattering of almost-plane waves

It was shown by Yurtsever@23,24# that two finite-sized
gravity waves that are ‘‘nearly plane symmetric’’ over some
transverse sizeLT;L1T;L2T will collapse through plane-
symmetric processes if the average focal lengthf 5Af 1f 2 of
the incoming waves satisfiesLT@ f . There is a causality-

based argument for this: The proper time in the collision
region for the singularity or Cauchy horizon to form is
Dt; f . So if LT@ f , the asymptotic evolution becomes
dominated byinfinite plane wave dynamics before gravita-
tional shock waves containing the information that the in-
coming waves arefinite in extent could have time to reach
the collision region.

The mass-energy density contained in each incoming
wave of thicknessai and average curvature;Ri would be
on the order of Ei /(aiLT

2);Ri . The focal length
f i;ai /(ai

2Ri), which givesEi;LT
2/ f i . ~So the mass energy

per unit area in a finite, nearly plane symmetric gravity wave
is Ei /Ai;1/f i .) The total mass energy in the collision re-
gion then would beECW;AE1E2;LT

2/Af 1f 25LT
2/ f , so the

conditionLT@ f impliesECW@LT . In other words, the mass
energy in the colliding wave system is contained well within
its Schwarzschild radius when the two waves meet and the
final product of this collision ought to be a black hole of size
;LT

2/ f .
In the case of axion-dilaton colliding waves, these space-

times are in general nonsingular and hence are believed to be
unstable, in that small plane-symmetric perturbations on the
initial data propagate to cause the Killing-Cauchy horizon to
become singular. However,f 5pAab/25pAM22uYu2. For
the incoming waves,Ri;1/ai

2 . Therefore f i;ai , and the
limit f i→0 is also the limitRi→`. The conditionLT@ f
implies ECW@LT@ f 5pAM22uYu2. This suggests that the
collision of these finite waves could nucleate not one, but
several axion-dilaton black holes, and in the maximally su-
persymmetric limit ofM→uYu, the result could be an explo-
sion of extreme dilaton black holes, which are not really
black holes because the event horizon is singular. For that to
happen at least one of the incoming waves would have zero
thickness and infinite curvature. Such an incoming wave is
already singular if we use the operative definition of a sin-
gular wave in string theory as a background in which the
Bogolyubov coefficient for string excitation becomes infi-
nite.

VII. CONCLUSIONS

The local coordinate transformation between the trapped
region of a Schwarzschild black hole and a colliding plane
gravitational wave discovered by Ferrari and Iban˜ez @2,3#

FIG. 6. The surface swept out byX(t,0) plotted forp51000,p52, andp50.01.
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extends naturally to the class of axion-dilaton black holes
that are classical solutions to the electric-magnetic duality-
invariant action~9!:

Seff5
1

16pE d4xA2gS 2R1
1

2

]ml]ml̄

~ Iml!2

2 (
n51

N

Fmn
~n!!F̃ ~n!mnD .

The local coordinate transformation~16!

r→M6r 0 sinS u

a
1

v
bD , u→

p

2
6S u

a
2

v
bD ,

t→xr0 /~M22uYu2!1/2, f→11y/~M22uYu2!1/2

transforms an axion-dilaton black hole metric characterized
by massM and complex axion-dilaton chargeY to the col-
lision region of a colliding axion-dilation plane wave metric
~17!

guv5
22$@M6r 0sin~u/a1v/rb !#22uYu2%

ab
,

gxx5
~M22uYu2!cos~u/a1v/b!2

@M6r 0sin~u/a1v/b!#22uYu2

gyy5cos2S u

a
2

v
bD $@M6r 0sin~u/a1v/b!#22uYu2%

M22uYu2 .

The constantsa and b represent the focal lengths of the
incoming waves obtained from above through the Khan-
Penrose prescription @11# and satisfy the relation
ab54(M 22uYu2). This metric has a Killing-Cauchy hori-
zon atu/a1v/v5p/2, where the spatial translation Killing
vector ]/]x becomes null. The curvature at the Killing-
Cauchy horizon is equal to the curvature atr 5r 6 of the
correspoonding axion-dilaton black hole and so is finite ex-
cept in the Schwarzschild and extreme electrically or mag-
netically charged dilaton limits where the curvature atr 2

diverges.
The limit r 0→0, which for the black hole metrics corre-

sponds to an extreme black hole, takes the axion-dilaton col-
liding plane wave metric to the Bertotti-Robinson metric
~25!

ds252dudv1cos2S u

a
1

v
bDdx21cos2S u

a
2

v
bDdy2,

which has a finite average focal lengthab54(M22uYu2)
despite the fact that the trapped region of the corresponding

black hole has become infinitesimal. The productab of the
nonvanishing parameters describing the colliding waves is
related to the entropy of a nonsingular extreme black hole
with 1/4 unbrokenN54 supersymmetry through

ab5
4Sextr

p
. ~80!

An incoming wave obtained from the Bertotti-Robinson
collision region can be described in harmonic coordinates as
a shock wave of thicknessDU5pa/2, wherea is the focal
length of that wave, and constant curvature of magnitude
1/a25(p/2DU)2. If we senda→0 while keeping the other
incoming focal length b finite, then the constraint
ab54(M22uYu2) says thatM5uYu. The limit a→0 corre-
sponds to ad function incoming wave. The black hole cor-
responding to theM5uYu limit has a singular horizon, zero
entropy and 1/2 ofN54 supersymmetry unbroken. This cor-
respondence between ad-function gravity wave and this ex-
treme dilaton configuration with zero entropy is like a type
of wave-particle duality in string theory, albeit not the usual
one.

The maximal analytic extension of the metric~17! across
the Killing-Cauchy horizon gives back the nontrapped re-
gions of the corresponding axion-dilaton hole, but requires
that they coordinate live on a circle of radiusAM22uYu2.
The resulting spacetime has two plane-symmetric single
waves propagating in a cylindrical universe that collide and
form a past horizon of an axion-dilaton black hole, shown in
Fig. 4.

The propagation of test particle and test strings in a plane
gravitational wave were compared. Geodesic focusing for the
axion-dilaton colliding wave system is controlled by the su-
persymmetric Bertotti-Robinson limit. The single plane
waves obtained from this collision region metric therefore
make good toy backgrounds to study stringy geodesic focus-
ing. The string equivalent of a massless geodesic equation
does not allow for rescaling the affine parameter; conse-
quently light cones as delimited by strings depend on mo-
mentum. This introduces a time resolution dependence into
string geodesic focusing that is the same time resolution de-
pendence that was analyzed in the stretched black hole hori-
zon by Susskind in@22#, suggesting that a ‘‘stretched focal
plane’’ is the colliding plane wave analog of a stretched ho-
rizon for the black hole.
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