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We study numerically the fully nonlinear gravitational collapse of a self-gravitating, minimally coupled,
massless scalar field in spherical symmetry. Our numerical code is based on double-null coordinates and on
free evolution of the metric functions: The evolution equations are integrated numerically, whereas the con-
straint equations are only monitored. The numerical code is stable~unlike recent claims! and second-order
accurate. We use this code to study the late-time asymptotic behavior at fixedr ~outside the black hole!, along
the event horizon, and along future null infinity. In all three asymptotic regions we find that, after the decay of
the quasinormal modes, the perturbations are dominated by inverse power-law tails. The corresponding power
indices agree with the integer values predicted by linearized theory. We also study the case of a charged black
hole nonlinearly perturbed by a~neutral! self-gravitating scalar field, and find the same type of behavior—i.e.,
quasinormal modes followed by inverse power-law tails, with the same indices as in the uncharged case.
@S0556-2821~97!03024-5#

PACS number~s!: 04.70.Bw, 04.25.Dm

I. INTRODUCTION

The no-hair theorems state that except for the mass, the
electric charge, and the angular momentum, all the features
of fields which collapse to a black hole will be unobservable
to external observers at late times. It is therefore interesting
to study the mechanism by which the hair is radiated away
~or absorbed by the black hole!.

Until recently, the late-time evolution of nonspherical
gravitational collapse was investigated primarily in the con-
text of linear theory. That is, the deviations from spherical
symmetry were considered as infinitesimally small perturba-
tions over a fixed curved background. The late-time behavior
of such perturbations has been studied for three different
asymptotic regions:~a! at fixedr , ~b! along null infinity, and
~c! along the future event horizon~when the collapse is to a
black hole!. Qualitatively, the evolution of the linearized per-
turbations is similar in these three asymptotic regions: Dur-
ing the first stage, the perturbations’ shape depends strongly
on the shape of the initial data. This stage is followed by the
stage of quasinormal~QN! ringing, in which the perturba-
tions oscillate with an exponentially decaying amplitude.
The corresponding complex frequency is characteristic of the
parameters of the background black hole and is independent
of the details of the initial perturbation. Finally, there are
also ‘‘tails,’’ characterized by an inverse power-law decay.

The asymptotic region~a! was first studied by Price@1#,
who analyzed the linear perturbations over a fixed Schwarzs-
child background. Price found that after the QN ringings die
out, the perturbations at fixedr ~outside the black hole! de-
cay according tot2(2l 1m11), wherem51 if there were an
initial static mode andm52 otherwise. Here,l is the multi-
pole moment of the mode in question, andt is the standard
external Schwarzschild time coordinate. Asymptotic regions
~b! and ~c! were considered by Gundlach, Price, and Pullin
@2#, who showed that the ‘‘tails’’ along null infinity decay

according toue
2( l 1m) , whereue is the outgoing Eddington-

Finkelstein null coordinate.~Hereafter we use the notationue

and ve for the outgoing and ingoing Eddington-Finkelstein
null coordinates, correspondingly, in order to distinguish
them from other types of null coordinates which we use
later.! Along the event horizon~EH!, the inverse-power in-
dices were found to be similar to the asymptotic limit~a!;
namely, the ‘‘tails’’ decay according tove

2(2l 1m11) .
Recently, Krivan, Laguna, and Papadopoulos studied nu-

merically the evolution of linearized scalar-field@3# and
spin-2 perturbations@4# over a fixed Kerr background.~See
also @5#.! They concluded that ‘‘tails’’ are expected also for
the Kerr background, with power-law indices similar to those
obtained for the Schwarzschild background. This provides
additional motivation for the study of the fully nonlinear
evolution of perturbations in the spherically symmetric case
as a toy model for the spinning case, since the spherical case
is much simpler to deal with~both analytically and numeri-
cally!.

The numerical simulation of the fully nonlinear gravita-
tional collapse of a spherically symmetric self-gravitating
scalar field was recently carried out by two groups: Gun-
dlach, Price, and Pullin@6# ~GPP! and Marsa and Choptuik
~MC! @7#. In both analyses, the coordinates used were non-
vacuum generalizations of the~one null1r ) outgoing@6# or
ingoing @7# Eddington-Finkelstein coordinates. These nu-
merical analyses demonstrated the QN ringing as well as the
power-law ‘‘tails’’ for lines r 5const. In addition, MC also
demonstrated the power-law decay at the EH.

In this paper, too, we study the nonlinear spherical gravi-
tational collapse of a self-gravitating scalar field. However,
we shall use different coordinates, different numerical meth-
ods, and a somewhat different model. Our numerical code is
stable and second-order accurate and is based on free evolu-
tion and double-null coordinates. This combination has sev-
eral advantages: First, the null coordinates are very well
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adapted to the hyperbolic character of the field equations
evolved: The evolution is along the characteristics, and con-
sequently there is no restriction analogous to the Courant
condition. Second, in double-null coordinates the interpreta-
tion of the causal structure of the numerically produced
spacetime is trivial. Also, double-null coordinates can be
chosen such that the metric is regular at the EH, which is not
the case in outgoing Eddington-Finkelstein coordinates.

Our coordinates and integration scheme allow us to study
the evolution to arbitrarily late times, and there is no need to
introduce an artificial outer boundary@7#. Our analysis dem-
onstrates both the QN ringing and the power-law ‘‘tails.’’
One of our main objectives in this investigation is to numeri-
cally determine the power-law indices of the late-time
‘‘tails’’ in the nonlinear collapse problem and to compare
them to the predictions of the linear perturbation theory. In
cases~a! and ~c!, we obtained power-law indices similar to
those found by@6,7#, though with improved accuracy. In
addition, we obtain the power-law index at null infinity,
which has not been studied so far in nonlinear collapse. In all
three asymptotic limits, we find an excellent agreement be-
tween our numerically obtained indices and the values pre-
dicted by the linear perturbation analyses@1,2#. ~Such an
agreement is expected, even in a very nonlinear collapse
problem, because of the ‘‘no-hair’’ principle—see, e.g., Ref.
@6#.!

Whereas this paper considers only the external part of the
black hole, we are currently investigating the inner structure
of charged black holes with a similar numerical code@8#. In
fact, our main motivation in this project is to develop the
numerical approach and techniques which could later be
used in investigating the black hole’s interior. The determi-
nation of the correct late-time power-law index is essential
for that purpose.

Similar self-gravitating collapse scenarios have been re-
cently used for the study of critical phenomena in black-hole
formation @9–11#. In its present form our code is incapable
of treating these phenomena because we have not attempted
to include the neighborhood of the origin in the domain of
integration. The configurations we are interested in here are
by far supercritical, and the aspects which concern us do not
require the integration near the origin~see below!.

This paper is organized as follows: In Sec. II we present
the model for the collapse and the corresponding field equa-
tions. Section III describes the numerical approach, and Sec.
IV discusses the stability and accuracy of our code, and the
tests used to verify them. It has been recently argued@12#
that unconstrained codes in double-null coordinates suffer
from inherent instabilities. We show that this is not the case,
and that our code is indeed stable and converges with second
order.~In the Appendix we explain this in greater detail.! In
Sec. V we present our numerical results for the collapse of a
scalar field over a Minkowski background, leading to the
formation of a Schwarzschild black hole, and in Sec. VI we
consider the collapse of a~self-gravitating, neutral! scalar
field on a Reissner-Nordstro¨m ~RN! background. Finally, in
Sec. VII we summarize and discuss our results.

II. COLLAPSE MODEL

A. Field equations

We shall consider the spherically symmetric gravitational
collapse of a self-gravitating, minimally coupled, massless

scalar field. In the uncharged case, the system is described by
the coupled Einstein-Klein-Gordon field equations. We shall
also consider the charged case, i.e., the case in which a
~sourceless! spherically symmetric electric field is also
present. In this case, the system is described by the coupled
Einstein-Maxwell-Klein-Gordon field equations.

We write the field equations in double-null coordinates.
The line element takes the form

ds252 f ~u,v !dudv1r 2~u,v !dV2, ~1!

wheredV2 is the line element on the unit two-sphere. The
general spherically symmetric solution of the Maxwell equa-
tions in these coordinates is

Fuv52Fvu5
1

2

Q f

r 2
~2!

andFmn50 otherwise, whereQ is a free parameter, which is
interpreted as the electric charge, and whereFmn is the Max-
well field tensor. The contribution of this electric field to the
energy-momentum tensor is

Tmn
em5

Q2

8pr 4S 0 f /2 0 0

f /2 0 0 0

0 0 r 2 0

0 0 0 r 2sin2u

D . ~3!

The energy-momentum tensor of a massless scalar fieldF is

Tmn
s 5

1

4pS F ,mF ,n2
1

2
gmngabF ,aF ,bD . ~4!

This field satisfies the Klein-Gordon equationF ;a
;a50,

which, in our coordinates, takes the form

F ,uv1
1

r
~r ,uF ,v1r ,vF ,u!50. ~5!

The Einstein field equations areGmn58pTmn , where the
energy-momentum tensor is the sum of the contributions of
both the electromagnetic and scalar fields,Tmn5Tmn

s 1Tmn
em.

These equations include two evolution equations

r ,uv52
r ,ur ,v

r
2

f

4r S 12
Q2

r 2 D ~6!

and

f ,uv5
f ,uf ,v

f
1 f H 1

2r 2F4r ,ur ,v1 f S 122
Q2

r 2 D G22F ,uF ,vJ ,

~7!

supplemented by two constraint equations

r ,uu2~ lnf ! ,ur ,u1r ~F ,u!250, ~8!

r ,vv2~ lnf ! ,vr ,v1r ~F ,v!250. ~9!

The constraint equations are not independent of the dynami-
cal equations: Any solution of the evolution equations will
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also be a solution of the constraint equations, provided only
that the latter are satisfied on the initial hypersurface.~This is
assured by virtue of the contracted Bianchi indentities.!

B. Formulation of the characteristic problem

In our numerical scheme, we shall use the three equations
~5!–~7! to evolve the three unknownsr (u,v), f (u,v), and
F(u,v). These equations form a hyperbolic system, and thus
ensure a well-posed initial-value formulation. In the double-
null coordinates we use, it is most natural to use the charac-
teristic initial-value formulation, in which the initial values
of the unknowns~but not of their derivatives! are specified
on two null segments,u5const[ui andv5const[v i .

In such a numerical scheme~often calledfree evolution!,
the constraint equations are only imposed on the initial hy-
persurfaces. As mentioned above, the consistency of the
evolving fields with the constraint equations is mathemati-
cally guaranteed. We use the constraint equations to check
the accuracy of the numerical simulation.

From the pure initial-value viewpoint, we need to specify
three initial functions on each segment of the initial surface:
r , f , andF. The constraint equations, however, reduce this
number by 1: Equation~8! imposes one constraint on the
initial data atv5v i , and similarly, Eq.~9! imposes one con-
straint on the initial data atu5ui . The remaining two initial
functions, however, represent onlyone physical degree of
freedom: The other degree of freedom expresses nothing but
the gauge freedom associated with the arbitrary coordinate
transformationu→ ũ(u), v→ ṽ (v) @the line element~1! and
all the above equations are invariant to this transformation#.
In what follows we shall use a standard gauge, in whichr is
linear with v or u, correspondingly, on the two initial null
segments. On the outgoing segment, we taker ,v51. On the
ingoing segment, we taker ,u5const[r u0. The initial values
of r are thus uniquely determined by the parameterr 0
[r (ui ,v i). We chooseui50 andv i5r 0, and thus we find

r v~v !5v, r u~u!5r 01uru0 .

@Hereafter, we denote the initial values of the three fields on
the two initial segments byr u(u), f u(u),Fu(u) and
r v(v), f v(v),Fv(v), correspondingly.# Then, we can freely
specify Fu(u) and Fv(v) ~this choice represents a true
physical degree of freedom!. The initial value of f is now
determined from the constraint equations, namely,

~ lnf u! ,u5r u~Fu,u!2/r u0 , ~ lnf v! ,v5r v~Fv,v!2, ~10!

together with the choicef (ui ,v i)51. Thus, in the gauge we
use, the geometry in the entire domain of dependence is
uniquely determined by the two initial functionsFu(u) and
Fv(v) and the two parametersr 0 and r u0. ~Later we shall
relater u0 to the initial black-hole mass.! In what follows, we
shall consider initial data corresponding to a compact ingo-
ing scalar-field pulse, over a background of either
Minkowski, Schwarzschild, or RN. Namely, we shall assume
that Fu(u)[0, and thatFv is also zero, except at a finite
interval v1,v,v2 ~with somev1>v i) whereFvÞ0. For
concreteness, in the rangev1,v,v2 we shall takeFv
5Asin2@p(v2v1)/(v22v1)#. This choice for the initial data is
smooth at the matching pointsv5v1 andv5v2. The deter-

mination of f v(v) throughoutu5ui , by analytically inte-
grating the second constraint equation in Eqs.~10!, is
straightforward for such a pulse. On the ingoing segmantv
5v i we havef u(u)51.

The geometry is static~with F50) in the entire rangev
,v1, with a mass parameterM0. To relateM0 to the above
initial-value parameters, we define the mass function
M (u,v) @13# by r ,mr ,m5122M (u,v)/r 1Q2/r 2. In our co-
ordinates this becomes

M ~u,v !5~r /2!~114 f 21r ,ur ,v!1Q2/2r , ~11!

which yields M05(r 0/2)(114r u0)1Q2/2r 0. Thus, our
initial-value setup is determined by the initial mass param-
eter M0, the chargeQ, and the perturbation amplitudeA
~together with the auxiliary parametersv1, v2, andr 0).

We shall particularly study two cases:~i! M050, Q50
~Minkowski background! and ~ii ! M051, QÞ0 ~RN back-
ground!. ~Note that no loss of generality is caused by the
choiceM051, because of the scale-invariance nature of the
problem.! We shall not elaborate here on the situation of
self-gravitating scalar field collapsing over a Schwarzschild
background, as its outcome is qualitatively similar to case~i!
~and the collapse over Minkowski brings out the nonlinear
aspects in a sharper way!. We shall use, however, the pure
(A50) Schwarzschild case as a testbed for our numerical
code.

In what follows, we shall use the symbolsu and v to
denote the outgoing and ingoing null coordinates in the spe-
cific gauge described above. Notice thatv is closely related
to ve at v@M , andu is Kruskal-like near the EH~namely, it
regularizes the metric functionf at the EH!.

The double-null line element suffers from a nonphysical
coordinate singularity at the origin~i.e., the timelike world
line r 50, where the geometry is perfectly regular!. This sin-
gularity may cause difficulties in the numerical study of case
~i! above ~i.e., Minkowski background!. In order to over-
come this difficulty, we restrict the domain of numerical in-
tegration in this case such that it will not include the origin.
That is, the characteristic initial segmentv5v i ends before it
reachesr 50. Since it is very essential that the domain of
integration will include the EH, we must demand that the
ingoing rayv5v i will intersect the EH before it intersects
r 50. This is achieved if the amplitude parameterA is suf-
ficiently large.

III. NUMERICAL CODE

Our numerical code is based on the standard procedure
for second-order integration of 111 hyperbolic equations in
double-null coordinates: Letdu and dv be the finite incre-
ments in theu and v directions, respectively. Let us also
denote schematically the three unknownsr , f ,F as hi , i
51,3. These unknowns satisfy a field equation of the form

hi ,uv5Fi~hj ,hj ,u ,hj ,v!, j 51,3. ~12!

Assume now that we already know the values ofhi at the
three grid pointsp1[(u0 ,v0), p2[(u01du,v0), and p3
[(u0 ,v01dv), and we would like to evaluate them atp4
[(u01du,v01dv). We then use the substitution
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hi
~4!52hi

~1!1hi
~2!1hi

~3!1Fi
~5!dudv, ~13!

where, for any functiong, g(k)[g(pk), andp5 is the inter-
mediate point:p5[(u01du/2,v01dv/2). In order to evalu-
ate the functionshj

(5) ,hj ,u
(5) ,hj ,v

(5) ~required for the determina-
tion of Fi

(5)) to the desired accuracy, we use the standard
‘‘predictor-corrector’’ method. This procedure results in a
second-order accuracy. With this method, we first calculate
hi along the ingoing rayv5v i1dv—starting atu5ui1du,
then solving foru5ui12du, and so on, until the last grid
point atu5uf . Then we turn to the next ingoing rayv5v i
12dv, and solve for all grid points along this ray. In this
way we solve, ray after ray, until we cover the entire domain
of integration,v i,v,v f , ui,u,uf . The accuracy is con-
trolled by the global grid parameterN, which is the~initial!
number of points per a unit interval in both thev and u
directions. Typically we usedN510, 20, or 40, though in
certain cases we also used the values 5, 80, and 160.

As long as our domain of numerical integration does not
include the EH, this numerical scheme can be used with a
fixed grid without any difficulties. When the EH is included,
however, we face a fundamental difficulty. For simplicity,
assume at this stage thatF50 and the spacetime is
Schwarzschild~though the same conceptual difficulty arises
also in nonstatic spacetimes!. Let us denote byuh the value
of our Kruskal-like coordinateu at the EH. Letu0 be a grid
value ofu just near the EH, and letu1 be the next grid point
in u, i.e., u1[u01du. We define dr (v)[r (u1 ,v)
2r (u0 ,v). Of course, for the validity of the numerical inte-
gration it is necessary thatdr !r — and we shall indeed
select the grid parameterdu sufficiently small so as to satisfy
this requirement at the initial segmentv5v i . The problem is
thatdr grows unboundedly and very rapidly withv. Thus, in
terms of the Eddington-Finkelstein coordinateve , along the
horizon dr}exp(ve/4M ) @because at the horizon of the
Schwarzschild background,r ,u}exp(ve/4M ) and dr (v)
>r ,u(u0 ,v)du.# It is therefore obvious that a code based on
a fixeddu cannot be used here. One might attempt to use a
numerical scheme in whichdu depends onu ~but not onv)
in such a way that it becomes extremely small at the EH. But
this turns out to be impractical too, because of the extremely
large exponential factor: Typically we need to integrate up to
ve values of at least a few hundreds timesM ~otherwise we
cannot study the power-law tails with a sufficient accuracy!.
This would demand a value ofdu as small as, say, 102100

near the EH, which is obviously impractical, due to the
roundoff error and other reasons.

In order to overcome this difficulty, we must use a dy-
namical grid-refinement algorithm. A sophisticated dynami-
cal refinement scheme was recently developed by Hamade´
and Stewart@10#, in order to analyze the critical behavior at
the origin. For our purposes, however, it is sufficient to use a
simpler refinement scheme, which we callpoint splitting: In
certain values ofv, we check the variations inr ~and, in fact,
in all hi) between any two adjacent grid points. If the differ-
ence in r between such two pointsp15(u0 ,v0) and p2
[(u01du,v0) is greater than some threshold value, we in-
troduce an intermediate grid pointp28[(u01du/2,v0), and
calculate the interpolated values of all unknownshi at that
point. We can now use the above three-point integration

scheme to calculatehi at p48[(u01du/2,v01dv) from the
values of these fields atp1 ,p28 ,p3 @and, later, to calculatehi

at p4[(u01du,v01du) according to the field values at
p28 ,p2 ,p48#. This numerical procedure functions very well in
double-null coordinates, especially due to the following rea-
sons: First, in the three-point integration scheme
(p1 ,p2 ,p3)→p4, there is no reference to any grid points at
u,u0 or u.u01du. Therefore, it does not matter whether
the incrementsdu are uniform or not. Second, in this scheme
there is no restrictions on the ratio ofdu anddv.

In practice, we proceed as follows. We register all grid
values ofu ~at a givenv) in a vectoru(I ), where I is an
integer index. The values of the three unknowns are regis-
tered in corresponding three vectorshi(I ). We define three
threshold parametershi

c for the three unknowns and also a
‘‘band parameter’’vb ~typically we takevb to be of order
M ). At the end of each intervalvb in v ~a ‘‘band’’!, we
check the variation of all three fields along the vectorshi(I ).
If for a given I the relative difference u@hi(I 11)
2hi(I )#/hi(I )u is found to be greater thanhi

c ~for any i ),
then we add a new grid point atu5@u(I )1u(I 11)#/2. In
such a case, we calculate the values of the fieldshi at that
new point by interpolation@usually we perform a four-point
interpolation, based on, e.g.,u(I 21),u(I ),u(I 11),u(I
12)#. We now update the vectorsu(I ) andhi(I ), by assign-
ing the valueI 11 to the new grid point.~Before creating
this new grid point, we arrange an empty ‘‘slot’’ for it, by
shifting all grid index valuesI 8.I by 1.! The threshold val-
ueshi

c are taken to be proportional to 1/N, in order to pre-
serve the rule ofN as a parameter that controls the global
accuracy~that is, the number of grid points in theu axis
should be proportional toN). The band parametervb is taken
to be independent ofN.

Because our goal is to study the evolution in the entire
black-hole exterior, the domain of integration must include
the EH and thus extend into the black hole~i.e., uf.uh).
Then, if Q50, the numerical integration will terminate at
some finite v, beyond which the ingoing null linesv
5const intersect the spaceliker 50 singularity ~before u
5uf). In order to overcome this difficulty, we simply chop
the vector u(I ) just beyond the apparent horizon~AH!.
Namely, at the end of each band, we first findI AH , the value
of the indexI where the AH is located. This is the value ofI
satisfying r ,v@u5u(I 21)#.0 and r ,v@u5u(I )#,0.1 We
then chop the vectoru(I ) at, say,I 5I AH11. This ensures
that the domain of integration never gets close to the space-
like r 50 singularity—and yet it contains the entire external
part of the domainv i,v,v f , ui,u,uf , up to~and includ-
ing! the EH.

With these procedures of point splitting and chopping, our
code can in principle run to arbitrarily largev values. Be-
cause of point splitting, however, the number of grid points
in the vectoru(I ) grows linearly withve , and so the inte-

1We also calculateuAH by interpolating between the two points
u(I 21) andu(I ). ~In the Schwarzschild or RN casesuAH[uh , but
in the general dynamic caseuAH>uh . Recall that only the AH can
be found locally. However, for largev the AH should coincide with
the EH.!
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gration time grows likeve
2 . In order to significantly decrease

this time, we introduce two additional types of numerical
manipulations.

Point removal. The successive addition of points near the
event horizon results in a coverage of the regionsr
@2M ,ve@M with an approximately uniform density of or-
der N points per unitue ~recall that a point added atu just
before the EH will, after an intervalve@M , approachr
@2M ). However, for an appropriate coverage of the varia-
tions in r , a much smaller density of aboutNM/r points per
unit ue will be sufficient ~note that atr @2M , r is approxi-
mately linear inue along linesv5const). Thus, in order to
save integration time, at the end of each band we check
along the vectoru(I ) and simply remove all unnecessary
points, thereby shortening this vector. The criterion for ne-
cessity or otherwise of a pointI is qualitatively similar to
that of point splitting: Again, we define the threshold values
h8 i

c for point removal~typically, h8 i
c is slightly smaller than

hi
c/2). If for all i we haveu@hi(I 21)2hi(I )#/hi(I )u,h8 i

c ,
then the pointI is removed.2

Gauge correction. As it turns out, for any Kruskal-likeu
~which is necessary for a regular coverage of the EH! and
Eddington-likev, f grows exponentially withve along the
EH. In addition, along linesv5const@M , f grows rapidly
~exponentially withue) in most of the intervalui,u,uh .
The above numerical scheme handles very well this behavior
of f . However, the significant variation off with u implies
that points can hardly be removed, which results in a long
computation time. In order to overcome this difficulty, we
introduce~as an option! a gauge correction at the end of each
‘‘band.’’ That is, we perform a coordinate transformation
u→unew(u). The value of f is gauged accordingly:f new
5(duold /dunew) f old ~the variabler is unchanged!. Our field
equations are invariant to such a coordinate transformation.
The functionunew(u) is to be chosen so as to decrease the
variation of f new with u. A convenient choice is to take
unew(u,v0)5r (u,v0) ~wherev0 is the value ofv at the in-
going ray where the gauge transformation is carried out!, in
which case f new turns out to be approximately constant
throughout the ingoing ray.@Another convenient choice is to
define unew(u) by the demandf new(u,v0)51.# We recall,
however, that our goal is to numerically computef original ~as
well as r and F) as a function ofuoriginal and v, and the
gauge transformations are just a subsidiary manipulation. In
order to accomplish this goal, we must keep record of two
additional variables:~i! the vectoruoriginal(I ), and ~ii ! the
vectorRg(I ), whereRg[ducurrent/duoriginal is the cumulative
gauge factor. At each gauge transformation, the latter is up-
dated according toRg(new)5(dunew/duold)Rg(old) . Conse-
quently, in the original gauge the metric functionf is given
by f original5Rgf current.

3 Hereafter, whenever we mentionu
and f , we refer touoriginal and f original, correspondingly.

The combination of the above four types of numerical
manipulations yields an accurate and efficient numerical
code. It is important to recall that, whereas thepoint splitting
andchoppingare necessary for an integration to large values
of v, the point removaland gauge correctionare optional,
and are aimed to save integration time.4 With these two ma-
nipulations, the typical number of grid points in the vector
u(I ) grows only logarithmically withve , instead of linearly.
In practice, the integration times in long runs are reduced by
a factor of 10 or so. Typically, in a running to largev, almost
all points inu are ‘‘born’’ in point splitting near the EH, and
are later removed when they approachr @2M . We empha-
size that in the numerical scheme described here the incre-
ment inv is fixed,dv51/N.

IV. STABILITY, ACCURACY, AND ERROR ANALYSIS

A. Stability

Gundlach and Pullin~GP! @12# recently argued that any
free-evolution scheme will be inherently unstable, in the
sense that small violations of the constraint equations will
grow exponentially witht along linesr 5const — even if the
evolution equations are exactly satisfied. We disagree with
the theoretical analysis and interpretation made by GP, for
reasons explained in the Appendix. Also, our numerical tests
did not indicate any such numerical instability. Certain enti-
ties exhibit an exponential growth, but these entities are not
the ones that may be used as authentic error indicators;
rather, the exponential growth we encountered is merely a
reflection of the passive exponential growth exhibited by
various gauge-dependent entities~e.g., r ,u , for Kruskal-like
u) along linesr 5const~or along the EH! in the Schwarzs-
child geometry. We discuss this issue extensively in the Ap-
pendix.

In our stability tests, we numerically reconstructed the
Schwarzschild spacetime~as well as RN and other space-
times! up to t values of many thousands timesM and with
values of the grid parameterN ranging from 5 to 160. In all
these cases, we found a stable numerical evolution.

B. Accuracy checks and error analysis

We used several methods to test and monitor the accuracy
of our numerical code:~i! Comparing the results obtained
with different values of the grid parameterN, ~ii ! monitoring
the discrepancy in the two constraint equations~8! and ~9!
~as explained above, our integration scheme does not involve

2In fact, the criterion we use for the variation inF ~for both point
splitting and point removal! is somewhat more involved: It refers to
the variations in bothF and F ,u . This is essential for the appro-
priate coverage of the maxima and minima regions in the QN ring-
ing.

3In a point splitting, the variablesuoriginal(I ) andRg(I ) are inter-
polated at the point added, like the other variableshi(I ).

4If a gauge correction is not used for any reason, then, as a con-
sequence of successive point splittings, the difference inu between
two adjacent points near the horizon becomes as small as, say,
102100. Then, because of the roundoff error, it is not possible to
calculatedu(I )[u(I 11)2u(I ) directly at each step. One way to
overcome this difficulty is to keep an independent vectordu(I ), and
to update it at every point splitting by dividingdu(I ) by 2. ~Recall
that it is du that is involved in the finite-difference integration
scheme, notu.! Another possibility is to shiftu by a constant, e.g.,
at the end of each ‘‘band,’’ so as to assign the AH the valueu
50 — in this caseu(I 11)2u(I ) can be calculated directly at each
stage.
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these equations!, and ~iii ! numerically reproducing known
exact solutions: The Minkowski solution, the vacuum
Schwarzschild solution, the electrovacuum RN solution, and
the self-similar spherically symmetric scalar-field solution
@15# for the Einstein scalar field equations. In all these cases
our code reproduced the exact solutions very well~we have
compared the metric coefficientsr , f and the mass function!.
All these tests indicated that the code is stable, and the nu-
merical errors decrease likeN22, as expected from a second-
order code~see examples below!.

We present here the results for the numerical reproduction
of the Schwarzschild solution.~Similar results were obtained
for the other above-mentioned tests.! We start with initial
data corresponding toM51. The drift of M from its initial
value may then be used as an error indicator. Figure 1 dis-
plays M as a function oft along a liner 5const, Fig. 2
shows the drift ofM as a function ofv along the EH, and
Fig. 3 showsM as a function ofue along null infinity, for
variousN values. From these figures it is apparent that the
mass drift is linear with time, and decreases likeN22, as
expected. We also compared the mass function obtained

from local differentiation@Eq. ~11!# with the dynamical mass
function which evolves according to the wave equation@13#

m,uv52
r 3

f
F ,u

2 Fv
22r S 12

2m

r
1

Q2

r 2 D F ,uF ,v . ~14!

Both expressions for the mass function agree with each other
~in the limit of largeN).

Another check we performed was to compare the values
of f as a function oft along linesr 5const of the numerically
reproduced Schwarzschild spacetime and the exact analytical
counterpart@16#. Figure 4 displays the results we obtained
for r 53M . ~Similar behavior was found for other values of
r .! It is convenient to compare the values off in the outgoing
Kruskal coordinateUk and the ingoing Eddington coordinate
ve . For the Schwarzschild solution one finds thatgUkve

5(4M2/r )e2r /(2M )eve /(4M ). Figure 4 shows the ratioF be-

FIG. 1. The drift of the mass function alongr 5const. Shown
here is the mass function as a function oft for N510, 20, and 40.
We took herer 58.

FIG. 2. The drift of the mass function along the EH, as a func-
tion of v, for N510, 20, and 40.

FIG. 3. The drift of the mass function along null infinity, as a
function ofue ~calibrated such thatue50 onu50), for N510, 20,
and 40.

FIG. 4. The ratioF of gUkve
of the exact Schwarzschild solution

andgUkve
of the numerically reproduced spacetime. Shown are the

values forN540, 80, and 160. The convergence indicates a second-
order code. The deviation of the curves from straight lines results
primarily from the linear drift ofM .
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tweengUkve
for the exact Schwarzschild solution andgUkve

in the numerically reproduced spacetime, alongr 53M , vs
the ingoing coordinatev, for several values of the grid pa-
rameter N. This figure clearly indicates the second-order
convergence of the code to the correct theoretical value.

As we mentioned above, we also use the constraint equa-
tions to monitor the errors. Let us denote the entities in the
left-hand side of Eqs.~8! and~9! by Cu8 andCv8 , respectively.
Now, as they stand,Cu8 andCv8 cannot be used as measures
of the intrinsic local error in the reproduced spacetime, be-
cause they are not gauge invariant. Instead, wheneverr ,u or
r ,v are nonvanishing, we may define

Cu[Cu8/r ,u
2 , Cv[Cv8/r ,v

2 .

SinceCu andCv are gauge invariant, they provide an invari-
ant measure of the local numerical error. An alternative
gauge-invariant indicator isC[ f 21(Cu8Cv8)

1/2. Note that the
indicatorCv cannot be used at the AH, wherer ,v vanishes.
Instead, one may use the indicatorC there. Figure 5 displays
Cu and Cv at constantr as functions oft ~we took herer
53), andCu andC at the EH, as functions ofv. From Fig.
5 one can see that these indicators are roughly constant with
time. ~The noise is a results of the second-order numerical
differentiation necessary for the computation of the indica-
tors.! In particular, no exponential growth occurs. This dem-
onstrates the stability of the code. We found a similar behav-
ior also for the electrovacuum RN spacetime.

Figure 6 shows the rate of convergence of various error
indicators asN increases. The spacetime simulated here is
RN with Q/M50.8. ~The other exact solutions we checked
produced similar results.! Shown are thel p norms, for sev-
eral p values, of the two vectors made of the values of the
indicatorsCu andCv , respectively, along a particular outgo-
ing ray located before the EH. We used the following values
of N: 5, 10, 20, 40, 80, and 160. The apparently straight lines
in the logarithmic graphs indicate a second-order

convergence.5 ~The break in the linese and f for N5160
seems to be a roundoff effect.! The other error indicators we
used~e.g., the drift of the mass function and the metric func-
tions! also indicated a second-order convergence rate.

V. NONLINEAR COLLAPSE ON MINKOWSKI
SPACETIME

In this section we consider the caseM050, Q50,
namely, the collapse of the self-gravitating scalar field over a
Minkowski spacetime, leading to the formation of a
Schwarzschild-like black hole. Our initial data correspond to
a compact sinusoidal ingoing pulse, as described in Sec. II.
Here, we takev156, v2516, r 056, andr u0521/4 ~corre-
sponding toM050). The final mass of the black hole is then
determined by the pulse amplitudeA. In what follows we
present the results of a numerical simulation withA50.4,
leading to a final black-hole massM f>3.54. ~Hereafter, we
denote byM f the final mass of the black hole.!

Figure 7 displays the Bondi mass of the created black hole
as a function of the retarded timeue .6 The Bondi mass de-
creases withue , due to the escape of scattered energy to null
infinity. The late-time decrease of the mass corresponding to
the power-law ‘‘tail’’ of the scattered scalar field is too small
to

5From the slopes of the curves displayed in Fig. 6 we can estimate
the convergence rate of the code to be around 1.9, with variations of
typical order 0.1. We stress, however, that these numbers would
depend on the method employed for evaluating the convergence
rate.

6Strictly speaking,ue is not well defined here, as the spacetime is
dynamical and differs from Schwarzschild spacetime. In the
asymptotic regionr @M f , however, the geometry becomes asymp-
totically Minkowskian, and we can defineue with respect to this
asymptotic region. Namely, along a rayv5const in this range,ue is
linear with r .

FIG. 5. The gauge-invariant error indicatorsuCuu anduCvu along
a line r 5const as functions oft, anduCuu and uCu along the EH as
functions ofve . Line a, uCuu alongr 5const; lineb, uCuu along the
EH; line c, uCvu alongr 5const; and lined, uCu along the EH. The
data are taken forr 53 andN540.

FIG. 6. The l p norms of the constraintsCu and Cv along an
outgoing null ray, as functions of the grid parameterN. The cases
a, b, andc refer to thel 1, l 2, and l ` norms, respectively, forCu ,
and casesd, e, and f refer to thel 1, l 2, andl ` norms, respectively,
for Cv . The numerical data are represented by circles, and the
straight lines between the circles are linear interpolations of the
data.
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be observed in this figure~the numerical drift shown in Fig.
3 is also unobservable in the scale used in Fig. 7!.

The nonlinearity of the spacetime dynamics is best repre-
sented by the evolution of the mass function along the AH
~which is just twice the value ofr there!. Figure 8 shows this
mass as a function ofv. The mass function grows rapidly,
until it approaches a saturation value. In this case, too, the
mass increase at late time due to the power-law ‘‘tail’’ and
the numerical mass drift are unseen. The final black-hole
mass can be deduced from either the flat large-v portion of
the graph in Fig. 8 or the flat large-ue portion in Fig. 7—
these two numbers agree, as they should.

The stability and accuracy of our code is demonstrated in
Fig. 9, which displays the scalar field’s QN ringing along the
horizon forN55, 10, 20, and 40: The four graphs are indis-
tinguishable in this figure. In addition, we also determined
the QN ringing frequency, and compared it with the linear
analysis value@17#. This comparison is hard, as we have
only a few oscillations before the power-law ‘‘tails’’ start to

dominate. In addition, the numerical mass drift~see above!
complicates the comparison between the numerical results
and the theoretical prediction.~However, the mass drift can
be controlled by the grid parameterN. Note that the physical
mass increase due to scalar-field absorption is negligible at
late times.! From our numerical data we find that the QN
frequency iss50.032 – 0.026i . The real part ofs was cal-
culated from the two nodes in Fig. 9 corresponding to a full
wavelength and the imaginary part from the two local ex-
trema between them. The theoretical value for the least
damped mode withl 50 is s th50.031 – 0.029i ~recall that
hereM f>3.54). The sources for the deviation are the~nu-
merical! drift in the mass, the effect of the otherl 50 modes
and the power-law ‘‘tails,’’ and the inability to use values
from many cycles. However, our numerically obtained value
is remarkably close to the linear analysis value.

Figure 10 shows the late-time behavior ofF in the three
asymptotic regions:~a! at fixed r , with t@M f @we take t
5(ue1ve)/2#, ~b! at future null infinity~represented here by
v f5106M f), for ue@M f , and ~c! at the horizon, withv
@M f . This figure clearly demonstrates both the QN ringing
and the power-law ‘‘tails,’’ in all three asymptotic regions.

The determination of the asymptotic behavior at null in-
finity poses a special difficulty: We cannot integrate up to
v5` proper. ~An attempt to compactify the coordinatev
will not solve this problem, as it would lead to a divergence
of f at null infinity.! We therefore represent null infinity by a
large ~buy yet finite! value v5v f . This ‘‘null-infinity ap-
proximation’’ is only valid as long asv f@ue . Thus, the
determination of the late-time behavior at null infinity clearly
demands huge values ofv f , in order to satisfyv f@ue
@M f . In the simulations described in this paper, we used
v f5106M f to represent null infinity. In order to enable the
integration to such largev values within a reasonable com-
putation time, we used the following procedure: Let us de-
note byue f the maximal value ofue in the desired presenta-
tion of the late-time null-infinity behavior~in Fig. 10, ue f
5104). After integrating up to a value ofv which corre-

FIG. 7. The Bondi mass as a function of retarded timeue ~cali-
brated such thatue50 onu50), for N540. The mass is displayed
along the ingoing null rayv5106M f , representing null infinity.

FIG. 8. Black-hole mass determined from the AH radius vs.v.
At advanced times earlier thanv'14 the domain of integration,u
,uf , does not intersect the AH.

FIG. 9. Quasinormal ringing at the horizon as a function ofve .
Recall thatM f'3.54, which explains the relatively large value of
ve in which the ringing takes place. We used here four different
values ofN—5, 10, 20, and 40—but the four graphs are indistin-
guishable in this figure.
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sponds tove5ue f , we chop the vectorsu(I ) andhi(I ) at a
value of u which corresponds toue5ue f . The last point is
now located atr .2M f . When we continue the integration
to larger v values, the minimal value ofr , r min(v)5r (ue

5ue f ,v), increases very rapidly and approaches large values
~of orderv). We can therefore increasedv accordingly, say,
dv(v)'r min(v)/(10N). This allows us to integrate up to,
e.g., v51010 within a very short integration time.~Practi-
cally, we changedv in discrete values ofv, e.g., once in
each decade.!

As was mentioned above, one of our goals is to evaluate
the power-law indices in the case of nonlinear collapse and
to compare them to the predictions of the linear theory. Since
our initial data correspond tol 50 and to zero initial static
moment, the linear perturbation analysis would predict
~negative! power indices 3, 2, and 3 in cases~a!, ~b!, and~c!,
correspondingly. In general, the slopes of the straight sec-
tions in the three graphs shown in Fig. 10 appear to agree
with these predicted values. However, the standard best-fit
method is not so useful in this case for a precise determina-
tion of the numerically computed indices, due to the follow-
ing reason. Consider, for example, the late-time behavior at
the horizon. According to the linear theory, it should be
dominated byv23. However, this dominant term is ‘‘con-
taminated’’ by higher-order terms in 1/v, whose effect be-
come larger asv decreases@18#. Assume now that we use the
standard best-fit method~applied to a finite intervalv08,v
,v f) to determine the deviation of the power-law index
from its predicted value. As it turns out, the computed de-
viation will be dominated in this case by the ‘‘higher-order
contamination.’’ This contamination effect, in turn, will de-
pend in an arbitrary way on the choice of the parameterv08 .
In order to remove this arbitrariness, we introduce the notion
of local power index, defined by2vF ,v /F. ~For the other

asymptotic regions,v is to be replaced byt or ue , accord-
ingly.!

The local power index for the three asymptotic regions is
shown in Figs. 11, 12, and 13. The agreement with the pre-
dictions of linear theory is remarkable. In principle, devia-
tions from the precise integer index may result from three
sources of errors:~i! the limited accuracy of the numerical
simulation;~ii ! the finiteness of the late-time domain covered
by the numerics, i.e., the finiteness oft, u, andv in Figs. 11,
12, and 13, correspondingly~due to the ‘‘higher-orders con-
tamination,’’ the precise integer index is expected only at
infinitely-late time!; and~iii ! in case~b! ~i.e., at null infinity!,
the finiteness of the final valuev5v f taken to represent null
infinity is also a possible source of error. In the numerical
simulations presented here, we find that the deviation is re-
lated primarily to source~ii !: We used a sufficiently largeN
and a sufficiently largev f in case~b!, and so sources~i! and
~iii ! are insignificant.

Our results for the local index~at maximalt, u, or v) are,

FIG. 10. The late-time behavior of the scalar field in the three
limits ~a!, ~b!, and ~c!. Case ~a!: This graph displaysF at r
52.3M f , as a function oft. Case~b!: F along null infinity ~repre-
sented byv5106M f) versus retarded timeue , calibrated such that
ue50 onu50. Case~c!: F along the EH, as a function ofve . ~The
amplitude in this case was divided by 100, so that it will not overlap
with the other graphs.! In all three cases, the QN ringing and the
power-law ‘‘tails’’ are seen clearly. We used hereN520.

FIG. 11. Local index of the ‘‘tails’’ for case~a!: along r
5const52.3M f , as a function oft. The local power is 2.98
60.01. We used hereN520.

FIG. 12. Local index of the ‘‘tails’’ for case~b!: along v
5106M f ~representing future null infinity!, as a function ofue . The
local power is 2.00260.003. We used hereN520.
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for case~a!, 2.9860.01 ~instead of 3!; for case~b!, 2.002
60.003~instead of 2!; and for case~c!, 2.9960.02 ~instead
of 3!. The error bar represents the numerical ‘‘noise,’’ pro-
duced primarily by the numerical differentiation ofF with
respect tov, u, or t, which is inherent to the computation of
the local power index.

For comparison, we quote here the values obtained in
previous nonlinear numerical analyses for the power-law in-
dices. In case~a!, 2.63–2.74@6# and 3.38@7#; in case~c!,
3.06 @7#; no nonlinear results were obtained so far for case
~b!.

VI. NONLINEAR COLLAPSE ON A CHARGED
BACKGROUND

In order to study the nonlinear dynamics of charged black
holes, we consider here the gravitational collapse of the self-
gravitating ~neutral! scalar field over a preexisting charged
background~a RN geometry!. The model and initial-value
setup are as explained in Sec. II. We take here an initial mass
M051 and a chargeQ50.95.~We found similar results for
other values ofQ,1.! We now takev156, v2516, r 056,
and r u0'20.1729. As before, we take a scalar-field ampli-
tude A50.4. The black-hole mass then increases toM f
>3.87 during the collapse. Figure 14 shows the value ofr at
the AH vsv. The rapid increase of the horizon’s area indi-
cates strong nonlinear spacetime dynamics. The two-stage
increase ofr reflects the structure of the scalar-field pulse:
The latter has a maximum at aboutv511, and the vanishing
of F ,v impliesM ,v50 there.~A similar behavior is observed
in Fig. 7.!

According to the predictions of the linearized theory@14#,
the late-time behavior in the three asymptotic regions~a!,
~b!, and~c! in a ~nonextreme! charged black hole should be
similar to the uncharged case—namely, QN ringing followed
by inverse power-law ‘‘tails’’ with the same indices as in the
uncharged case. Figure 15 displays the late-time behavior of
the scalar field for the three asymptotic regions~a!, ~b!, and
~c!. Again, both the QN ringing and the power-law ‘‘tails’’
are seen very clearly in all three asymptotic regions.

Figures 16, 17, and 18 show the local power index for the
three asymptotic regions. Our results for the local power in-
dex ~at maximal t, u, or v) are, for case~a!, 2.9960.01
~instead of 3!; for case~b!, 1.99660.001~instead of 2!; and
for case~c!, 2.9960.02 ~instead of 3!. These results are in
excellent agreement with the predictions of the linear theory.

VII. CONCLUSIONS

We developed a numerical scheme for the integration of
the spherically symmetric nonlinear Einstein-Maxwell-
Klein-Gordon field equations. Our scheme is based on free
evolution in double-null coordinates. This scheme is stable
and accurate, it is capable of running to arbitrarily late times,

FIG. 13. Local index of the ‘‘tails’’ for case~c!: along the AH,
as a function ofve . The local power is 2.9960.02. We used here
N520.

FIG. 14. Value ofr at the AH as a function ofv. ~At early
values ofv our numerical domain of integrationui,u,uf does not
intersect the AH.! We used hereN520.

FIG. 15. Amplitude of the scalar field for the three cases~a!, ~b!,
and ~c! for the nonlinear collapse on a charged RN background.
Case~a!: along r 5const52.3M f , as a function oft. Case~b!:
alongv5106M f , representing future null infinity, as a function of
ue ~calibrated such thatue50 on u50). Case~c!: along the hori-
zon, as a function ofve . The amplitude for case~c! is divided by
100 to avoid overlap of the graphs. We used hereN520.
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and it can handle black holes while avoiding singularities.
We used this numerical code to study the gravitational

collapse of a spherically symmetric, self-gravitating, mini-
mally coupled scalar field to form a black hole~or the col-
lapse of such a scalar field over a preexisting charged back-
ground!. Our numerical simulations demonstrate both the
quasinormal modes and the power-law tails, in all three late-
time asymptotic regions: at a constantr ~with larget), along
future null infinity ~at largeu), and along the event horizon
~at largev). The accuracy of our numerical scheme, its abil-
ity to run forever, and the method of calculatinglocal power
indices allowed us to evaluate the power-law indices with an
accuracy better than all previous estimates.

Our results confirm that the predictions of the linear
theory for the late-time behavior of perturbations outside the
black hole hold also for fully nonlinear collapse.~This ob-
servation is not surprising—in a sense, it is a manifestation
of the principle that black holes have no hair.! In particular,
in all three late-time asymptotic regions, the power-law indi-
ces approach asymptotically the integer values predicted by

the linear perturbation analysis. This agreement of the late-
time nonlinear dynamics and the linear perturbation theory
was already demonstrated by GPP@6# in the uncharged case
~see also@18#!. Here we demonstrate it for the charged case
as well.

The simulations presented here were restricted to the ex-
ternal part of the black hole and the neighborhood of the
event horizon. One of our main motivations in this project,
however, was to develop the numerical tools which will al-
low the investigation of theinner part of black holes. We are
currently using this numerical scheme to study the evolution
of the geometry and the scalar field near the spacetime sin-
gularity inside a charged black hole@8#.
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APPENDIX

At issue here is the evolution of the entities at the left-
hand sides of Eqs.~8! and~9!, which represent the violation
of the constraint equations. These entities are denoted in Ref.
@12# by E1 andE2, respectively~in Sec. IV we denote these
entities byCu8 andCv8). GP argue that, as a consequence of
the preciseevolution equations,E1 andE2 will grow expo-
nentially with t along linesr 5const. According to GP, this
exponential divergence represents an inevitable numerical
instability of the free-evolution scheme. We do not accept
this conclusion, and claim that~i! under the precise evolution
equationsE1 andE2 do not grow exponentially; rather, they
are essentially conserved~in a sense which will be explained
below!. ~ii ! In our numerical free-evolution scheme,E1 ~but
not E2) will grow exponentially, but this growth is a conse-
quence of thenumerical errorin the integration of the evo-
lution equations, not of the equations themselves.~iii ! This
divergence ofE1 does not indicate a numerical instability;
rather, it reflects the passive exponential growth of typical

FIG. 16. Local power as a function oft for case~a!: along
constant value ofr (r 52.3M f). The value of the local power ap-
proaches 2.9960.01. We used hereN520.

FIG. 17. Local power as a function ofue for case~b!: along
future null infinity, represented byv5106M f . The value of the
local power approaches 1.99660.001. We used hereN520.

FIG. 18. Local power as a function ofve for case~c!: along the
EH. The value of the local power approaches 2.9960.02. We used
hereN520.
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gauge-dependent entities liker ,u along linesr 5const in the
Schwarzschild geometry.

To verify point ~i!, assume that the evolution equations
are precisely satisfied. Then, Eq.~7! in Ref. @12# readsE1,v
52(r ,v /r )E1. E2 will satisfy an analogous equationE2,u
52(r ,u /r )E2. It then follows that the entityrE1 is con-
served along linesu5const, and similarlyrE2 is conserved
along linesv5const. Therefore, an exponential growth ofE1
or E2 along linesr 5const is ruled out.7 The exponential
divergence of the linear metric perturbations~denotedj and
h in Ref. @12#! found by GP must therefore be a gauge mode.
In fact, the infinitesimal coordinate transformationu→u
1du ~e.g., with fixed infinitesimaldu) yields a nonvanish-
ing j ~in Ref. @12# j represents the linear perturbation inr 2),
given by

j52~r 2! ,udu522rr ,udu.

For any Kruskal-likeu, at a fixedr , r ,u grows like exp(t/4M )
at t@M . It then follows that along any liner 5const, at large
t, j will exhibit this exp(t/4M ) divergence. This fits very
well with the rate of divergence, exp(0.24t/M ), found nu-
merically by GP. But this is, of course, a gauge mode, which
does not indicate a violation of the Einstein equations.

Note also that the analytic derivation of the exponential
growth in Ref.@12# is based on the ‘‘mode ansatz’’ approxi-
mation. This approximation may only be valid if the mode’s
wave numberk is sufficiently large. The diverging modes
found by GP donot satisfy this condition, however. This
may explain the discrepancy of the value 0.32M 21 predicted
by GP compared with the above theoretical value 1/(4M )
~which is also confirmed numerically by GP to a good accu-
racy!.

In our numerical tests, we found that along linesr
5const, E2 is roughly preserved, whileE1 grows like
exp(t/2M ). From the above discussion it is obvious that this
exponential growth ofE1 must be a consequence of thevio-
lation of the evolution equations, due to numerical errors.
Later we shall give a more explicit explanation for this be-
havior. The crucial point is, however, that the exponential

growth ofE1 does not indicate an exponential growth of the
intrinsic local error: The entityE1 ~like E2) is not an appro-
priate error indicator, because it is not a gauge-invariant en-
tity. @In a transformationu→u8(u), E1 is multiplied by the
factor (du/du8)2.# In order to extract fromE1 the informa-
tion about the intrinsic local error, we must construct a
gauge-invariant entity from it. A convenient choice is the
gauge-invariant entityCu[E1 /(r ,u)2. This entity indeed re-
mains roughly constant along linesr 5const and along the
EH ~see Fig. 5!. The behavior of the other error indicators
~e.g., the mass parameter in Figs. 1 and 2! also indicates
stability: None of the invariant entities exhibit an exponential
growth of error.

We still need to explain why the numerical errors in the
integration of the evolution equations results in an exponen-
tial growth of E1. If there were no numerical errors in the
integration, then, along a liner 5const[r 8, E1 would ap-
proach~at larget) a constant valueE1(uh ,v i)r (uh ,v i)/r 8.
Correspondingly, Cu would decay like 1/(r ,u)2}exp
(2t/2M ). However, the numerical error in the integration of
the evolution equations provide a~roughly! constant source
of error in the evolution ofCu .8 The combination of the
dynamical tendency to exponential decay and the constant
source of error results in a finite saturation value~propor-
tional to the numerical error!.9 In turn, this implies thatE1
grows like exp(t/2M ).

Finally, we emphasize again that despite the above dis-
cussion, whenever the domain of integration includes the
EH, a naive attempt to use a free-evolution scheme in
double-null coordinates, without a grid refinement, will in-
evitably result in a numerical instability due to the exponen-
tial divergence ofr ,u ~see Sec. III!. This might be the reason
for the failure of previous attempts to use the free-evolution
scheme. The grid refinement~in our case, the point-splitting
procedure! is a necessary ingredient in such a numerical
scheme.
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