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Late-time evolution of nonlinear gravitational collapse
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We study numerically the fully nonlinear gravitational collapse of a self-gravitating, minimally coupled,
massless scalar field in spherical symmetry. Our numerical code is based on double-null coordinates and on
free evolution of the metric functions: The evolution equations are integrated numerically, whereas the con-
straint equations are only monitored. The numerical code is stablée recent claimsand second-order
accurate. We use this code to study the late-time asymptotic behavior at figatside the black hojealong
the event horizon, and along future null infinity. In all three asymptotic regions we find that, after the decay of
the quasinormal modes, the perturbations are dominated by inverse power-law tails. The corresponding power
indices agree with the integer values predicted by linearized theory. We also study the case of a charged black
hole nonlinearly perturbed by @eutra) self-gravitating scalar field, and find the same type of behavior—i.e.,
quasinormal modes followed by inverse power-law tails, with the same indices as in the uncharged case.
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PACS numbd(s): 04.70.Bw, 04.25.Dm

. INTRODUCTION according tou; (! *#) | whereu, is the outgoing Eddington-
Finkelstein null coordinatgHereafter we use the notatioR

The no-hair theorems state that except for the mass, thgnd v, for the outgoing and ingoing Eddington-Finkelstein
electric charge, and the angular momentum, all the featuresull coordinates, correspondingly, in order to distinguish
of fields which collapse to a black hole will be unobservablethem from other types of null coordinates which we use
to external observers at late times. It is therefore interestingater) Along the event horizoEH), the inverse-power in-
to study the mechanism by which the hair is radiated awayjices were found to be similar to the asymptotic lirtaj;

(or absorbed by the black hgle namely, the “tails” decay according to; ®'*#*1),

Until recently, the late-time evolution of nonspherical Recently, Krivan, Laguna, and Papadopoulos studied nu-
gravitational collapse was investigated primarily in the con-merically the evolution of linearized scalar-fie[@] and
text of linear theory. That is, the deviations from sphericalspin_z perturbationf4] over a fixed Kerr backgroundSee
symmetry were considered as infinitesimally small perturbaa|so[5]_) They concluded that “tails” are expected also for
tions over a fixed curved background. The late-time behavioghe Kerr background, with power-law indices similar to those
of such perturbations has been studied for three differengptained for the Schwarzschild background. This provides
asymptotic regions(a) at fixedr, (b) along null infinity, and  additional motivation for the study of the fully nonlinear
(c) along the future event horizdfwhen the collapse is to a eyolution of perturbations in the spherically symmetric case
black holg. Qualitatively, the evolution of the linearized per- 55 5 toy model for the spinning case, since the spherical case
turbations is similar in these three asymptotic regions: Duris much simpler to deal witfboth analytically and numeri-
ing the first stage, the perturbations’ shape depends strongbé"y)_
on the shape of the initial data. This stage is followed by the The numerical simulation of the fully nonlinear gravita-
stage of quasinormdlQN) ringing, in which the perturba- tional collapse of a spherically symmetric self-gravitating
tions oscillate with an exponentially decaying amplitude.scalar field was recently carried out by two groups: Gun-
The corresponding complex frequency is characteristic of thellach, Price, and Pullifi] (GPP and Marsa and Choptuik
parameters of the background black hole and is independe@C) [7]. In both analyses, the coordinates used were non-
of the details of the initial perturbation. Finally, there are vacuum generalizations of tHene nulk-r) outgoing[6] or
also “tails,” characterized by an inverse power-law decay. ingoing [7] Eddington-Finkelstein coordinates. These nu-

The asymptotic regioiia) was first studied by Pricfl], merical analyses demonstrated the QN ringing as well as the
who analyzed the linear perturbations over a fixed Schwarzgpower-law “tails” for lines r =const. In addition, MC also
child background. Price found that after the QN ringings diedemonstrated the power-law decay at the EH.
out, the perturbations at fixed (outside the black hojede- In this paper, too, we study the nonlinear spherical gravi-
cay according ta~?*#*1) whereu=1 if there were an tational collapse of a self-gravitating scalar field. However,
initial static mode angb=2 otherwise. Herd, is the multi-  we shall use different coordinates, different numerical meth-
pole moment of the mode in question, ani the standard ods, and a somewhat different model. Our numerical code is
external Schwarzschild time coordinate. Asymptotic regionsstable and second-order accurate and is based on free evolu-
(b) and (c) were considered by Gundlach, Price, and Pullintion and double-null coordinates. This combination has sev-
[2], who showed that the “tails” along null infinity decay eral advantages: First, the null coordinates are very well

0556-2821/97/5@.2)/782013)/$10.00 56 7820 © 1997 The American Physical Society



56 LATE-TIME EVOLUTION OF NONLINEAR ... 7821

adapted to the hyperbolic character of the field equationscalar field. In the uncharged case, the system is described by
evolved: The evolution is along the characteristics, and conthe coupled Einstein-Klein-Gordon field equations. We shall
sequently there is no restriction analogous to the Courardlso consider the charged case, i.e., the case in which a
condition. Second, in double-null coordinates the interpreta(sourcelesb spherically symmetric electric field is also
tion of the causal structure of the numerically producedpresent. In this case, the system is described by the coupled
spacetime is trivial. Also, double-null coordinates can beginstein-Maxwell-Klein-Gordon field equations.
chosen such that the metric is regular at the EH, which is not \ve rite the field equations in double-null coordinates.
the case in outgoing Eddington-Finkelstein coordinates.  The line element takes the form

Our coordinates and integration scheme allow us to study
the evolution to arbitrarily late times, and there is no need to ds?=—f(u,v)dudy +r?(u,v)dQ? )
introduce an artificial outer boundafy]. Our analysis dem-
onstrates both the QN ringing and the power-law “tails.” wheredQ? is the line element on the unit two-sphere. The
One of our main objectives in this investigation is to numeri-general spherically symmetric solution of the Maxwell equa-
cally determine the power-law indices of the late-timetions in these coordinates is
“tails” in the nonlinear collapse problem and to compare
them to the predictions of the linear perturbation theory. In 1 Qf
cases(a) and (c), we obtained power-law indices similar to Fo=— Fvu=§ Y (2
those found by[6,7], though with improved accuracy. In r
addition, we obtain the power-law index at null infinity, : . S
which has not been studierzi so far in nonlinear collapse. I?{a ndF,,,=0 otherwise, wher@ Is afree param(_eter, which is
three asymptotic limits, we find an excellent agreement bel_nterpreted as the electric ghar.ge, and 'wh'e;;e IS th'e Max-
tween our numerically obtained indices and the values preWell field tensor. The contr|_but|on of this electric field to the
dicted by the linear perturbation analysgis2]. (Such an  €N€rgy-momentum tensor is
agreement is expected, even in a very nonlinear collapse 0 2 0 0
problem, because of the “no-hair” principle—see, e.g., Ref.

[6].) o Q2 [f2 0 0 0
Whereas this paper considers only the external part of the T.,= al o0 0o r2 0 3
black hole, we are currently investigating the inner structure 8t

of charged black holes with a similar numerical c¢8¢ In 0 0 O r2sirfe

fact, our main motivation in this project is to develop the

numerical approach and techniques which could later bdhe energy-momentum tensor of a massless scalardietd

used in investigating the black hole’s interior. The determi-

nation of the correct late-time power-law index is essential TS

for that purpose. ald
Similar self-gravitating collapse scenarios have been re- _

cently used for the study of critical phenomena in black-holeThis field satisfies the Klein-Gordon equatish,,“=0,

formation[9—11]. In its present form our code is incapable Which, in our coordinates, takes the form

of treating these phenomena because we have not attempted

Fo inclugie the neighporhoqd of the origin in the dpmain of D+ E(r D41, & ,)=0. (5)

integration. The configurations we are interested in here are ' r-— - R

by far supercritical, and the aspects which concern us do not ] o )

require the integration near the origisee below The Einstein field equations a®, ,=87T,,, where the
This paper is organized as follows: In Sec. Il we presenpnergy—momentum tens_,or is the sum _of the contributions of

the model for the collapse and the corresponding field equaoth the electromagnetic and scalar fieldlg,=T;,,+T,7.

tions. Section Il describes the numerical approach, and Sed.hese equations include two evolution equations

IV discusses the stability and accuracy of our code, and the

1 1 B
:E (D,,uq),v_zg,uvg q),aq),ﬁ . (4)

tests used to verify them. It has been recently arguel P Fufo L( B Q_Z) ®)
that unconstrained codes in double-null coordinates suffer o r 4r r2
from inherent instabilities. We show that this is not the case,
and that our code is indeed stable and converges with secomghd
order.(In the Appendix we explain this in greater detaih
Sec. V we present our numerical results for the collapse of a fuf, 1 Q2
scalar field over a Minkowski background, leading to the fuw=""%" "+ 4rur,+f|1-27]|-2¢ @,
formation of a Schwarzschild black hole, and in Sec. VI we ' ' @
consider the collapse of éself-gravitating, neutralscalar
field on a REissner-NordéﬂﬂD(RN) baCkgrOUnd. Fina”y, in Supp|emented by two constraint equations
Sec. VIl we summarize and discuss our results.
r,uu_(lnf),ur,u+r((D,u)ZZOr 8
Il. COLLAPSE MODEL
M po—(INf) 1 ,+1 (P )2=0. 9

A. Field equations

We shall consider the spherically symmetric gravitationalThe constraint equations are not independent of the dynami-
collapse of a self-gravitating, minimally coupled, masslessal equations: Any solution of the evolution equations will
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also be a solution of the constraint equations, provided onlynination of f,(v) throughoutu=u;, by analytically inte-
that the latter are satisfied on the initial hypersurfdTeisis  grating the second constraint equation in E@§0), is

assured by virtue of the contracted Bianchi indentities. straightforward for such a pulse. On the ingoing segmant
=v; we havef,(u)=1.
B. Formulation of the characteristic problem The geometry is statiGwith ®=0) in the entire range

. . <wvq, with a mass parametd,. To relateM, to the above
In our numerical scheme, we shall use the three equations 2 b 0 0

(5)~(7) to evolve the three unknowns(u,v), f(u.0), and Initial-value parametirs, we define thze 2mass function
) . M(u,v) [13] by r ,r#=1-2M(u,v)/r+Q</r. In our co-
®(u,v). These equations form a hyperbolic system, and thus \. . i
- . ordinates this becomes
ensure a well-posed initial-value formulation. In the double-
null coordinates we use, it is most natural to use the charac-

teristic initial-value formulation, in which the initial values
of the unknowngbut not of their derivativesare specified which yields Mo=(ro/2)(1+4r0)+Q%2r,. Thus, our

on two null segmentsy=const=y; andv =const; . initial-value setup is determined by the initial mass param-

In such a numerical schenteften calledfree evolution, . .
the constraint equations are only imposed on the initial hy_eter Mo, the chargeQ, and the perturbation amplitudé

persurfaces. As mentioned above, the consistency of thgogether with the auxiliary parameters, v,, andro).

evolving fields with the constraint equations is mathemati- We shall particularly study two case§) Mo=0, Q=0

cally guaranteed. We use the constraint equations to cheéN'nkOWSk' bacl;lgrounﬁil and ("f) MO:ll'.Q%O (RN back- h
the accuracy of the numerical simulation. ground. (Note that no loss of generality is caused by the

From the pure initial-value viewpoint, we need to Specifych0|ceM o=1, because of the scale-invariance nature of the

three initial functions on each segment of the initial surface.pmblem) We shall not elaborate here on the situation of

r, f, and®. The constraint equations, however, reduce thi self-gravitating spalar field c_oIIapsing overa Schwarz;child
n’urﬁber by 1: Equatiorn8) imposes o’ne constrélint on thesbackground, as Its outcome is qua_lltapvely similar to o(a_)se
o o L . (and the collapse over Minkowski brings out the nonlinear
initial data atv =v;, and similarly, Eq(9) imposes one con- aspects in a sharper wayWe shall use, however, the pure
straint on the initial data at=u;. The remaining two initial ' '

. ) (A=0) Schwarzschild case as a testbed for our numerical
functions, however, represent onbne physical degree of code
freedom: The other degree of freedom expresses nothing bdPes:

i . ; ; In what follows, we shall use the symbalsand v to
the gauge freedom associated with the arbitrary coordmatgenote the outgoing and ingoing null co%rdinates in the spe-

transformatioru— u(u), v—v (v) [the line elementl) and ¢ gauge described above. Notice thais closely related
all the above equations are invariant to this transformétion to v, atv>M, andu is Kruskal-like near the EHnamely, it
In what follows we shall use a standard gauge, in whidh regSIarizes the metric functiof at the EH. ’

linear withv or u, corres_pondingly, on the two initial null The double-null line element suffers from a nonphysical
segments. On the outgoing segment, we ke 1. On the  qordinate singularity at the origifi.e., the timelike world
ingoing segment, we take, = Constr yo. The initial values  jine =0, where the geometry is perfectly regolafhis sin-

of r are thus uniquely determined by the parametgr gyarity may cause difficulties in the numerical study of case
=r(u;,vi). We choosay;=0 andv;=ro, and thus we find (i) apove (i.e., Minkowski background In order to over-
come this difficulty, we restrict the domain of numerical in-
tegration in this case such that it will not include the origin.
[Hereafter, we denote the initial values of the three fields orf hat is, the characteristic initial segment v; ends before it
the two initial segments byr(u),f,(u),®,(u) and _reaches_r=0._S|_nce it is very essential that the domain of
r,(v).f,(v),®,(v), correspondingly. Then, we can freely !ntegratlon will mclgdg the EH, we must demand that the
specify ®,(u) and ®,(v) (this choice represents a true N90INg rayv=v; _W|II intersect the_ EH before it intersects
physical degree of freedomThe initial value off is now T =0. This is achieved if the amplitude paramefeis suf-
determined from the constraint equations, namely, ficiently large.

M(u,v)=(r/2)(1+4f 1 or )+ Q%/2r, (11)

rU(U):U, ru(u):r0+urU0'

(Infy) =1y (®y)?ryw, (nf), =r,(@,,)?% (10 IIl. NUMERICAL CODE

together with the choicé(u;,v;)=1. Thus, in the gauge we Our numerical code is based on the standard procedure
use, the geometry in the entire domain of dependence i®r second-order integration of1 hyperbolic equations in
uniquely determined by the two initial functiors,(u) and  double-null coordinates: Ledu anddv be the finite incre-
®,(v) and the two parameters, andr . (Later we shall ments in theu andv directions, respectively. Let us also
relater o to the initial black-hole massIn what follows, we  denote schematically the three unknowns,® as h;, i
shall consider initial data corresponding to a compact ingo=1,3. These unknowns satisfy a field equation of the form
ing scalar-field pulse, over a background of either

Minkowski, Schwarzschild, or RN. Namely, we shall assume hi w=Fi(hj.h; ,.h; ), j=13. (12
that ®,(u)=0, and that®, is also zero, except at a finite

interval v,<v<wv, (with somev,=v;) where®,#0. For = Assume now that we already know the valueshpfat the
concreteness, in the rangg<v<v, we shall take®, three grid pointsp;=(uq,vy), P>=(Ug+du,vg), and ps

= Asird[ m(v—v,)/(v,—v,)]. This choice for the initial data is =(ug,vo+dv), and we would like to evaluate them pj
smooth at the matching points=v,; andv=v,. The deter- =(up+du,vy+dv). We then use the substitution
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h(¥=—h{Y+h{?+h®+F*dudy, (13  scheme to calculath; at py=(up+du/2po+dv) from the
values of these fields a; ,p5,ps [and, later, to calculath;

where, for any functiorg, g®=g(p,), andps is the inter- at ps=(up+du,vyo+du) according to the field values at

mediate pointps=(uo+duw?2py+dv/2). In order to evalu- P3,P2,P4]). This numerical procedure functions very well in

ate the functi0n$]](5) h](SJ hj(sv) (required for the determina- double-null coordinates, especially due to the following rea-

tion of F®)) to the desired accuracy, we use the standarg©ns: First, in the three-point integration ~scheme
“predictor-corrector” method. This procedure results in a (P1:P2,P3)—Pa, there is no reference to any grid points at
second-order accuracy. With this method, we first calculatél<Uo OF U>Uo+du. Therefore, it does not matter whether
h; along the ingoing ray =v,;+ dv—starting atu=u; +du, the ingrementslu_ are uniform or npt. Second, in this scheme
then solving foru=u;+2du, and so on, until the last grid there is no restrictions on the ratio dfi anddv. _
point atu=u;. Then we turn to the next ingoing ray=u; In practice, we _proceec_i as follows. We register all grid
+2dv, and solve for all grid points along this ray. In this values ofu (at a givenv) in a vectoru(l), wherel is an
way we solve, ray after ray, until we cover the entire domainintéger index. The values of the three unknowns are regis-
of integration,v;<v<uv¢, U;<u<u;. The accuracy is con- tered in corresponding three vectdrgl). We define three
trolled by the global grid parametét, which is the(initial) ~ threshold parametetts for the three unknowns and also a

number of points per a unit interval in both theandu  “band parameter'v, (typically we takev, to be of order
directions. Typically we use®=10, 20, or 40, though in M). At the end of each interval, in v (a “band”), we
certain cases we also used the values 5, 80, and 160. check the variation of all three fields along the vecto(d$).

As long as our domain of numerical integration does notf for a given | the relative difference|[h;(I+1)
include the EH, this numerical scheme can be used with a h;(1)]/h;(1)| is found to be greater than{ (for anyi),
fixed grid without any difficulties. When the EH is included, then we add a new grid point at=[u(l)+u(l +1)]/2. In
however, we face a fundamental difficulty. For simplicity, such a case, we calculate the values of the fibldat that
assume at this stage tha=0 and the spacetime is new point by interpolatiotiusually we perform a four-point
Schwarzschildthough the same conceptual difficulty arisesinterpolation, based on, e.gu(l—21),u(l),u(l+21),u(l
also in nonstatic spacetimed.et us denote by, the value  +2)]. We now update the vectotgl) andh;(l), by assign-
of our Kruskal-like coordinatel at the EH. Letug be a grid  ing the valuel +1 to the new grid point(Before creating
value ofu just near the EH, and let; be the next grid point this new grid point, we arrange an empty “slot” for it, by
in u, ie., u;=uptdu. We define ér(v)=r(uq,v) shifting all grid index value$’>1 by 1) The threshold val-
—r(ug,v). Of course, for the validity of the numerical inte- uesh{ are taken to be proportional toN/ in order to pre-
gration it is necessary thair<r — and we shall indeed serve the rule oN as a parameter that controls the global
select the grid parametdu sufficiently small so as to satisfy accuracy(that is, the number of grid points in the axis
this requirement at the initial segmeantv;. The problemis should be proportional thl). The band parametey, is taken
that 6r grows unboundedly and very rapidly with Thus, in ~ to be independent dfl.
terms of the Eddington-Finkelstein coordinatg, along the Because our goal is to study the evolution in the entire
horizon &rxexppJ4M) [because at the horizon of the black-hole exterior, the domain of integration must include
Schwarzschild backgroundr ,<expp/4M) and or(v) the EH and thus extend into the black hdles., ui>uy).
=r ,(up,v)du.] It is therefore obvious that a code based onThen, if Q=0, the numerical integration will terminate at
a fixeddu cannot be used here. One might attempt to use aome finite v, beyond which the ingoing null lines
numerical scheme in whictiu depends om (but not onv) =const intersect the spacelike=0 singularity (before u
in such a way that it becomes extremely small at the EH. But=us). In order to overcome this difficulty, we simply chop
this turns out to be impractical too, because of the extremelythe vectoru(l) just beyond the apparent horizd@H).
large exponential factor: Typically we need to integrate up taNamely, at the end of each band, we first fingd , the value
ve values of at least a few hundreds timds(otherwise we  of the indexl where the AH is located. This is the valuelof
cannot study the power-law tails with a sufficient accuyacy satisfying r ,Ju=u(l—1)]>0 and r,l,[u=u(|)]<0.l We
This would demand a value afu as small as, say, I6°°  then chop the vectou(l) at, say,| =I,4+1. This ensures
near the EH, which is obviously impractical, due to thethat the domain of integration never gets close to the space-
roundoff error and other reasons. like r=0 singularity—and yet it contains the entire external

In order to overcome this difficulty, we must use a dy- part of the domaimw;<v<v;, u;<u<us, up to(and includ-
namical grid-refinement algorithm. A sophisticated dynami-ing) the EH.
cal refinement scheme was recently developed by Hamade With these procedures of point splitting and chopping, our
and Stewarf10], in order to analyze the critical behavior at code can in principle run to arbitrarily large values. Be-
the origin. For our purposes, however, it is sufficient to use a&ause of point splitting, however, the number of grid points
simpler refinement scheme, which we gadiint splitting Inin the vectoru(l) grows linearly withv,, and so the inte-
certain values of, we check the variations in(and, in fact,
in all h;) between any two adjacent grid points. If the differ-
ence inr between such two pointp;=(uUg,vo) and p, We also calculatel,, by interpolating between the two points
=(up+du,vy) is greater than some threshold value, we in-y(1 —1) andu(l). (In the Schwarzschild or RN casag,=uy,, but
troduce an intermediate grid poipb=(uy+du/2,v,), and  in the general dynamic casg,=uy,. Recall that only the AH can
calculate the interpolated values of all unknownsat that  be found locally. However, for large the AH should coincide with
point. We can now use the above three-point integrationhe EH)
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gration time grows likey2. In order to significantly decrease =~ The combination of the above four types of numerical
this time, we introduce two additional types of numericalmanipulations yields an accurate and efficient numerical
manipulations. code. It is important to recall that, whereas gaént splitting

Point removal The successive addition of points near theandchoppingare necessary for an integration to large values
event horizon results in a coverage of the regians of v, the point removaland gauge correctiorare optional,
>2M,v>M with an approximately uniform density of or- and are aimed to save integration tifh/ith these two ma-
der N points per unitue (recall that a point added at just  nipulations, the typical number of grid points in the vector
before the EH will, after an intervab>M, approachr (1) grows only logarithmically withy,, instead of linearly.
>2M). However, for an appropriate coverage of the varia-|n practice, the integration times in long runs are reduced by
tions inr, a much smaller density of aboMtM/r points per  a factor of 10 or so. Typically, in a running to largealmost
unit u, will be sufficient(note that at>2M, r is approxi-  all points inu are “born” in point splitting near the EH, and
mately linear inu, along linesv =const). Thus, in order to  are later removed when they approach2M. We empha-
save integration time, at the end of each band we checkjze that in the numerical scheme described here the incre-
along the vectom(l) and simply remove all unnecessary ment inv is fixed, dv = 1/N.
points, thereby shortening this vector. The criterion for ne-
cessity or otherwise of a poirtis qualitatively similar to
that of point splitting: Again, we define the threshold values [V. STABILITY, ACCURACY, AND ERROR ANALYSIS
h’? for point removal(typically, h'{ is slightly smaller than A. Stability
h{/2). If for all i we have|[h;(1—21)—h;(1)]/h;(1)|<h’{,
then the point is removed:

Gauge correctionAs it turns out, for any Kruskal-like
(which is necessary for a regular coverage of the) BHd
Eddington-likev, f grows exponentially withv, along the
EH. In addition, along lines =constM, f grows rapidly
(exponentially withug) in most of the interval;<u<u,,.
The above numerical scheme handles very well this behavi
of f. However, the significant variation df with u implies
that points can hardly be removed, which results in a lon
computation time. In order to overcome this difficulty, we
introduce(as an optioha gauge correction at the end of each
“band.” That is, we perform a coordinate transformation
U—Upew(U). The value off is gauged accordinglyf e
= (dugg/dUunew foig (the variabler is unchanged Our field
equations are invariant to such a coordinate transformatiorf;
The functionu,g,(U) is to be chosen so as to decrease the’
variation of f,., with u. A convenient choice is to take
Upew(U,v0) =T (U,vg) (Whereuvg is the value ofv at the in-
going ray where the gauge transformation is carried, oot
which casef ., turns out to be approximately constant
throughout the ingoing rayAnother convenient choice is to
define yew(U) by the demandfq(u,vg)=1.] We recall,
however, that our goal is to numerically compiitggina (as
well asr and ®) as a function ofuyginy and v, and the We used several methods to test and monitor the accuracy
gauge transformations are just a subsidiary manipulation. lof our numerical code(i) Comparing the results obtained
order to accomplish this goal, we must keep record of twowith different values of the grid paramets (ii) monitoring
additional variables{i) the vectoruggna(l), and (ii) the  the discrepancy in the two constraint equati¢8sand (9)
vectorRy(1), whereRy=dUcrend dUgriginal iS the cumulative  (as explained above, our integration scheme does not involve
gauge factor. At each gauge transformation, the latter is up-
dated according taRynew)™ (dUnew/dUgig) Ry(oigy - Conse-

Gundlach and PullifGP) [12] recently argued that any
free-evolution scheme will be inherently unstable, in the
sense that small violations of the constraint equations will
grow exponentially witht along linesr = const — even if the
evolution equations are exactly satisfied. We disagree with
the theoretical analysis and interpretation made by GP, for
Jeasons explained in the Appendix. Also, our numerical tests
did not indicate any such numerical instability. Certain enti-
ies exhibit an exponential growth, but these entities are not
he ones that may be used as authentic error indicators;
rather, the exponential growth we encountered is merely a
reflection of the passive exponential growth exhibited by
various gauge-dependent entiti@sg.,r ,, for Kruskal-like
u) along linesr = const(or along the EHl in the Schwarzs-
hild geometry. We discuss this issue extensively in the Ap-
endix.

In our stability tests, we numerically reconstructed the
Schwarzschild spacetim@s well as RN and other space-
times up tot values of many thousands tim&s and with
values of the grid paramet&t ranging from 5 to 160. In all
these cases, we found a stable numerical evolution.

B. Accuracy checks and error analysis

quently, in the original gauge the metric functibris given “4If a gauge correction is not used for any reason, then, as a con-
by forigina= Rgfcurrem.3 Hereafter, whenever we mentian  sequence of successive point splittings, the differenaebretween
andf, we refer touyigina and f riginai, COrrespondingly. two adjacent points near the horizon becomes as small as, say,

1019 Then, because of the roundoff error, it is not possible to
calculatedu(l)=u(l +1)—u(l) directly at each step. One way to
2In fact, the criterion we use for the variationdn (for both point  overcome this difficulty is to keep an independent vedtagl ), and
splitting and point removaiis somewhat more involved: It refers to to update it at every point splitting by dividindu(l) by 2. (Recall
the variations in bothb and® . This is essential for the appro- that it is du that is involved in the finite-difference integration
priate coverage of the maxima and minima regions in the QN ringscheme, noti.) Another possibility is to shifu by a constant, e.g.,
ing. at the end of each “band,” so as to assign the AH the value
3In a point splitting, the variablesigina(l) andRgy(l) are inter- =0 — in this caseu(l +1)—u(l) can be calculated directly at each
polated at the point added, like the other variathigs). stage.
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FIG. 1. The drift of the mass function along=const. Shown FIG. 3. The drift of the mass function along null infinity, as a
here is the mass function as a functiontdor N=10, 20, and 40.  function ofu, (calibrated such that,=0 onu=0), for N=10, 20,
We took herer =8. and 40.

these equations and (iii) numerically reproducing known  from |ocal differentiatior{Eq. (11)] with the dynamical mass

Schwarzschild solution, the electrovacuum RN solution, and

the self-similar spherically symmetric scalar-field solution r3 m Q2
[15] for the Einstein scalar field equations. In all these cases m,UU=2T<I>,2u¢>5—r 1- —tZ oD, (19
our code reproduced the exact solutions very ek have r

compared the metric coefficientsf and the mass function

All these tests indicated that the code is stable, and the ndBoth expressions for the mass function agree with each other

merical errors decrease lik¢ 2, as expected from a second- (in the limit of largeN).

order code(see examples belgw Another check we performed was to compare the values
We present here the results for the numerical reproductioff f as a function of along linesr = const of the numerically

of the Schwarzschild solutiotSimilar results were obtained reproduced Schwarzschild spacetime and the exact analytical

for the other above-mentioned test8Ve start with initial ~ counterpar{16]. Figure 4 displays the results we obtained

data corresponding tM =1. The drift of M from its initial ~ for r=3M. (Similar behavior was found for other values of

value may then be used as an error indicator. Figure 1 dig-) It is convenient to compare the valuesfdh the outgoing

plays M as a function oft along a liner=const, Fig. 2 Kruskal coordinatdJ, and the ingoing Eddington coordinate

shows the drift ofMl as a function oy along the EH, and ve. For the Schwarzschild solution one finds thgg,

Fig. 3 showsM as a function ofu along null infinity, for = (4M?/r)e™"/Meve/(*M) Figure 4 shows the ratib be-
variousN values. From these figures it is apparent that the
mass drift is linear with time, and decreases IKe?, as 105

expected. We also compared the mass function obtained | .|

1.002 T T T T T 1.03-

1 i 1.021

1.01F
0.998

1

= 160

0.996- w

0.99F 80
g 0994 0.93-
0.992 097
0.99 0.961 40
0.95 ‘ . . ‘ .
50 100 150 200 250 300

0.988-
v

0.986

. ‘ . ‘ FIG. 4. The ratid~ of Ju,e, of the exact Schwarzschild solution
0 100 200 300 400 500 600 andgy,, of the numerically reproduced spacetime. Shown are the
values forN=40, 80, and 160. The convergence indicates a second-
FIG. 2. The drift of the mass function along the EH, as a func-order code. The deviation of the curves from straight lines results
tion of v, for N=10, 20, and 40. primarily from the linear drift ofM.




7826 LIOR M. BURKO AND AMOS ORI 56

Invariant Error
=
L
o o
Norm
= =
b L % 3
T T T
@

/\W ] 10‘6» d
d e
f
-7 1 1 1 1 1 1 10_7 .
10 0 100 200 300 400 500 600 10° 10’ N 10° 10°
time
FIG. 5. The gauge-invariant error indicatd&,| and|C,| along FIG. 6. Thel, norms of the constraint€, and C, along an

a liner = const as functions df, and|C,| and|C| along the EH as outgoing null ray, as functions of the grid paramdtlbrThe cases
functions ofv, . Line a, |C,| alongr = const; lineb, |C,| along the ~ & b, andc refer to thel,, 5, andl.. norms, respectively, fo€,,

EH; linec, |C,| alongr=const; and lined, |C| along the EH. The and cases, e, andf refer to thel 4, |,, andl., norms, respectively,
data are taken for=3 andN=40. for C,. The numerical data are represented by circles, and the

straight lines between the circles are linear interpolations of the

. . data.
tweengy, ,_ for the exact Schwarzschild solution aggkve

in the numerically reproduced spacetime, along3M, vs  convergencé.(The break in the lineg and f for N=160
the ingoing coordinate, for several values of the grid pa- Seems to be a roundoff effecThe other error indicators we
rameterN. This figure clearly indicates the second-orderused(e.g., the drift of the mass function and the metric func-
convergence of the code to the correct theoretical value. tions) also indicated a second-order convergence rate.

As we mentioned above, we also use the constraint equa-
tions to monitor the errors. Let us denote the entities in the V. NONLINEAR COLLAPSE ON MINKOWSKI
left-hand side of Eqg8) and(9) by C/, andC/ , respectively. SPACETIME
Now, as they standz |, and.Cl’, cannot be used as measures  |n this section we consider the cadd,=0, Q=0,
of the intrinsic local error in the reproduced spacetime, benamely, the collapse of the self-gravitating scalar field over a
cause they are not gauge invariant. Instead, wheneyer  \jinkowski spacetime, leading to the formation of a

r , are nonvanishing, we may define Schwarzschild-like black hole. Our initial data correspond to
a compact sinusoidal ingoing pulse, as described in Sec. Il.
CUECL’,/rZU , CUEC[}/rZU _ Here, we take;=6, v,=16,r,==6, andr = —1/4 (corre-

sponding tdM ;= 0). The final mass of the black hole is then
determined by the pulse amplitude In what follows we

SinceC, andC, are gauge invariant, they provide an invari- present the results of a numerical simulation witk0.4,
ant measure of the local numerical error. An alternativqeading to a final black-hole mads;=3.54. (Hereafter, we
gauge-invariant indicator i€=f~1(C/C/)Y2 Note that the denote byM; the final mass of the black hole.
indicator C, cannot be used at the AH, wherg vanishes. Figure 7 displays the Bondi mass of the created black hole
Instead, one may use the indicat@ithere. Figure 5 displays as a function of the retarded timuae.6 The Bondi mass de-
C, andC, at constant as functions oft (we took herer  creases withu,, due to the escape of scattered energy to null
=3), andC, andC at the EH, as functions af. From Fig.  infinity. The late-time decrease of the mass corresponding to
5 one can see that these indicators are roughly constant withe power-law “tail” of the scattered scalar field is too small
time. (The noise is a results of the second-order numericaipo
differentiation necessary for the computation of the indica-
tors) In particular, no exponential growth occurs. This dem-
onstrates the stability of the code. We found a similar behav- 5erom the slopes of the curves displayed in Fig. 6 we can estimate
ior also for the electrovacuum RN spacetime. the convergence rate of the code to be around 1.9, with variations of

Figure 6 shows the rate of convergence of various errofypical order 0.1. We stress, however, that these numbers would
indicators asN increases. The spacetime simulated here igiepend on the method employed for evaluating the convergence
RN with Q/M =0.8. (The other exact solutions we checked rate.
produced similar resultsShown are thé, norms, for sev-  ®strictly speakingy, is not well defined here, as the spacetime is
eral p values, of the two vectors made of the values of thedynamical and differs from Schwarzschild spacetime. In the
indicatorsC, andC, , respectively, along a particular outgo- asymptotic regiom>M;, however, the geometry becomes asymp-
ing ray located before the EH. We used the following valuesotically Minkowskian, and we can define, with respect to this
of N: 5, 10, 20, 40, 80, and 160. The apparently straight linesisymptotic region. Namely, along a ray: const in this rangay, is
in the logarithmic graphs indicate a second-orderiinear withr.
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FIG. 7. The Bondi mass as a function of retarded tumgécali-
brated such that,=0 onu=0), for N=40. The mass is displayed
along the ingoing null ray =10°M¢, representing null infinity.

FIG. 9. Quasinormal ringing at the horizon as a functiomw of
Recall thatM;~3.54, which explains the relatively large value of
ve in which the ringing takes place. We used here four different
values ofN—5, 10, 20, and 40—but the four graphs are indistin-

be observed in this figuréhe numerical drift shown in Fig. guishable in this figure.

3 is also unobservable in the scale used in Fjg. 7

The nonlinearity of the spacetime dynamics is best repregominate. In addition, the numerical mass dfiee above
sented by the evolution of the mass function along the AHcomplicates the comparison between the numerical results
(which is just twice the value af there. Figure 8 shows this  and the theoretical predictiofiHowever, the mass drift can
mass as a function aof. The mass function grows rapidly, be controlled by the grid parametir Note that the physical
until it approaches a saturation value. In this case, t0o, thehass increase due to scalar-field absorption is negligible at
mass increase at late time due to the power-law “tail” andjate times) From our numerical data we find that the QN
the numerical mass drift are unseen. The final black-holerequency iss=0.032-0.026. The real part ofr was cal-
mass can be deduced from either the flat largsertion of  cylated from the two nodes in Fig. 9 corresponding to a full
the graph in Fig. 8 or the flat larges portion in Fig. 7—  \avelength and the imaginary part from the two local ex-
these two numbers agree, as they should. trema between them. The theoretical value for the least

The stability and accuracy of our code is demonstrated irajamped mode with=0 is o,=0.031-0.029 (recall that
Fig. 9, which displays the scalar field’s QN ringing along thehere M ;=3.54). The sources for the deviation are the-
horizon forN=5, 10, 20, and 40: The four graphs are indis- merica) drift in the mass, the effect of the othier 0 modes
tinguishable in this figure. In addition, we also determinedand the power-'aw “ta”s”’ and the |nab|||ty to use values
the QN ringing frequency, and compared it with the linearfrom many cycles. However, our numerically obtained value
analysis valug17]. This comparison is hard, as we have js remarkably close to the linear analysis value.
only a few oscillations before the power-law “tails” start to  Figure 10 shows the late-time behavior®fin the three
asymptotic regions(a) at fixed r, with t>M; [we taket
=(uetue)/2], (b) at future null infinity (represented here by
a5k | vi=10°My), for us>M;, and (c) at the horizon, withv
>M; . This figure clearly demonstrates both the QN ringing
s4r . and the power-law “tails,” in all three asymptotic regions.

The determination of the asymptotic behavior at null in-
finity poses a special difficulty: We cannot integrate up to
v=o proper. (An attempt to compactify the coordinate
will not solve this problem, as it would lead to a divergence
of f at null infinity.) We therefore represent null infinity by a
large (buy yet finite value v=wv;. This “null-infinity ap-
proximation” is only valid as long a®;>u.. Thus, the
ool | determination of the late-time behavior at null infinity clearly
demands huge values af;, in order to satisfyvi>u,

28f . >M;. In the simulations described in this paper, we used

vi=10°M; to represent null infinity. In order to enable the

272 14 16 18 20 22 24 2 28 a0 integration to such large values within a reasonable com-

Y putation time, we used the following procedure: Let us de-

FIG. 8. Black-hole mass determined from the AH radiuswis. hote byu.s the maximal value ofi, in the desired presenta-
At advanced times earlier than~14 the domain of integrationy  tion of the late-time null-infinity behaviofin Fig. 10, ues
<u¢, does not intersect the AH. =10%. After integrating up to a value of which corre-
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FIG. 11. Local index of the “tails” for case(@: alongr
FIG. 10. The late-time behavior of the scalar field in the three=const=2.3M;, as a function oft. The local power is 2.98
limits (a), (b), and (c). Case(a): This graph displaysd at r +0.01. We used hers = 20.
=2.3M;, as a function of. Case(b): ® along null infinity (repre-
sented by =10°M;) versus retarded time,, calibrated such that
u.=0 onu=0. Casec): ® along the EH, as a function of,. (The

amplitude in this case was divided by 100, so that it will not overlapmglyh) | | . for the th . . .
with the other graphs.n all three cases, the QN ringing and the 1 n€ local power index for the three asymptotic regions is
power-law “tails” are seen clearly. We used hexe= 20. shown in Figs. 11, 12, and 13. The agreement with the pre-

dictions of linear theory is remarkable. In principle, devia-

tions from the precise integer index may result from three
sponds tawe=Ue¢, We chop the vectora(l) andh;(l) ata  gources of errorsfi) the limited accuracy of the numerical
value ofu which corresponds to.=ue¢. The last pointis  simulation;(ii) the finiteness of the late-time domain covered
now located ar>2M;. When we continue the integration by the numerics, i.e., the finitenesstofi, andv in Figs. 11,
to largerv values, the minimal value of, r,(v)=r(ue 12, and 13, correspondinglgue to the “higher-orders con-
=Ue¢,v), INCreases very rapidly and approaches large valuesamination,” the precise integer index is expected only at
(of orderv). We can therefore increaske accordingly, say, infinitely-late time; and(iii) in case(b) (i.e., at null infinity),
dv(v)~rmn(v)/(10N). This allows us to integrate up to, the finiteness of the final value=uv; taken to represent null

asymptotic regionsy is to be replaced by or u., accord-

e.g.,v= 10" within a very short integration time[Practi- infinity is also a possible source of error. In the numerical
cally, we changedv in discrete values ob, e.g., once in simulations presented here, we find that the deviation is re-
each decadg. lated primarily to sourcéii): We used a sulfficiently large

As was mentioned above, one of our goals is to evaluatand a sufficiently large; in case(b), and so source§) and
the power-law indices in the case of nonlinear collapse andiii ) are insignificant.
to compare them to the predictions of the linear theory. Since Our results for the local indefat maximalt, u, orv) are,
our initial data correspond tb=0 and to zero initial static
moment, the linear perturbation analysis would predict 23 , , , : : :
(negative power indices 3, 2, and 3 in cas@s, (b), and(c),
correspondingly. In general, the slopes of the straight sec- ,,5
tions in the three graphs shown in Fig. 10 appear to agree
with these predicted values. However, the standard best-fi
method is not so useful in this case for a precise determina
tion of the numerically computed indices, due to the follow- ;
ing reason. Consider, for example, the late-time behavior a™
the horizon. According to the linear theory, it should be
dominated byv ~3. However, this dominant term is “con-
taminated” by higher-order terms ind,/whose effect be-
come larger as decreasegl8]. Assume now that we use the
standard best-fit methotpplied to a finite intervab(<v
<v;) to determine the deviation of the power-law index
from its predicted value. As it turns out, the computed de-
viation will be dominated in this case by the “higher-order "85 200 600 800 1000 1200 1400 1600 1800 2000 2200
contamination.” This contamination effect, in turn, will de- u
pend in an arbitrary way on the choice of the paramefer FIG. 12. Local index of the “tails” for caseb): along v
In order to remove this arbitrariness, we introduce the notion=1(°M; (representing future null infinily as a function ofi,. The
of local power indexdefined by—v® ,/®. (For the other local power is 2.002 0.003. We used herd = 20.
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FIG. 13. Local index of the “tails” for caséc): along the AH,
as a function ob.. The local power is 2.980.02. We used here

N=20.

for case(a), 2.98+0.01 (instead of 3; for case(b), 2.002
+0.003(instead of 2; and for cas€c), 2.99+0.02 (instead

of 3). The error bar represents the numerical “noise,” pro-
duced primarily by the numerical differentiation &f with
respect taw, u, ort, which is inherent to the computation o
the local power index.
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FIG. 14. Value ofr at the AH as a function ob. (At early
values ofv our numerical domain of integratian<<u<u; does not
intersect the AH. We used heré=20.

Figures 16, 17, and 18 show the local power index for the
three asymptotic regions. Our results for the local power in-
dex (at maximalt, u, or v) are, for case(@), 2.99+0.01
(instead of 3; for case(b), 1.996+ 0.001(instead of 2; and
for case(c), 2.99+0.02 (instead of 3. These results are in

For comparison, we quote here the values obtained igxcellent agreement with the predictions of the linear theory.

previous nonlinear numerical analyses for the power-law in-
dices. In casda), 2.63—-2.74[6] and 3.38[7]; in case(c),
3.06[7]; no nonlinear results were obtained so far for case

(b).

VII. CONCLUSIONS

We developed a numerical scheme for the integration of
the spherically symmetric nonlinear Einstein-Maxwell-
Klein-Gordon field equations. Our scheme is based on free
evolution in double-null coordinates. This scheme is stable
and accurate, it is capable of running to arbitrarily late times,

In order to study the nonlinear dynamics of charged black \
holes, we consider here the gravitational collapse of the self- °
gravitating (neutra) scalar field over a preexisting charged
background(a RN geometry The model and initial-value
setup are as explained in Sec. Il. We take here an initial mas
Mo=1 and a charg€=0.95.(We found similar results for
other values ofQ<<1.) We now takev,;=6,v,=16,r,=6,
andr o~ —0.1729. As before, we take a scalar-field ampli-
tude A=0.4. The black-hole mass then increasesMe
= 3.87 during the collapse. Figure 14 shows the value aff
the AH vsv. The rapid increase of the horizon’s area indi-
cates strong nonlinear spacetime dynamics. The two-stag
increase ofr reflects the structure of the scalar-field pulse:
The latter has a maximum at abaut 11, and the vanishing
of ® , impliesM ,=0 there.(A similar behavior is observed
in Fig. 7)

According to the predictions of the linearized thepiy],
the late-time behavior in the three asymptotic regi¢as
(l.)),.and(c) in a (nonextremg charged black hple.should be FIG. 15. Amplitude of the scalar field for the three cag@s(b),
similar to the uncharged case—namely, QN ringing followed;ng (c) for the nonlinear collapse on a charged RN background.
by inverse power-law “tails” with the same indices as in the case (a): along r=const=2.3M;, as a function oft. Case (b):
uncharged case. Figure 15 displays the late-time behavior @fongy = 10°M;, representing future null infinity, as a function of
the scalar field for the three asymptotic regidak (b), and  u, (calibrated such that,=0 onu=0). Case(c): along the hori-
(c). Again, both the QN ringing and the power-law “tails” zon, as a function ob,. The amplitude for cas&) is divided by
are seen very clearly in all three asymptotic regions. 100 to avoid overlap of the graphs. We used Here20.

VI. NONLINEAR COLLAPSE ON A CHARGED
BACKGROUND
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FIG. 16. Local power as a function df for case(a): along FIG. 18. Local power as a function of, for case(c): along the

constant value of (r=2.3Vy). The value of the local power ap- gy The value of the local power approaches 2:8902. We used
proaches 2.990.01. We used herd=20. hereN = 20.

and it can handle black holes while avoiding singularities. e jinear perturbation analysis. This agreement of the late-
We used this numerical code to study the gravitationalime nonlinear dynamics and the linear perturbation theory
collapse of a spherlca}lly symmetric, self-gravitating, mini-\,5 already demonstrated by GF&? in the uncharged case
mally coupled scalar field to form a black holer the col-  (see alsd18]). Here we demonstrate it for the charged case
lapse of such a scalar field over a preexisting charged backy \yell.
ground. Our numerical simulations demonstrate both the = The simulations presented here were restricted to the ex-
quasinormal modes and the power-law tails, in all three lategerna| part of the black hole and the neighborhood of the
time asymptotic regions: at a constanwith larget), along  eyent horizon. One of our main motivations in this project,
future null infinity (at largeu), and along the event horizon powever, was to develop the numerical tools which will al-
(at largev). The accuracy of our numerical scheme, its abil-oy the investigation of thinner part of black holes. We are
ity to run forever, and the method of calculatiegal power  cyrrently using this numerical scheme to study the evolution
indices allowed us to evaluate the power-law indices with anyf tne geometry and the scalar field near the spacetime sin-

accuracy better than all previous estimates. gularity inside a charged black hdl8].
Our results confirm that the predictions of the linear

theory for the late-time behavior of perturbations outside the
black hole hold also for fully nonlinear collapséhis ob-

servation is not surprising—in a sense, it is a manifestation ;s research was supported in part by the Israeli Science

of the principle that black holes have no hgin particular,  Foundation administered by the Israel Academy of Sciences
in all three late-time asymptotic regions, the power-law indi- 304 Humanities.

ces approach asymptotically the integer values predicted by
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APPENDIX

21r 1 At issue here is the evolution of the entities at the left-
hand sides of Eqg¢8) and(9), which represent the violation
of the constraint equations. These entities are denoted in Ref.
[12] by E; andE,, respectively(in Sec. IV we denote these
entities byC/, andC,). GP argue that, as a consequence of
the preciseevolution equationsiz; andE, will grow expo-
nentially witht along linesr =const. According to GP, this
2r 1 exponential divergence represents an inevitable numerical
instability of the free-evolution scheme. We do not accept
this conclusion, and claim thé&t under the precise evolution
equationsE; andE, do not grow exponentially; rather, they
are essentially conservéih a sense which will be explained
below). (ii) In our numerical free-evolution schentg; (but
0 500 1000 1500 2000 2500 3000 3500 4000 4500 not E,) will grow exponentially, but this growth is a conse-
! quence of thenumerical errorin the integration of the evo-

FIG. 17. Local power as a function of, for case(b): along  lution equations, not of the equations themselv@s). This
future null infinity, represented by=10°M;. The value of the divergence ofE; does not indicate a numerical instability;
local power approaches 1.996.001. We used herd = 20. rather, it reflects the passive exponential growth of typical
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gauge-dependent entities likg, along linesr =const in the ~ growth of E; does not indicate an exponential growth of the
Schwarzschild geometry. intrinsic local error: The entitf; (like E,) is not an appro-
To verify point (i), assume that the evolution equations priate error indicator, because it is not a gauge-invariant en-
are precisely satisfied. Then, E@) in Ref.[12] readsE,, tity. [In a transformationu—u’(u), E; is multiplied by the
=—(r ,/r)E;. E, will satisfy an analogous equatidf,,  factor @du/du’)2.] In order to extract fronE, the informa-
=—(r 4/r)E,. It then follows that the entityE, is con-  tion about the intrinsic local error, we must construct a
served along linesi=const, and similarlyE, is conserved gauge-invariant entity from it. A convenient choice is the
along linesv = const. Therefore, an exponential growthEgf ~ gauge-invariant entitﬁuEEll(r,u)z. This entity indeed re-
or E, along linesr=const is ruled ouf. The exponential mains roughly constant along lines=const and along the
divergence of the linear metric perturbaticisenotedé and ~ EH (see Fig. % The behavior of the other error indicators
7 in Ref.[12]) found by GP must therefore be a gauge mode(€.g., the mass parameter in Figs. 1 andaBo indicates
In fact, the infinitesimal coordinate transformatian~u  Stability: None of the invariant entities exhibit an exponential
+du (e.g., with fixed infinitesimatu) yields a nonvanish- growth of error.

ing ¢ (in Ref.[12] £ represents the linear perturbationr), ~ We still need to explain why the numerical errors in the
given by integration of the evolution equations results in an exponen-

tial growth of E;. If there were no numerical errors in the
integration, then, along a line=constsr’, E; would ap-
proach(at larget) a constant valud&,(uy,,v;)r(up,v;)/r’.
Correspondingly, C, would decay like 1/|(,u)20cexp
(—t/2M). However, the numerical error in the integration of
For any Kruskal-likeu, at a fixedr, r , grows like exp/4M) the evolution equations provide(eoughly) constant source
att>M. It then follows that along any line=const, at large  of error in the evolution ofC,.® The combination of the
t, &€ will exhibit this expt/4M) divergence. This fits very dynamical tendency to exponential decay and the constant
well with the rate of divergence, exp(0i2#), found nu-  source of error results in a finite saturation valypeopor-
merically by GP. But this is, of course, a gauge mode, whicltional to the numerical errdP In turn, this implies thaE,
does not indicate a violation of the Einstein equations. grows like exp/2M).

Note also that the analytic derivation of the exponential Finally, we emphasize again that despite the above dis-
growth in Ref.[12] is based on the “mode ansatz” approxi- cussion, whenever the domain of integration includes the
mation. This approximation may only be valid if the mode’s EH, a naive attempt to use a free-evolution scheme in
wave numberk is sufficiently large. The diverging modes double-null coordinates, without a grid refinement, will in-
found by GP donot satisfy this condition, however. This evitably result in a numerical instability due to the exponen-
may explain the discrepancy of the value 0WB2! predicted tial divergence of , (see Sec. I). This might be the reason
by GP compared with the above theoretical value W4 for the failure of previous attempts to use the free-evolution
(which is also confirmed numerically by GP to a good accu-scheme. The grid refinemetih our case, the point-splitting
racy). procedurg is a necessary ingredient in such a numerical

In our numerical tests, we found that along lines scheme.
=const, E, is roughly preserved, whileE; grows like
exp{/2M). From the above discussion it is obvious that this
exponential growth of; must be a consequence of thie- 8To understand why this source of error is roughly independent of
lation of the evolution equations, due to numerical errors.t, recall that(i) in our integration scheme, due to the dynamical grid
Later we shall give a more explicit explanation for this be-refinement, the intrinsic error production rate is essentially indepen-
havior. The crucial point is, however, that the exponentialdent oft (or u), and(ii) C, is an authentic indicator of the intrinsic

local error.
%Phenomenologically, we may represent the situation by the
’Such an exponential divergence would demand that, on the initiasimple differential equatiordC,/dt=—C,/(2M)+S(r), where
hypersurfacekE; diverge exponentially withu, and thate, diverge  S(r) is the numerical source termC, then approaches the
(almos}) exponentially withv, which is an unreasonable situation. asymptotic value R1S(r).

g=—(r?) (du=—2rr ,du.
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