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A method which uses a generalized tensorialz function to compute the renormalized stress tensor of a
quantum field propagating in a~static! curved background is presented. The method does not use point-splitting
procedures or off-diagonalz functions but employs an analytic continuation of a generalizedz function. The
starting point of the method is the direct computation of the functional derivatives of the Euclidean one-loop
effective action with respect to the background metric. It is proven that the method, when available, gives rise
to a conserved stress tensor and, in the case of a massless conformally coupled field, produces the conformal
anomaly formula directly. Moreover, it is proven that the obtained stress tensor agrees with statistical mechan-
ics in the case of a finite-temperature theory. The renormalization procedure is controlled by the structure of
the poles of the stress-tensorz function. The infinite renormalization is automatic due to a ‘‘magic’’ cancel-
lation of two poles. The remaining finite renormalization involves locally geometrical terms arising by a certain
residue. Such terms are also conserved and thus represent just a finite renormalization of the geometric part of
the Einstein equations~customary generalized through high-order curvature terms!. The method is checked in
several particular cases finding a perfect agreement with other approaches. First the method is checked in the
case of a conformally coupled massless field in the static Einstein universe where all hypotheses initially
requested by the method hold true. Second, dropping the hypothesis of a closed manifold, the method is
checked in the open static Einstein universe. Finally, the method is checked for a massless scalar field in the
presence of a conical singularity in the Euclidean manifold~i.e., Rindler spacetimes, large mass black hole
manifold, cosmic string manifold!. Concerning the last case in particular, the method is proven to give rise to
the stress tensor already got by the point-splitting approach for every coupling with the curvature regardless of
the presence of the singular curvature. Comments on the measure employed in the path integral, the use of the
optical manifold and the different approaches to renormalize the Hamiltonian are made.
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I. INTRODUCTION

As is well known, the stress tensor of a matter field in a
curved spacetime is obtained by computing the functional
derivative of the matter field action with respect to the back-
ground metric. That is also the stress tensor which appears as
a gravitational source into Einstein’s equations. Trying to
generalize the theory by including quantum aspects of the
matter fields at least, one should consider the quantum aver-
aged values of the same stress tensor~considered as an op-
erator! as a gravitational source~see, for example,@1#!.

As first proposed by Schwinger@2#, dealing with quantum
~quasifree! field theory in curved background, the quantum
averaged stress tensor is computed by executing metric func-
tional derivatives of the one-loop effective action. Then, the
effective action takes account of the quantum state of the
matter fields@3#. In fact, considering the averaged stress ten-
sor as gravitational source is the first step in order to perform
a semiclassical approach to the quantum gravity@1,3#.

One can get the averaged stress tensor also in thermal
quantum states dealing with an opportune Euclidean time-
periodic continuation of the theory and the corresponding

Euclidean effective action, when the Lorentzian manifold is
static ~i.e., the time of the considered and analytically con-
tinued coordinates defines a timelike Killing vector normal
to the surfaces at constant time!. In this case, the vanishing
temperature limit should reproduce the nonthermal stress
tensor referred to the vacuum state related to the timelike
Killing vector.1

The computation of the one-loopregularizedand renor-
malized quantum Euclidean effective action can be per-
formed employing thez-function procedure@4,3,5# that we
shall summarize in the following.

One starts with the identity which defines the~Euclidean!
effective action

Seff@f,g#:5 lnE DfeS[f]52
1

2
lndet@A/m2#,

whereS is the Euclidean action of the matter fieldf which
we can suppose, for sake of simplicity, a real scalar field~the
approach also deals with much more complicated cases!. The

*Electronic address: moretti@science.unitn.it

1Obviously, one has to eventually continue the Euclidean stress
tensor into the real time in order to get the physical stress tensor.
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space-configuration measure which appears in the functional
integral is that well-known@4,6,7#

Df5)
x

$g~x!1/4df~x!% ~1!

and the action is built up as

S@f#5SA@f#:52
1

2EMd4xAg~x!f~x!Af~x!, ~2!

whereA is an elliptic differential second-order self-adjoint
operator positive defined on the Euclidean manifoldM. In a
thermal theory with a temperatureT, this manifold is peri-
odic in the Euclidean time beingb51/T the period.m is a
scale parameter necessary from dimensional considerations.
This parameter may remain in the final results and thus can
be reabsorbed into the renormalized gravitational constant as
well as other physically measurable parameters involved in
~generalized! Einstein’s equations. This is a part of the pro-
gram of the semiclassical quantum gravity approach@1,3#.

We can suppose that the manifold above is closed
~namely, compact without boundary! in order to have a dis-
crete spectrum with proper eigenvectors ofA and do not
consider boundary conditions. Anyhow, the method can be
generalized for the nonclosed case~e.g., an infinite volume
or presence of boundaries! by considering continuous spectra
and boundary conditions@8,5#. We can compute the previous
determinant in the framework of thelocal z function regu-
larization @4# by ~the reason of that generalized definition
will be clear shortly!:

lndet@A/m2#52
d

dsU
s50

z~suA/m2!52
d

dsU
s50

z~suA!

22z~0uA!lnm. ~3!

The z function can be obtained by integrating thelocal z
function

z~suA!5E d4xAgz~s,xuA!, ~4!

wherefn(x) is a normalized eigenvector ofA with eigen-
valueln :

z~s,xuA!5(
n

ln
2sfn~x!fn* ~x!. ~5!

The expression above is the so-called spectral representation
of the localz function. Equivalently,

z~suA!5(
n

ln
2s . ~6!

These identities have to be understood in the sense of the
analytic continuation of the right-hand sides to values ofs by
which the series do not converge. The series above con-

verge whenever Res.2 defining analytic functions which
can be extended into meromorphic functions defined on the
complexs plane except for two simple poles on the real axis,
at s51 ands52. We refer to@5# and references therein for
a complete report in the general case.

The main reason to define the determinant ofA as in Eq.
~3! is that, in the finite-dimensional case, this coincide with
the usual definition. One can obtain this directly through Eq.
~6! which reduces to an ordinary summation in the finite-
dimensional caseA being an usual matrix.

Thez function approach provides us with a good theoret-
ical definition of the determinant of an operator. Moreover,
as far as the quantum field theory in a curved background is
concerned, thez-function approach has been proven to pro-
duce the right interpretation of the functional integral and the
one-loop renormalized effective action whatever someone
was able to perform the previously cited analytical continu-
ation @3,5#. Furthermore, on the theoretical ground, this ap-
proach led to very satisfactory results. In particular, the
renormalization procedure2 hidden in thez-regularization
procedure seems to be the correct one in the sense that it
agrees with all physical requirements and with different pro-
cedures ~e.g., dimensional regularization, point-splitting
method@3#!. The important difference from the other renor-
malization techniques is that thez-function approach leads
naturally to finite quantities without any ‘‘by hand’’ subtrac-
tion of infinite quantities, also maintaining possible terms
arising from anyfinite renormalization. Finally, it is worth-
while stressing thatz-function approaches are currently em-
ployed in dealing with black-hole entropy physics, in par-
ticular to obtain quantum correction to the Beckenstein-
Hawking entropy~e.g., see@9–12#!.

In principle, the Euclidean~quantum! stress tensor3 can be
carried out from the one-loop effective action employing the
usual definition4

^Tab~x!&522g~x!21/2
dSeff@f,g#

dgab~x!
. ~7!

The Lorentzian stress tensor is then obtained by the Euclid-
ean one recontinuing analytically the latter into the Lorentz-
ian section of the manifold.

However, it is not so simple to perform the functional
derivative in the formula written above, employing the
z-function regularized effective action, because the localz
function is not explicitly expressed in terms of the metric. In
general, considering all known methods to regularize the
stress tensor, barring~very important! theoretical consider-

2We remind the reader that the local averaged quantities as the
stress tensor or the effective Lagrangian are affected by divergences
also in quantum field theory in a curved background.

3When it is not specified otherwise, it is understood that we are
employing theEuclideanmetric, namely, the signature of the metric
tensorgab is (1,1,1,1) throughout this paper.

4This is the definition of theEuclideanstress tensor when the
classicalEuclideanaction isnegativedefinite@4#. We adopt such a
convention throughout this paper.
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ation @3#, it is not so simple to use the formula above at all.5

Other, more indirect, procedures have been found in order
compute the stress tensor, e.g., the so-called ‘‘point-
splitting’’ approach@3# or mixed procedures which involves
point-splitting-like methods and off-diagonal localz func-
tions @13,14#.

This paper is devoted to propose a generalization of the
local z-function approach in order to use Eq.~7! directly.6

We shall perform all proofs considering stationary Lorentz-
ian manifolds with closed~i.e., compact without boundary!
Euclidean sections. Anyhow, we shall see, in concrete ex-
amples, that the method works also dropping the requirement
of compactness. We shall present az-function direct ap-
proach which, when available, produces a conserved stress
tensor as well as the well-known and expected conformal
anomaly in the case of a conformally coupled massless field.
Furthermore, by our approach, one can prove thermodynami-
cal identities usually supposed true without any general
proof in a curved spacetime. Obviously, the usual concrete
problem remains, one has to perform some analytic continu-
ation explicitly to get the final result and this is not possible,
in practice, for all physically interesting cases. At least, the
formulas we will find define an alternative procedure among
those which already exist. Moreover, it seems that our for-
mulation could be interesting on the theoretical ground in
particular. Indeed, as we shall see in this work, one can ob-
tain the general results above-cited by employing a very little
amount of calculations and a very clear procedure.

Anyhow, within this paper, we shall consider also several
particular applications of the method. First, we shall consider
the ~thermal! theory of a conformally coupled massless sca-
lar field within the closed Einstein universe. The Euclidean
related manifold satisfies completely our initial hypotheses
of a closed manifold. Secondly, we shall consider the same
field propagating in the open Einstein universe. The related
Euclidean manifold is not compact and this is a first non-
trivial ground where check our approach assumed by defini-
tion. The third case we shall consider is the Euclidean mani-
fold related both to the cosmic string manifold and Rindler
space~which can be considered also as the manifold contain-
ing a very large mass black hole!. That Euclidean manifold is
not ultrastaticdifferently from the two manifolds considered
above, moreover, it has a conical singularity which, for some
aspects, could be considered as a boundary. That singularity
involves a lot of difficulties dealing withz-function ap-

proaches to renormalize the effective action. In particular,
stress tensor components built up through the localz func-
tion of the effective action in the physical manifold have
been obtained making direct use of mechanical-statistical
laws or supposing a particular form of the stress tensora
priori . These results disagree, at low energies, with those
obtained by the point-splitting method~see Sec. II of@12#,
and the final discussion of@12# for a discussion and refer-
ences on these topics!. In this paper we shall see that, con-
cerning the stress tensor in the conical manifold, it is pos-
sible to get the same results arising also from the point-
splitting approach, for every value of the coupling parameter
j by means of our localz-function approach. This result will
be carried out not depending on the mechanical-statistical
laws and without supposing any particular form of the stress
tensora priori. Concerning this case in particular but also in
the general case, we shall point out also some remarks on the
problem of the choice of the configuration-space measure in
the path integral to define the partition function of the fields.
We shall see that this problem is related to the renormaliza-
tion procedure involved in defining physical quantities, con-
cerning the Hamiltonian in particular.

The paper is organized as follows. In Sec. II, we shall
build up our general approach defining the background
where it should work and we shall also stress some features
of the method as far as the involved finite renormalization is
concerned. In Sec. III, we shall analyze some general fea-
tures of our theory by employing the heat kernel expansion.
In Secs. IV and V, we shall prove that our approach, when
available, produces a conserved stress tensor naturally and
gives rise to the conformal anomaly directly in the case of a
conformally invariant classical action. In Sec. VI, we shall
prove that our approach agrees with the statistical mechanics
interpretation of the time periodic Euclidean path integral.
This result implies some comments on the correct use of the
apparently ‘‘wrong’’ path-integral phase-space measure~that
is an old problem reproposed recently by several authors!. In
Sec. VII, we shall compute the geometrical tensor related to
the finite-renormalization part of the stress tensor in the gen-
eral case of a conformally invariant scalar field in any static
curved spacetime. In Sec. VIII we shall consider the simplest
application of our method; namely, we shall compute the
~thermal! stress tensor of a massless boson field in a flat-
space box. In Sec. IX, we shall consider the~thermal! stress
tensor of a conformally coupled massless scalar field propa-
gating in closed Einstein’s universe. In Sec. X, we shall com-
pute the~thermal! stress tensor of a conformally coupled
massless scalar field propagating in open Einstein’s universe.
Finally, in Sec. XI, we shall compute the~thermal! stress
tensor of a massless field propagating in a manifold contain-
ing a conical singularity in the Euclidean section for every
coupling with the singular curvature. We shall report also
some comments on the thermodynamics and on the renor-
malization procedure. Section XII contains a summary of the
topics dealt with in this paper. The Appendix contains proofs
of some useful formulas employed throughout the paper.

II. THE z FUNCTION OF THE STRESS TENSOR

Let us consider the functional definition of the stress ten-
sor appearing in Eq.~7!. In that formula, employing a

5Birrell and Davies, on page 190 of their fundamental book@3#,
wrote ~Birrell-Davies’ W ren is our Seff) ‘‘ @•••# in a practical cal-
culation it is not possible to follow this route. This is because in
order to carry out the functional differentiation ofW ren with respect
to gmn@•••#, it is generally necessary to knowW ren for all geom-
etriesgmn . This is impossibly difficult.’’

6A similar attempt appeared in@4#, but the way followed there
was quite different with respect to our approach because, there, the
heat kernel representation of thez function rather than thez func-
tion expressed in terms of eigenvalues was considered and no gen-
eral theory was presented. An important recent work@15# uses the
heat-kernel representation and further nonlocal regularization pro-
cedures to compute the stress tensor fluctuations in curved space-
times.
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z-function approach, the effective action is defined as

Seff@f,g#5
1

2

d

dsU
s50

z~suA!1
1

2
z~0uA!ln~m2!, ~8!

where

z~suA!5(
n

8 ln
2s . ~9!

The prime means that the summation written above does not
include any possible null eigenvalues@4#.

As we said in Introduction, the identity~9! holds in the
sense of the analytic continuation when Res,M , whereM is
a number obtained by the heat kernel expansion depending
on the operatorA and the structure of the manifold~usually
M52 dealing with Euclidean four-manifolds! @8,5#. We re-
stress that the spectrum of the operatorA which appears into
the Euclidean action is supposed to be purely discrete as it
happens for Hodge–de Rham Laplacian operators in closed
manifolds @16#. In other physically interesting cases, one
should deal with proper spectral measures, or consider the
studied manifolds as opportune limits of closed manifolds,
and possibly, one has to take care of possible boundary con-
ditions in defining the self-adjointness domain of the opera-
tor A. Due to the purely heuristic form of this paper, we shall
not consider all mathematical subtleties involved in the
z-function approach~see@16,5#, and Refs. therein!.

Our proposal is to perform the functional derivative with
respect to the metric directly in the right-hand side of Eq.~9!
before we perform the analytic continuation. This should
produce another series and another analytic function. The
value at s50 of the s derivative of this newz function
should be considered as a possible regularization of the stress
tensor.

In practice, we define thez function of the stress tensoras

Zab~s,xuA! ‘‘: 5 ’ ’ 22g~x!21/2
dz~suA!

dgab~x!

or, more correctly,Zab(s,xuA) is the analytic continuation in
the variables of the series

22g~x!21/2(
n

8
dln

2s

dgab~x!

52sg~x!21/2(
n

8
dln

dgab~x!
ln

2~s11!, ~10!

supposing that this series converges for Res.M 8 similarly
to the case of the simplez function. Then, following the
spirit of Eqs.~7! and ~8!, our idea is, when possible,define
the renormalized stress tensor as

^Tab~x!&:5
1

2

d

dsU
s50

Zab~s,xuA/m2!

5
1

2

d

dsU
s50

Zab~s,xuA!1
1

2
Zab~0,xuA!ln~m2!.

~11!

Now, our aim to get a useful expression for the function
Zab(s,xuA). In the Appendix we shall prove the formula

dln

dgab~x!
5

ln

2
Ag~x!gab~x!fn~x!fn* ~x!22

dSA@fn* ,fn#

dgab~x!
,

~12!

where, through obvious notations, we defined

SA@fn* ,fn#:52
1

2EMd4xAg~x!fn* ~x!Afn~x!. ~13!

Let us further define

Tab@fn* ,fn#~x!:522g~x!21/2
dgSA@fn* ,fn#

dgab~x!
. ~14!

This is nothing but the classicalreal scalar fieldstress-tensor
evaluated on thenth mode. A few calculations employing
Eqs. ~9! and ~5! lead us to, for the values ofs where the
series in the right-hand side converge,

2
g~x!1/2

2
Zab~s,xuA!52s(

n
8 ln

2~s11!g~x!1/2

3Tab@fn* ,fn#~x!

2
s

2
g1/2~x!gab~x!z~s,xuA!. ~15!

For future reference, let us define, in the sense of the analytic
continuation ins

zab~s,xuA!:5(
n

8 ln
2sTab@fn* ,fn#~x!. ~16!

It is finally useful to explicit the form of the function
Zab(s,xuA) in terms of the functionzab(s11,xuA) and
z(s,xuA). We have

Zab~s,xuA!522g~x!21/2F2sg~x!1/2zab~s11,xuA!

2
s

2
g~x!1/2gab~x!z~s,xuA!G

52szab~s11,xuA!1sgab~x!z~s,xuA!. ~17!

We stress that the functionsz which appear in the formula
above are the analytic continuations of the corresponding
series.

An important technical comment is in order. We are con-
sidering theories in which thez-function approach is avail-
able in order to regularize the effective action~Lagrangian!.

7800 56VALTER MORETTI



In such a situation the following two conditions have to hold
true: z(0,xuA) andz8(0,xuA) ~where the prime indicates the
s derivative! must befinite. By consequence, the limits of
sz8(s,xuA) andsz(s,xuA) ass→0 have to vanish. The final
result which arises performing the derivative in Eq.~11!,
taking account of the previous remark, reads

^Tab~x!&5H zab~s11,xuA!1
1

2
gab~x!z~s,xuA!

1s@zab8 ~s11,xuA!1 ln~m2!

3zab~s11,xuA!#J
s50

. ~18!

We shall define a ‘‘super-z-regular theory’’ as a quantum
field theory~QFT! on a ~Euclidean! manifold which can be
regularized by the localz-function approach as far as the
one-loop action and the stress tensor are concerned and, in
particular, producing ax-smooth functionzab(s,xuA) which
can be analytically continued from values ofs where the
corresponding series converges to a neighborhood ofs51
including this point. Thus, in the case of a superz-regular
theory, Eq.~18! reads more simply

^Tab~x!&5zab~1,xuA!1
1

2
gab~x!z~0,xuA!. ~19!

Note that the stress tensor of a superz-regular theory is
independent of the scalem. The price one has to pay in order
to preserve them dependence is the presence of a divergence
in the first term in the right-hand side of Eq.~18!. We shall
come back to this point shortly.

The second term in the right-hand side of the equation
above is quite surprising at first sight. This is because the
classical stress tensor~evaluated on the modes! is related
only with the first term in the right-hand side. Anyhow, as
we shall see later, the unexpected terms in Eqs.~19! and~18!
are necessary in order to produce a conserved stress tensor
and give raise to the conformal anomaly formula. In particu-
lar, notice that the classical stress tensor evaluated on the
modes cannot be conserved because the modes do not satisfy
the ~Euclidean! motion equations~barring null modes!.

In general, dealing with physical theories in four-
dimensional manifolds, we expect that the function
zab(s11,xuA) may take a singularity ins50 for two reasons
at least. First of allzab(s,xuA) is related toz(s,xuA) which,
dealing with four dimensional manifolds, carries a possible
pole ass→1 and we expect thatx derivatives do not change
this fact ~this will be more clear employing the heat kernel
expansion as we shall see in the following!. A more physical
reason is the following one. As is well known, the matter-
field action when renormalized through any procedure, also
different from thez-function approach~see@3#!, results to be
affected by an ambiguous part containing an arbitrary scale
parameter. That role is played bym in the z-function ap-
proach. This is afinite relic of the infinite subtraction proce-
dure. These relic terms depend on the geometry locally. For
this reason they can be also thought like parts of the gravi-
tational action@3#. In fact, it has been proven that their only
role is to renormalize the coupling constants of the Einstein-

Hilbert gravitational action opportunely generalized in order
to contain also high order terms in the curvatures@3#.7

We have to expect that similar scale-dependent terms also
appears in the renormalized stress tensor. This is because
they have to renormalize the same coupling constants which
also appear in the geometrical part of~generalized! Ein-
stein’s equations of the gravity@3#. In this sense, dealing
with the stress tensor renormalization, the arbitrary scalem
in Eq. ~18! should play the same job which it does as far as
thez regularization of the effective action is concerned. It is
worthwhile stressing that such a result is also allowed in
Wald’s axiomatic approach to characterize physically pos-
sible renormalization procedures of the stress tensor in
curved spacetime@1#. Indeed, Wald’s theorem proves that a
geometric ambiguity remains also after one imposed strong
requirements on the renormalization procedure. Such an am-
biguity can be considered as an ambiguity of the coupling
constants appearing in the geometric part of~generalized!
Einstein’s equations.

Following this insight we are led to assume that, more
generally than in the case of a super-z-regular theory, when
our approach is available

lim
s→0

szab~s11,xuA!5Gab~xuA! ~finite quantity!. ~20!

This is the only possibility in order to maintain the parameter
m into the final renormalized stress tensor in Eq.~18!. Our
assumption implies that the functionzab(s11,xuA) has a
simple pole ats50.

We shall define a ‘‘z-regular theory’’ as a quantum field
theory on a curved spacetime which can be regularized
through the localz-function approach as far as the effective
action is concerned, and produces ax-smooth zab(s,xuA)
which can be analytically continued from values ofs where
the corresponding series converges to a neighborhood of
s51, except for the points51 which is a simple pole.

A priori, in the case of az-regular theory, the definition
~11!–~18! of the renormalized stress tensor can be employed
provided the infinite terms arising from the poles in the first
and third term in the right-hand side of Eq.~18! are dis-
carded. Actually a magic fact happens, those two diver-
gences cancel out each other and the functionZab(s,xuA)
results to be analytic also ats50 wherezab(s11,xuA) has a
pole. Indeed, taking into account that the singularity in
zab(s11,xuA) is a simple pole, a trivial calculation proves
that the structure of these singularities ass→0 are, respec-
tively,

zab~s11,xuA!;
Gab~xuA!

s
~21!

and

7Obviously, as for the flat-space renormalization procedures, all
measured physical quantities~e.g., dressed coupling constants! are
finally independent of the parameterm. See@3# for a whole discus-
sion.
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szab8 ~s11,xuA!;2
Gab~xuA!

s
. ~22!

Substituting in Eq.~18!, we see that those divergences cancel
out each other. We stress that the functionGab(xuA) remains
into the finite renormalization term containing the scalem in
Eq. ~18!. The difference between super-z-regular theories
and z-regular theories concerns the presence of the scalem
in the final stress tensor. As a further remark we stress that
the functionGab(xuA) which appears in Eq.~20! as well as
in Eqs. ~21! and ~22! contains the whole information about
both the(scale dependent) finiteand infinite renormalization
of the stress tensor.

In the next sections we shall prove the important identity
which holds in case ofz-regular theories:

¹aGab~xuA!50. ~23!

We expect that the termGab(xuA) is built up through the
local geometry of the manifolds. This is a consequence of the
fact that the functionGab(xuA) can be carried out employing
the heat kernel expansion coefficients as we shall see in the
next section. All that means that we can considerGab(xuA)
as a correction to the geometrical term in~generalized! Ein-
stein’s equations of the gravity. This is in perfect agreement
with Wald’s theorem@1#.

We have dealt with a real scalar field in a closed manifold
only. Anyhow, reminding of the general success of the
z-function approach to regularize the effective action, we
expect that our method can be used to regularize the stress
tensor in more general situations, simply passing, when nec-
essary, to consider~charged! spinorial modes8 and continu-
ous spectral measures in Eq.~16!. Conversely, the presence
of boundaries could involve further problems. The examples
we shall consider in Secs. VIII, XI, and XII deal with some
possible generalizations.

III. HEAT-KERNEL EXPANSION ANALYSIS

In this section we shall consider, on a general ground, the
behavior of the functionZab(s,xuA) near the points50 in
the case of a real scalar field whose action is

S52
1

2E d4Ag~¹af¹af1m2f21jRf2!. ~24!

By employing the heat-kernel expansion we shall see that
such a theory define az-regular theory~possibly also super-
z-regular!. We shall be also able to relate the residue
Gab(s,xuA) to the heat-kernel coefficients.

The operator which correspond to the action above is

A52D1m21jR ~25!

and the corresponding stress tensor reads

Tab~x!5¹af¹bf2
1

2
gab~x!~¹cf¹cf1m2f2!

1jF S Rab2
1

2
gabRDf21gab¹c¹

cf22¹a¹bf2G .
~26!

A few calculations lead to the stress tensor evaluated on the
modes

Tab@fn* fn#~x!5
1

2
~¹afn* ¹bfn1¹bfn* ¹afn!

2j¹a¹bufnu21S j2
1

4DgabDufnu2

1jRabufnu22
1

2
gablnufnu2. ~27!

We are able to write down the functionzab(s,x) in the gen-
eral case considered above. Employing the definition~16! we
find

zab~s,xuA!5
1

2(n
8 ln

2s~¹afn* ¹bfn1¹bfn* ¹afn!

1F2j¹a¹b1S j2
1

4DgabD1jRabG
3z~s,xuA!2

1

2
gabz~s21,xuA!. ~28!

For future reference, it is convenient to define also

z̄ ab~s,xuA!:5
1

2(n
8 ln

2s~¹afn* ¹bfn1¹bfn* ¹afn!,

~29!

where we suppose to continue the series above analytically
as far as possible in the complexs plane.

We want to study the behavior of the function
zab(s11,xuA) and henceZab(s,xuA) near the possible sin-
gularity at s50 and, more generally, we want to study the
meromorphic structure of these functions. Let us consider the
off-diagonal heat-kernel asymptotic expansion@17# in four
dimension, which holds asymptotically fort→0 andx neary
~in a convex normal neighborhood! in closed Euclidean
manifolds

H~ t,x,yuA!;~4pt !22e2s~x,y!/2t(
j 50

1`

aj~x,yuA!t j . ~30!

s(x,y) is half the square of the geodesical distance from the
point x to the pointy. The heat kernelH(t,x,y) decays very
speedly ast→1`, the only singularities come out from its
behavior neart50 whenx5y.

The relation between the heat-kernel expansion and the
z-function theory~@5#! is that the heat kernelH(t,x,yuA)
satisfies

8The case of noninteger spin could be more complicated. In the
case of gauge fields, it is convenient to employ the Hodge-de Rham
formalism and one has to take the ghost contribution to the stress
tensor into account.
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z~s,x,yuA!5
1

G~s!
E

0

1`

dtts21H~ t,x,yuA!, ~31!

where, for Res sufficiently large,

z~s,x,yuA!5(
n

8 ln
2sfn* ~x!fn~y!. ~32!

We can decompose the integration above into two parts as

z~s,x,yuA!5
1

G~s!
E

0

1

dtts21H~ t,x,yuA!

1
1

G~s!
E

1

1`

dtts21H~ t,x,yuA!. ~33!

The true difference from the left-hand side and any expres-
sion in the right-hand side of Eq.~30! truncated at the order
N.2 is a regular function ast→0. Taking into account that
fact, one can insert the expansion in Eq.~30! into the first
integral in the right-hand side of Eq.~33!, obtaining

z~s,x,yuA!5
1

G~s!(j 50

N

aj~x,yuA!E
0

1

dtts231 je2s~x,y!/2t

1h~N,s,x,yuA!, ~34!

where h(N,s,x,yuA) is a unknown x,y-smooth and
s-analytic function. This relation is the starting point of our
considerations.

As general remarks we stress the following two facts.
First, the coefficientsaj (x,yuA) expressed inRiemannian co-
ordinatescentered inx @3# are polynomials inx-y whose
coefficients are algebraic combinations of curvature tensors
evaluated at the pointx. Thus the limit asx→y of quantities
as aj (x,yuA), ¹a

(x)aj (x,yuA), ¹a
(x)¹b

(y)aj (x,yuA) and so on
we shall consider shortly, produces algebraic combinations
of ~covariant derivatives of! curvature tensors evaluated at
the same pointx. Second, there exists a recursive procedure
which permits one to get the coefficientsaj (x,yuA) and their
covariant derivatives evaluated in the limit of coincidence of
arguments, when one knows the coefficientsai(x,yuA), their
derivative for 0< i , j and the covariant derivatives of the
functions(x,yuA), everything evaluated in the argument co-
incidence limit. Such a procedure can be obtained by a
simple generalization of a similar procedure~which does not
consider covariant derivatives! presented in@17#.

Let us evaluate the pole structure of the function
z̄ ab(s,xuA) employing Eq.~34! and the following known
identities@3,17#:

¹a
~x!¹b

~y!s~x,y!ux5y52gab~x! ,

¹a
~x!s~x,y!ux5y50,

¹b
~y!s~x,y!ux5y50.

By taking the opportune derivatives in Eq.~34! and posing
y5x finally, we find

z̄ ab~s11,xuA!

5 z̄ ab~s11,xuA! analytic1
1

~4p!2G~s11!

3Fa0~ab!~xuA!

s21
1

a1~ab!~xuA!

s
1

1

2
gab~x!

3S a0~xuA!

s22
1

a1~xuA!

s21
1

a2~xuA!

s D G , ~35!

where we defined

aj ~ab!~xuA!:5
1

2
@¹a

~x!¹b
~y!aj~x,yuA!

1¹a
~y!¹b

~x!aj~x,yuA!#x5y . ~36!

Notice that in the pole expansion written above, an infinite
number of apparent poles have been canceled out by corre-
sponding zeros of@G(s11)#21.

The functionz(xuA) has the well-known similar structure

z~s,xuA!5z~s,xuA! analytic1
1

~4p!2G~s!
S a0~xuA!

s22

1
a1~xuA!

s21 D . ~37!

Employing the results written above to calculating the pole
structure of the functionzab(s11,xuA) through Eq.~28!, we
find

~4p!2zab~s11,xuA!

5~4p!2zab~s11,xuA! analytic1
1

G~s11!

3Fa0~ab!~xuA!

s21
1

a1~ab!~xuA!

s
1

gab~x!

2 S a0~xuA!

s22

1
a1~xuA!

s21
1

a2~xuA!

s D G1
1

G~s11!F2j¹a¹b

1S j2
1

4DgabD1jRabG S a0~xuA!

s21
1

a1~xuA!

s D
2

gab~x!

2G~s! S a0~xuA!

s22
1

a1~xuA!

s21 D . ~38!

We stress the presence of a simple pole fors50. The pole
expansion above written proves that the considered theory is
a z-regular theory. The theory is also asuper-z-regular
theory when the residue ats50 vanishes.

This residue is just the functionGab(xuA) which reads in
terms of heat-kernel coefficients

Gab~xuA!5
1

~4p!2 H a1~ab!~xuA!1
gab~x!

2
a2~xuA!

1F2j¹a¹b1S j2
1

4DgabD1jRabGa1~xuA!J .

~39!
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Now, it is obvious thatGab(xuA) depends on the geometry
locally. In particular it is built up by algebraic combination
of curvature tensors and their covariant derivatives. A closer
scrutiny, employing the recursive procedure to compute the
heat-kernel coefficients cited above, proves thatGab(xuA)
contains combinations of products of two curvature tensors
at most.9 Considering thatGab(xuA) is also conserved, this
means that it is obtained from an Einstein-Hilbert action im-
proved by including quadratic terms in the curvature tensors.
As we said,Gab(xuA) is the part of the renormalized stress
tensor which can be changed by finite renormalization. This
agrees with all known different stress-tensor renormalization
procedures where one finds that, in the case of a scalar field
studied here, the finite renormalization of the stress tensor
involves only curvature quadratic terms@3#. This agrees with
Wald’s theorem and the related comments reported in@1#,
too. We shall return to these facts later.

IV. CONSERVATION OF THE STRESS TENSOR
AND Gab„XzA…

Let us prove that, in the case of a super-z-regular theory
or az-regular theory, the stress tensor obtained from Eq.~18!
is conserved. By the same proof, we shall get conservation of
Gab(xuA) too.

Our strategy will be the following one. We shall consider
the function whose the value ats50 is the renormalized
stress tensor

^Tab~s,x!&:5
1

2

d

ds
Zab~s,xuA!1

1

2
Zab~s,xuA!ln~m2!

~40!

and we shall evaluate the covariant divergence for the values
of s in which the involvedz function can be expanded as a
series. We shall find that this covariant divergence vanishes.
Due to the analyticity of the considered functions, this result
can be continued as far as the physical values50.

Let us consider thez function Zab(s,x) expressed as the
series in Eq.~10!:

Zab~s,x!52sg~x!21/2(
n

8 ln
2~s11!

dln

dgab~x!
.

We have

¹aZab~s,x!52s(
n

8 ln
2~s11!¹aF22g~x!21/2

dln

dgab~x!
G .

~41!

Let us prove that

¹aZab~s,x!50 ~42!

because

¹aF22g~x!21/2
dln

dgab~x!
G50. ~43!

Due to Eqs.~41! and ~40!, this proves conservation of the
stress tensor by taking the limit ats50.

A nice proof of Eq.~43! is dealt with as follows. Let us
consider the new ‘‘action’’

Ln@g,f* ,f#:52S@g,f* ,f#

2lnE
M

d4xAg~x!f* ~x!f~x!.

This is a diffeomorphism invariant action producing the field
equations

Af~x!5lnf~x!

and

Af* ~x!5lnf* ~x!.

In particular, these equations are fulfilled by the eigenfunc-
tionsfn(x) andfn* (x). As is well known, due to diffeomor-
phism invariance of the action, one gets conservation of a
stress tensorTnab(x) evaluated on the motion solutions,
namely,on the modesfn(x) and fn* (x). Again, this stress
tensor is obtained as the functional derivative of the action
Ln with respect to the metric@with the overall factor
22g(x)21/2#. A little computation and Eq.~12! get just

Tnab~x!:522g~x!21/2
dgLn

dgab~x!
52g~x!21/2

dln

dgab~x!
.

~44!

Conservation of the left-hand side implies Eq.~43! trivially.
An important remark, in the case of az-regular theory, is

finally necessary. Conservation of the tensorZab(s,x) reads,
employing Eq.~17!,

s¹a$zab~s11,xuA!1gab~x!z~s,xuA!%50.

We get, recalling Eq.~21! and performing the limit ass→0

¹aGab~xuA!50.

This is nothing but Eq.~23!.

V. THE CONFORMAL ANOMALY

Let us prove of the conformal anomaly formula@3# by
employing a way similar to that in the previous section, in
the case of a super-z-regular theory or az-regular theory. As
usual, we have to suppose that the classical actionS@f# is
conformally invariant. As is well known, by performing an
infinitesimal local conformal transformation on both the met-
ric and the field, the following equations arise:

gab~x!Tab@f#~x!2g~x!21/2f~x!
dS

df~x!
50.

This implies that classically,working on solutions of the mo-
tion equation, the trace of the stress tensor vanishes. Simi-

9In particular, in a flat space and form50 the residue above
vanishes.
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larly, dealing with the action evaluated on the modesfn(x),
conformal invariance of the action lead us to10

gab~x!Tab@fn* fn#~x!2g~x!21/2fn~x!
dS

dfn~x!

2g~x!21/2fn* ~x!
dS

dfn* ~x!
50

or, equivalently,

gab~x!Tab@fn* fn#~x!52lnfn* ~x!fn~x!.

From this equation, employing Eqs.~5! and ~16! we get

gab~x!zab~s11,xuA!52z~s,xuA!, ~45!

where the involvedz functions can be defined as a series.
Holding our hypothesis of az-regular theory, this result

can be analytically continued arbitrarily close to the physical
values50. In particular, the left-hand side of Eq.~45! must
befinite at s50 because so is the right-hand side. This seems
quite surprising becausezab(s11,xuA) may take a pole at
s50. We conclude that the pole has to disappear due to trace
procedure in case of a conformally invariant action, namely,

gab~x!Gab~xuA!50. ~46!

We shall check this fact directly later.
It is worthwhile noticing that the trace procedure, cancel-

ing out the pole ingab(x)zab(1,xuA), gives rise to vanishing
terms sgab(x)zab8 (s11,xuA) and sgab(x)zab(s11,xuA)
whens→0. Finally, Eq.~18! through Eq.~45! produces the
well-known conformal anomaly formula@4,3#

gab~x!^Tab~x!&5z~0,xuA!5
a2~xuA!

16p2 . ~47!

VI. THERMODYNAMICS AND COMMENTS
ON THE PHASE-SPACE MEASURE

OF THE PATH INTEGRAL

In this section11 we prove that forz-regular theories or
super-z-regular theories

2
] lnZb

]b
52E

S
dxWA2gL^TL0

0 ~xW !&b , ~48!

where we have defined lnZb :5Seff , provided the~Euclidean
and Lorentzian! manifold admits a global~Lorentzian time-
like! Killing vector arising from the Euclidean temporal co-
ordinate with a periodb51/T. xW represents the spatial coor-

dinates which belong to the spatial sectionS andgL52g is
the determinant of the Lorentzian metric.

As it is clear from the notations, we are trying to interpret
Zb as apartition function.12 Notice that all quantities which
appear in the formula above do not depend on the Euclidean
or Lorentzian time because the manifold is stationary and
thus no time dependence arises from the metric. By the same
reason, the time dependence in the eigenvectors of the mo-
tion operator is exponential and thus it cancels out in all
involved localz functions. Finally,̂ TL0

0 (xW )&5^T0
0(xW )& by a

trivial analytic continuation.
Actually, it is not necessary to interpretx0 as a time co-

ordinate, the same result in Eq.~48! arises also when the
Killing vector is associated to the ‘‘spatial’’ coordinatexi ,
providedb were changed toLi , the ‘‘spatial’’ period of the
manifold along thei th direction. Assuming both the homo-
geneity alongx0 and xi we get another expected formula
trivially:

2
] lnZb

]Li
52

b

Li
E

S
dxWA2gL^TLi

i ~xW !&b . ~49!

Before we start with the proof of Eq.~48!, some important
remarks are in order. In particular, let us consider a scalar
field with an Euclidean action coupled with the scalar curva-
ture, given by

S@f#52
1

2E d4xAg~x!f~x!Af~x!

52
1

2E d4xAg~x!f~x!@2¹a¹a1m21jR~x!#f~x!

~50!

and let us assume explicitly that the~both Lorentzian and
Euclidean! metric is static, namely, g(L)0i50 besides
]0g(L)ab(x)50 ~but not necessarilyultrastatic!. In that case,
in principle @4#, there is no problem in implementing the
canonical-ensemble approach to the thermodynamic and try-
ing the interpretation of the Euclidean time-periodic path in-
tegral as a partition functionZb , and thus, in principle,

2b21Seff52b21lnZb

could be interpreted as the free energy of the field in the
considered quantum thermal state. The case of a stationary
manifold (gL0iÞ0) involves more subtleties also consider-
ing the analytic continuation into an Euclidean manifolds
which we shall not consider here@4#. Anyhow, it is worth-
while stressing that~48!, written in terms of^T0

0& and g,
holds true in the general case of a stationary Euclidean met-
ric lnZb beingSeff without assuming that this define any free
energy.

Identities such as Eqs.~48! or ~49! represent a direct evi-
dence that the definition of the partition function as a path
integral on the continued Euclidean manifold, also in the
case of acurvedspacetime, does not lead to thermodynami-
cal inconsistencies in the case of a closed spatial section of
the manifold at least. We stress that2T0

0 does not coincide

10Notice that we transform the modes employing the same trans-
formation of the fieldf(x). This transformation does not preserve
the normalization of the modes but preserves the value of the ac-
tion.

11From now on, we employ the signature (21,1,1,1) for the
Lorentzian metric and Lorentzian quantities shall be labeled by an
index L.

12T is the ‘‘statistical’’ temperature, the ‘‘local thermodynamical’’
one being given by Tolman’s relationT/Ag00 (5T/A2gL00).
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with the Hamiltonian densityH which one could expect in
the right-hand side of Eq.~48!. Anyhow, the difference of
these quantities is a spatial divergence which does not pro-
duce contributions to the spatial integral, holding our hypoth-
esis of a closed spatial section. Indeed, the case of astatic
metric we have

H52T0
01j~2gL!21/2] i@~2gL!1/2~gi j ] jf

22f2wi !#,
~51!

where wa51/2¹alnugL00u. Interpreting^f2(x)& as the limit
of z(s,xuA) ass→1, the previous equation leads to a natural

regularization of̂ *dxWAg(xW )H(x)& which coincides with the
corresponding integral of^T0

0(xW )& which appears in the right-
hand side of Eq.~48!.13

The validity of Eqs.~48! and~49! is an indirect proof that
the canonical measure suggested by Toms@7# in defining the
path integral in the phase space

)
x

$@g00~x!#21/2df~x!dP~x!%

instead of the apparently more ‘‘natural’’@18,19#

)
x

$df~x!dP~x!%

can be correctly used in defining the partition function in
terms of an Euclidean Hamiltonian path integral. Indeed it is
Toms’ measure in the phase space which produces, by the
usual momentum integration, the configuration space mea-
sure ~1! which is used as a starting point to thez-function
interpretation of the configuration space path integral@4,7,6#.

As a final comment, it is worthwhile stressing that, al-
ready on a classical ground, dropping the requirement of a
closed spatial section, the Hamiltonian could not coincide
with the integral ofT0

0 and the theory would be more prob-
lematic. This could be very important in studying the quan-
tum correction of the black-hole entropy, where the spatial
section of the spacetime has a boundary represented, in the
Lorentzian picture, by the event horizon@20#.

To conclude, let us prove the identity~48!. We just sketch
the way because that is very similar to the proofs in the
previous sections. In Appendix we shall prove the identity
~whereg0

051)

]ln

]b
522E

S
dxWAg~xW !H T0

0@fn* fn#~xW !

1
1

2
g0

0lnfn* ~xW !fn~xW !J . ~52!

From the expression above and employing definitions in Sec.
II, we get that, for the values ofs where the involvedz
functions can be expanded as series

]z~suA!

]b
5E

S
dxWAg~xW !2sH z0

0~s11,xW uA!1
1

2
g0

0z~s,xW uA!J
5E

S
dxWAg~xW !Z0

0~s,xuA!,

and thus we find

2
] lnZb

]b
52

]Seff

]b
5

1

2

d

ds
us50E

S
dxWAg~xW !Z0

0~s,x!

1
1

2
ln~m2!E

S
dxWAg~xW !Z0

0~0,x!

52E
S
dxWAg^T0

0~xW !&b ,

that is, Eq.~48!. Notice that bothZb andT0
0 may be affected

by arbitrarym-dependent terms. A comparison between both
sides of Eq.~48! to make it explicit in terms ofz functions
leads us to the identity for the factors of ln(m2)

]z~0uA!

]b
52E

S
dxWAgG0

0~xW uA!, ~53!

where Gab(xuA) is the previously introduced residue of
zab(s11,xuA) at s50 ~21!.

VII. EXPLICIT COMPUTATION OF Gab„XzA… IN A
z-REGULAR THEORY: THE CONFORMALLY

COUPLED CASE

Let us consider the case of a massless scalar field confor-
mally coupled in a generic~closed Euclidean! four dimen-
sional spacetime. Because a particular discussion on the form
of ^Tab& depends on the particular manifold we are dealing
with, we shall consider, in the general case of a massless
conformally coupled field, only the general form of the pole
Gab(s,xuA) employing the equations founds in Sec. III. We
shall find thatGab(s,xuA) has a vanishing trace~and thus the
conformal anomaly formula follows as we saw previously!,
it is conserved and depends locally on the geometry. In par-
ticular it is quadratic in the curvatures and can be thought of
as a generalization of the geometrical term in Eintein’s equa-
tions. Moreover, we shall find that the explicit form of
Gab(xuA) is just that required by other renormalization pro-
cedures.

We remind the reader the first and the second heat kernel

13One has to be very careful in dealing with the limit ass→1 ~I
am grateful to Iellici who has focused my attention on this general
problem! because as previously discussed, in four dimensions,
z(1,xuA) usually diverges as it follows from heat kernel theory@5#,
except for the case of a massless field conformally coupled toR or
a massive field with an opportune coupling withR in a curvature-
constant manifold. Actually, one has to calculatefirst the spatial
integral for sÞ1 and thus all terms containing the integral of the
derivative ofz(s,xuA) on ]S vanish,thenone can perform the limit
ass→1 which is trivial.
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off-diagonal coefficient in the case of a massless field. These
coefficients appear in@3#14

g~y!21/4a1~x,yuA!5S 1

6
2j DR~x!2

1

2S 1

6
2j DR;a~x!za

2
1

3
Aab~x!zazb, ~54!

g~y!21/4a2~x,yuA!5
1

2S 1

6
2j D 2

R2~x!2
1

3
Ac

c~x!, ~55!

wherez5y2x are Riemannian coordinates with the origin
on the pointx, the semicolon indicates the covariant deriva-
tive and

Aab~x!:5
1

2S 1

6
2j DR;ab~x!1

1

120
R;ab~x!2

1

40
Rab;c

c ~x!

1
1

30
Ra

c~x!Rcb~x!2
1

60
Rab

cd~x!Rcd~x!

2
1

60
Ra

cde~x!Rcdeb~x!. ~56!

Let us consider the conformally coupled case, i.e.,j51/6.
Then

a1~xuA!50, ~57!

a2~xuA!52
1

3
Ac

c~x!, ~58!

a1~a,b!~xuA!5
2

3
Aab~x!. ~59!

Employing Eq.~39! as well as the coefficients above, we find

3~4p!2Gab~xuA!52Aab~x!2
gab~x!

2
Ac

c~x!. ~60!

It is obvious that, just as we expected,

gab~x!Gab~xuA!50.

As we said previously, this is related to the conformal
anomaly.

Let us make the form ofGab(xuA) explicit. A few trivial
calculations15 produce the result

Gab~xuA!5
1

60~4p!2F ~2!Hab~x!2
1

3
~1!Hab~x!G . ~61!

The tensors(1)Hab(x) and (2)Hab(x) are well-known con-
served tensors obtained by varying geometrical actions built
up by quadratic curvature tensor terms. The right-hand side
of Eq. ~61! is, up to constant overall factors, the only linear
combination of those tensor which is traceless. Explicitly

~1!Hab~x!52
1

g1/2

d

dgabE d4xAgR2~x!

52R;ab~x!22gab~x!DR~x!

1
1

2
gab~x!R2~x!22R~x!Rab~x!

and

~2!Hab~x!52
1

g1/2

d

dgabE d4xAgRcd~x!Rcd~x!

5R;ab~x!2
1

2
gab~x!DR~x!2DRab~x!

1
1

2
gab~x!Rcd~x!Rcd~x!22Rcd~x!Rcdab~x!.

We remind the reader that the term ln(m2)Gab(xuA) repre-
sents the finite renormalization part of ourz-function renor-
malization procedure. The expression of the finite renormal-
ization part we have found in Eq.~61! is exactly the same
which appears in other regularization and renormalization
procedures~e.g., dimensional regularization! @3#.

VIII. THE SIMPLEST CASE: A BOX IN THE FLAT SPACE

Let us consider the simplest example of a super-z-regular
theory. That is a massless boson gas at the inverse tempera-
ture b in a flat box with a very large spatial volumeV. This
is the same example considered by Hawking in@4# as far as
thez-function regularization of the effective action was con-
cerned; rather, we will deal with the stress tensor. For the
sake of simplicity, we shall deal with the componentT00 of
the stress tensor only.

The Euclidean action of the field is simply

S52
1

2E d4xdab]af]bf,

14It is very important to note that the coefficients reported in@3#
are referred to the Lorentzian metric. The choice of the signature
employed in@3# is (1,21,21,21) and the definition of the Rie-
mann tensorRbcd

a takes the opposite sign with respect to the more
usual choice@17# which we are employing. To pass from the
Lorentzian convention in@3# to our Euclidean convention is suffi-
cient to use the two formal transformationsRbcd8a →2Rbcd

a ,
gab8 →2gab , where the primed quantities are those Lorentzians
which appear in@3# and the others are our Euclidean quantities. The
definitions of Rab and R do not change; we haveRab :5Racd

c ,
R:5Rc

c in both formalisms.

15Taking also account of the ‘‘topological’’ identity@3,17#
1/2gab(x)Rcde f(x)Rcde f(x) 22Racde(x)Rb

cde(x) 2 4DRab(x) 1 2
R;ab(x) 1 4Rac(x)Rb

c(x) 2 4Rcd(x)Rcadb(x)52 (1)Hab(x)14(2)

Hab(x).
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wheredab is the usually flat Euclidean metric. Notice that all
coordinates define Killing vectors. The stress tensor reads
simply

Tab~x!5]af~x!]bf~x!2
1

2
dab]

cf~x!]cf~x!.

We shall consider the box as a torus in order to use our
method. The motion operator is the trivial Laplacian with the
sign changedA52D, and we have the set of normalized
eigenvectors

fkW ,n~x!:5
eixW•kW2 iknx0

AbV
, ~62!

wherexW[(x1,x2,x3) andkW[(k1,k2,k3), eachki being quan-
tized by the usual torus quantization. Alsokn is quantized
trivially by kn52pn/b, where n50,61,62, . . . . Obvi-
ously, we have also

AfkW ,n5ln,kWfkW ,n~x!, ~63!

where

ln,kW :5kW21kn
2 . ~64!

The local zeta function reads

z~s,xuA!5~bV!21(
n,kW

ln,kW
2s

~65!

and finally, the z̄ 00(s,xuA) function @see Eq.~29!# reads
similarly

z̄ 00~s,xuA!5~bV!21(
n,kW

4p2b22n2ln,kW
2s . ~66!

Proceeding as discussed in@4#, we can rewrite the formulas
above, in the limit of a very largeV,

z~s,xuA!5
4p

~2p!3b
H E

e

1`

dkk222s

12(
n51

1` E
e

1`

dkk2~4p2b22n21k2!2sJ
and

z̄ 00~s,xuA!5
16p4

~2p!3b3H Ee

1`

dkk222s

12(
n51

1`

n2E
e

1`

dkk2~4p2b22n21k2!2sJ .

The final results are~see@4#!

z~s,xuA!52
8p

~2p!3b
~2pb21!322szR~2s23!

3~222s!21
1

2

G~1/2!G~s23/2!

G~s21!
, ~67!

and @through Eq.~28!#

z00~s11,xuA!5 z̄ 00~s11,xuA!2
1

2
z~s,xuA!

5
32p4

~2p!3b3
~2pb21!122szR~2s23!

3~22s!21
1

2

G~1/2!G~s21/2!

G~s!

1
4p

~2p!3b
~2pb21!322szR~2s23!

3~222s!21
1

2

G~1/2!G~s23/2!

G~s21!
. ~68!

We have dropped parts dependent on the infrared cutoffe by
putting e→01 after one has fixed Res large finite, executed
the integration and performed the analytic continuation of
this result tos50 ~see@4#!. zR(s) is the usual Riemann zeta
function which can be analytically continued in the whole
complex plane except for the only singular point ats51.

We can analytically continue the functions above in the
s-complex plane. In particular, notice that both functions can
be analytically continued in a neighborhood ofs50 includ-
ing this point. The apparent pole ofz00(s11,xuA) at s50 is
canceled out by the pole ofG(s) in the denominator; this
means thatz00(s11,xuA) takes no poles ins50 and defines
a super-z-regular theory. Conversely, thez function in Eq.
~67! vanishes ats50.

As a final comment, we notice that the parameterm will
disappear from the final renormalized effective action and
the final renormalized 00 component of the stress tensor. The
00 component of the renormalized stress tensor can be now
computed by Eq.~19!, taking the value ats50 of the func-
tion in Eq. ~68!. We have

2^T00~x!&52^T0
0~x!&52^TL0

0 ~x!&52z00~1,xuA!

5
p2

30b2
. ~69!

This is the well-known energy density of massless scalar
bosons in a large box.

The well-known partition function can be computed by
the usual method throughz(s,xuA) and reads@4#

Zb5eb23p2V/90. ~70!

It is very simple to verify Eq.~48! by using Eqs.~69! and
~70!.

IX. EINSTEIN’S CLOSED STATIC UNIVERSE

The ultrastatic metric of the~Euclidean! Einstein closed
static universe is@3#
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dsECS
2 5du21gi j dxidxj5du21a2~dX21sin2XdV2

2!.

X ranges from 0 top anddV2
2 is the usual metric onS2. The

time coordinateu ranges from 0 tob<1`. b is the inverse
temperature of the considered thermal state referred to the
Killing vector generated by the Lorentzian timeiu. The re-
lated vacuum state corresponds to the choiceb51`. The
curvature of the space isR56/a2 and the Ricci tensor reads
Ri j 52gi j /a2, the remaining components vanish.

This manifold is closed, namely, compact without bound-
ary. Also the spatial section atu5 constant are closed and
their volume isV52p2a3.

Let us consider a conformally coupled massless scalar
field propagating within this manifold. We want to compute
its stress tensor referred to the thermal states pointed out
above, in particular we want to get the vacuum stress tensor
which is known in the literature@3#. Notice that all the re-
quired hypotheses to implement the stress-tensorz-function
approach are fulfilled: the Euclidean manifold is static and
closed.

Let us build up the functionzab(s,xuA) necessary to get
^Tab(x)&b through Eq.~18! or Eq. ~19!. The general expres-
sion of zab(s,xuA) is given in Eq.~28!. We can rewrite it
down as

zab~s,xuA!5 z̄ ab~s,xuA!2j¹a¹bz~s,xuA!1~j2 1
4 !

3gab~x!Dz~s,xuA!1jRab~x!z~s,xuA!

2
1

2
gab~x!z~s21,xuA!, ~71!

where, in the sense of the analytic continuation of both sides
in the wholes complex plane:

z̄ ab~s,xuA!5(
k

8 lk
2s¹afk* ~x!¹bfk~x!. ~72!

We are interested in the casej5jc :51/6 ~conformal cou-
pling in four dimensions!. The localz function is similarly
given by

z~s,xuA!5(
k

8 lk
2sfk* ~x!fk~x!. ~73!

The functionsfk(x) define a normalized complete set of
eigenvectors of the Euclidean motion operator

Afk5lkfk ,

where, in our case

A52]u
22a22DS3

1jcR.

The explicit form of the considered eigenvalues and Kronek-
er’s d-normalized eigenvectors is well known@3#. In particu-
lar we have k[(n,q,l ,m) where n50,61,62,63, . . . ,
q51,2,3, . . . , l 50,1,2, . . . ,q21, m50,61,62, . . . ,6 l ,
and

lk5S 2pn

b D 2

1S q

aD 2

. ~74!

The following relations, which hold true for normalized
eigenvectors, are also useful. We leave the proofs of these to
the reader:

(
lm

fk* ~x!fk~x!5
q2

Vb
, ~75!

notice that the right-hand side of the equation above is noth-
ing but the degeneracy of each eigenspace times 1/2bV ~or
1/bV whenn50);

(
lm

] ifk* ~x!] jfk~x!5gi j ~x!
q2~q221!

3Vba2
~76!

and (x0:5u)

(
lm

]0fk* ~x!]0fk~x!5
~2pnq!2

Vb3
. ~77!

We have also, because of the homogeneity of the space,

z~s,xuA!5
z~suA!

Vb
, ~78!

wherez(suA) is the globalz function obtained by summing
over lk

2s as usual:

z~suA!5(
k

8 lk
2s . ~79!

It is possible to relate the functionz̄ ab(s,xuA) to the func-
tion z(s,xuA). Indeed, we notice that

lk
2sS 2pn

b D 2

5
b

2~s21!

]lk
2~s21!

]b
.

The identity above inserted into the definition~72! for
a5b50, taking Eq.~77! into account, yields

z̄ 00~s11,xuA!5
1

2Vs

]

]b
z~suA!, ~80!

or, equivalently,

z00~s11,xuA!5 z̄ 00~s11,xuA!52
a

2Vbs

]

]a
z~suA!

1
z~suA!

Vb
, ~81!

which follows from the identity above taking account of

2sz~suA!5b
]

]b
z~suA!1a

]

]a
z~suA!. ~82!

The last identity is a simple consequence of the expression of
the eigenvalues~74!.

Concerning the componentsi j ~the remaining compo-
nents vanish! we can take advantage from the identity
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lk
2sq25

3a3

2~s21!

]lk
2~s21!

]a
. ~83!

Inserting this into Eq.~72! for a5 i ,b5 j , taking Eq. ~76!
into account, we obtain

z̄ i j ~s11,xuA!5
gi j ~x!

3Vba2F2z~s11uA!1
a3

2s

]

]a
z~suA!G .

~84!

To get the renormalized stress tensor, we have to compute
z(suA) or equivalentlyz(s,xuA) only. The expansion of the
latter over the eigenvalues reads

z~s,xuA!5
2

Vb (
q51

1`

(
n51

1`

q2F S 2pn

b D 2

1S q

aD 2G2s

1
1

Vb (
q51

1`

q2F S q

aD 2G2s

5
2

Vb (
q51

1`

(
n51

1`

q2F S 2pn

b D 2

1S q

aD 2G2s

1
a2s

Vb
zR~2s22!. ~85!

The lastz function is Riemann’s one.
Let us introduce the Epstein function@5# obtained by con-

tinuing ~into a meromorphic function! the series in the vari-
ables:

E~s,x,y!:5 (
n,m51

1`

~x2n21y2m2!2s. ~86!

We obtain trivially

(
n,m51

1`

m2~x2n21y2m2!2s52
1

2y~s21!

]

]y
E~s21,x,y!.

Employing such an identity, we can rewrite the expression
~85! of z(s,xuA) as

z~s,xuA!5
a2s

Vb
zR~2s22!1

a3

Vb~s21!

]

]a
ES s21,

2p

b
,
1

aD .

~87!

No expression of the Epstein function in terms of elementary
functions exists in literature. There exists a well-known ex-
pansion in terms of MacDonald functions@5#

E~s,x,y!52
1

2
y22szR~2s!1

ApG~s21/2!

2xG~s!
y122szR

3~2s21!1
2Apx22s

G~s! (
m,n51

1` S pxm

yn D s21/2

3Ks21/2S 2pynm

x D . ~88!

Notice that, due to the negative exponential behavior of
MacDonalds functionsKa(x) at large arguments, the last se-
ries defines a function which is analytic on the wholes com-
plex plane. The structure of the poles of the Epstein function
is due to theG and~Riemann’s! z functions in the first line of
the formula above. In particular there are only two simple
poles ats51/2 ands51.

Taking account of the expression above and Eq.~87!, we
find

z~s,xuA!5
Ap

4pV

G~s23/2!

G~s!
~2s23!a2s21zR~2s23!

2
a

VG~s!S b

2p D 2s22

J~s,b/a!, ~89!

where the functionJ(s,b/a) given by

J~s,z!52p
d

dz (
m,n51

1` S 2p2m

zn D s23/2

Ks23/2~nmz!, ~90!

is analytic throughout the s complex plane and, due to the
large argument behavior of the MacDonald functions, van-
ishes asb→1` as (b/a)5/22sexp2b/a when Res>0. Re-
minding the reader of the relation

2
d

du
Ka~u!5Ka21~u!1Ka11~u!, ~91!

the functionJ(s,z) and itsz derivative~see below! can be
evaluated numerically at the physical valuess50 ands51
~see below!.

The expression~89! is very useful as far as the low-
temperature thermodynamics in our manifold is concerned.
Notice that, changing the role ofx and y in the expression
~90!, one may get an expression forz(s,xuA) useful at large
temperatures.

Some remarks on Eq.~89! are in order. First notice that,
due to theg functions in the denominators,z(s,xuA)→0 as
s whens→0, and thus no trace anomaly appears and neither
renormalization scalem remains in the renormalized effec-
tive action. The foundz function is analytic throughout thes
complex plane except for the points52 where a simple pole
appears. Employing Eqs.~80! and ~84! we find that
zab(s,xuA) is analytic ats51 and thus the theory is asuper-
z-regular theory.

Employing the definition~19!, Eq. ~71!, and the obtained
expression forzab(s,xuA), a few calculations lead us to

^TLa
b ~x!&b5^Ta

b~x!&b[T~b!S 21,
1

3
,
1

3
,
1

3D , ~92!

where

T~b!52
1

2V

]

]b

z~suA!

s U
s50

5
1

480a4p2

1
1

a4

d

dzU
z5b/a

J~0,z!

z
. ~93!

7810 56VALTER MORETTI



Notice that the last derivative term vanishes very fast at low
temperatures.

Now, one can prove very simply that the obtained stress
tensor is conserved, has a vanishing trace and reduces to the
well-known vacuum stress tensor in the closed Einstein uni-
verse@3# asb→1`

^Ta
b~x!& vacuum[

1

480a4p2S 21,
1

3
,
1

3
,
1

3D . ~94!

Taking account ofz(0uA)50, we can rewrite Eq.~93! as

T~b!52
1

2V

]

]b
z8~0uA!52

1

V
lnZb ,

where the prime means thes derivative. Hence, the relation
~48! holds true trivially. The general relation between the
Hamiltonian density and the stress-tensor energy density in
case of static coordinates reads16

H52T0
01jg21/2] i@g1/2~gi j ] jf

22f2wi !#, ~95!

wherewa51/2¹alng00. wa vanishes in the present case. Let
us employ such a relationship to evaluate the averaged value
of the quantum Hamiltonian. We have to interpret Eq.~95!
as

^H&b52^T0
0&b1jg21/2] i@g1/2~gi j ] j^f

2&b2^f2&bwi !#.
~96!

As is well known, provided the localz function is regular at
s51, we can definêf2(x)&5z(1,xuA). This is the case and
we find

^f2~x!&b52
1

48p2a2
2

1

2p2a2
J~1,b/a!.

This reduces to the known value asb→1` @3#. Notice that,
due to the homogeneity of the space, there is not dependence
on x and thus all derivatives in Eq.~96! vanish yielding
^H&b52^T0

0&b . Then Eq.~48! can be rewritten in terms of
the averaged Hamiltonian in the right-hand side

2
] lnZb

]b
5^H&b . ~97!

X. EINSTEIN’S OPEN STATIC UNIVERSE

The ultrastatic metric of the~Euclidean! Einstein closed
static universe is@3#

dsEOS
2 5du21gi j dxidxj5du21a2~dX21sinh2XdV2

2!.

X ranges from 0 to1` anddV2
2 is the usual metric onS2.

The time coordinateu ranges from 0 tob<1`. Again,b is
the inverse temperature of the considered thermal state re-

ferred to the Killing vector generated by the Lorentzian time
iu and the related vacuum state corresponds to the choice
b51`. The curvature of the space isR526/a2 and the
Ricci tensor readsRi j 522gi j /a2, the remaining compo-
nents vanish. This manifold is not closed and the spatial
sections do not have a finite volume.

Let us consider a conformally coupled massless scalar
field propagating within this manifold. As in the previously
considered case, we want to compute its stress tensor re-
ferred to the thermal states, in particular we want to get the
vacuum stress tensor. Notice that not all the required hypoth-
eses to implement the stress-tensorz-function approach are
fulfilled. The manifold has no boundary but it is not com-
pact. We expect to find a continuous spectrum as far as the
Euclidean motion operator is concerned.

However, we shall find that our method does work also in
this case. Notice that, now, we have to assume Eq.~18! or
Eq. ~19! by definition and check on the obtained results fi-
nally.

The form of the eigenvalueslk of the conformally
coupled massless Euclidean motion operator

A52]u
22a22DH3

1jcR,

is well known @23,3#. We have, exactly as in the previous
case,

lk5S 2pn

b D 2

1S q

aD 2

, ~98!

where k[(n,q,l ,m) and n50,61,62,63, . . . , q
P@0,1`), l 50,1,2,3, . . . , m50,61,62, . . . ,6 l . The de-
generacy depends only on the indexesl andm.

The following relations which hold true for eigenvectors
fk(x) ~which are Dirac’sd normalized inq and Kroneker’s
d normalized in the remaining variables! are also useful. We
leave the proofs of these to the reader~see also@23#!:

(
l ,m

fk* ~x!fk~x!5
q2

2p2a3b
, ~99!

(
l ,m

] ifk* ~x!] jfk~x!5gi j ~x!
q2~q211!

6p2a5b
, ~100!

and (x0:5u)

(
l ,m

]0fk* ~x!]0fk~x!5
~2pnq!2

2p2a3b3
. ~101!

Notice that the globalz function simply does not exist be-
cause the infinite spatial volume of the manifold. Anyhow,
we can compute the localz function as

z~s,xuA!:5E
0

1`

dq (
l ,m,n

fk* ~x!fk~x!lk
2s . ~102!

It is convenient to separate the contribution due to the terms
with n50 and introduce, as far as these terms are concerned,
a cutoff e at low q. A few trivial manipulations of the ex-
pression above yields

16Notice that we are writing Lorentzian relations employing the
Euclidean metric. We could pass to use the more usual Lorentzian
metric simply through the identitiesg52gL , g0052gL00 and
gi j 5gL

i j .
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z~s,xuA!5
a2s23

2p2b
E

e

1`

dqq222s1
1

4p2b
S b

2p D 2s23

3zR~2s23!
G~1/2!G~s23/2!

G~s!
. ~103!

The apparent divergent integral ase→01 can be made
harmless as in@4# putting e→01 after one has fixed Res
large finite, executed the integration and performed the ana-
lytic continuation of this result tos50. This procedure gen-
eralize the finite volume prescription to drop the null eigen-
values in defining thez function for the case of an infinite
spatial volume. We have finally

z~s,xuA!5
1

8p2Ap
S b

2p D 2s24

zR~2s23!
G~s23/2!

G~s!
.

~104!

Notice thatz(0,xuA)50 and thus no renormalization scale
appears in the~infinite! partition function.

Let us evaluatez̄ ab(s,xuA). The only nonvanishing com-
ponents are 00 andi j . In the first case we have directly from
the definitions~omitting the terms withn50 as above!

z00~s11,xuA!5 z̄ 00~s11,xuA!

5E dq (
l ,m,n

S 2pn

b D 2

lk
2sfk* ~x!fk~x!

5
1

8p2Ap
S b

2p D 2s24

zR~2s24!
G~s21/2!

G~s11!
.

~105!

In order to compute the remaining components ofz̄ ab we
can use Eq.~100! and the relation in Eq.~83! once again. We
find

z̄ i j ~s11,xuA!5
1

3a5
gi j ~x!z~s11,xuA!

1
1

2s
gi j ~x!z~s,xuA!. ~106!

We have found thatzab(s,xuA) is analytic ins51, hence the
theory is asuper-z-regular theory once again. We can use
Eq. ~19! to compute the stress tensor.

Through Eqs.~71! and ~19! we find finally

^TLa
b &b5^Ta

b&b[T~b!S 21,
1

3
,
1

3
,
1

3D , ~107!

where

T~b!5
p2

30b4
. ~108!

The stress tensor in Eq.~107! is conserved and traceless as
we expected from the general theory.^Ta

b&b vanishes as
b→1`, this agrees with the known result@3# that the stress

tensor in the vacuum state of the open Einstein universe
vanishes. Notice that the found stress tensor, in the consid-
ered components, is exactly the same than in Minkowski
spacetime.

Let us finally consider Eq.~48!. In this case the left-hand
side of Eq.~48! does not exist because that simply diverges.
Nevertheless, we can notice that the divergence of the parti-
tion function is due to the volume divergence only and the
remaining factor does not depend on the position on the spa-
tial section; namely,

lnZb5VlnZb5V3S b
1

2
z8~0,xuA! D5V3

p3

90b3
,

~109!

whereV diverges and, actually,z8(0,xuA) does not depend
on x due to the homogeneity of the spatial manifold. This is
the same situation than arises in the Minkowski spacetime.
We expect that, although Eq.~48! does not make sense, a
local version could yet make sense. Indeed, one can get very
simply from Eqs.~107! and ~109!

2
]VlnZb

]b
52V^T0

0&b52E
V
dxWAg^TL0

0 ~xW !&b ~110!

on any finite volumeV. As in the previously discussed case,
^f2(x)&b can be obtained by evaluating the localz function
at s51, we get

^f2~x!&b5
1

12b2
. ~111!

Notice that this vanishes asb→1`; namely, in the vacuum
state as is known@23#. Furthermore, it does not depend onx
and thus, through Eq.~95! and noticing thatwa50 ~see the
Einstein closed universe case!, ^T0

0&b52^H&b . We can
write finally, with an obvious meaning

2
]VlnZb

]b
5^HV&b . ~112!

XI. THE CONICAL MANIFOLD

Let us consider the Euclidean manifoldCb3R2 endowed
with the metric

ds25r 2du21dr21dz1
21dz2

2 , ~113!

where (z1 ,z2)PR2, r P@0,1`), uP@0,b) when 0 is identi-
fied with b. Cb3R2 is a cone with deficit angle given by
2p2b. That is the Euclidean manifold corresponding to the
finite temperature (T51/b) quantum field theory in the
Rindler space. In such a caseu is the Euclidean time of the
theory. This is also a good approximation of a large mass
black hole near the event horizon. Equivalently, considering
z1 as the Euclidean time, the metric above defines the Eu-
clidean section~at zero temperature! of a cosmic string back-
ground. In this case (2p2b)/8pG is the mass of the string.

The metric in Eq.~113!, considered as the Rindler Euclid-
ean metric, is static but notultrastatic. Another important
point is that such a metric is not homogeneous in the spatial
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section. The considered manifold is flat everywhere except
for conical singularities which appear atr 50 wheneverb
Þ2p. These singularities produce well-known Dirac’sd sin-
gularities in the curvatures of the manifolds atr 50 @24#. The
physics involved in such anomalous curvature is not com-
pletely known. Actually, we shall see shortly that one can
ignore completely the anomalous curvature dealing with the
stress tensor renormalization also considering nonminimal
coupling with the scalar curvature.

As is well known, the particular valuebH52p defines
the Hawking-Unruh temperature in the Rindler/large-mass-
black-hole interpretation, the corresponding thermal state be-
ing nothing but the Minkowski vacuum or Hartle-Hawking
~large mass! vacuum. The thermal Rindler stress tensor
~renormalized with respect to the Minkowski vacuum! which
coincides, in the Euclidean approach, to the zero-temperature
cosmic-string stress tensor~renormalized with respect to the
Minkowski vacuum! has been computed by the point split-
ting approach@25#.

Such results have only been partially reproduced by some
z-function or ~local! heat kernel approach@26,11#. This is
because these approaches were employed to renormalize the
effective action only, and thus the stress tensor was com-
puted assuming further hypotheses on its form or assuming
some statistical-mechanical law as holding true@26,11#.

Recently, in@14#, also the massive case has been consid-
ered by employing an off-diagonalz-function approach and
a subtraction procedure similar to that is employed within the
point-splitting framework. Here, we shall consider the mass-
less case only. We shall check our approach for every value
of the curvature coupling proving that the same results got
by the point-splitting approach naturally arise. The important
point is that, due to the complete independence of the
method from statistical mechanics, we shall be able to dis-
cuss the statistical mechanics meaning~if it exists! of our
resultsa posteriori.

Let us consider first the case of theminimal coupling
j50. This avoids all problems involved dealing with the
singular curvature on the tip of the cone generated by the
conical singularity. Thez function of the effective action in
conic backgrounds has been computed by several authors
@27# also in the massive scalar case@14# and for photons and
gravitons@12#.

Discarding the singular curvature by posingj50, a com-
plete normalized set of eigenvectors of the massless Euclid-
ean motion operator17 A52DCb3R2 is @27#

fq~x!5
1

2p
Al

b
eikzei ~2pn/b!uJ2punu/b~lr !, ~114!

where z5(z1 ,z2), q5(n,k,l), n50,61,62, . . . ,
k5(k1 ,k2)PR2 lP@0,1`). The considered eigenfunctions
are Kroneker’sd normalized in the indexn and Dirac’sd
normalized in the remaining indices. The corresponding ei-
genvalues are

lq5l21k2. ~115!

The z function of A has been computed explicitly and reads

z~s,xuA!5
r 2s24

4pbG~s!
I b~s21!. ~116!

I b(s) is a well-known meromorphic function@27# carrying a
simple pole ats51. Known values are also

I b~0!5
1

6n
~n221!, ~117!

I b~21!5
1

90n
~n221!~n2111!, ~118!

where we definedn:52p/b.
Notice thatz(0,xuA)50 and thus no scale remains into

the renormalized local effective action.^f2(x)& can be com-
puted by evaluating the localz function ats51.

The function z̄ ab(s,xuA) can be computed making use of
intermediate results contained in@14#. A few calculations
lead us to

z̄ uu~s,xuA!5
r 2s24G~s23/2!

4pApbG~s!
Hb~s21!, ~119!

z̄ rr ~s,xuA!5
1

2r
] r r ] rz~s,xuA!2

1

r 2
z̄ uu~s,xuA!

14p~s22!zD56~s,xuA!, ~120!

z̄ z1z1
~s,xuA!5 z̄ z2z2

~s,xuA!52pzD56~s,xuA!. ~121!

All remaining components vanish. The meromorphic func-
tion Hb(s) has been defined in@14#, it has a simple pole at
s52 and known values are

Hb~0!5
1

120n
~n421!, ~122!

Hb~1!52
1

12n
~n221!. ~123!

The functionzD56(s,xuA) is thez function of the effective
action inCb3R4 @14#. It reads

zD56~s,xuA!5
r 2s26

~4p!2bG~s!
I b~s22!. ~124!

From the above equations and Eq.~71! it follows that
z̄ ab(s,xuA) is analytic ats51 and thus the theory is super-z
regular once again. Hence, we can use~19! to compute the
stress tensor. Trivial calculations employing Eq.~71! with
j50 and Eq.~19! produce

17We are considering a particular self-adjoint extension of the
formally self-adjoint Laplace-Beltrami operator in the conical mani-
fold. The general theory of these extensions has been studied in
@28#.
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^Ta
b~x!j50&b[

1

1440p2r 4H F S 2p

b D 4

21Gdiag~23,1,1,1!

220F S 2p

b D 2

21GdiagS 3

2
,2

1

2
,1,1D J .

~125!

This is the correct result arising by the point-splitting ap-
proach@25# in the case of the minimal coupling. Let us prove
that our method reproduces also the remaining cases.

In general, the relationship between the minimally
coupled stress tensor and the generally coupled stress tensor
can be trivially obtained by varying the action containing the
usual coupling with the curvature, it reads

Tab~x!j5Tab~x!j501jF S Rab2
1

2
gabRDf2~x!

1gabDf2~x!2¹a¹bf2~x!G . ~126!

It is worthwhile stressing that the lastj-parametrized term
appears also when the manifold is flat. Within the quantum
field theory, we can interpret quantitatively this relationship
as

^Tab~x!j&5^Tab~x!j50&1j^Q~x!ab&,

where

^Q~x!ab&:5F S Rab~x!2
1

2
gab~x!R~x! D ^f2~x!&

1gabD^f2~x!&2¹a¹b^f
2~x!&G . ~127!

Now ^Tab(x)j50&b is known by Eq. ~125!, Rab(x)50,
R(x)50 and thus we can computêTab(x)j&b employing
the known value of̂ f2(x)&b . We have, through Eq.~116!

^f2~x!&b5z~1,xuA!5
1

48p2r 2F S 2p

b D 2

21G . ~128!

The final result is exactly that of the point-splitting approach:

^TLa
b ~x!j&b5^Ta

b~x!j&b[
1

1440p2r 4H F S 2p

b D 4

21Gdiag

~23,1,1,1!120~6j21!F S 2p

b D 2

21GdiagS 3

2
,

2
1

2
,1,1D J . ~129!

The same result arises by employing the definition of
zab(s,xuA) given in Eq. ~71! with the chosen value ofj,
provided z̄ ab(s,xuA) and z(s,xuA) are those computed in
the minimal coupling case. This means that, concerning the
renormalization of the stress tensor, the presence of the coni-
cal singularity which determines a singular curvature on the
tip of the cone is completely irrelevant. Concerning the
quantum state, there is no difference between different cou-

plings with the curvature. Thej-parametrized term remains
as a relic in the stress tensor because of theclassicalformula
~126!. This term does not come out from the quantum state
once one fixed the renormalization procedure. We see that
the renormalization of the stress tensor can be managed com-
pletely by our Euclideanz-function approach on the physical
manifold instead of theoptical manifold not depending on
the presence of the conical singularity in the Euclidean mani-
fold.

The knowledge of the averaged and renormalized stress
tensor makes us able to compute the averaged and renormal-
ized Hamiltonian of the system. The Hamiltonian of the
theory should not depend on the parameterj because that
cannot appear into the Lorentzian action, the manifold being
flat. Notice that there is no conical singularity in the Lorent-
zian theory. Not depending onj, the classical Hamiltonian
density coincides with the changed sign energy component
of the stress tensor in the minimal coupling. Indeed, employ-
ing Eq. ~95!, we can write down

^H~x!&b52^T0
0~x!j50&b

5
3

1440p2r 4F S 2p

b D 4

210S 2p

b D 2

211G . ~130!

Let us finally consider the problem of the validity of the
relation Eq.~48! in some sense. The spatial section is neither
finite nor homogeneous, we could have problems with the
use of cutoffs. It is not obvious that such a relation as Eq.
~48! can hold true in our case considering cutoff smeared
quantities as18

lnZbe :5E
r .e

d4xAg
1

2

d

dsU
s50

z~s,xuA!, ~131!

Qe~b!:5E
r .e

d3xAg^Q0
0~x!&b , ~132!

^He&b :5E
r .e

d3xAg^H&b , ~133!

and, finally,

Eej~b!:52E
r .e

d3xAg^T0
0~x!j&b5E

r .e
d3xAg^H&b

2jQe~b!. ~134!

In particular we have from Eq.~116!

lnZbe5
Ab

2880p2e2F S 2p

b D 4

110S 2p

b D 2

211G , ~135!

where A is the area of the event horizon, the regularized
volume of the spatial section isVe5A/(2e2). Notice that,

18Notice that also the areaA of the horizon is a cutoff because the
actual area is infinite. This cutoff is a trivial overall factor. We shall
omit this cutoff as an index in the following formulas for sake of
simplicity.
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actually, the conserved chargeQe(b) is a boundary integral
which diverges on the conical singularity. Indeed, it can be
expressed by the integration of Eq.~95! and it should be
discarded if the manifold were regular. Notice that the choice
of values ofj determines different values ofEje due to the
j-parametrized boundary termjQe in the stress tensor. Con-
versely, lnZbe does not depend onj.

If something similar to Eq.~48! holds true for a fixed
value ofe, it does just for a particular and unique value ofj.
Actually, a few calculations through Eq.~129! prove that,
not depending on the value ofe,

2
] lnZbe

]b
5Eej51/9~b!1Ee5^He&b2

1

9
Qe~b!1Ee .

~136!

The last term is an opportune constant energy

Ee5
A

120p2e2
.

The presence of such an added constant could be expected
from the fact that the energyEej is renormalized to vanish at
b52p instead ofb51`. Conversely, there is no trivial
explanation of the presence of theb-dependent term
21/9Qe(b). Then, in the considered case, in the right-hand
side of Eq.~48! does not appear the Hamiltonian which, at
least classically, corresponds to the valuej50 as discussed
above.

One could wonder whether or notZbe defined in Eq.
~131! can be considered a~regularized! partition function of
the system. The simplest answer is obviously not because a
fundamental relationship of statistical mechanics does not
hold true.

In general, one could think that this negative result arises
because we have dropped a contribution due to the conical
singularity. This singularity produces a Diracd in the curva-
ture on the tip of the cone in the Euclidean manifold. The
integral of the Lagrangian get a contribution from this term
in the case of a nonminimal coupling with the curvature. The
problem of the contributions of these possible terms, in par-
ticular in relation to the black-hole entropy has been studied
by several authors~see @20,21,30–33#, and references
therein!, anyhow, in this paper we shall not explore such a
possibility.

In any cases, it is worthwhile stressing that the found
Euclidean effective action~135! is the correct one in order to
get thethermalrenormalized stress tensor by~formal! varia-
tion with respect to the background metric. We restress that
the obtained stress tensor is exactly that obtained by the
point-splitting approach.

The question of whether or not the effective action com-
puted by thez function defines also the logarithm of the
partition function ~renormalized with respect to the
Minkowski vacuum! is not a simple question. The problem is
interesting on a physical ground also because the partition
function of the field around a black hole~we remind the
reader that the Rindler metric represents a large mass black
hole! is used to compute the quantum corrections to the
Bekenstein-Hawking entropy as early suggested by ’t Hooft
@29# or to give a reason for the complete BH entropy in the

framework of the induced gravity considering massive fields
nonconformally coupled@20–22#.

As noticed in Sec. VI, on a more general ground, the
considered problem is also interesting because there exist
two not completely equivalent approaches to implement the
statistical mechanics of a quantum field in a curved space-
time through the use of a path integral techniques and, up to
the knowledge of the author, there is not a definitive choice
of the method. In this work, we have employed the path
integral in the physical manifold instead of in theoptical
related manifold. We remind the reader that in the case of a
staticbut notultrastaticspacetime, the naive approach based
on the phase-space path integral leads one to a definition of
the partition function as an Euclidean path integral per-
formed in the configuration space within theoptical
manifold19 instead of the physical one@19#. Other ap-
proaches@7# lead one to the definition of the partition func-
tion as a path integral in the physical manifold.

When the spatial section of the space is regular~e.g.,
closed! and thus the path integral regularized through the
z-function approach yields a finite result, formal manipula-
tions of the path integral prove that these two different defi-
nitions lead to the same result up to the renormalization of
the zero point energy@8#. In such a case these definitions are
substantially equivalent. When the manifold is not regular,
e.g., it has spatial sections with an infinite volume or has
boundaries, in principle one may loose such an equivalence.
Indeed, as far as the effective actions are concerned in our
case we have

lnZbe5
Ab

2880p2e2F S 2p

b D 4

110S 2p

b D 2

211G ,
and

lnZbe
opt5

Ab

2880p2e2S 2p

b D 4

. ~137!

The latter result can be directly obtained noticing that the
optical manifold of the Rindler space is the open Einstein
static universe@3#. Hence the latter effective action above is
nothing but that computed previously in the open Einstein
universe~in the conformal coupling!. Considering the effec-
tive action computed as a path integral in the optical mani-
fold we have

2
] lnZbe

opt

]b
5Eej51/6~b!1Ee8 . ~138!

One could conclude that, once again, there is not the Hamil-
tonian in the right-hand side, also discarding the constant
energy. Actually, this result involves more subtle consider-
ations. Indeed, we shall prove that this naive conclusion is
not correct.

19This is the ultrastatic manifold conformally related to the physi-

cal manifold by defining the optical metric throughg̃ab :5gab /g00.
The Euclidean action employed on the optical manifold is the
physical action conformally transformed~including the matter
fields! following the conformal transformation written above.
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Let us suppose to implement canonical QFT@3# for a
massless field conformally coupled directly on the optical
manifold, namely, in the open Einstein static universe as it
were the physical manifold. Obviously, we should get ex-
actly the effective action which appears in Eq.~138!. Fur-
thermore, Eq.~138! is nothing but Eq.~97! and the right-
hand side of Eq. ~138! is nothing but the averaged
e-regularized Hamiltonian of the QFT in the open Einstein
universe. Such a Hamiltonian can also be obtained as a ther-
mal average of the Hamiltonian operator obtained from the
canonical QFT employing thenormal order prescriptionand
employing the usual definition of the partition function~sum-
ming the Boltzmanian exponential in the energy levels of the
states in the canonical ensemble! @34#.

Implementing the canonical quantization in the Rindler
space for a massless scalar field, one trivially finds that an
isomorphism exists between the Fock space built up on the
Fulling-Rindler vacuum and the Fock space built up on the
natural vacuum of the QFT in the open Einstein static uni-
verse~in the conformal coupling!. Indeed, this isomorphism
arises from the conformal relationship between the wave
functions of the particles related to the quantized fields. This
relation defines a one-to-one map from the one-particle Hil-
bert space of the Einstein open universe to the one-particle
Hilbert space of the Rindler space which maintains the value
of the corresponding indefinite scalar products@3#. This map
defines a unitary isomorphism between the two Fock spaces
provided one require that this isomorphism transform the
vacuum state of the Einstein open universe into the Fulling-
Rindler vacuum. In particular, also the Hamiltonian opera-
tors are unitarily identified provided one use the normal or-
der prescription in both cases.

As a result we find that the right-hand side of Eq.~138!
coincides also with the averaged Hamiltonian operator built
up in the framework of the canonical quantization in the
Rindler space with respect to the Fulling-Rindler vacuum. In
this sense Eq.~138! is the usual statistical-mechanical rela-
tionship between the canonical energy and the partition func-
tion in the Rindler space.

The central point is that the renormalization scheme em-
ployed is the normal order prescription with respect to the
Fulling-Rindler vacuum and not the point-splitting proce-
dure. We can finally compare the averaged Rindler Hamil-
tonian of the canonical quantization^He

can&b which is renor-
malized by thenormal order prescriptionin the Fulling-
Rindler vacuum with the averaged Rindler Hamiltonian
^He&b obtained by integrating Eq.~130!. The latter is renor-
malized with respect the Minkowski vacuum by thepoint-
splitting procedure. We find

^He&b2^He
can&b52

3

2880p2e2
2

30

2880p2e2F S 2p

b D 2

21G
52

1

960p2e2
2

1

6
Qe~b!. ~139!

The first term in the right-hand side is trivial: it takes account
of the difference of the zero-point energy. The second term is
quite unexpected. It proves that the point-splitting procedure
~or equivalently ourz-function procedure! to renormalize the

stress tensor and hence the Hamiltonian is not so trivial as
one could expect, this is because it involves terms which do
not represent a trivial zero-point energy renormalization.

Concerning the conical manifold, the conclusion is that
the theory in the optical manifold leads us naturally to an
effective action which can be considered the logarithm of the
partition function provided we renormalize the theory with
respect to the Fulling-Rindler vacuum. Conversely, the effec-
tive action evaluated in the physical manifold is the correct
effective action which produces the thermal stress tensor by
formal variations with respect to the metric. This stress ten-
sor is that obtained also by the point-splitting procedure and
thus renormalizing with respect to the Minkowski vacuum.

XII. SUMMARY

In this paper we have presented a new approach to renor-
malize the one-loop stress tensor in a curved background
based on an opportunez-function regularization. The proce-
dure has been developed within the Euclidean formalism and
in the hypothesis of a closed manifold and a real scalar field.

We do not think that our approach should change dramati-
cally relaxing such hypotheses. This is because the same
z-function approach to renormalize the effective action was
born in a similar context and has been successively devel-
oped into a very general context. In fact, we have used the
method also in cases where the initially requested hypotheses
do not hold true obtaining correct results.

Our approach, differently from all other approaches, is
directly founded to the definition of the stress tensor as func-
tional derivative of the effective action with respect to the
background metric. All proofs contained in this paper are
substantially based on that direct definition.

We have seen that, although it is not possible performing
the analytic continuations involved in the method in all con-
crete cases~this is the same drawback of thez function regu-
larization of the effective action!, the method is well man-
aged on a theoretical ground. Indeed, within our approach,
the proof of the conservation of the stress tensor, the confor-
mal anomaly formula, several thermodynamical identities are
actually very easy to carry out. The infinite renormalization
is made harmless by an automatic cancellation and the finite
part is clearly highlighted as a residue of a pole of the stress
tensorz function. It is furthermore clear that the renormaliz-
ing terms are conserved and depend on the geometry locally
and thus can be thought as parts of geometrical side of the
Einstein equations. Their explicit form can be obtained by
the heat kernel expansion as outlined previously.

We have checked the method considering several con-
crete cases obtaining a perfect agreement with other renor-
malization procedures.

Particular attention has been paid considering the conical
manifold, where some unresolved problems concerning the
physical interpretation of the obtained results remain when
one considers the conical manifold as the Euclidean-thermal
Rindler space.

Concerning the general features of the method presented
within this paper, many ways remain to explore for the fu-
ture. An important point to study in depth should be the
relation between Wald’s axioms concerning any renormal-
ized stress tensor@3,17,1# and the stress tensor arising from
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our approach. Moreover, the relation between our approach
and the usual point-splitting approach based on short-
distance Hadamard’s behavior of the two-point functions
should be investigated.

Other possible generalizations may concern integer or
half-integer spinorial fields and gauge theories.
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APPENDIX: MAIN FORMULAS

Let us consider an EuclideanN manifoldM. Suppose
thatM is closed~namely, compact without boundary!. Let A
be a second-order elliptic~positive-definite! self-adjoint dif-
ferential operator working on smooth real scalar fields of
L2(M,dmg), mg being the usual Riemannian measure in-
duced by the Euclidean metric. Let us finally suppose that
the spectrum of the operator is discrete. This holds, for ex-
ample, in the case of the Laplace-Beltrami operator with the
sign changed, namely, the 0-forms Hodge–de Rham Laplac-
ian; in such a case the multiplicity is also finite.

All that we attempt to describe should be more or less
generalizable by relaxing some of the conditions above, em-
ploying opportune spectral measures, and so on. In particular
one could consider the operatorA working onn forms and
deal with the Hodge–de Rham formalism also in manifolds
noncompact or with boundary. Anyhow, this latter case
could be more complicated to deal with. We leave to the
mathematicians all these considerations.

Our goal is to determine how the generic eigenvalueln
changes due to local changes of the metricgab of the mani-
folds keeping fixed the topology. Let us introduce the Eu-
clidean action

SA@f,f#:5SA@f#:52
1

2EMdNxAg~x!f~x!Af~x!.

~A1!

Thus we have

dSA

df~x!
52AgAf~x!. ~A2!

Letting ln be the eigenvalue of the normalized eigenvector
fn , it holds that

Afn5lnfn , E
M

dNxAg~x!fn* ~x!fn~x!51, ~A3!

ln522S@fn* ,fn#. ~A4!

One may change the metric asgab(x)→gab8 (x)
5gab(x)1dgab(x). Obviously, provided that opportune
mathematical conditions are satisfied, we expect to find a

corresponding variationln→ln85ln1dln . We are inter-
ested in evaluating the rate of the variation of the eigenval-
ues with respect to the metric. In fact, we want to compute
the functional derivative

dln

dgab~x!
522

dSA@fn* ,fn#

dgab~x!
, ~A5!

where we employed Eq.~A4!.
Starting from the identity just written above, we have

2
dln

dgab~x!
52E dNy

dSA

dfn* ~y!

dfn* ~y!

dgab~x!

12E dNy
dSA

dfn~y!

dfn~y!

dgab~x!
12

dgSA

dgab~x!
.

~A6!

Using the formula corresponding to Eq.~A2! for fn andfn*
~notice that a further factor 1/2 appears in this case!, we
obtain

2
dln

dgab~x!
52lnE dNyAg~y!S fn

dfn* ~y!

dgab~x!

1fn*
dfn~y!

dgab~x!
D 12

dgSA

dgab~x!
. ~A7!

Let us look at the first term in the right-hand side of the
equation above. We can rewrite it as

2lnE dNyAg~y!
d

dgab~x!
@fn~y!fn* ~y!#

52ln

d

dgab~x!
E dNyAg~y!fn~y!fn* ~y!

1lnE dNy
dAg~y!

dgab~x!
fn~y!fn* ~y!. ~A8!

The first term in the last line vanishes due to the normaliza-
tion condition in Eq.~A3! which is supposed to hold during
the variational process. Eventually, a few of elementary cal-
culations produces the well-known result

dAg~y!

dgab~x!
5

]Ag~x!

]gab~x!
d~x2y!52

1

2
Ag~x!gab~x!d~x2y!.

Coming back to the variational derivative ofln with respect
to the metric and making use of the obtained results in Eq.
~A6! we get our main equation~12!:

dln

dgab~x!
5

ln

2
Ag~x!gab~x!fn~x!fn* ~x!22

dgSA@fn* ,fn#

dgab~x!
.

We finally remark that in@35# a similar relation has been
found in a different context as far as eigenvalues of Dirac’s
operator is concerned.
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Let us finally prove Eq.~52!. We suppose that our closed
manifold is stationary, namely, a global coordinate system
exists in where the Euclidean metric looks similar to

ds25g00~xW !dx0dx012g0i~xW !dx0dxi1gi j ~xW !dxidxj ,
~A9!

wherexW[xiPS. Notice that]0 is a Killing vector. We sup-
pose also that the manifold~the metric! is periodic in the
coordinatex0 with a periodb.

Our action reads, in the considered coordinates,

S@f#:5E
0

b

dx0E
S
dxWAg~xW !f~x!Af~x!.

Because it will be very useful shortly, we can consider the
new coordinate set given byy0:5x0/b, yW :5xW . In those co-
ordinates, posingc(y):5f(x) the action reads

S@c#:5E
0

1

dy0E
S

Af ~yW !c~y!Bc~y!, ~A10!

where B is obviously defined with respect to the metric
f ab(y) which reads f 00(y):5g00(x)/b2 and f 0i(y)
:5g0i(x)/b, f i j (y):5gi j (x). Now, we observe that, in Eq.
~A10!, variations of the parameterb can be thought of as
variations of the metric of the manifold, keeping fixed the
topology.

As for the previous proof it is convenient starting with the
usual identity

ln522S@cn* ,cn , f #.

From that it follows

]ln

]b
522E d4yH dS

d f ab~y!

] f ab

]b
1

dS

dcn* ~y!

]cn*

]b

1
dS

dcn~y!

]cn

]b J
522E d4yAf ~y!H 22

b3
g~y!21/2

dS

d f 00~y!
f 00~y!b2

1
22

b2
g~y!21/2

dS

d f 0i~y!
f 0i~y!bJ 22E d4yAf ~y!

3H ]cn*

]b
2

ln

2
cn~y!

]cn*

]b
2

ln

2
cn* ~y!

]cn

]b J
52

2

bE d4yAf ~y! T̄0
0@cn* cn#~y!

1lnE d4yAf ~y!
]cn* ~y!cn~y!

]b
. ~A11!

Above, T̄ab(y) is the stress tensor evaluated in the coordi-
nateya.

Let us consider the second term in Eq.~A11!. We can also
write that as

lnE d4y
]Af ~y!cn* ~y!cn~y!

]b

2lnE d4y
]Af ~y!

]b
cn* ~y!cn~y!

5ln

]

]bE d4yAf ~y!cn* ~y!cn~y!

2
ln

b E d4yAf ~y!cn* ~y!cn~y!.

The first term in the right-hand side of the equation above
vanishes due to the invariant normalization condition of the
modes. The second term, as well as the remaining term in
Eq. ~A11!, can be translated into the initial coordinates ob-
taining

]ln

]b
52

2

bE d4xAg~xW !T0
0@fn* fn#~xW !

1
ln

b E d4xAg~xW !fn* ~x!fn~x!.

Notice that, as we said above, both the integrands do not
depend onx0 because the metric is stationary, and thus the
integration on the temporal variable produces only a factor
b. The final formula is then Eq.~52!:

]ln

]b
522E

S
dxWAg~xW !H T0

0@fn* fn#~xW !

1
1

2
g0

0lnfn* ~xW !fn~xW !J .
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