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The symmetries of generic two-dimensional~2D! dilaton models of gravity with~and without! matter are
studied in some detail. It is shown thatd2 , one of the symmetries of the matterless models, can be generalized
to the case where matter fields of any kind are present. The general~classical! solution for some of these
models, in particular, those coupled to chiral matter, which generalizes the Vaidya solution of Einstein Gravity,
is also given.@S0556-2821~97!00124-0#
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I. INTRODUCTION

At present, one of the main challenges of theoretical phys-
ics is to devise a quantum theory which will provide a com-
plete description of gravity. Because of the complexity of the
theories involved, the Einstein-Hilbert gravity theory, for in-
stance, this task faces imposing technical difficulties. How-
ever, equally important or even more serious are the concep-
tual problems that arise. These are not only due to a variety
of unfamiliar features which are peculiar to diffeomorphism-
invariant theories but are also due to our present lack of an
adequate formulation and interpretation of quantum mechan-
ics. To a large extent, we ignore what a quantum theory
really is—i.e., we ignore what the adjective ‘‘quantum’’ re-
ally means—and how we should interpret these theories. Be-
cause of that, we ignore not only how to produce a quantum
theory of gravity but also what would constitute a successful
completion of this task.

In this context ‘‘toy theories’’ should have a crucial
concept-clarifying role to play; no wonder a variety of them
are currently under study. Prominent among them are the
two-dimensional~2D! dilaton models of gravity, which are
two-dimensional general-covariant models whose gravity
sector involves, along with the space-time metricgmn , a sca-
lar field f, the dilaton~for a review, see Ref.@1#!. These
models, while much simpler to handle than are their higher-
dimensional cousins, share with them not only the concep-
tual problems which are peculiar to diffeomorphism-
invariant theories but also their most relevant physical
features, such as the formation of black holes and their sub-
sequent evaporation. Some of these models can be obtained,
via dimensional reduction, from realist, higher-dimensional
theories, but this is not a necessary, nor even convenient, fact
to bear in mind when approaching these models, as they may
be regarded as something similar to two-dimensional Brans-
Dicke theories.

If attention is restricted to the usual category of models—
that is, those with second-order Euler-Lagrange equations of
motion—a very useful result to take into account is that,

excepted isolated pathologies which may arise, the actions of
these models can all be brought, by means of appropriate
redefinitions of the dilaton field and conformal redefinitions
of the metric, to the generic form@3,4#

SGDG5SV2SM , ~1!

where

SV5E d2xA2g@Rf1V~f!# ~2!

and SM is a gravity-matter interaction term which may in-
volve the dilaton field as well as the metric.

Despite their being much simpler that their higher-
dimensional cousins, few of these models have been solved
classically, let alone quantum mechanically, when matter
fields are present. As is well known, solvability, classical or
quantum, is usually related to the presence of invariances,
which is the reason that classical solvability usually implies
quantum solvability. Notwithstanding this fact, little atten-
tion had been paid to the symmetries of these models, apart
from the conformal ones~see, however, Ref.@2#!. Recently, a
large variety of symmetries, which are in general nonconfor-
mal, have been uncovered for the matterless 2D dilaton mod-
els and they have been shown to explain the~classical! solv-
ability of these theories@5#.

In the present paper, we shall consider the generic 2D
dilaton gravity with matter, Eq.~1!, and shall explore how
much of what has been done in the matterless case can be
extended to theories with matter. Nonetheless, to make the
present paper as self-contained as possible and to make it
clear how the symmetries actually underlie the solvability of
these models, a brief but systematic view of the matterless
theories shall be presented in Sec. II. It is worth discussing
beforehand some general features of these models.

The general variation of the Lagrangian in Eq.~1! yields

dL5A2gH @R1V8~f!2Tf#df1Fgmnhf2
1

2
gmnV~f!

2¹m¹nf2TmnGdgmn1~E2L !Ad f A2¹asa, ~3!
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where ¹asa includes all the terms that appear due to the
‘‘integrations by part’’ which are required to produce the
equations of motion.

The equations of motion can be brought to the form

R1V8~f!5Tf ,

hf5V1T,

¹m¹nf5
1

2
gmnV1gmnT2Tmn ,

~E2L !A50, ~4!

whereT is the trace ofTmn .
Although much of our present study is meant to apply to

all kinds of matter, we shall exemplify much of our devel-
opments with a massless scalar fieldj, with action

SM5
1

2 E d2xA2gV~f!~¹j!2 ~5!

and unspecified functionV. ~The particular case of dimen-
sionally reduced spherically symmetric Einstein-Hilbert
gravity minimally coupled to a massless scalar field is recov-
ered withV52/Af and V5Gf, with G the Newton con-
stant.!

For this example, we have

Tf5
V8~f!

2
~¹j!2,

Tmn5
V

2 H ¹mj¹nj2
1

2
gmn~¹j!2J . ~6!

Let us now go back to Eq.~4!. It is apparent that the
second equation is redundant as it follows from the third one.
However, the same is true for the first one. To show this let
us first indicate that invariance under diffeomorphisms ofSM
implies that, when the equations of motion of the matter
fields are satisfied, the following generalized conservation
law for the energy-momentum tensorTmn must be satisfied:

2¹nTmn1Tf¹mf50, ~7!

which implies

Tf52
2

~¹f!2 ¹mf¹nTmn . ~8!

On the other hand, the affine connection¹m and the Rie-
mann tensorRambn obey

@¹n ,¹b#zm52zrRr
mbn ~9!

for any vector fieldzm . Particularizing this equality tozm
5¹mf and using the fact that in two-dimensionsRmn

5 1
2 gmnR yield, after a bit of algebra,

R¹mf1V8¹mf522¹nTmn , ~10!

which, together with Eq.~8!, yields the desired equality.

Therefore, all the equations of motion of the theory are
encapsulated in the last and next-to-last equations in Eq.~4!.
As we shall see, this result facilitates finding the general
classical trajectories.

Given that in the models we are dealing with it is easier to
find the conserved currents than the associated~Noether!
symmetries, let us remind the reader, before proceeding, of
the Noether theorem, suitably taylored for the occasion. Let
L5L(Ca) be an arbitrary Lagrangian with general variation
dL5(E2L)adCa2¹msm. Let j 0

m be a current which is con-
served on shell andd0Ca a transformation of the fields.
Then j 0

m is the Noether current associated tod0Ca iff, with-
out using the equations of motion, the following equality
holds as an identity:

~E2L !ad0Ca5¹m j 0
m . ~11!

In general, due to semi-invariance, the currentj 0
m will not

equalsm(d0Ca).

II. SYMMETRIES AND GENERAL SOLUTION
FOR THE MATTER-LESS THEORIES

With the scalarsf and w[(¹f)2 and the vector field
¹mf, we can build scalar vector and tensor fields and we can
check whether or not they are conserved. LetJ(f) be a
primitive of V, dJ/df5V. It can be shown that the follow-
ing results hold.

Conserved scalars.The local energy@2,4#

E5
1

2
@~¹f!22J#, ~12!

is a conserved scalar:¹mE50, and consequentlyf (E) is
also for any functionf . Moreover, these are the only con-
served scalars which can be constructed withf and (¹f)2.

The Noether symmetry associated toE is given by

daf50, dagmn5gmnas¹sf2
1

2
~am¹nf1an¹mf!

~13!

with arbitrary constant bivectoram.
Conserved currents.The conserved currents of the form

j m5A(f,w)¹mf can all be written as

j f
m5 f ~E!

¹mf

~¹f!2 ~14!

for some functionf . The associated symmetries are

d ff50,

d fgmn52e f 8~E!S gmn2
¹mf¹nf

~¹f!2 D1e f ~E!S gmn

~¹f!2

22
¹mf¹nf

~¹f!4 D . ~15!

In particular, for f 51, the corresponding current and sym-
metry are, respectively,
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j 1
m5

¹mf

~¹f!2 , ~16!

d1f50, d1gmn5eS gmn

~¹f!222
¹mf¹nf

~¹f!4 D . ~17!

Now, let j R
m be defined by¹m j R

m5R. It is easy to see that
the following current is conserved:

j 2
m5 j R

m1V
¹mf

~¹f!2 ~18!

with symmetry

d2f5e, d2gmn5eVS gmn

~¹f!222
¹mf¹nf

~¹f!4 D . ~19!

Conserved tensors.There exists a great variety of con-
served two-tensors of the form

Smn5A~f,w!¹mf¹nf1B~f,w!gmn.

They are given by the general solution of the equation~AJ
5dA/dJ, Aw5dA/dw!

3

2
A1AJw1Awf1BJ1BJ50,

which implies thatA(B) can be written asA5A(J,w) @B
5B(J,w)#. For A50, we recover the conserved scalars de-
scribed above. Another useful solution is the following trace-
less tensor, which is basically unique:

Smn5
¹mf¹nf

~¹f!4 2
1

2

gmn

~¹f!2 . ~20!

General local solution.Once the symmetries are at our
disposal, it is easy to solve the equations of motion. It can be
shown@5# that the following ‘‘metric’’ is invariant underd2 :

ḡmn5
1

~¹f!2 S gmn2
¹mf¹nf

~¹f!2 D ,

which implies

gmn5~¹f!2ḡmn1
¹mf¹nf

~¹f!2 .

As ¹mfḡmn50, we must have

ḡmn5Akmkn

with km the vector density:

km5
emn

A2g
¹nf. ~21!

As ¹mkn5¹nkm , km is, at least locally, a total derivative:
km5¹mt for some functiont, it is then natural to choose as
local coordinatesr[f and t. Now, it is easy to see thatkm

is a Killing vector @4#, which impliesA5A(r ). The equa-
tions of motion~4! imply A521. Therefore, we finally ar-
rive at the general solution

f5r ,

gmn5@2M2J~r !#¹mt¹nt2
¹mr¹nr

2M2J~r !
, ~22!

whereM52E is an arbitrary constant.
Another elegant way of arriving at the general solutions is

by using free-field methods. Here we choose the conformal
gauge

ds252erdx1dx2 ~23!

for which we haveR522e2r]1]2r andh52e2r]1]2 .
In the conformal gauge, the conservation law for the

traceless tensor in Eq.~20! takes the form

05]1T225]1S ]2f]2f

~¹f!4 D , 05]2T115]2S ]1f]1f

~¹f!4 D
which imply (]1f)/(¹f)25]1p, (]2f)/(¹f)25]2m,
for somep5p(x1), andm5m(x2).

A bit of algebra leads us to

er52~¹f!2]1p]2m52~2E1J!]1p]2m.

By fixing the residual gauge asp5 1
2 x1, m52 1

2 x2, we fi-
nally arrive at

Ef dt

2M2J~t!
52

1

2
~x12x2!,

er5
1

2
~2M2J!. ~24!

III. SYMMETRIES IN 2D DILATON GRAVITY
WITH MATTER

Let us now introduce matter fields. Our most general re-
sult in this case is that the symmetry~current! d2 ( j 2

m) above
can be generalized for whatever kind of matter is present.
More precisely, ifSM is invariant under diffeomorphisms
and the equations of motion~4! are obeyed, the following
current is conserved:

j 2
m5 j R

m1V
¹mf

~¹f!2 12
¹nf

~¹f!2 Tmn. ~25!

For us to show this, it suffices to make use of the equa-
tions of motion~4!, Eq. ~8!, and of the fact that in two di-
mensions, and for any tensorNn

m , the following quantity
vanishes identically (N5Nr

r):

S Nm
a2

1

2
dm

aND S Na
n2

1

2
da

nND
2

1

2
dn

mS Nb
a2

1

2
db

aND S Na
b2

1

2
da

bND
or, equivalently,
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Na
mNn

a5
1

2
dm

n Nb
aNa

b1NNn
m2

1

2
dm

n N2. ~26!

The associated Noether symmetry is

d2f5e, ~27!

d2gmn5eH VS gmn

~¹f!222
¹mf¹nf

~¹f!4 D12
Tmn

~¹f!222T
gmn

~¹f!2

2
2

~¹f!4 ~¹nf¹afTam1¹mf¹afTan!

14
gmn

~¹f!4 ¹af¹bfTabJ . ~28!

The variationd f A of the matter fields is such that, off shell,

~E2L !Ad f A52
¹nf

~¹f!2 ¹mTmn. ~29!

For our exemplifying scalar matter field, this transformation
is

dj5e
¹mf

~¹f!2 ¹mj5e
¹f¹j

~¹f!2 . ~30!

It is easy to see that, in spite of what happens in the matter-
less case, this symmetry does not correspond to the diffeo-
morphism generated on-shell by the vector fieldsm

5¹mf/(¹f)2.
Let us now consider currents of the form

Sm5A~f,w!¹mf1B~f,w!¹nTmn. ~31!

Conservation implies

05Af~¹f!21AwV~¹f!21AV2
1

2
B~¹f!2Tf

1F2Aw~¹f!21A1
1

2
BVGT1@B1Bw~¹f!2#~T2

2TabTab!1@22Aw1Bf1BwV#¹mf¹nfTmn, ~32!

where Eq.~26! has been used. The following can be shown
to be true.~1! If Tf50, T50 andV85bV ~with b5const!
the following current is conserved:

Sb
m52b¹mf1V

¹mf

~¹f!2 12
¹nf

~¹f!2 Tmn. ~33!

The Noether symmetry associated toj b
m5 j 2

m2Sb
m is confor-

mal and is given by@5#

dbf5e, dgmn52ebgmn , d f A50. ~34!

~2! If Tf50, T50, andTabTab50 ~chiral matter!,

Sf
m5 f ~E!¹nfTmn ~35!

is a conserved current for any functionf . The associated
symmetry transformation of the gravity sector is

df50, dgmn5«Tmn . ~36!

Conserved two-tensors.Consider now~symmetric! tensor
fields of the form

Smn5A~f,w!¹mf¹nf1B~f,w!gmn1C~f,w!Tmn.
~37!

It can be shown that forTf50 andT50 the tensor fields
with

C5C~f!, C an arbitrary function,

B5~Cf1a!w12aJ1
1

2 Ef

VCf ,

A52Cf22a ~38!

are conserved. IfTÞ0, these tensors are still conserved if
a50. The tensor withC5f, a52 1

2 ,

Jmn5
1

2
gmn@~¹f!22J~f!#1fTmn ~39!

can be regarded as the generalization of the local energy of
the massless models. The conserved tensor withC50 is
purely kinematical—it does not depend on the matter fields:

S0
mn5¹mf¹nf2

1

2
gmn~¹f!22gmnJ. ~40!

Chiral matter.We define chiral matter as the one whose
energy-momentum tensor obeys

Tf50, Tm
m50, TmnTmn50. ~41!

In the conformal gauge we have

05TmnTmn52e22rT11T22 . ~42!

Therefore the set of all solution splits in two sectors of left-
moving and right-moving fields. Let us chooseT2250. The
conservation law for the tensor in Eq.~39! implies

]2E50⇒E5P~x1!,

]1E1¹1fT1150⇒¹1f5p~x1!. ~43!

Thus, we are led to the equations

e2r]2f5p~x1!,

]1f5
P

p
1

1

2p
J,

]1P

p
52T11 . ~44!

However, it does not appear that, in the present coordi-
nates, these equations can be solved in general for arbitraryJ
andT11 . To go further, let us make a change of coordinates

x15u, x25x2~u,r !. ~45!
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so thatf[r . The metric and the energy-momentum tensor
in this coordinates takes the form

ds25el@2dfdu1elA~du!2#,

T5Tuu~du!2 ~46!

with Tuu5Tuu(u). Now, by writing down in this gauge the
equations of motion~4!, it is easy to show thatel is pure
gauge, and finally arrive at the following general solution:

ds252drdu1@2M ~u!2J#~du!2, ~47!

with

M ~u!5Eu

dũ Tuu~ ũ !. ~48!

This metric generalizes, for arbitrary potentialV, the Vaidya
solution of Einstein gravity.

IV. CONCLUSIONS

We have analyzed in a rather systematic way the con-
served currents and the symmetries of the 2D dilaton models
of gravity with and without matter. In particular we have
shown thatd2 can be extended to models coupled to any
kind of matter. We have also shown how analytic solvability
is directly related with the existence of invariances—and
hence of conserved currents. In fact, almost all the models
which are known to be solvable fall into one of the catego-
ries of symmetric models that we have described in the

present paper. The Jackiw-Teitelboim model,V54l2f,
coupled to conformal matter may be regarded as an excep-
tion to this rule, as it is solvable@6# even though, apart from
d2 , it is not known to have any additional symmetry. This
model is solvable because, in the conformal gauge, the first
equation in Eq.~4! is a Liouville equation. This Liouville
equation, despite being a limiting case of the free-field equa-
tion of the exponential model which is associated to the sym-
metry in Eq.~34! ~see also Ref.@5#!, does not appear to be
related itself to any invariance. In fact, the whole problem of
solving the generic 2D dilaton models of gravity~with con-
formal matter! can be regarded as a generalization of Liou-
ville theory. It would be interesting to see if the machinery of
integrable systems is useful here.

The massless 2D dilaton models have been shown to be
related to Poisson-s models, and this seems to explains their
highly symmetric nature~see, for instance, Refs.@7,8# and
references therein!. On the other hand, the underlying reason
why d2 is so general remains a mystery to us as of the writ-
ing of this paper. It seems to indicate that these models have
a degree of unity previously unexpected. This unity may
have important consequences in relation to their solvability.
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