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Direct {-function approach and renormalization of one-loop stress tensors in curved spacetimes
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A method which uses a generalized tensotidunction to compute the renormalized stress tensor of a
qguantum field propagating in(atatig curved background is presented. The method does not use point-splitting
procedures or off-diagondl functions but employs an analytic continuation of a generalizéahction. The
starting point of the method is the direct computation of the functional derivatives of the Euclidean one-loop
effective action with respect to the background metric. It is proven that the method, when available, gives rise
to a conserved stress tensor and, in the case of a massless conformally coupled field, produces the conformal
anomaly formula directly. Moreover, it is proven that the obtained stress tensor agrees with statistical mechan-
ics in the case of a finite-temperature theory. The renormalization procedure is controlled by the structure of
the poles of the stress-tenspifunction. The infinite renormalization is automatic due to a “magic” cancel-
lation of two poles. The remaining finite renormalization involves locally geometrical terms arising by a certain
residue. Such terms are also conserved and thus represent just a finite renormalization of the geometric part of
the Einstein equation&ustomary generalized through high-order curvature teriitee method is checked in
several particular cases finding a perfect agreement with other approaches. First the method is checked in the
case of a conformally coupled massless field in the static Einstein universe where all hypotheses initially
requested by the method hold true. Second, dropping the hypothesis of a closed manifold, the method is
checked in the open static Einstein universe. Finally, the method is checked for a massless scalar field in the
presence of a conical singularity in the Euclidean manifalel, Rindler spacetimes, large mass black hole
manifold, cosmic string manifo)d Concerning the last case in particular, the method is proven to give rise to
the stress tensor already got by the point-splitting approach for every coupling with the curvature regardless of
the presence of the singular curvature. Comments on the measure employed in the path integral, the use of the
optical manifold and the different approaches to renormalize the Hamiltonian are made.
[S0556-282(97)02724-0

PACS numbes): 04.62+v, 11.10.Gh

[. INTRODUCTION Euclidean effective action, when the Lorentzian manifold is
static (i.e., the time of the considered and analytically con-
As is well known, the stress tensor of a matter field in atinued coordinates defines a timelike Killing vector normal
curved spacetime is obtained by computing the functionalo the surfaces at constant timén this case, the vanishing
derivative of the matter field action with respect to the backiemperature limit should reproduce the nonthermal stress
ground metric. That is also the stress tensor which appears &nsor referred to the vacuum state related to the timelike
a gravitational source into Einstein’s equations. Trying toKilling vector.*
generalize the theory by including quantum aspects of the The computation of the one-loaggularizedand renor-
matter fields at least, one should consider the quantum avemalized quantum Euclidean effective action can be per-
aged values of the same stress ter{sonsidered as an op- formed employing the-function procedur¢4,3,5 that we
erato) as a gravitational sourdsee, for exampld1]). shall summarize in the following.
As first proposed by Schwing€2], dealing with quantum One starts with the identity which defines tfieuclidean
(quasifre¢ field theory in curved background, the quantum effective action
averaged stress tensor is computed by executing metric func-
tional derivatives of the one-loop effective action. Then, the 1
effective action takes account of the quantum state of the Seﬁ[¢,g]:=lnf Dpeddl=— EInde(A/,uz],
matter fieldq 3]. In fact, considering the averaged stress ten-
sor as gravitational source is the first step in order to perform
a semiclassical approach to the quantum graitg|. whereS is the Euclidean action of the matter fiegdwhich
One can get the averaged stress tensor also in thermale can suppose, for sake of simplicity, a real scalar fittld
guantum states dealing with an opportune Euclidean timeapproach also deals with much more complicated ¢a$es
periodic continuation of the theory and the corresponding

10bviously, one has to eventually continue the Euclidean stress
*Electronic address: moretti@science.unitn.it tensor into the real time in order to get the physical stress tensor.
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space-configuration measure which appears in the functionglerge whenever Re-2 defining analytic functions which

integral is that well-knowri4,6,7] can be extended into meromorphic functions defined on the
complexs plane except for two simple poles on the real axis,
D¢=H {g(x)1’4d¢(x)} (1) ats=1 ands=2. We refer to[5] and references therein for
X a complete report in the general case.

o ] The main reason to define the determinanfdds in Eq.
and the action is built up as (3) is that, in the finite-dimensional case, this coincide with
the usual definition. One can obtain this directly through Eq.
S ]=S\[d]:=— ;j d‘&@qﬁ(x)Ad)(x), ) (E_S) Whi(_:h reduces to_ an ordinary sum_mation in the finite-
M dimensional cas@ being an usual matrix.

The ¢ function approach provides us with a good theoret-
whereA is an elliptic differential second-order self-adjoint jcg| definition of the determinant of an operator. Moreover,
operator positive defined on the Euclidean manitdii Ina a5 far as the quantum field theory in a curved background is
thermal theory with a temperatuf® this manifold is peri-  concerned, the-function approach has been proven to pro-
odic in the Euclidean time being=1/T the period.u isa  duce the right interpretation of the functional integral and the
scale parameter necessary from dimensional considerationsne-loop renormalized effective action whatever someone
This parameter may remain in the final results and thus cafyas able to perform the previously cited analytical continu-
be reabsorbed into the renormalized gravitational constant agion [3,5]. Furthermore, on the theoretical ground, this ap-
well as other physically measurable parameters involved iproach led to very satisfactory results. In particular, the
(generalizegl Einstein’s equations. This is a part of the pro- renormalization procedur@ hidden in the £-regularization
gram of the semiclassical quantum gravity approgichl. procedure seems to be the correct one in the sense that it

We can suppose that the manifold above is closedigrees with all physical requirements and with different pro-
(namely, compact without boundarin order to have a dis- cedures (e.g., dimensional regularization, point-splitting
crete spectrum with proper eigenvectors Afand do not  method[3]). The important difference from the other renor-
consider boundary conditions. Anyhow, the method can bengjization techniques is that thefunction approach leads
generalized for the nonclosed cageg., an infinite volume  naturally to finite quantities without any “by hand” subtrac-
or presence of boundarjelsy considering continuous spectra tion of infinite quantities, also maintaining possible terms
and boundary conditior{$,5]. We can compute the previous arising from anyfinite renormalization. Finally, it is worth-
determinant in the framework of tHecal { function regu-  whijle stressing that-function approaches are currently em-
larization [4] by (the reason of that generalized definition ployed in dea”ng with black-hole entropy physicsy in par-
will be clear shortly: ticular to obtain quantum correction to the Beckenstein-

Hawking entropy(e.g., sed9-12).
In principle, the Euclideafquantum stress tensdrcan be
carried out from the one-loop effective action employing the

(s|A) o
o usual definitiof

) d
{(s|AI ):_d_s

d
Indef A/ u?]= ~Is

s=0 S
—2(0[A)In. 3
6S ,
The ¢ function can be obtained by integrating theeal ¢ (Tap(X))= —Zg(x)*m#. 7
function 09*°(x)
§(S|A)=J d*x\gZ(s.x|A), (4)  The Lorentzian stress tensor is then obtained by the Euclid-

ean one recontinuing analytically the latter into the Lorentz-
ian section of the manifold.

However, it is not so simple to perform the functional
derivative in the formula written above, employing the
{-function regularized effective action, because the lacal
function is not explicitly expressed in terms of the metric. In
g(s,x|A)=z Np Sn(X) b (X). (5) general, considering all known methods to regularize the

n stress tensor, barrin@very important theoretical consider-

where ¢,(X) is a normalized eigenvector & with eigen-
value\,:

The expression above is the so-called spectral representatiom——

of the local{ function. Equivalently, 2We remind the reader that the local averaged quantities as the
stress tensor or the effective Lagrangian are affected by divergences
also in quantum field theory in a curved background.

{(S|A)=E ATS 6) 3When it is not specified otherwise, it is understood that we are
. employing theEuclideanmetric, namely, the signature of the metric

tensorg,y, is (1,1,1,1) throughout this paper.

These identities have to be understood in the sense of the'This is the definition of theEuclideanstress tensor when the

analytic continuation of the right-hand sides to values by  classicalEuclideanaction isnegativedefinite[4]. We adopt such a

which the series do not converge. The series above coreonvention throughout this paper.
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ation[3], it is not so simple to use the formula above afall. proaches to renormalize the effective action. In particular,
Other, more indirect, procedures have been found in ordestress tensor components built up through the Idchinc-
compute the stress tensor, e.g., the so-called “pointtion of the effective action in the physical manifold have
splitting” approach[3] or mixed procedures which involves been obtained making direct use of mechanical-statistical
point-splitting-like methods and off-diagonal loc&lfunc-  1aws or supposing a particular form of the stress tersor
tions[13,14]. prior_i. These result.s disgg_ree, at low energies, with those
This paper is devoted to propose a generalization of th@btained by the point-splitting methadee Sec. Il 0f12],
local ¢-function approach in order to use E) directly.t and the final discussion c[_ﬂ2] for a discussion and refer-
We shall perform all proofs considering stationary Lorentz-€1C€S On these topicsn this paper we shall see that, con-
ian manifolds with closedi.e., compact without boundary ~C€"MiNg the stress tensor in the c.o.nlcal manifold, it is pos-
Euclidean sections. Anyhow, we shall see, in concrete exSible to get the same results arising also from the point-
amples, that the method works also dropping the requiremeriP!itting approach, for every value of the coupling parameter
of compactness. We shall presentZdunction direct ap- & Py means of our locaj-function approach. This result will
proach which, when available, produces a conserved strefe carried _out not depe.ndmg on th_e mechanical-statistical
tensor as well as the well-known and expected conformal@Vs and without supposing any particular form of the stress
anomaly in the case of a conformally coupled massless field€nsora priori. Concerning th|§ case in particular but also in
Furthermore, by our approach, one can prove thermodynamil€ general case, we shall point out also some remarks on the
cal identities usually supposed true without any generaProblem of the choice of the configuration-space measure in
proof in a curved spacetime. Obviously, the usual concretdhe path integral to qeflne the partition function of the flelc_is.
problem remains, one has to perform some analytic continu/Ve shall see that this problem is related to the renormaliza-
ation explicitly to get the final result and this is not possible,fion procedure involved in defining physical quantities, con-
in practice, for all physically interesting cases. At least, the®€"ning the Hamiltonian in particular.
formulas we will find define an alternative procedure among 1€ Paper is organized as follows. In Sec. I, we shall

those which already exist. Moreover, it seems that our forPuild up our general approach defining the background
mulation could be interesting on the theoretical ground inwhere it should work and we shall also stress some features

particular. Indeed, as we shall see in this work, one can onf the method as far as the involved finite renormalization is

tain the general results above-cited by employing a very littigoncerned. In Sec. lll, we shall analyze some general fea-
amount of calculations and a very clear procedure. tures of our theory by employing the heat kernel expansion.
Anyhow, within this paper, we shall consider also severaln Secs. IV and V, we shall prove that our approach, when
particular applications of the method. First, we shall considefvailable, produces a conserved stress tensor naturally and
the (therma) theory of a conformally coupled massless sca-91Ves rise to .the qonformal .anomal_y directly in the case of a
lar field within the closed Einstein universe. The Euclideanconformally invariant classical action. In Sec. VI, we shall
related manifold satisfies completely our initial hypothesed?rove that our approach agrees with the statistical mechanics
of a closed manifold. Secondly, we shall consider the sam#1térpretation of the time periodic Euclidean path integral.
field propagating in the open Einstein universe. The related NiS result implies some comments on the correct use of the
Euclidean manifold is not compact and this is a first non-2PParently “wrong” path-integral phase-space meastirat
trivial ground where check our approach assumed by definiiS @n old problem reproposed recently by several auhbrs
tion. The third case we shall consider is the Euclidean maniS€¢: V1l, we shall compute the geometrical tensor related to
fold related both to the cosmic string manifold and Rindlerthe finite-renormalization part of the stress tensor in the gen-
space(which can be considered also as the manifold contain€ral case of a conformally invariant scalar field in any static
ing a very large mass black hol@hat Euclidean manifold is curved spacetime. In Sec. VIl we shall consider the simplest
not ultrastatic differently from the two manifolds considered &Pplication of our method; namely, we shall compute the
above, moreover, it has a conical singularity which, for somdtherma) stress tensor of a massless boson field in a flat-
aspects, could be considered as a boundary. That singularifpace box. In Sec. IX, we shall consider ttieerma) stress

involves a lot of difficulties dealing with/-function ap- ten_sor_of a confor_mally Coupl_ed massless scalar field propa-
gating in closed Einstein’s universe. In Sec. X, we shall com-

pute the(therma) stress tensor of a conformally coupled
5Birrell and Davies, on page 190 of their fundamental bsk massles; scalar field propagating in open Einstein’s universe.
wrote (Birrell-Davies’ W o, is our S¢i) “[---] in a practical cal- Finally, in Sec. XI, we shall comp_ute _th(ehermg} Stress .
culation it is not possible to follow this route. This is because inf[ensor of a mas_sless f_|elq propagatlng In a man'fOId contain-
order to carry out the functional differentiation \f ., with respect Ing a.conlc.al smgul_arlty in the Euclidean section for every
t0.g,,[ -], it is generally necessary to know e, for all geom- coupling with the singular curvature. We shall report also
some comments on the thermodynamics and on the renor-

etriesg,,, . This is impossibly difficult.” lizati d Section XII tai fth
A similar attempt appeared ifd], but the way followed there malization procedure. Section contains a summary ot the

was quite different with respect to our approach because, there, tﬁ%plcs dealt Vf\”tlhfm th'f paper.IThe dﬁ[;pendrl]x C;)?rt]alns proofs
heat kernel representation of tgefunction rather than thé func- Oof Some usetul formulas empioye roughout the paper.

tion expressed in terms of eigenvalues was considered and no gen-

eral theory was presented. An important recent wafh uses the Il. THE £ FUNCTION OF THE STRESS TENSOR
heat-kernel representation and further nonlocal regularization pro-

cedures to compute the stress tensor fluctuations in curved space- Let us consider the functional definition of the stress ten-
times. sor appearing in Eq(7). In that formula, employing a
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Z-function approach, the effective action is defined as 1d )
<Tab(x)>::§d_s Zab(57X|A//~L )

s=0
Seil #,9] Ld & IA)+1§(OIA)| (wd, (8 1d 1

1 =54« S Y n ’
e #3917 2ds|__ 2 # =590 Zao(SX|A)+5Za(OX|A)In(p?).
s=0

11
where (D

Now, our aim to get a useful expression for the function
Z.u(s,X|A). In the Appendix we shall prove the formula

5Sal $77 b0l

8g7°(x)
(12

z<s|A>=§’ A S (9)

O\n
892°(x)
The prime means that the summation written above does not
include any possible null eigenvalugg. _ where, through obvious notations, we defined

As we said in Introduction, the identit§g) holds in the
sense of the analytic continuation whensReM , whereM is
a number obtained by the heat kernel expansion depending
on the operatoA and the structure of the manifoldsually
M =2 dealing with Euclidean four-manifolgi§8,5]. We re-
stress that the spectrum of the operatowhich appears into
the Euclidean action is supposed to be purely discrete as it
happens for Hodge—de Rham Laplacian operators in closed
manifolds [16]. In other physically interesting cases, one
should deal with proper spectral measures, or consider th?

studied manifolds as opportune limits of closed manifOIdS’evaluated on theth mode. A few calculations employing
and possibly, one has to take care of possible boundary Co%’qs. (9) and (5) lead us to’ for the values of where the

ditions in defining the self-adjointness domain of the opera-__." ™ : :

tor A. Due to the purely heuristic form of this paper, we shallSerles In the right-hand side converge,

not consider all mathematical subtleties involved in the g(y)1/2 ,

-function approaclisee[16,5], and Refs. therejn - Tzab(s,x|A)= —s>," A, HUg(x)12
Our proposal is to perform the functional derivative with n

respect to the metric directly in the right-hand side of &x.

before we perform the analytic continuation. This should

produce another series and another analytic function. The

value ats=0 of the s derivative of this new{ function

should be considered as a possible regularization of the stress

tensor. For future reference, let us define, in the sense of the analytic
In practice, we define thé function of the stress tensas  continuation ins

A ——
? g(x)gab(x) d’n(x) d’: (X) -2

1
Sal#n  Pnli=— EfMd“ng(XWﬁ(X)A%(X)- (13
Let us further define

RN

892°(x) (14

Tanl ¢: v hnl(X):=— Zg(x)*ll

his is nothing but the classicegal scalar fieldstress-tensor

X Tab[ d’: v¢n](x)

S
—59" (0 ga(¥)L(sx[A). (15

SL(s|A) Lan(SXIA): =" Ny Tl 7 bl(¥).  (16)
Zan(SX|A) " =" =290 00 "

X

J It is finally useful to explicit the form of the function

Z.b(S,X|A) in terms of the function{,(s+1x|A) and

or, more correctlyZ,(s,x|A) is the analytic continuation in  Z(s,x|A). We have

the variables of the series

Zan(S,X|A) = —2g(x) 1] —sg(x) Y2 p(s+ 1 X|A)

O\, S
—2g00) 1Y —2— s
T 8000 — 2000 ) LS X(A)
:zsg(x)_j_/zEr 5)\n r:(s+1)’ (10) :ngab(S‘f‘1,X|A)+Sgab(X)§(S,X|A). (17)
T 8g*(x)

We stress that the functioriswhich appear in the formula
above are the analytic continuations of the corresponding

supposing that this series converges fosR&’ similarly

to the case of the simplé function. Then, following the
spirit of Egs.(7) and(8), our idea is, when possiblégfine
the renormalized stress tensor as

series.

An important technical comment is in order. We are con-
sidering theories in which thé-function approach is avail-
able in order to regularize the effective actidragrangiai.
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In such a situation the following two conditions have to hold Hilbert gravitational action opportunely generalized in order
true: Z(0x|A) and’(0x|A) (where the prime indicates the to contain also high order terms in the curvatur@s’
s derivative must befinite. By consequence, the limits of We have to expect that similar scale-dependent terms also
s¢'(s,x|A) ands{(s,x|A) ass—0 have to vanish. The final appears in the renormalized stress tensor. This is because
result which arises performing the derivative in E4l), they have to renormalize the same coupling constants which
taking account of the previous remark, reads also appear in the geometrical part @eneralizedl Ein-
stein’s equations of the gravity3]. In this sense, dealing
1 with the stress tensor renormalization, the arbitrary sgale
Lap(STL1X|A)+ 5 dap(X)4(S,X|A) in Eq. (18) should play the same job which it does as far as
the ¢ regularization of the effective action is concerned. It is
+[ Lap(S+1XA) +In(u?) worthwhile stressing that such a result is also allowed in
Wald’'s axiomatic approach to characterize physically pos-
X Lap(S+ 1,x|A)]] _ (18 sible renormalization procedures of the stress tensor in
s=0 curved spacetimgl]. Indeed, Wald’s theorem proves that a
geometric ambiguity remains also after one imposed strong
We shall define a “supef-regular theory” as a quantum requirements on the renormalization procedure. Such an am-
field theory(QFT) on a(Euclidean manifold which can be biguity can be considered as an ambiguity of the coupling
regularized by the local-function approach as far as the constants appearing in the geometric part(@éneralizeg
one-loop action and the stress tensor are concerned and, finstein’s equations.
particular, producing a-smooth functionZ,(s,x|A) which Following this insight we are led to assume that, more
can be analytically continued from values ®fwhere the generally than in the case of a sugeregular theory, when
corresponding series converges to a neighborhoos=af  our approach is available
including this point. Thus, in the case of a sugeregular
theory, Eq.(18) reads more simply limsZap(s+1x|A)=G4(x|A) (finite quantity. (20)

s—0

<Tab(x)> =

1
<Tab(X)>:§ab(1,X|A)+Egab(X)é(O,XIA)- (19
This is the only possibility in order to maintain the parameter
w1 into the final renormalized stress tensor in Efg). Our
assumption implies that the functiofy,(s+1x|A) has a
éimple pole as=0.

We shall define a ¢-regular theory” as a quantum field
theory on a curved spacetime which can be regularized
The second term in the right-hand side of the equatiorjfhr(.)UQh the local-function approach as far as the effective

above is quite surprising at first sight. This is because thgction s concerned_, and pro_ciuces<amooth Lan(S,X|A)
classical stress tensgevaluated on the modess related  Which can be analytically continued from valuessofvhere
only with the first term in the right-hand side. Anyhow, as the corresponding SEres converges to a neighborhood of
we shall see later, the unexpected terms in Et®.and(18) s=1, except for the poin=1 which is a simple pole_z._ _

are necessary in order to produce a conserved stress tensor” Priori, in the case of d-regular theory, the definition
and give raise to the conformal anomaly formula. In particu-11)—(18) of the renormalized stress tensor can be employed
lar, notice that the classical stress tensor evaluated on tH¥ovided the infinite terms arising from the poles in the first
modes cannot be conserved because the modes do not satigf third term in the right-hand side of E(L8) are dis-

the (Euclidean motion equationgbarring null modeks carded. Actually a magic fact happens, those two diver-
In general, dealing with physical theories in four- 98Nces cancel out each other and the funclgy(s,x|A)

dimensional manifolds, we expect that the function"®Sults to be analytic also at=0 wherel,p(s+1x|A) hasa
Can(s+1x|A) may take a singularity is=0 for two reasons pole. Indeed,_takmg into account_ t_hat the smgulanty in
at least. First of alk (s, x|A) is related toZ(s,x|A) which, Lap(S+1X|A) is a simple po_le, a tr_l\_/lal calculation proves
dealing with four dimensional manifolds, carries a possibleihat the structure of these singularitiessas 0 are, respec-
pole ass— 1 and we expect that derivatives do not change tVely:

this fact (this will be more clear employing the heat kernel

expansion as we shall see in the following more physical Gap(X|A)

reason is the following one. As is well known, the matter- Lan(S+1X|A)~ —s (21)
field action when renormalized through any procedure, also

different from the/-function approaclisee[3]), results to be

affected by an ambiguous part containing an arbitrary scalend

parameter. That role is played hy in the {-function ap-

proach. This is dinite relic of theinfinite subtraction proce-

dure. These relic terms depend on the geometry locally. For’Obviously, as for the flat-space renormalization procedures, all
this reason they can be also thought like parts of the gravimeasured physical quantitiés.g., dressed coupling constanise
tational action{3]. In fact, it has been proven that their only finally independent of the parameter See[3] for a whole discus-
role is to renormalize the coupling constants of the Einsteinsion.

Note that the stress tensor of a sugeregular theory is
independent of the scale. The price one has to pay in order
to preserve the. dependence is the presence of a divergenc
in the first term in the right-hand side of E({.8). We shall
come back to this point shortly.
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’ Gab(X|A) 1 c 2 42
SLap(ST1X[A)~— —s (22 Tap(X)=VadVpd— 59an(X)(VcpVid+m ¢
Substituting in Eq(18), we see that those divergences cancel n _ E ) 2, c12_ 2
out each other. We stress that the funci@g,(x|A) remains €| | Rab™ 59a0R | 67+ GapV eV "¢" = VaVo " .
into the finite renormalization term containing the scalé (26)

Eq. (18). The difference between supéregular theories
and -regular theories concerns the presence of the seale A fey calculations lead to the stress tensor evaluated on the
in the final stress tensor. As a further remark we stress thaf,;jes
the functionG,(x|A) which appears in Eq20) as well as
in Egs.(21) and (22) contains the whole information about 1
both the(scale dependent) finiendinfinite renormalization Tapl &F dnl(X) =§(Va¢: Vodnt+VodiVadn)
of the stress tensor.
In the next sections we shall prove the important identity
which holds in case of-regular theories: A AN

1
f_ Z) gabA|¢n|2

VaG,4,(X|A)=0. (23 1

+§Rab| ¢n|2_zgab)\n|¢n|2- (27)

We expect that the terr®,,(x|A) is built up through the

local geometry of the manifolds. This is a consequence of the . . .

fact that the functiorG,,(x|A) can be carried out employing We are able to write down the functidf(s,x) in the gen-

the heat kernel expansion coefficients as we shall see in tkfé'al case considered above. Employing the definitiéh we

next section. All that means that we can consi@gp(x|A) ind

as a correction to the geometrical term(generalizey Ein- 1

stein’s equations of the gravity. This is in perfect agreement — N\ -s * *

with walore theorent], o P 9 Lan(SX|A)= 52" Ny *(Vadhi Vot Voeby Vadhn)
We have dealt with a real scalar field in a closed manifold

only. Anyhow, reminding of the general success of the +

Z-function approach to regularize the effective action, we

expect that our method can be used to regularize the stress 1

tensor in more general S|tuat|o.ns,'3|mply passing, when nec- X (S,X|A) = = gapl(S— 1 X|A). (29)

essary, to consideicharged spinorial mode$and continu- 2

ous spectral measures in E46). Conversely, the presence

of boundaries could involve further problems. The exampleg-or future reference, it is convenient to define also

we shall consider in Secs. VIII, XI, and XII deal with some

possible generalizations.

1
=&V Vpt| - Z) JabA + gRab}

— I -
Lan(SXIA):= 52" Ny *(Vady Vot Voo Vashn),
Ill. HEAT-KERNEL EXPANSION ANALYSIS (29

In this section we shall consider, on a general ground, th
behavior of the functiorZ,,(s,x|A) near the poins=0 in
the case of a real scalar field whose action is

Where we suppose to continue the series above analytically
as far as possible in the complexplane.
We want to study the behavior of the function
1 Lap(s+1x|A) and henceZ,,(s,x|A) near the possible sin-
S=— _J d*\g(V,0V2ap+m2p2+ ERgp?).  (24)  Qularity ats=0 and, more generally, we want to study the
2 meromorphic structure of these functions. Let us consider the

off-diagonal heat-kernel asymptotic expansidr’] in four

By employing the heat-kernel expansion we shall see tha§imension, which holds asymptotically for>0 andx neary
such a theory define &regular theorypossibly also super- (in a convex normal neighborhopdn closed Euclidean
{-regulay. We shall be also able to relate the residuemanifolds

G.b(s.X|A) to the heat-kernel coefficients.
The operator which correspond to the action above is

+
H(t,X,y|A)~ (4mt) 2 o0/ (x,y|A). (30
A=—A+m?+¢R (25) (t.x,y|A)~(4mt)"“e ,Zo a;(x,y|A)t.. (30)

and the corresponding stress tensor reads o(x,y) is half the square of the geodesical distance from the
pointx to the pointy. The heat kerneH (t,x,y) decays very
speedly ag— +, the only singularities come out from its
8The case of noninteger spin could be more complicated. In thdehavior neat=0 whenx=y.
case of gauge fields, it is convenient to employ the Hodge-de Rham The relation between the heat-kernel expansion and the
formalism and one has to take the ghost contribution to the stresé-function theory([5]) is that the heat kerneH(t,x,y|A)
tensor into account. satisfies



56 DIRECT {-FUNCTION APPROACH AND ... 7803

1 [+= —
g(S,X,y|A)=mfo dtts_lH(t,X,yIA), (31) gab(5+1,X|A)

= g_ab(s"" 11X| A) analytict

where, for Re sufficiently large, (4m)°T'(s+1)
. agap(X|A)  ajap(x|A) 1
LS XYIA) = 207 Ny 61 (00 bi(Y)- (32 s—1 s  T2%X
. : . ao(X|A) ay(x|A) ax(x|A)
We can decompose the integration above into two parts as p— 1 + S , (35

1 (1 -
£(sxy|A)= fdtts‘lH(t,x,y|A) where we defined
I'(s)Jo 1
1 [+ aj(ab)(X|A)1=E[Véx)v(by)aj(X,yM)
+ﬁf dtts"H(t,x,y|A). (33
' VYV (YA L=y (36)

The true difference from the left-hand side and any expresNotice that in the pole expansion written above, an infinite
sion in the right-hand side of E¢30) truncated at the order number of apparent poles b?ve been canceled out by corre-
N>2 is a regular function as—0. Taking into account that sponding zeros dfl'(s+1)] .

fact, one can insert the expansion in Eg0) into the first The functionZ(x|A) has the well-known similar structure
integral in the right-hand side of E¢33), obtainin
g g B3 g (5 X|A) = £(5.XIA) anamich 1 [ag(x|A)
1 N 1 ) , ) analytic (47T)Zr(s)\ -
§(S,X,Y|A)= _E a](X,y|A)f dtts_3+Je_U(ny)/21
I'(s){=o 0 A
1
" @7
+h(N,s,x,y|A), (34 1

Employing the results written above to calculating the pole

where h(N,s,x_,y|A) is a unknown x,y-smooth ‘and g \cyre of the functiord,,(s+ 1,x|A) through Eq.(28), we
s-analytic function. This relation is the starting point of our ¢

considerations.
As general remarks we stress the following two facts.(4m)2¢,5(S+1x|A)

First, the coefficients;(x,y|A) expressed ilRiemannian co-

ordinatescentered inx [3] are polynomials inx-y whose = (4m)2L (st 1X|A) 4
coefficients are algebraic combinations of curvature tensors ab w7 analytic
evaluated at the point. Thus the limit axx—Yy of quantities

as aj(x,y|A), V¥a;(x,y|A), VYIVYPa;(x,y|A) and so on

we shall consider shortly, produces algebraic combinations

1
I(s+1)

agap(X|A)  ajap(X|A) gab(x)/ ag(x|A)
+ +
s—1 s 2 | s-2

of (covariant derivatives 9¢fcurvature tensors evaluated at a;(x|A)  ay(x|A) {

the same poink. Second, there exists a recursive procedure ) —&V.V,

which permits one to get the coefficiertgx,y|A) and their s-1 S [(s+1)]

covariant derivatives evaluated in the limit of coincidence of 1 ao(x|A)  ai(x|A)
arguments, when one knows the coefficiem(x,y|A), their + ( &— Z) OapA+ éRyp ) + s

derivative for O<i<j and the covariant derivatives of the

functiona(x,y|A), everything evaluated in the argument co- gab(X)( ay(X|A) a(x|A)

incidence limit. Such a procedure can be obtained by a T 25| 52 1 ) (39
simple generalization of a similar procedyrehich does not

consider covariant derivativepresented if17]. We stress the presence of a simple poleder0. The pole

_ Let us evaluate the pole structure of the functionexpansion above written proves that the considered theory is
£ a0(s,x|A) employing Eq.(34) and the following known @ {-regular theory. The theory is also super{-regular

identities[3,17]: theory when the residue at=0 vanishes.
This residue is just the functioB,,(x|A) which reads in
Vgx)ng)o(x,y)lxzf — Gab() » terms of heat-kernel coefficients
) _ 1 Gan(X)
Vala(x,y)|x=y=0, Gan(X|A) =———1 ayap)(X|A) + =5—ay(x|A)
(4m) 2

VY a(x,y)lx-y=0.
+

1
- Evavb+ ( f_ Z) gabA + ERab al(X|A)] .
By taking the opportune derivatives in E@4) and posing
y=x finally, we find (39
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Now, it is obvious thatG,,(x|A) depends on the geometry

locally. In particular it is built up by algebraic combination va
of curvature tensors and their covariant derivatives. A closer

scrutiny, employing the recursive procedure to compute th
heat-kernel coefficients cited above, proves t@at(x|A)
contains combinations of products of two curvature tensor
at most® Considering thaG,,(x|A) is also conserved, this
means that it is obtained from an Einstein-Hilbert action im-
proved by including quadratic terms in the curvature tensors. * g7 *

As we said,G,,(x|A) is the part of the renormalized stress Anl0.¢7.41:=259.4%,¢]

tensor which can be changed by finite renormalization. This

agrees with all known different stress-tensor renormalization - )‘NJM&X VI(X) 6™ (X) 4(X).
procedures where one finds that, in the case of a scalar field

studied here, the finite renormalization of the stress tensorhis is a diffeomorphism invariant action producing the field
involves only curvature quadratic terrf8. This agrees with  equations

Wald's theorem and the related comments reportefilin

too. We shall return to these facts later. Ad(X) =Ny (X)

—2g(x) "2 =0. (43

5gab(X)1

%ue to Egs.(41) and (40), this proves conservation of the
gtress tensor by taking the limit a&=0.

A nice proof of Eq.(43) is dealt with as follows. Let us
consider the new “action”

and
IV. CONSERVATION OF THE STRESS TENSOR

AND G,p(X|A) Ad* (X)=Nnd* (X).

Let us prove that, in the case of a sugeregular theory In particular, these equations are fulfilled by the eigenfunc-
or ag-regular theory, the stress tensor obtained from(E§).  tions ¢,(x) and #¥(x). As is well known, due to diffeomor-
is conserved. By the same proof, we shall get conservation ghism invariance of the action, one gets conservation of a
Gan(X|A) too. stress tensofl,,,(X) evaluated on the motion solutions,
Our strategy will be the following one. We shall consider namely,on the modesp,(x) and ¢% (x). Again, this stress
the function whose the value at=0 is the renormalized tensor is obtained as the functional derivative of the action
stress tensor A, with respect to the metridwith the overall factor
—2g(x)~*2]. A little computation and Eq(12) get just

d 1
(Tan(8:0):= 5 G<Za(SX|A)+ 5 Zap(S.XA)IN(1?)

SgA
e ~12_%%n _ Y
(40) Than(X):=—29(x) 125gab(x)_zg(x) lzégab(x)-
(49)

N[ =

An

and we shall evaluate the covariant divergence for the values

of s in which the involved? function can be expanded as a Conservation of the left-hand side implies E43) trivially.
series. We shall find that this covariant divergence vanishes. An important remark, in the case ofiaregular theory, is
Due to the analyticity of the considered functions, this resulffinally necessary. Conservation of the tenZgg(s,x) reads,

can be continued as far as the physical vaed. employing Eq.(17),
Let us consider th¢ function Z,,,(s,x) expressed as the a
series in Eq(10): SV Lap(s+1X|A) +dan(X) £(S,X|A)} =0.
We get, recalling Eq(21) and performing the limit as—0
Zap(S,X)=2sg(x) V2>’ )\’(S“)—&n a
ab\ =, = n 5gab(x)' \Y Gab(X|A):0
This is nothing but Eq(23).
We have g 423
V. THE CONFORMAL ANOMALY
a I\ —(s+tl)ya -1/2 SN
VaZ,(S,X) = — S, A, VA =29(X) " |- Let us prove of the conformal anomaly formdla] by
" 6g7°(x) employing a way similar to that in the previous section, in
4D the case of a super-regular theory or d-regular theory. As
usual, we have to suppose that the classical acab] is
Let us prove that conformally invariant. As is well known, by performing an
a infinitesimal local conformal transformation on both the met-
V¥Zap(8,X)=0 (42 ric and the field, the following equations arise:
because éS

90 Tap[ 100~ (0 " (x) 5575 =0.

°In particular, in a flat space and fan=0 the residue above This implies that classicallyyorking on solutions of the mo-
vanishes. tion equation the trace of the stress tensor vanishes. Simi-
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larly, dealing with the action evaluated on the modg$x), dinates which belong to the spatial sectbrandg, = —g is

conformal invariance of the action lead us%o the determinant of the Lorentzian metric.
As it is clear from the notations, we are trying to interpret
ab N 1 8S Z; as apartition function'? Notice that all quantities which

9%°(X) Tapl b5 Dnl(X) —9(x) ¢n(X)5¢ 0 appear in the formula above do not depend on the Euclidean

" or Lorentzian time because the manifold is stationary and
5S thus no time dependence arises from the metric. By the same
—g(x) Y2 (x) = reason, the time dependence in the eigenvectors of the mo-

Sy (X) tion operator is exponential and thus it cancels out in all

involved local{ functions. Finally,(T(x))=(T(x)) by a
trivial analytic continuation. 0
ab * — * Actually, it is not necessary to interpret as a time co-
9700 Tapl ¢ én](X) Andn (X) $n(X). ordinate, the same result in E¢8) arises also when the
Killing vector is associated to the “spatial” coordinase,
provided8 were changed td;, the “spatial” period of the
92(X) Lan(S+ LX|A) = — £(s,X|A), (45  manifold anngOtheith direction. Assuming both the homo-
geneity alongx” and x' we get another expected formula
where the involved functions can be defined as a series. trivially:
Holding our hypothesis of @-regular theory, this result 9inz B R o
can be analytically continued arbitrarily_close to the physical - aL-ﬁ =— fj dxy =g (TLi(X))s. (49
values=0. In particular, the left-hand side of E@5) must ' i/
beflnlte ats'='0 because so is the right-hand side. This seems peafore we start with the proof of E¢48), some important
quite surprising becausé,,(s+1x|A) may take a pole at yemarks are in order. In particular, let us consider a scalar

s=0. We conclude that the pole has to disappear due to traggs|d with an Euclidean action coupled with the scalar curva-
procedure in case of a conformally invariant action, namelyture, given by

or, equivalently,

From this equation, employing Eg&b) and(16) we get

(%) G, p(X|A) =0. 46 1
90 CarlxIA Y sg1=- 5 [ axBI00AG
We shall check this fact directly later.

It is worthwhile noticing that the trace procedure, cancel- 10, a2

ing out the pole irg?®(x) Z,p(1X|A), gives rise to vanishing = EJ d™xVg(x) p(X)[ = VaVi+m + ER(X) ] ()
terms s@P®(X)Zap(s+1X|/A) and sg*P(x)ap(s+1x|A)
whens—0. Finally, Eq.(18) through Eq.(45) produces the (50
well-known conformal anomaly formulgd,3] and let us assume explicitly that tfboth Lorentzian and
Euclidean metric is static namely, g =0 besides

ab _ _ax(x|A) 3o9(Lyap(X) =0 (but not necessarilyltrastatic). In that case,
9700 (Tap(X)) = (0X|A) = 1672 “7) in0 Sri)r?giple [4], there is no problem in implementing the
canonical-ensemble approach to the thermodynamic and try-
VI. THERMODYNAMICS AND COMMENTS ing the interpretation of the Euclidean time-periodic path in-
ON THE PHASE-SPACE MEASURE tegral as a partition functiodz, and thus, in principle,
OF THE PATH INTEGRAL — B 1S =B UnZ,,

In this sectioh® we prove that for{-regular theories or

- could be interpreted as the free energy of the field in the
superé-regular theories

considered quantum thermal state. The case of a stationary
manifold (g_0i#0) involves more subtleties also consider-
_ w— 0 (g ing the analytic continuation into an Euclidean manifolds
de 9u(TLo(X) . “9 which we shall not consider hefd]. Anyhow, it is worth-
while stressing that48), written in terms of(T9) and g,
where we have definedZi: =S, provided the(Euclidean  holds true in the general case of a stationary Euclidean met-
and Lorentziap manifold admits a globalLorentzian time- ric Inz, beingS o without assuming that this define any free
like) Killing vector arising from the Euclidean temporal co- energy.
ordinate with a periog=1/T. X represents the spatial coor-  Identities such as Eq$48) or (49) represent a direct evi-
dence that the definition of the partition function as a path
integral on the continued Euclidean manifold, also in the
ONotice that we transform the modes employing the same transsase of acurvedspacetime, does not lead to thermodynami-
formation of the fieldg(x). This transformation does not preserve cal inconsistencies in the case of a closed spatial section of
the normalization of the modes but preserves the value of the adche manifold at least. We stress thafl does not coincide
tion.
UFrom now on, we employ the signature-4,1,1,1) for the
Lorentzian metric and Lorentzian quantities shall be labeled by an T is the “statistical” temperature, the “local thermodynamical”
indexL. one being given by Tolman’s relatioTV\/g_m (=T/NV=09L00)-

dlnZ g 3
B
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with the Hamiltonian density{ which one could expect in I\, - = —or & -

the right-hand side of Eq48). Anyhow, the difference of ﬁ:_zkdx g(x){ Tol én nl(X)

these quantities is a spatial divergence which does not pro-

duce contributions to the spatial integral, holding our hypoth- 1, .- -

esis of a closed spatial section. Indeed, the case sitic + 5908 ndn (X) dn(X) - (52
metric we have

B . From the expression above and employing definitions in Sec.
H=—To+&(—a0) Y2 [(—g0) VA" 9;¢%— p?wH], I, we get that, for the values o where the involved/
(52 functions can be expanded as series

where w?=1/2V2n|g ool . Interpreting(¢2(x)) as the limit  J5(s|A)
of {(s,x|A) ass—1, the previous equation leads to a natural 98
regularization of [ dx\/g(x) H(x)) which coincides with the
corresponding integral G(ffS()Z» which appears in the right- = J dx g(i)zg(s,x|A),
hand side of Eq(48).® z

The validity of Eqs.(48) and(49) is an indirect proof that
the canonical measure suggested by Tmsn defining the  and thus we find

path integral in the phase space
alnZ aS 1d
. B _ _ eff
B B 2ds|S oJ’dX\/ X)Z5(s,x)

de (X)ZS[ 23(s+1x|A)+ 2gog(s x|A)]

1T {[g*01" YA g () dl 0}
1 > o\ —~0
+§In(,u2)de g(x)Zp(0x)
instead of the apparently more “natural’18,19
o KA

I1 {de0odii}
g that is, Eq.(48). Notice that bothZ andT$ may be affected
by arbitraryu-dependent terms. A comparison between both
can be correctly used in defining the partition function insjdes of Eq.(48) to make it explicit in terms of functions

terms of an Euclidean Hamiltonian path integral. Indeed it iSeads us to the identity for the factors of ifj
Toms’ measure in the phase space which produces, by the

usual momentum integration, the configuration space mea- ag(O|A)
sure (1) which is used as a starting point to tefunction
interpretation of the configuration space path inteptat,6].

As a final comment, it is worthwhile stressing that, al-
ready on a classical ground, dropping the requirement of ahere G,,(x|A) is the previously introduced residue of
closed spatial section, the Hamiltonian could not coincide/,,(s+ 1x|A) ats=0 (21).
with the integral ofT8 and the theory would be more prob-

lematic. This could be very important in studying the quan- VII. EXPLICIT COMPUTATION OF  G,y(X|A) IN A

tum correction of the_ black-hole entropy, where the spgnal {-REGULAR THEORY: THE CONFORMALLY
section of the spacetime has a boundary represented, in the COUPLED CASE

Lorentzian picture, by the event horiz20].

To conclude, let us prove the identi@8). We just sketch Let us consider the case of a massless scalar field confor-
the way because that is very similar to the proofs in themally coupled in a generiéclosed Euclideanfour dimen-
previous sections. In Appendix we shall prove the identitysional spacetime. Because a particular discussion on the form
(wheregg=1) of (T,p) depends on the particular manifold we are dealing

with, we shall consider, in the general case of a massless

conformally coupled field, only the general form of the pole

30ne has to be very careful in dealing with the limitss1 (I Gau(S,X|A) employing the equations founds in Sec. Ill. We

am grateful to lellici who has focused my attention on this generaishall find thatG ,,(s,x|A) has a vanishing trag@nd thus the
problem) because as previously discussed, in four dimensionsgonformal anomaly formula follows as we saw previolisly
£(1x|A) usually diverges as it follows from heat kernel thefy; it is conserved and depends locally on the geometry. In par-
except for the case of a massless field conformally coupl&®ido  ticular it is quadratic in the curvatures and can be thought of
a massive field with an opportune coupling wihin a curvature-  as a generalization of the geometrical term in Eintein’s equa-
constant manifold. Actually, one has to calculditst the spatial  tions. Moreover, we shall find that the explicit form of
integral fors#1 and thus all terms containing the integral of the G,p(X|A) is just that required by other renormalization pro-
derivative ofZ(s,x|A) on 43 vanish,thenone can perform the limit  cedures.
ass—1 which is trivial. We remind the reader the first and the second heat kernel

~2 [ digeyiiA, (53
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off-diagonal coefficient in the case of a massless field. These Let us make the form of,,(x|A) explicit. A few trivial

coefficients appear if8]** calculations$® produce the result
a(y) May(x.y|A) = 1—5 R(X)—l E—f R.a(x)z? 1 1
v 6 2\6 @ Gan(X[A)= ———— PHap(x) = ZPHap() . (62)
60(4) 3
1
- a-b
3Aan(X) 272", Y the tensors™™H,(x) and (PH,(x) are well-known con-

served tensors obtained by varying geometrical actions built
1/1 2 1 up by quadratic curvature tensor terms. The right-hand side
a(y) Ma(x.y|A) = E(g—f) R*(x)— §A§(X), (55 of Eq. (61) is, up to constant overall factors, the only linear
combination of those tensor which is traceless. Explicitly

wherez=y—x are Riemannian coordinates with the origin

on the pointx, the semicolon indicates the covariant deriva- D 1 6 4 )
tive and Hap(X)=~—5 abf d*x\gR3(x)
9~“ 9
1/1 1 1 = 2R 15(X) — 2gap(X) AR(X
Aur():=5 g—f)R;ab(xH@R;ab<x)—4—oR§b;c<x> 6~ 20500 ARG)

1
1 1 + 5 9ab(X)R%(X) = 2R(X)Rap(X)
+ 35Ra(¥IRep(X) ~ 55 Rab(X)Rea(X)

1 and
~ goRa (X Reger(X)- (56)
1 5
, . PHap(X)=——5 f d*x\gRE(X) Re(X)
Let us consider the conformally coupled case, £e=1/6. g2 6g2°
Then 1
al(x|A)=0, (57) =R ap(X) = Egab(X)AR(X)_ARab(X)
1
1 d d
ay(x|A)=— §AE(X), (58) + Egab(X)Rc (X)Reg(X) = 2R°Y(X)Regan(X)-

2 We remind the reader that the term diJG,,(x|A) repre-
al(a,b)(x|A) = §Aab(x). (59 sents the finite renormalization part of ofsfunction renor-
malization procedure. The expression of the finite renormal-
ization part we have found in E¢61) is exactly the same
which appears in other regularization and renormalization
procedurege.g., dimensional regularizatipf3].

Employing Eq.(39) as well as the coefficients above, we find

gab(x)
2

3(47)*Gap(X|A) = 2Aap(X) — A(x). (60)

VIIl. THE SIMPLEST CASE: A BOX IN THE FLAT SPACE

It is obvious that, just as we expected, Let us consider the simplest example of a supeegular

theory. That is a massless boson gas at the inverse tempera-
ture B8 in a flat box with a very large spatial volumé This
is the same example considered by Hawkind4has far as
the {-function regularization of the effective action was con-
cerned; rather, we will deal with the stress tensor. For the
sake of simplicity, we shall deal with the compondn, of
the stress tensor only.

The Euclidean action of the field is simply

9%°(X) Gap(X|A)=0.

As we said previously, this is related to the conformal
anomaly.

1t is very important to note that the coefficients reported3h
are referred to the Lorentzian metric. The choice of the signature
employed in[3] is (1,-1,—1,—1) and the definition of the Rie-
mann tensoR} 4 takes the opposite sign with respect to the more S=— EJ d4x 5209 by

. . . a b %

usual choice[17] which we are employing. To pass from the 2
Lorentzian convention if3] to our Euclidean convention is suffi-
cient to use the two formal transformation®,2,——R{.q,
Jap— —UYap, Where the primed quantities are those Lorentzians BTaking also account of the “topological” identityf3,17]
which appear ifi3] and the others are our Euclidean quantities. Thel/2g,p(X) Rege { X) RE(X) — 2Racad X)REUE(X) — 4AR,,(X) + 2
definitions of Ry, and R do not change; we havBap:=RS.q,  Roap(X) + 4Ra(X)RE(X) — 4R°YX)Reagr(X) = — PHp(x) + 43
R:=R¢ in both formalisms. Hp(X).
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where52® is the usually flat Euclidean metric. Notice that all
coordinates define Killing vectors. The stress tensor reads

simply

1
Tan(X)=dad(X) dpB(X) — 5 Sapd°B(X) dc(X).

We shall consider the box as a torus in order to use our
method. The motion operator is the trivial Laplacian with the
sigh changedA=—A, and we have the set of normalized

eigenvectors

ix-k—ikyxO

v

wherex=(x!,x2,x3) andk= (k! k2 k%), eachk' being quan-
tized by the usual torus quantization. Algg is quantized
trivially by k,=2wn/B, where n=0,+1,£2,.... Obvi-

ously, we have also

Pin(X):= (62

A¢§,n=>\n,|2¢12,n(x), (63
where
Mni:=k2+K2. (64)
The local zeta function reads
{sX|A)=(BV) T2 N, } (65)
n,k

and finally, the £o¢(s,X|A) function [see Eq.(29)] reads
similarly

Zoos.XIA)=(BY) 1D, 4m?B 20\ 2. (66)
n,k

Proceeding as discussed[#], we can rewrite the formulas
above, in the limit of a very larg¥,

4w +oo
dkk? 2
2w)3ﬂ[ f

+o0 o
+2> f dkk2(4m2B 22+ kz)‘s}
n=1Je

§(s,><|A)=(

and

Zoo(S,X|A)= dekkHS

4
(277)333[ €
+ 221 n2f+xdkk2(4w2ﬁ*2n2+ kz)S] .

The final results ar¢see[4])

VALTER MORETTI

Z(S,XlA)I—( ° (2mB~1)% *°(g(25—3)

><(2—2$)’1£ T(1/2)T(s—3/2)

2 I'(s—1) 67

and[through Eq.(28)]
— 1
Lo S+ 1X|A)=Loo(s+1x|A) ~ 5 {(S,XA)

32m’ ~1y1-2s
=m(277l3 )T LR(25—3)
_13 I'(a/2)I'(s—1/2

X(—2s > T'(s)

m -1,3-2s
* oy 2TE DY R R(253)
x(z—zs)*ll T'(1/2)T(s—3/2)

2 T(s—1) (68)

We have dropped parts dependent on the infrared catbjf
putting e— 0" after one has fixed Rdarge finite, executed
the integration and performed the analytic continuation of
this result tos=0 (see[4]). {r(S) is the usual Riemann zeta
function which can be analytically continued in the whole
complex plane except for the only singular pointsatl.

We can analytically continue the functions above in the
s-complex plane. In particular, notice that both functions can
be analytically continued in a neighborhoodssf 0 includ-
ing this point. The apparent pole ¢f(s+ 1x|A) ats=0 is
canceled out by the pole df(s) in the denominator; this
means thatyo(s+ 1,x|A) takes no poles is=0 and defines
a super-regular theory. Conversely, thefunction in Eq.

(67) vanishes as=0.

As a final comment, we notice that the parametewill
disappear from the final renormalized effective action and
the final renormalized 00 component of the stress tensor. The
00 component of the renormalized stress tensor can be now
computed by Eq(19), taking the value as=0 of the func-
tion in Eq. (68). We have

—(Too(X)) = —(T(X))=—(TLo(X)) = = Loo( 1X|A)

772

3082

(69

This is the well-known energy density of massless scalar
bosons in a large box.
The well-known partition function can be computed by
the usual method througf(s,x|A) and read$4]
Zy=ef VI (70
It is very simple to verify Eq(48) by using Egqs(69) and
(70).

IX. EINSTEIN'S CLOSED STATIC UNIVERSE

The ultrastatic metric of th€Euclidean Einstein closed
static universe i$3]
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dsécszdghr gijdxidxj=d02+ a(dXx2+ sinZXdﬂg). The following relations, which hold true for normalized
eigenvectors, are also useful. We leave the proofs of these to
X ranges from O tar andd()3 is the usual metric 08,. The  the reader:
time coordinated ranges from 0 tg3<+x. B is the inverse
temperature of the considered thermal state referred to the 2 B2 (X) di(X) =
Killing vector generated by the Lorentzian timé. The re- K k
lated vacuum state corresponds to the chgee+o. The
curvature of the space R=6/a? and the Ricci tensor reads notice that the right-hand side of the equation above is noth-
Rij = 29; /a2, the remaining components vanish. ing but the degeneracy of each eigenspace timeg\1/@r
This manifold is closed, namely, compact without bound-1/8V whenn=0);
ary. Also the spatial section #= constant are closed and
their volume isV=2x2a3. q (q 1)
Let us consider a conformally coupled massless scalar E i i (X) 9 b(X) =i (X)————— (76)
field propagating within this manifold. We want to compute 3vpa’
its stress tensor referred to the thermal states pointed o h d 60 =
above, in particular we want to get the vacuum stress tenso

2

V 5’ (75

which is known in the literatur¢3]. Notice that all the re- (2 nq)2

quired hypotheses to implement the stress-tegsfmnction 2 P (X)dgpy(X) = ———— (77)
approach are fulfilled: the Euclidean manifold is static and B

closed.

Let us build up the functior,,(s,X|A) necessary to get We have also, because of the homogeneity of the space,
(Tan(x)) g through Eq.(18) or Eq.(19). The general expres-

sion of £,p(S,X|A) is given in EqQ.(28). We can rewrite it A) = {(s|A) (79)
down as Vg '’
gab(s,xlA)zg_ab(s,xlA)—gVang(s,x|A)+(g— z where{(s|A) is the global{ function obtained by summing
over\, * as usual:
X Qan(X)AL(S,X|A) + ERqp(X) £(5,X|A)
1 — "'\ s
~ S a0 (s 1x|A), (71 slAr=2" N (79
where, in the sense of the analytic continuation of both side# is possible to relate the functioti;(s,x|A) to the func-
in the wholes complex plane: tion (s,x|A). Indeed, we notice that
— - 2m\2 g AT
s,x|A)= A SV 08 (X) Vi di(X). 72 =s - k
La 5= NVl OToh0. (72 xk(ﬂ> ey e

We are interested in the cage= {.:=1/6 (conformal cou- The identity above inserted into the definitiaii2) for
pling in four dimensions The local{ function is similarly  a=p=0, taking Eq.(77) into account, yields
given by

by Lools+1x|A)= é(SIA) (80)
LS XIA)= 2" NG (X) $u(X). (73 ° 2Vsdp
. . . or, equivalently,
The functions¢,(x) define a normalized complete set of
eigenvectors of the Euclidean motion operator .
At Lo S+ LXIA)= Lo st 1XIA)= = 5020 2Ll
where, in our case + £(slA) (81

Vg '

which follows from the identity above taking account of
The explicit form of the considered eigenvalues and Kronek-

A=—d5—a *Ag +&R.

er's 5-normalized eigenvectors is well knoWa]. In particu- _ i i

lar we have k=(n,q,I,m) where n=0,£1,+2,+3, ..., ng(slA)_'Balg §(5|A)+aaa§(s|A). (82)
g=123..., 1=0,1,2...g9g-1, m=0,x1,x2,...,*I,

and The last identity is a simple consequence of the expression of

the eigenvalue$74).
Concerning the componenig (the remaining compo-
nents vanishwe can take advantage from the identity

2

q

. (74

\ (27Tn)2+
=l
B
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3a® an Y
—SN2_
M=o a (83

Inserting this into Eq(72) for a=i,b=j, taking Eq.(76)
into account, we obtain

— gij(x)

£, (s+1x/A) il
. S ,X — R
N 3V3a?

[—§<s+1|A>+ 52 22 {(8IA)

(84)

Notice that, due to the negative exponential behavior of
MacDonalds function& ,(x) at large arguments, the last se-
ries defines a function which is analytic on the whsleom-
plex plane. The structure of the poles of the Epstein function
is due to thd” and(Riemann’s { functions in the first line of
the formula above. In particular there are only two simple
poles ats=1/2 ands=1.

Taking account of the expression above and [Bd), we
find

Jm T(s—3/2)

To get the renormalized stress tensor, we have to compute {(SX[A)= mw(%—@azs_l%(%—?’)

L(s|A) or equivalently{(s,x|A) only. The expansion of the

latter over the eigenvalues reads

4o H4o

2 2mn\? [q\?]"s
A)=—— i — + | —
£(s.x1A) V,3q§=:l n§=:1q ( B a
1 +o q 21—s
+— 2| =
V,qul Tlla
2 3 < 2mn\? [q\?] s
- < o (27N (4
VB, nZlq[ g "\a
2s
{r(25—2). (89

B

The last{ function is Riemann’s one.

Let us introduce the Epstein functipf] obtained by con-
tinuing (into a meromorphic functionthe series in the vari-
ables:

+ oo
E(s,x,y):= 2, (X2n2+y2m?)~s, (86)
nm=1
We obtain trivially
§ m2(X2n2+y2m2)*S: _ 1 _ iE(S_ 1 X y)
nm=1 2y(s—1) gy U

a
~ VI(s)

B

2m

2s—2
) E(s,Bla), (89

where the functiorE (s, 8/a) given by

d +oe 2772m s—3/2
E(s,z)=2wd—2m%l Zn) Ks—32(nm2, (90

is analytic throughout the s complex plane and, due to the
large argument behavior of the MacDonald functions, van-
ishes asB— + as (8/a)%? Sexp—pBla when Re=0. Re-
minding the reader of the relation

d
24 Ka(W) =Ka_1(u) +Kaa(u), 9D

the function=(s,z) and itsz derivative (see below can be
evaluated numerically at the physical valies0 ands=1
(see below.

The expression89) is very useful as far as the low-
temperature thermodynamics in our manifold is concerned.
Notice that, changing the role of andy in the expression
(90), one may get an expression fofs,x|A) useful at large
temperatures.

Some remarks on Eq89) are in order. First notice that,
due to they functions in the denominatorg(s,x|A)—0 as
s whens— 0, and thus no trace anomaly appears and neither
renormalization scal@. remains in the renormalized effec-

Employing such an identity, we can rewrite the expressiortive action. The found function is analytic throughout the

(85) of ¢(s,x|A) as

_a® 39 27 1
g(S,XlA)—Wé’R(ZS—Z)'Fm%E S—l,F,a .
(87

complex plane except for the poist 2 where a simple pole
appears. Employing Eqs(80) and (84) we find that
Lan(S,X|A) is analytic ats=1 and thus the theory issuper
{-regular theory.

Employing the definition(19), Eq. (71), and the obtained
expression fo ,p(s,x|A), a few calculations lead us to

No expression of the Epstein function in terms of elementary

functions exists in literature. There exists a well-known ex-

pansion in terms of MacDonald functiofs]

Val'(s—=12) |

1
E(s,x,y)=—§y_25§R(25)Jr 2xT(s) 7 R

2\/;)(—25 +o xm) s—1/2
X (25—1)+ O mg_l( yn)
27ynm
XKs—1ip| —— - (88)

b b _ 111
<TLa(X)>B:<Ta(X)>B:T(ﬁ) _1!§1§1§ ’ (92)
where

1 &{(S|A) 1
T = ———-—e—— T e
(B="%v B s |, 480a*nm?

1d E(0,2)

;d_z — (93

z=pla
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Notice that the last derivative term vanishes very fast at lowferred to the Killing vector generated by the Lorentzian time
temperatures. i 6 and the related vacuum state corresponds to the choice
Now, one can prove very simply that the obtained stresg3=+o. The curvature of the space R=—6/a and the
tensor is conserved, has a vanishing trace and reduces to tRécci tensor read®;;= —2g;, /a?, the remaining compo-
well-known vacuum stress tensor in the closed Einstein uninents vanish. This manifold is not closed and the spatial
verse[3] as B— + sections do not have a finite volume.
Let us consider a conformally coupled massless scalar

b B 111 field propagating within this manifold. As in the previously
(Ta(X)) vacuun™= 4800472 _1'§’§’§ ' 4 considered case, we want to compute its stress tensor re-
ferred to the thermal states, in particular we want to get the
Taking account of (0|A)=0, we can rewrite Eq(93) as vacuum stress tensor. Notice that not all the required hypoth-

eses to implement the stress-tengefunction approach are
fulfilled. The manifold has no boundary but it is not com-
pact. We expect to find a continuous spectrum as far as the
Euclidean motion operator is concerned.
where the prime means tleederivative. Hence, the relation However, we shall find that our method does work also in
(48) holds true trivially. The general relation between thethis case. Notice that, now, we have to assume (E8§). or
Hamiltonian density and the stress-tensor energy density ikg. (19) by definition and check on the obtained results fi-
case of static coordinates re&is nally.

0 2 U2 il 12 A2 The form of the eigenvaluea, of the conformally

H=—Tot£9""“0[g74g"0j¢"—d"W)], (95  coupled massless Euclidean motion operator

1 9 1
T(B)= =5y 55 (01 == GInZs,

wherew?=1/2V2ng,,. w? vanishes in the present case. Let A=—2—a 2A, + &R
us employ such a relationship to evaluate the averaged value o 8
of the quantum Hamiltonian. We have to interpret E2f)

a5 is well known[23,3]. We have, exactly as in the previous

case,
(H)p=—(To)pt €9~ Y20i[9"A( g 9( %) = ($7) W) 22 (g2
(96) = (in) d (98)
k B a J
As is well known, provided the locadl function is regular at
s=1, we can definé$?(x))=(1x|A). This is the case and Where k=(n,q,l,m) and n=0*1*2+3,..., (q
we find e[0,+»),1=0,1,23..., m=0,+1,+2,...,=|. The de-
generacy depends only on the indexendm.
1 1 The following relations which hold true for eigenvectors
(¢°(X))p=— 18207 szazg(lﬁ/a)- #(X) (which are Dirac’ss normalized inq and Kroneker’s

6 normalized in the remaining variableare also useful. We

This reduces to the known value s~ +« [3]. Notice that, leave the proofs of these to the readsge alsqd23]):

due to the homogeneity of the space, there is not dependence 2
on x and thus all derivatives in Eq96) vanish yielding 2 B (X) di(X) = q (99)
(H)=—(Tg) 4. Then Eq.(48) can be rewritten in terms of K 2m%a%g’
the averaged Hamiltonian in the right-hand side
9%(q*+1)
dlnZ 3 (X)9; Pr(X) =i (X) ————, (100
_ (gﬁ‘B:<H>B' (97) % i Di j¢k( Jij 677235,8
and % = 6)
X. EINSTEIN'S OPEN STATIC UNIVERSE
2 2
The ultrastatic metric of théEuclidean Einstein closed > dodi (X) gy X) = ﬂ (101
. . . 2,323
static universe i$3] ,m 2m°a’p
dsﬁos=d02+gijdxidxi=d62+ az(dx2+sinthdQ§). Notice that the global function simply does not exist be-

cause the infinite spatial volume of the manifold. Anyhow,
X ranges from 0O tot+ and dQ% is the usual metric 01S,. we can compute the locdl function as
The time coordinat® ranges from 0 t@B=< +x. Again, 8 is .
the inverse temperature of the considered thermal state re- {(s,X|A): = fo dq|;n () b(X)NLS. (102

6Notice that we are writing Lorentzian relations employing the It is convenient to separate the contribution due to the terms
Euclidean metric. We could pass to use the more usual Lorentziawith n=0 and introduce, as far as these terms are concerned,
metric simply through the identiteg=—g, , goo=—g.g0 and  a cutoff e at low g. A few trivial manipulations of the ex-
gi=gl. pression above yields
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a25—3

B

g(S!X|A): E

)25—3

(103

f-HC 2—2s 1 (
dag? >+
_ dag ey

T(1/2)T(s—3/2)
T(s)

2B
X {r(25—3)

The apparent divergent integral as—~0" can be made
harmless as if4] putting e—0" after one has fixed Re
large finite, executed the integration and performed the an
lytic continuation of this result te=0. This procedure gen-
eralize the finite volume prescription to drop the null eigen-
values in defining the function for the case of an infinite
spatial volume. We have finally

B

I'(s—3/2)
27

2s—4

1
{(s,x|A)= m
(104

Notice that{(0x|A)=0 and thus no renormalization scale
appears in théinfinite) partition function.

Let us evaluatezlb(s,x|A). The only nonvanishing com-
ponents are 00 andl. In the first case we have directly from
the definitions(omitting the terms witth=0 as abovge

ool S+1xX/A)={oos+1XA)
21N

2
=] dq> ( 3 ) N S (X) y(X)

1

B 8772\/;

I,m,n B
B ['(s—1/2)
[(s+1)

(z
(109
In order to compute the remaining componentsg—gltJ we

can use Eq(100) and the relation in Eq83) once again. We
find

2s—4
) {r(2s—4)

— 1
ij(s+1x|A)= ggij(x)f(s‘F 1x|A)

+ %gij(x)g(S,XM)- (106

We have found thaf,(s,x|A) is analytic ins=1, hence the
theory is asuper{-regular theory once again. We can use
Eqg. (19) to compute the stress tensor.

Through Egs(71) and(19) we find finally

1
,5), (107

W =

b by _— 1
(b= (T0s=T(8)| -1,

where

2

T(B)= (108

3084
The stress tensor in EQL07) is conserved and traceless as
we expected from the general theoKyTQ)B vanishes as
B— +, this agrees with the known res(i] that the stress

VALTER MORETTI
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tensor in the vacuum state of the open Einstein universe
vanishes. Notice that the found stress tensor, in the consid-
ered components, is exactly the same than in Minkowski
spacetime.

Let us finally consider Eqi48). In this case the left-hand
side of Eq.(48) does not exist because that simply diverges.
Nevertheless, we can notice that the divergence of the parti-
tion function is due to the volume divergence only and the
remaining factor does not depend on the position on the spa-

&al section; namely,

3

1 T
InZz=VInZz=VX ,355'(0,X|A)) =Vxﬁ,

(109

whereV diverges and, actually;’(0x|A) does not depend

on x due to the homogeneity of the spatial manifold. This is
the same situation than arises in the Minkowski spacetime.
We expect that, although E@¢48) does not make sense, a
local version could yet make sense. Indeed, one can get very
simply from Egs.(107) and (109

avmzﬁ
p

on any finite volumeV. As in the previously discussed case,
<¢2(x)>ﬁ can be obtained by evaluating the lo¢aflunction
ats=1, we get

=—\(TQ)s=— fvdifgﬁﬁo(i»ﬁ (110

($%(X))p= (111

1282
Notice that this vanishes g&— +o; namely, in the vacuum
state as is knowf23]. Furthermore, it does not depend »n
and thus, through Eq95) and noticing thatv®=0 (see the
Einstein closed universe case(Tg),f —(H)p. We can
write finally, with an obvious meaning

aVInZB
B

(Hvg- (112

Xl. THE CONICAL MANIFOLD

Let us consider the Euclidean manifatgx R? endowed

with the metric
d?=r2d@?+dr’+dZ+dz, (113

where ;,2,) e R? re[0,+x), 8[0,8) when 0 is identi-
fied with S. CBXRZ is a cone with deficit angle given by
27— B. That is the Euclidean manifold corresponding to the
finite temperature T=1/8) quantum field theory in the
Rindler space. In such a cages the Euclidean time of the
theory. This is also a good approximation of a large mass
black hole near the event horizon. Equivalently, considering
z, as the Euclidean time, the metric above defines the Eu-
clidean sectiorjat zero temperatuy®f a cosmic string back-
ground. In this case (2— 8)/8mG is the mass of the string.

The metric in Eq(113), considered as the Rindler Euclid-
ean metric, is static but natltrastatic Another important
point is that such a metric is not homogeneous in the spatial
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section. The considered manifold is flat everywhere except )\q:)\2+ k2. (115

for conical singularities which appear at=0 whenevers

#2m. These singularities produce well-known Diraé'sin-  The 7 function of A has been computed explicitly and reads

gularities in the curvatures of the manifoldsat0 [24]. The

physics involved in such anomalous curvature is not com- p25—4

pletely known. Actually, we shall see shortly thgt one can L(s,X|A)= mlﬁ(s— 1). (118

ignore completely the anomalous curvature dealing with the

stress tensor renormalization also considering nonminimal . . ] ]

coupling with the scalar curvature. Il_g(s) is a well-known meromorphic functior27] carrying a
As is well known, the particular valug, =27 defines Simple pole as=1. Known values are also

the Hawking-Unruh temperature in the Rindler/large-mass-

black-hole interpretation, the corresponding thermal state be- | (0)= — (12— 1 11

ing nothing but the Minkowski vacuum or Hartle-Hawking p(0)= GV(V ), (117

(large mask vacuum. The thermal Rindler stress tensor

(renormalized with respect to the Minkowski vacuwwhich 1

coincides, in the Euclidean approach, to the zero-temperature ls(—1)= ﬁ(uz— 1)(v2+11), (118

cosmic-string stress tens@enormalized with respect to the v

Minkowski vacuum has been computed by the point split- )

ting approach25]. Wherelwe defined:=2m/B. o
Such results have only been partially reproduced by some Notice that{(0x|A)=0 and thus no scale remains into

¢function or (local) heat kernel approacfe6,11. This is  the renormalized local effective actiofip?(x)) can be com-

because these approaches were employed to renormalize thidted by evaluating the locdl function ats=1.

effective action only, and thus the stress tensor was com- The function{ ,,(s,x|A) can be computed making use of

puted assuming further hypotheses on its form or assuminigjtermediate results contained jd4]. A few calculations

some statistical-mechanical law as holding tf26,11]. lead us to
Recently, in[14], also the massive case has been consid-
ered by employing an off-diagongHunction approach and o 2540 (s—3/2)
a subtraction procedure similar to that is employed within the £ po(S,X|A)= Hg(s—1), (119
point-splitting framework. Here, we shall consider the mass- 477\/;:3”5)

less case only. We shall check our approach for every value
of the curvature coupling proving that the same results got _ 1
by the point-splitting approach naturally arise. The important é’rr(S,XIA):EﬂrrﬂJ(S,X
point is that, due to the complete independence of the
method from statistical mechanics, we shall be able to dis- +4m(s—2){p_s(SX|A), (120
cuss the statistical mechanics meaniifgit exists) of our
resultsa posteriori _ _

Let us consider first the case of tmeinimal coupling {22, (SXIA)= {12, (SXA)=2mp_g(S,X|A). (12D
£=0. This avoids all problems involved dealing with the
singular curvature on the tip of the cone generated by th@ll remaining components vanish. The meromorphic func-
conical singularity. The function of the effective action in  tion H(s) has been defined ifl4], it has a simple pole at
conic backgrounds has been computed by several authogs-2 and known values are
[27] also in the massive scalar cd44] and for photons and

1
A)—r_zfao(S-X|A)

gravitons[12].
Discarding the singular curvature by posiéig 0, a com- Hz(0)= (v*=1), (122
: : . 120v
plete normalized set of eigenvectors of the massless Euclid-
ean motion operatdf A= —Ac xre is [27] L
= — — 2—
Hz(1) 121}(1/ 1). (123

1 N
¢>q<x>=5\[Ee'“e'“””’ﬁ“’mn/Bm), (114

The functionp_g(s,x|A) is the ¢ function of the effective

where z=(z;,2,), q=(n,k,\), n=0,+1,+2,..., actioninCzxR*[14]. It reads

k=(k;,ky) e R? X €[0,+ ). The considered eigenfunctions

are Kroneker'sé normalized in the indexr and Dirac’'sd [2s—6

normalized in the remaining indices. The corresponding ei- {p-6(S,X|A)= Wlﬁ(s— 2). (124
genvalues are (4m)“BL(s)

From the above equations and E(1) it follows that

"We are considering a particular self-adjoint extension of the ,p(S,X|A) is analytic ats=1 and thus the theory is supér-
formally self-adjoint Laplace-Beltrami operator in the conical mani- regular once again. Hence, we can ($8) to compute the
fold. The general theory of these extensions has been studied #tress tensor. Trivial calculations employing E@l) with
[28]. £=0 and Eq.(19) produce
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2.\ 4 plings with the curvature. Thé-parametrized term remains
(—) —1|diag —3,1,1,) as a relic in the stress tensor because oftthssicalformula
B (126). This term does not come out from the quantum state
3 1 once one fixed the renormalization procedure. We see that
diaiz, - 2,1,1) ]

<Tg(x)§=o>35

144071'2I’4[
2
— 20[(2_7T> -1 the renormalization of the stress tensor can be managed com-
B pletely by our Euclideag-function approach on the physical
(125 manifold instead of theptical manifold not depending on
the presence of the conical singularity in the Euclidean mani-
This is the correct result arising by the point-splitting ap-fold.
proach[25] in the case of the minimal coupling. Let us prove  The knowledge of the averaged and renormalized stress
that our method reproduces also the remaining cases.  tensor makes us able to compute the averaged and renormal-
In general, the relationship between the minimallyijzed Hamiltonian of the system. The Hamiltonian of the
coupled stress tensor and the generally coupled stress tengfeory should not depend on the parametdvecause that
can be trivially obtained by varying the action containing thecannot appear into the Lorentzian action, the manifold being

usual coupling with the curvature, it reads flat. Notice that there is no conical singularity in the Lorent-
1 zian theory. Not depending ofy the classical Hamiltonian
Tan(X)¢=Tap(X) =0+ &| | Rap— _gabR) H2(X) density coincides with the changed sign energy component
2 of the stress tensor in the minimal coupling. Indeed, employ-
ing Eq. (95), we can write down
+ Gapd H2A(X) =V Vpdh2(X) |. (126)
* © (HO0Yg= = (T6(X)e=0)
It is worthwhile stressing that the lagtparametrized term 3 2.7\ 4 2.7\ 2
appears also when the manifold is flat. Within the quantum =—24[(—) —10( —) —11}. (130
field theory, we can interpret quantitatively this relationship 14407°r\ B B
as Let us finally consider the problem of the validity of the
(Tab(X¥) ) =(Tap(X) g=0) + EQ(X) ap) relation Eq.(48) in some sense. The spatial section is neither
finite nor homogeneous, we could have problems with the
where use of cutoffs. It is not obvious that such a relation as Eq.
1 (48) can hold true in our case considering cutoff smeared
(QX)ap):= {( Rap(X) — Egat,(x)R(x)) (6%(x)) quantities &%
1d
InZ E:=J’ d*\g=——| (s,x|A), (131
+0apA(PA(X)) = VaVi(%(X)) |. (127 p r>e 92ds <=0 |
Now (Tap(X)z—0)p is known by Eg. (125, R,u(x)=0, _:f 3 0
R(x)=0 and thus we can computd,,(x);)z employing QA): r>ed X\/§<Q°(X)>B' (132
the known value of ¢%(x)) ;. We have, through Eq116)
(B0 )= LX) =— (217)2 1. (129 (Hede:= L A (). (133
X)) g=L(IX|A)=——| | —=| —1]|. €
p 4872\ B
and, finally,
The final result is exactly that of the point-splitting approach:
) . 2m7\4 _ Eee(B):= _f d3X\/§<T8(X)§>3:f d3x\/§<H)ﬁ
<TLa(X)§>B:<Ta(X)§>BEm 3 1 diag e e
—£Q(B). (134
2m\2 (3 .
(=3,1,1,+20(6é—-1) F —1|dia X In particular we have from Eq116)
! Inz AB (27T>4+ 10(277)2 11/, (135
Y n E:— _ X - L]
1t ] (129 Fe 2880m%€2l | B B

The same result arises by employing the definition ofwhere A is the area of the event horizon, the regularized
Lan(s,x|A) given in Eq.(71) with the chosen value of,  volume of the spatial section ¥.=A/(2¢€%). Notice that,
provided ¢ ,5(s,x|A) and {(s,x|A) are those computed in

the minimal coupling caseThis means that, concerning the

renormalization of the stress tensor, the presence of the coni®Notice that also the are& of the horizon is a cutoff because the
cal singularity which determines a singular curvature on thectual area is infinite. This cutoff is a trivial overall factor. We shall
tip of the cone is completely irrelevant. Concerning theomit this cutoff as an index in the following formulas for sake of
guantum state, there is no difference between different cousimplicity.



56 DIRECT /-FUNCTION APPROACH AND ... 7815

actually, the conserved charg(B) is a boundary integral framework of the induced gravity considering massive fields
which diverges on the conical singularity. Indeed, it can benonconformally coupled20—23.

expressed by the integration of E(@5) and it should be As noticed in Sec. VI, on a more general ground, the
discarded if the manifold were regular. Notice that the choiceconsidered problem is also interesting because there exist
of values of¢ determines different values &%, due to the two not completely equivalent approaches to implement the

£-parametrized boundary tergQ, in the stress tensor. Con- Statistical mechanics of a quantum field in a curved space-
versely, Iz, does not depend o time through the use of a path integral techniques and, up to

If something similar to Eq(48) holds true for a fixed the knowledge of the author, there is not a definitive choice
value ofe, it does just for a particular and unique valuegof ~ Of the method. In this work, we have employed the path
Actually, a few calculations through E¢129 prove that, integral in the physical manifold instead of in thogptical

not depending on the value ef related manifold. We remind the reader that in the case of a
static but notultrastatic spacetime, the naive approach based

alinZ g, 1 on the phase-space path integral leads one to a definition of
TR =Eeg=1B) T E~(Ho)p= Qe B) & the partition function as an Euclidean path integral per-

(136 formed in the configuration space within theptical
manifold® instead of the physical ongl9]. Other ap-

The last term is an opportune constant energy proacheg7] lead one to the definition of the partition func-
tion as a path integral in the physical manifold.
A When the spatial section of the space is reguilag.,

€

closed and thus the path integral regularized through the
Z-function approach yields a finite result, formal manipula-

The presence of such an added constant could be expectgﬁns of the path integral prove that these two different defi-

from the fact that the energ,, is renormalized to vanish at Nitions lead to the same result up to the renormalization of
B=2m instead of 8= +o. Conversely, there is no trivial the zero point engrgBB]. In such a case these c_zleflnltlons are
explanation of the presence of thg-dependentterm subst_antlally eqqlvalent._ When_ the m_an_lfpld is not regular,
—1/90.(B8). Then, in the considered case, in the right-hanoe'g" it has ;patlgl sections with an infinite vqume. or has
side of Eq.(48) does not appear the Hamiltonian which, at boundaries, in principle one may Iqose such an equwallence.
least classically, corresponds to the valtie0 as discussed Indeed, as far as the effective actions are concerned in our
above. case we have

One could wonder whether or nag, defined in Eq.

120722’

. . L . AB 27\4 2m\2

(131) can be considered @egularized partition function of nZ,=— | (_ +10( _) _11},
the system. The simplest answer is obviously not because a P o8gom2e? | B B
fundamental relationship of statistical mechanics does not
hold true. and

In general, one could think that this negative result arises 4
because we have dropped a contribution due to the conical InZ oPl— AB (2_77 (137)
singularity. This singularity produces a Diradn the curva- Be 2880262 B

ture on the tip of the cone in the Euclidean manifold. The

integral of the Lagrangian get a contribution from this termThe latter result can be directly obtained noticing that the
in the case of a nonminimal coupling with the curvature. Theoptical manifold of the Rindler space is the open Einstein
problem of the contributions of these possible terms, in parstatic universg3]. Hence the latter effective action above is
ticular in relation to the black-hole entropy has been studiedhothing but that computed previously in the open Einstein
by several authors(see [20,21,30-33 and references universe(in the conformal coupling Considering the effec-
therein, anyhow, in this paper we shall not explore such ative action computed as a path integral in the optical mani-

possibility. fold we have

In any cases, it is worthwhile stressing that the found ont
Euclidean effective actiofl35) is the correct one in order to _ dInZ g¢ —c Le 138
get thethermalrenormalized stress tensor tfprmal) varia- B ee=vel B) & (138

tion with respect to the background metric. We restress that

the obtained stress tensor is exactly that obtained by th@ne could conclude that, once again, there is not the Hamil-

point-splitting approach. tonian in the right-hand side, also discarding the constant
The question of whether or not the effective action com-€nergy. Actually, this result involves more subtle consider-

puted by theZ function defines also the logarithm of the ations. Indeed, we shall prove that this naive conclusion is

partition function (renormalized with respect to the NOt correct.

Minkowski vacuun) is not a simple question. The problem is

interesting on a physical ground also because the partition

function of the field around a black holgve remind the 1%This is the ultrastatic manifold conformally related to the physi-

reader that the Rindler metric represents a large mass blackl manifold by defining the optical metric throughy, : = gap/Jgo-

hole) is used to compute the quantum corrections to therhe Euclidean action employed on the optical manifold is the

Bekenstein-Hawking entropy as early suggested by 't Hoofphysical action conformally transformetincluding the matter

[29] or to give a reason for the complete BH entropy in thefields) following the conformal transformation written above.
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Let us suppose to implement canonical QR for a  stress tensor and hence the Hamiltonian is not so trivial as
massless field conformally coupled directly on the opticalone could expect, this is because it involves terms which do
manifold, namely, in the open Einstein static universe as ihot represent a trivial zero-point energy renormalization.
were the physical manifold. Obviously, we should get ex- Concerning the conical manifold, the conclusion is that
actly the effective action which appears in E§38. Fur-  the theory in the optical manifold leads us naturally to an
thermore, Eq(138) is nothing but Eq.(97) and the right- effective action which can be considered the logarithm of the
hand side of Eq.(138 is nothing but the averaged partition function provided we renormalize the theory with
e-regularized Hamiltonian of the QFT in the open Einsteinrespect to the Fulling-Rindler vacuum. Conversely, the effec-
universe. Such a Hamiltonian can also be obtained as a thetive action evaluated in the physical manifold is the correct
mal average of the Hamiltonian operator obtained from theeffective action which produces the thermal stress tensor by
canonical QFT employing theormal order prescriptiorand  formal variations with respect to the metric. This stress ten-
employing the usual definition of the partition functiGum-  sor is that obtained also by the point-splitting procedure and
ming the Boltzmanian exponential in the energy levels of thehus renormalizing with respect to the Minkowski vacuum.
states in the canonical ensembla4].

Implementing the canonical quantization in the Rindler
space for a massless scalar field, one trivially finds that an XIl. SUMMARY
isomorphism exists between the Fock space built up on the | this paper we have presented a new approach to renor-
Fulling-Rindler vacuum and the Fock space built up on themgjize the one-loop stress tensor in a curved background
natural vacuum of the QFT in the open Einstein static unitased on an opporturiefunction regularization. The proce-
verse(in the conformal coupling Indeed, this isomorphism  qre has been developed within the Euclidean formalism and
arises from the conformal relationship between the wavey ihe hypothesis of a closed manifold and a real scalar field.
func'gons of the particles related to the quantized fleIQS. Th_|s We do not think that our approach should change dramati-
relation defines a one-to-one map from the one-particle H"'cally relaxing such hypotheses. This is because the same

bert space of the Einstein open universe to the one-particle_fnction approach to renormalize the effective action was
Hilbert space of the Rindler space which maintains the valug,ry in a similar context and has been successively devel-

of the corresponding indefinite scalar prody@ This map  gheq into a very general context. In fact, we have used the

defines a unitary isomorphism between the two Fock Spacegethod also in cases where the initially requested hypotheses
provided one require that this isomorphism transform theys not hold true obtaining correct results.

vacuum state of the Einstein open universe into the Fulling- o, approach, differently from all other approaches, is

Rindler vacuum. In particular, also the Hamiltonian opera-gjrectly founded to the definition of the stress tensor as func-

tors are unitarily identified provided one use the normal Or+jona| derivative of the effective action with respect to the

der prescription in both cases. . background metric. All proofs contained in this paper are
As a result we find that the right-hand side of E#38  gypstantially based on that direct definition.

coincides also with the averaged Hamiltonian operator built \y/e have seen that although it is not possible performing

up in the framework of the canonical quantization in theie analytic continuations involved in the method in all con-

Ri_ndler space with r_espect to the Fu_IIir_lg-RindIer vacuum. INcrete casegthis is the same drawback of tiiefunction regu-
this sense Eq(138) is the usual statistical-mechanical rela- larization of the effective actionthe method is well man-

tionship between the canonical energy and the partition funcaged on a theoretical ground. Indeed, within our approach,

tion in the Rindler space. the proof of the conservation of the stress tensor, the confor-

The central point is that the renormalization scheme Mg 5| anomaly formula, several thermodynamical identities are

ployed is the normal order prescription with respect to the,ca|ly very easy to carry out. The infinite renormalization
Fulling-Rindler vacuum and not the point-splitting proce- js made harmless by an automatic cancellation and the finite
dure. We can finally compare the a\éaeraged_ Rindler Hamilyo 1t is clearly highlighted as a residue of a pole of the stress
tonian of the canonical quantizatighi r}ﬂ which is renor- tensor function. It is furthermore clear that the renormaliz-
malized by thenormal order prescriptionin the Fulling-  jng terms are conserved and depend on the geometry locally
Rindler vacuum with the averaged Rindler Hamiltoniangng thus can be thought as parts of geometrical side of the
(He)p obtained by integrating Eq130). The latter is renor-  Einstein equations. Their explicit form can be obtained by
malized with respect the Minkowski vacuum by theint-  the heat kernel expansion as outlined previously.

splitting procedure We find We have checked the method considering several con-
crete cases obtaining a perfect agreement with other renor-
(H.) g (H &0 3 30 [(277)2 } malization procedures.
H . _ H . — _ _ _ 1 . . . . . .
8 B 2880n2¢?  2880m2¢2 | B Particular attention has been paid considering the conical

manifold, where some unresolved problems concerning the
1 1 physical interpretation of the obtained results remain when
=————0/B). (139  one considers the conical manifold as the Euclidean-thermal
960m?e? 6 Rindler space.
Concerning the general features of the method presented
The first term in the right-hand side is trivial: it takes accountwithin this paper, many ways remain to explore for the fu-
of the difference of the zero-point energy. The second term isure. An important point to study in depth should be the
quite unexpected. It proves that the point-splitting procedureelation between Wald’s axioms concerning any renormal-
(or equivalently ou-function procedureto renormalize the ized stress tensdB,17,1 and the stress tensor arising from
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our approach. Moreover, the relation between our approacborresponding variatiol,—\,=\,+ \,. We are inter-
and the usual point-splitting approach based on shortested in evaluating the rate of the variation of the eigenval-
distance Hadamard's behavior of the two-point functionsues with respect to the metric. In fact, we want to compute

should be investigated. the functional derivative
Other possible generalizations may concern integer or
half-integer spinorial fields and gauge theories. O\, SSal &%, Pnl
S ab(x) =-2 S ab(X) ! (AS)
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APPENDIX: MAIN FORMULAS

Let us consider an Euclidead manifold M. Suppose
that M is closed(namely, compact without boundaryetA  Using the formula corresponding to E@2) for ¢, and ¢,
be a second-order elliptigpositive-definite self-adjoint dif-  (notice that a further factor 1/2 appears in this ¢asee
ferential operator working on smooth real scalar fields ofobtain
LZ(M,d,u,g), Mg being the usual Riemannian measure in-

duced by the Euclidean metric. Let us finally suppose that O\ N e S¢n(y)

the spectrum of the operator is discrete. This holds, for ex- 50°(x) yNI(Y)| ¢n 597(x)
ample, in the case of the Laplace-Beltrami operator with the

sign changed, namely, the 0-forms Hodge—de Rham Laplac- o Sn(y) ) 84Sa A7)
ian; i h th Itiplicity is also finite. .

ian; in such a case the multiplicity is also finite " 5g™(x) 59700

All that we attempt to describe should be more or less

generalizable by relaxing some of the conditions above, eny o4 ;5 ook at the first term in the right-hand side of the
ploying opportune spectral measures, and so on. In paruculaerquation above. We can rewrite it as

one could consider the operatArworking onn forms and

deal with the Hodge—de Rham formalism also in manifolds 5

noncompact or with boundary. Anyhow, this latter case —Anf dNy\/g(y)—b[an(y)qsﬁ(y)]
could be more complicated to deal with. We leave to the 897°(x)
mathematicians all these considerations.

Our goal is to determine how the generic eigenvalye - J dVv/a(v) *
changes due to local changes of the mettjg of the mani- néige‘b(x) YVG(Y) én(¥) én ()
folds keeping fixed the topology. Let us introduce the Eu-
clidean action ova(y)
+\n f dMy 5300 bn(Y) Bh (Y). (A8)

1
SAl ¢, ¢l:=Saldl:=—5 | d"xVg(x) p(X)Ad(x).

2 m The first term in the last line vanishes due to the normaliza-
(A1)  tion condition in Eq.(A3) which is supposed to hold during
the variational process. Eventually, a few of elementary cal-
culations produces the well-known result

O JGAGY. (A2 oValy) _aNg(x)

Thus we have

- 1
Sp(x) = S(x—y)=— =\g(x X) S(X—Y).
5gab(x) &gab(x) ( y) 2 g( )gab( ) ( y)
Letting A, be the eigenvalue of the normalized eigenvector _ o o _
¢y, it holds that Coming back to the variational derivative bf, with respect

to the metric and making use of the obtained results in Eq.
(A6) we get our main equatio(l2):

Adn=Nndn . fMdevg(X)¢ﬁ(X)¢n(X)=1, (A3)

5)\n )\n * 5gSA[ d’: ’d’n]
=—+/g(X X X X)—2———.
An=—2 &%, bn]. (A4) 50°0(x) 2 9(X)gap(X) dn(X) ¢y (X) 59%(x)
One may change the metric ag,p(X)—gay(X) We finally remark that if35] a similar relation has been

=0gap(X) + 8g9.5(X). Obviously, provided that opportune found in a different context as far as eigenvalues of Dirac’s
mathematical conditions are satisfied, we expect to find aperator is concerned.
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Let us finally prove Eq(52). We suppose that our closed apr A F1 I
. . . . n n n n o x n
manifold is stationary namely, a global coordinate system X{ B - ?zﬂn(y) B — 7¢n(y) B
exists in where the Euclidean metric looks similar to
R R . e 2
ds*=goo(X)dX°dX°+ 2g0; (x)dX°dX +gj; (x)dx'dX, =" 3 dyVEY) TOLY nl(y)
(A9)
. aYn(y) )
wherex=x'e 3. Notice thatd, is a Killing vector. We sup- +)\nJ’ d“y\/f(y)w. (A11)
pose also that the manifolthe metrig is periodic in the B
. O . . —_—

coordinatex” with a periodg. _ Above, T,(y) is the stress tensor evaluated in the coordi-

Our action reads, in the considered coordinates, natey?.

8 _Let us consider the second term in E411). We can also
L= f dx° f dx\g(xX) S()AG(x). write that as
0 3 *
2 INEY) i (Y) ¢hn(y)
Because it will be very useful shortly, we can consider the An | dVy B
new coordinate set given by’: =x% 3, y:=x. In those co- &
ordinates, posin .= ¢(X) the action reads INT(Y
Posing/(y): = ¢(x) x| Y W)
1 -
stuti= [ @y [ iGwwsuy, @0 .
o 2 :)\nﬁf d*yVE(Y) ¥ (Y) ¥a(y)

where B is obviously defined with respzect to the metric \
fan(y) which reads foo(y):=goo(x)/8° and foi(y) ESALY RV v
:=00i(X)/B, fi;(y):=g;j(x). Now, we observe that, in Eq. B J dYVIY) U (V) hay)-
(A10), variations of the paramete® can be thought of as
variations of the metric of the manifold, keeping fixed the
topology.

As for the previous proof it is convenient starting with the
usual identity

The first term in the right-hand side of the equation above
vanishes due to the invariant normalization condition of the
modes. The second term, as well as the remaining term in
Eqg. (Al1l), can be translated into the initial coordinates ob-

taining
A= _ZS[‘M; N/AAE Ny ZJ 4 ")TO . _))
—=—— XVg(X X
From that it follows B B 90 Tol ¢ énll
ab * A >
M, f 7 B R + 5 f d*XVg(X) b} (X) n(X).
B st2%y) B syin(y) 9B
Notice that, as we said above, both the integrands do not
. S depend orx’ because the metric is stationary, and thus the
Sy(y) 9B integration on the temporal variable produces only a factor
B. The final formula is then Eq52):
-2 oS
=—2 d4 f _ - -1/2 fOO 2 IN N = N
J ot (y){ T S5=-2] axa0d| T8es 410
-2 0S . 1
R -1/2__ "~ ¢£0i _ 4, N N
+ iz a(y) 5f0i(y)f (y)B] 2f dyvf(y) + Egg>\n¢::(x)¢>n(x)].
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