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Symmetries in two-dimensional dilaton gravity with matter
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The symmetries of generic two-dimensioridD) dilaton models of gravity wit{and withouj matter are
studied in some detail. It is shown thé, one of the symmetries of the matterless models, can be generalized
to the case where matter fields of any kind are present. The geiotaasical solution for some of these
models, in particular, those coupled to chiral matter, which generalizes the Vaidya solution of Einstein Gravity,
is also given[S0556-282(97)00124-0

PACS numbes): 04.60.Kz, 04.50+h, 11.30-]

[. INTRODUCTION excepted isolated pathologies which may arise, the actions of
these models can all be brought, by means of appropriate
At present, one of the main challenges of theoretical physredefinitions of the dilaton field and conformal redefinitions

ics is to devise a quantum theory which will provide a com-of the metric, to the generic forii8,4|
plete description of gravity. Because of the complexity of the
theories involved, the Einstein-Hilbert gravity theory, for in- Sepc=Sv—Sum, D
stance, this task faces imposing technical difficulties. How-
ever, equally important or even more serious are the concepvhere
tual problems that arise. These are not only due to a variety
of unfamiliar features which are peculiar to diffeomorphism-
invariant theories but are also due to our present lack of an szf d>\—g[Re+ V()] 2
adequate formulation and interpretation of quantum mechan-

ics. To a large extent, we ignore what a quantum theory,\y g is 5 gravity-matter interaction term which may in-
really is—i.e., we ignore what the_ adjective quantum” re- \,1ye the dilaton field as well as the metric.
ally means—and how we should interpret these theories. Be- Despite their being much simpler that their higher-

cause of that, we ignore not only how to produce a quantu
theory of gravity but also what would constitute a successfu
completion of this task.

In this context “toy theories” should have a crucial
concept-clarifying role to play; no wonder a variety of them

are gyrrentl_y un(;%r Zt.lljdy' Prorgw;entf among thimhare th‘auantum solvability. Notwithstanding this fact, little atten-
two-dimensional(2D) dilaton models of gravity, which are o, hag peen paid to the symmetries of these models, apart
two-dimensional general-covariant models whose gravitf. ) the conformal onesee, however, Ref2]). Recently, a
sector involves, along with the space-time megij,, asca-  |5rqe variety of symmetries, which are in general nonconfor-
lar field ¢, the dilaton(for a review, see Refll]). These mal, have been uncovered for the matterless 2D dilaton mod-

models, while much simpler to handle than are their higheryg ang they have been shown to explain (itiassical solv-

dimensional cousins, share with them not only the CONCePypility of these theoriefs].
tual problems which are peculiar to diffeomorphism- the present paper, we shall consider the generic 2D

invariant theories but also their most relevant physicald”alton ravity with matter. Ea(1). and shall explore how
features, such as the formation of black holes and their su@< 9 Y ; B, P

. > uch of what has been done in the matterless case can be
sequent evaporation. Some of these models can be obtaingGyended to theories with matter. Nonetheless, to make the
via dimensional reduction, from realist, higher-dimensional, oqent paper as self-contained as possible and to make it
theories, but this is not a necessary, nor even convenient, fafaar how the symmetries actually underlie the solvability of

LO bear iré”:ji”d when ar?proaph_ilng these rgpdels,_as trey M&3Yese models, a brief but systematic view of the matterless
e regarded as something similar to two-dimensional Branyeqries shall be presented in Sec. II. It is worth discussing

Dicke theories. , beforehand some general features of these models.
If attention is restricted to the usual category of models— 1,4 general variation of the Lagrangian in E) yields
that is, those with second-order Euler-Lagrange equations of

motion—a very useful result to take into account is that,

imensional cousins, few of these models have been solved

lassically, let alone quantum mechanically, when matter
fields are present. As is well known, solvability, classical or
quantum, is usually related to the presence of invariances,
which is the reason that classical solvability usually implies

1
g,uvlj b— E g/U/V( ¢)

SL= \/—_g[[R+V’(¢)—T¢,]5¢+
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where V s* includes all the terms that appear due to the Therefore, all the equations of motion of the theory are
“integrations by part” which are required to produce the encapsulated in the last and next-to-last equations in4q.
equations of motion. As we shall see, this result facilitates finding the general
The equations of motion can be brought to the form classical trajectories.
Given that in the models we are dealing with it is easier to

R+V'(¢)=Ty, find the conserved currents than the associdiédethej
symmetries, let us remind the reader, before proceeding, of
Ue=V+T, the Noether theorem, suitably taylored for the occasion. Let

L=L(¥?) be an arbitrary Lagrangian with general variation

S6L=(E—L),6¥3-V s*. Letjq be a current which is con-

served on shell anwollfa a transformation of the fields.

Thenj is the Noether current associateddgV ? iff, with-

(E=L)a=0, (4)  out using the equations of motion, the following equality
holds as an identity:

V¢_ gMVV_I_g/.wT T

whereT is the trace ofT ,,

Although much of our present study is meant to apply to (E—L)a8oW2=V,j§ . (11)
all kinds of matter, we shall exemplify much of our devel-
opments with a massless scalar figdwith action In general, due to semi-invariance, the currgitwill not
1 equals”(5,¥?).
Su=5 f d*>x\—gQ(4)(V§)? (5

Il. SYMMETRIES AND GENERAL SOLUTION

- . . . FOR THE MATTER-LESS THEORIES
and unspecified functiof. (The particular case of dimen-

sionally reduced spherically symmetric Einstein-Hilbert With the scalarsp and ¢=(V ¢)? and the vector field
gravity minimally coupled to a massless scalar field is recovy ¢, we can build scalar vector and tensor fields and we can
ered withV=2/\/¢ and Q=G¢, with G the Newton con- check whether or not they are conserved. 1é$) be a

stant) primitive of V, dJ/d¢=V. It can be shown that the follow-
For this example, we have ing results hold.
Conserved scalarsThe local energy?2,4]
Q' (¢) )
Ty=—p— (VO?, 1
E=§[(V¢)2—J], (12)
T,uv_ V,uEV,E- guv(VE) (6) is a conserved scalak ,E=0, and consequently(E) is

also for any functionf. Moreover, these are the only con-
Let us now go back to Eq4). It is apparent that the served scalars which can be constructed witand (V ).
second equation is redundant as it follows from the third one. The Noether symmetry associatedHds given by
However, the same is true for the first one. To show this let
us first indicate that invariance under diffeomorphism$pf _ _ .
implies that, when the equations of motion of the matter °2?=0 920k =08V =5 (8, V,¢+a,V,¢)
fields are satisfied, the following generalized conservation (13
law for the energy-momentum tensby,, must be satisfied: _ _
with arbitrary constant bivecta®.
2V'T,,+ T4V ,¢=0, (7 Conserved currentsThe conserved currents of the form

i“=A(¢,9)V#¢ can all be written as
which implies

2 i#=1(E) w2 o (14
J
To=— 552V T (®) LT (Ve
] ) ) for some functionf. The associated symmetries are
On the other hand, the affine connecti®y and the Rie-
mann tensoR,, 5, obey 5;=0,
[VV vvﬂ]gp,: - ngpMBV (9)

519 :—ef’(E)(g ——V”¢VV¢>+ef(E)< Jur
for any vector field{,,. Particularizing this equality td, S m(V)® (Vo)?
=V,¢ and using the fact that in two-dimensior®,,

2gWR yield, after a bit of algebra,

W) _ (15

(Ve)*
RV,¢+V'V, ¢=-2V'T,,, (10 ' _
In particular, forf=1, the corresponding current and sym-

which, together with Eq(8), yields the desired equality. metry are, respectively,



7794

Ve
=T (16)
Y vV, 6V,
51¢=01 5lg,bw=6 (Vg:;)Z_ (MV¢¢)4¢ (17)

Now, letjk be defined by ,jg=R. Itis easy to see that
the following current is conserved:

e Vi
with symmetry
_ _ g;LV _ V,u,d)vyd)
Syp=¢€, 6,9,,=€V Vo) 2 Pk (19

Conserved tensorsThere exists a great variety of con-
served two-tensors of the form

S=A(¢. @)V PV h+B(h,0)g"".

They are given by the general solution of the equatian
=dA/dJ, A,=dA/do)

2 A+AJQD+A¢¢+ BJ+ BJ:o,

which implies thatA(B) can be written a”A=A(J,¢) [B
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is a Killing vector[4], which impliesA=A(r). The equa-
tions of motion(4) imply A= — 1. Therefore, we finally ar-
rive at the general solution

p=r,

(oM J(0)]7 A7t o
g;LV_[ (r)] ,u,t Vt Zlvl_—J(r)y

(22)
whereM = —E is an arbitrary constant.

Another elegant way of arriving at the general solutions is
by using free-field methods. Here we choose the conformal
gauge

ds?=2ePdx dx~ (23
for which we haveR=—2e7%d,d_p andJ=2e P9, d_.

In the conformal gauge, the conservation law for the

traceless tensor in E420) takes the form

L faad) (2.0,
0“”“9*< Vér > 0=0-Tex ’9( V" )

which imply (3, ¢)/(V¢)>=d.p, (3-¢)/(V¢)>=d_m,
for somep=p(x™), andm=m(x").
A bit of algebra leads us to
e’=2(V$)29,.pd_m=2(2E+J)d, pi_m.
By fixing the residual gauge gs=3x", m=—31x", we fi-
nally arrive at

=B(J,¢)]. For A=0, we recover the conserved scalars de-

scribed above. Another useful solution is the following trace- f‘f’ dz __ l (xt—x")
less tensor, which is basically unique: 2M—=J(7) 2 '
VESV e 1 g*” 1
V= — P = _
S Vo)? 22 (20 e=3 (2M=J). (24)

General local solutionOnce the symmetries are at our
disposal, it is easy to solve the equations of motion. It can be
shown[5] that the following “metric” is invariant undep,:

Ill. SYMMETRIES IN 2D DILATON GRAVITY
WITH MATTER

Let us now introduce matter fields. Our most general re-

— 1 _ VuéV.é sult in this case is that the symmetigurreny 8, (j%4) above
gf”_(v(j))z G (V)2 |’ can be generalized for whatever kind of matter is present.
More precisely, ifSy, is invariant under diffeomorphisms
which implies and the equations of motiof#) are obeyed, the following
current is conserved:
V.oV, ¢
g“”:(w)zg—“ﬁ&T' im0 o Ve (25)
12 JR (V¢)2 (V¢)2 .

AsV ,¢g,,=0, we must have o _
For us to show this, it suffices to make use of the equa-

9,,=Ak K, tions of motion(4), Eq. (8), and of the fact that in two di-
a " mensions, and for any tens&”,, the following quantity
with k# the vector density: vanishes identicallyNl=N” ):
e Né— = N[N 2 s
k“=\/_ V.,o. (21 “« 27 ¢ 27
-9

1 1 1
AsV k, =V k,, k, is, at least locally, a total derivative: ) 5VM( NPo—3 5BaN) ( N%—3 5aﬂN)
k,=V,t for some functiort, it is then natural to choose as

local coordinates=¢ andt. Now, it is easy to see th&*  or, equivalently,



1 v NI B a v 1
SYNP N+ NN, —

a v o v N2
N¢,N «=73 > o, N-. (26)
The associated Noether symmetry is
Orp=€, (27
g,uV V,u¢vv¢ T,LLV g,lLV
) =e1V — +2 —-2T
2Dur ( ((%)2 Vo) | e Ve 2 (Vo)
2
T Ve)? (V,oVePT,,+V ,dVPT,,)
+q Jw VeSVPST 51 . (28)
(Ve)* “p
The variationsf* of the matter fields is such that, off shell,
v,
(E—L)p6fA=2 ¢ (29

Vé? vV, THY.

For our exemplifying scalar matter field, this transformation
is

VA Vove

5fzemvﬂfzéw. (30)

It is easy to see that, in spite of what happens in the matter-
less case, this symmetry does not correspond to the diffeo-

morphism generated on-shell

=VHel (V).

Let us now consider currents of the form

by the vector fiet#

S=A(¢,@)V ¢ +B(d,0)V,TH". (31

Conservation implies

0=A¢(V¢)2+A¢,V(V¢)2+AV—% B(Ve)?T,

1

+[2A,(Vo)*+A+ >

BV|T+[B+B,(V¢)?](T?

~ T T*)+[—2A,+By+B, V]IV, ¢V, T+, (32

where Eq.(26) has been used. The following can be shown

to be true(1) If T,=0, T=0 andV’'= gV (with S=cons}
the following current is conserved:

V& V.,
(Vo) (Vo)

The Noether symmetry associatedjfp=j5—Sj is confor-
mal and is given by5]

Sh=—BVr+V 542 ST, (39

Spp=¢€, 69,,=—€Bg,,, of*=0. (39)
(2) If T,=0,T=0, andT,zT*¥=0 (chiral mattey,
St=Ff(E)V,pTH" (39

is a conserved current for any functidn The associated
symmetry transformation of the gravity sector is
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8¢=0, 69,,=¢€T,,. (36
Conserved two-tensor€onsider now(symmetrig tensor
fields of the form

S"=A(¢, @)V V" d+B( P, 0)g"" + C(¢,<P)T“V-(37)

It can be shown that fol ,=0 andT=0 the tensor fields
with

C=C(¢), C an arbitrary function,

1 (¢
B=(C¢+a)(p+2aJ+§J' VC,,

A=—-Cy—2a (38
are conserved. IT#0, these tensors are still conserved if

a=0. The tensor wittC= ¢, a=—3,

1
=3 g T(Vp)?= ()] + pTH (39
can be regarded as the generalization of the local energy of

the massless models. The conserved tensor @ih0 is
purely kinematical—it does not depend on the matter fields:

1
S =VEGV G— S gV H)Z-g. (40

Chiral matter.We define chiral matter as the one whose
energy-momentum tensor obeys

T,=0, T#,=0, T, T*"=0. 47
In the conformal gauge we have
0=T,,Tr'=2e" 2T, ,T__. (42)

Therefore the set of all solution splits in two sectors of left-
moving and right-moving fields. Let us chooke _=0. The
conservation law for the tensor in EQ®9) implies

J_E=0=E=P(x"),
I,E+V T, .=0=Vp=p(x"). (43
Thus, we are led to the equations

e Pi_¢p=p(x"),

1
—J,

_P
§+¢—B+ 2p

9, P
p

(44)

++

However, it does not appear that, in the present coordi-
nates, these equations can be solved in general for arbirary
andT, .. To go further, let us make a change of coordinates

xt=u, x"=x"(u,r). (45)
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so that¢p=r. The metric and the energy-momentum tensorpresent paper. The Jackiw-Teitelboim mod¥l=4\?¢,

in this coordinates takes the form coupled to conformal matter may be regarded as an excep-
\ \ ) tion to this rule, as it is solvables] even though, apart from
ds’=e*2d¢du+erA(du)?], 5, it is not known to have any additional symmetry. This
) model is solvable because, in the conformal gauge, the first
T=T,,(du) (46)

equation in Eq.(4) is a Liouville equation. This Liouville
equation, despite being a limiting case of the free-field equa-
tion of the exponential model which is associated to the sym-
metry in Eq.(34) (see also Ref[5]), does not appear to be
related itself to any invariance. In fact, the whole problem of
ds?=2drdu+[2M(u)—J](du)?, (47)  solving the generic 2D dilaton models of gravityith con-
formal mattej can be regarded as a generalization of Liou-
with ville theory. It would be interesting to see if the machinery of
. integrable systems is useful here.
~ The massless 2D dilaton models have been shown to be
M(u) f dU Tuy(W). “8) related to Poissop-models, and this seems to explains their
highly symmetric naturdsee, for instance, Ref§7,8] and
references thereinOn the other hand, the underlying reason
why &, is so general remains a mystery to us as of the writ-
ing of this paper. It seems to indicate that these models have
IV. CONCLUSIONS a degree of unity previously unexpected. This unity may
have important consequences in relation to their solvability.

with T,,=T,u(u). Now, by writing down in this gauge the
equations of motior(4), it is easy to show tha¢" is pure
gauge, and finally arrive at the following general solution:

This metric generalizes, for arbitrary potentigl the Vaidya
solution of Einstein gravity.

We have analyzed in a rather systematic way the con
served currents and the symmetries of the 2D dilaton models
of gravity with and without matter. In particular we have
shown thats, can be extended to models coupled to any
kind of matter. We have also shown how analytic solvability =~ The author has profited from discussions with J. Cruz and
is directly related with the existence of invariances—andJ. Navarro-Salas. He acknowledges the Spanish MEC, CSIC,
hence of conserved currents. In fact, almost all the modeland IMAFF (Madrid) for a research contract. This work was
which are known to be solvable fall into one of the catego-partially supported by the Comisidnterministerial de Cien-
ries of symmetric models that we have described in thesia y Tecnologa and DGICYT.
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