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Conformal scalar fields coupled to the dilaton appear naturally in two-dimensional models of black hole
evaporation. We show that their trace anomaly is (1/24p)@R26(¹f)222hf#. It follows that a Russo-
Susskind-Thorlacius–type counterterm appears naturally in the one-loop effective action.
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I. INTRODUCTION

In the study of black hole radiation, many useful results
have been obtained from two-dimensional~2D! models. It is
hoped that the results will extend, at least partly, to the be-
havior of realistic black holes in four or more dimensions. To
make this claim plausible, the 2D actions were usually ob-
tained by a dimensional reduction from a higher-dimensional
theory. In the seminal papers of Callan, Giddings, Harvey,
and Strominger~CGHS! @1#, and of Russo, Susskind, and
Thorlacius~RST! @2#, the classical action is

S5
1

16pGE d2xA2ge22f@R14~¹f!214l2#.

CGHS introduced this theory primarily as a toy model, but
with the physical motivation that it could be obtained by
dimensional reduction of dilaton black holes@3,4#. In order
to study black hole radiation,N matter fields are added and a
largeN limit is taken, in which the quantum fluctuations of
f and the 2D metric are neglected. In the spirit of a toy
model, CGHS chose the simplest possible matter fields, sca-
lar fields that are minimally coupled in 2D, with the physical
justification that this could be obtained by dimensional re-
duction of Ramond-Ramond fields. Such minimally coupled
scalars have the well-knownR/24p trace anomaly and this
determines the effective action up to boundary condition
terms.

In other 2D models, however, couplings of the scalars to
the dilaton arise naturally. For example, the dimensional re-
duction of spherically symmetric general relativity by the
ansatz

ds25gmndxmdxn1e22fdV2

gives the 2D action

S5
1

16pGE d2xA2ge22f@R12~¹f!2#1222Q2e2f.

Trivedi and Strominger@5,6# used this action with 2D mini-
mally coupled scalars. They had to claim they were
bosonizations of 4D fermions. It would be more natural,
however, to use a minimally coupled 4D scalar field,f . On
dimensional reduction with the above ansatz, its kinetic term
acquires an exponential coupling to the dilaton:

Sm52
1

2E d2xA2ge22f~¹ f !2. ~1.1!

Dilaton coupling can also arise in other ways. Therefore it is
of interest to calculate the trace anomaly and effective action
for dilaton coupled scalars in two dimensions.

II. METHODS

From the eigenvaluesln of the operatorA, one defines a
generalized zeta function@7,8#

z~s!5trA2s5(
n

ln
2s .

This sum converges for a sufficiently large real part ofs. By
analytic extension, it defines a meromorphic function ofs,
which is regular even in regions where the sum diverges. The
one-loop effective actionW is given by

W52
1

2
@z8~0!1z~0!lnm2#, ~2.1!

wherez85dz/ds. Under a rescaling of the operator,

A@k#5k21A, ~2.2!

the one-loop effective action transforms as

W@k#5W2
1

2
z~0!lnk. ~2.3!*Electronic address: bousso1@stanford.edu
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We denote the trace anomaly byT. Let us summarize
some of its general properties inD-dimensional spacetimes
@7#. If D is odd, the trace anomaly is zero. IfD is even, it
consists of termsTi that are generally covariant and homo-
geneous of orderD in derivatives:T5(qiTi . The dimen-
sionless numbersqi are universal, i.e., independent of the
background metric. This property will allow us to choose
convenient backgrounds to determine their values.

The integral of the trace anomaly over the manifold is
given by

E dDxAgT522
dW

dk U
k51

, ~2.4!

where k is defined as a scale factor of the metric,ĝmn

5k21gmn. But under this scale transformation, the eigenval-
ues ofA transform as in Eq.~2.2!. Therefore, Eq.~2.3! can
be used, which yields the elegant result

E dDxAgT5z~0!. ~2.5!

Given an operatorA, one could, in principle, calculate the
one-loop effective action directly from Eq.~2.1!. In practice,
it is often simpler to calculate the trace anomaly from Eq.
~2.5!, because the zeta function is usually easier to obtain
than its derivative. By requiring that Eq.~2.4! hold, the ef-
fective action can be inferred up to terms that do not depend
on the scale factor.~We shall useW* to denote a quantity
which differs from the effective action only by such terms.!
Also, if the effective action is known for the operatorkA,
one can use Eq.~2.3! to obtainW for the operatorA.

III. DILATON COUPLED SCALAR

Variation of the action, Eq.~1.1!, with respect tof , yields
the equation of motionA f50, with the field operator

A5e22f~2h12¹mf¹m!. ~3.1!

The trace anomaly consists of covariant terms with two met-
ric derivatives. For the operator at hand, there are only three
such expressions:R, (¹f)2, and hf. In principle, these
terms could still be multiplied by arbitrary functions off.
But consider shiftingf by a constant valueDf. This corre-
sponds merely to multiplying the kinetic term in the action
by a factore22Df; the trace anomaly will remain the same.
Therefore a functional dependence of any of its terms onf
can be excluded. Consequently, we can write

T5q1R1q2~¹f!21q3hf. ~3.2!

By writing the metric in conformal gauge,

ds25e2r~ t,x!~dt21dx2!,

it is easy to check that this anomaly derives from the effec-
tive action

W* 5
1

2E d2xAgFq1

2
R

1

h
R1q2~¹f!2

1

h
R1q3fRG .

~3.3!

This follows from Eq. ~2.4!, since R522hr. @A more
straightforward result for the last term would behf(1/h)R.
It is related to the term we use by two integrations by parts;
the difference can at most be a boundary term. It will become
clear below why we choose the formfR.# We must only
determine the universal numbersq1, q2, andq3 to obtain the
trace anomaly completely.

First consider the case whenf is identically zero. Then
Eq. ~3.2! simplifies toTf[05q1R. But if f[0, the operator
A in Eq. ~3.1! becomesAf[052h. This is the operator for
the minimally coupled scalar, for which the trace anomaly is
well known @9#: Tmin5R/24p. Therefore, one finds that

q15
1

24p
.

Now consider the case wheref is constant,f[f c . Then
the one-loop effective action, Eq.~3.3!, simplifies to

Wf[fc
* 5Wmin* 1

1

2E d2xAgq3fcR. ~3.4!

To make sure that the integral over the Ricci scalar does not
vanish, we can specify that a background with the topology
of a two-sphere be used. For constantf, the operatorA
becomesAf[fc

52e22fch. But this is just the minimally

coupled operator, rescaled by a constant factork215e22fc.
Therefore, Eqs.~2.3! and ~2.5! yield

Wf[fc
* 5Wmin* 2fczmin~0!5Wmin* 2fcq1E d2xAgR.

~3.5!

Comparison with Eq.~3.4! shows that

q3522q152
1

12p
.

The same consideration also vindicates the choice offR
for the last term in the effective action, Eq.~3.3!: If
hf(1/h)R was used, the last term in Eq.~3.4! would be
zero, sincef is constant. It would then be impossible to
match Eq.~3.4! to Eq.~3.5!, in which the last term is nonzero
on a two-sphere background.1

In conformal gauge the field operator will take the form

A5e22f22rF2
]2

]t2
2

]2

]x2
12S ]f

]t

]

]t
1

]f

]x

]

]xD G .

Consider a Euclidean background manifold of toroidal topol-
ogy, in whicht andx are periodically identified, with period
2p. The integral over the Ricci scalar is a topological invari-
ant and vanishes on a torus. Sincehf is a total divergence,
its integral vanishes as well. Thus,

1Nojiri and Odintsov@10# suggest a more general form for the
effective action, in which the last term is given byq3@afR1(1
2a)hf(1/h)R#. This would give a different value ofq3.

56 7789TRACE ANOMALY OF DILATON-COUPLED SCALARS IN . . .



z~0!5E d2xAgT5q2E d2xAg~¹f!2. ~3.6!

Therefore we can determineq2 by calculatingz(0) from the
operator eigenvalues in a conveniently chosen toroidal back-
ground, and dividing the result by*d2xAg(¹f)2.

A useful choice of background is the field configuration
f52r5esint, wheree!1. The operator takes the form

A52
]2

]t2
2

]2

]x2
12ecost

]

]t
.

For e50, this operator is just the flat space Laplacian, for
which z(0) is known to vanish. The integral on the right-
hand side of Eq.~3.6! yields 2p2e2. Thus we can proceed as
follows. The eigenvalues ofA will be found perturbatively in
e. This will allow us to expandz(s) to second order ine:

z~s!5z~0!~s!1ez~1!~s!1e2z~2!~s!.

Sincez (0)(0)50, we have

ez~1!~0!1e2z~2!~0!52p2q2e2.

Consistency requires thatz (1)(0)50; we will indeed find
that to be the case. Therefore,

q25
1

2p2
z~2!~0!. ~3.7!

For e50, the eigenvalues of the operatorA are Lkl
(0)

5k21 l 2, with degeneracies

d~k,l !5H 4 if k>1, l>1,

2 if k>1, l 50 or k50, l>1,

1 if k5 l 50.

Clearly, the zeta function

z~s!5 (
k,l 50

`

d~k,l !~Lkl
~0!!2s

contains an ill-defined term:k5 l 50. This problem can be
dealt with by introducing a mass term into the operatorA:
A→A1M2. Thenz(0) can be defined in the limit asM→0.

Now take eÞ0, and consider the eigenvalue equation
A f5L f . With f (t,x)5T(t)X(x) the equation separates into

2X95sX, 2T̈12ecostṪ5lT.

Standard perturbation theory yields that, to second order ine,
the eigenvalues ofA are

Lkl5k21 l 21M21e2
2l 2

4l 221
,

with the same degeneraciesd(k,l ) as in the unperturbed
case. The zeta function is given by

z~s!5 (
k,l 50

`

d~k,l !~Lkl
~0!!2sS 11e2

l l
~2!

Lkl
~0!D 2s

5 (
k,l 50

`

d~k,l !~Lkl
~0!!2sS 12e2s

l l
~2!

Lkl
~0!D

5z~0!~s!2e2s (
k50,l 51

`

d~k,l !
l l

~2!

~Lkl
~0!!11s

,

where a Taylor expansion to second order ine was used. The
sum in the last line does not includel 50 becausel0

(2)50.
Since this excludesk5 l 50, it is safe to dropM at this point.
Thus we have

z~2!~0!52 lim
s→0

sU~s!, ~3.8!

where we view the double sum as a meromorphic function of
s:

U~s!5 (
k50,l 51

`

d~k,l !
2l 2

~k21 l 2!11s~4l 221!
.

We need to find only the principal part of the Laurent
series ofU arounds50, Pr@U(s);0#, because the regular
part will be annulled by the factor ofs in Eq. ~3.8!. But
Pr@U(s);0#5Pr@U(s)1V(s);0# for any function V(s)
which is regular ats50. Thus, by adding suitable finite
terms to the double sum, we can bring it into a form which
can be evaluated.

First, we note that the contribution fromk50 is finite at
s50:

2(
l 51

`

2~4l 221!2152.

After its subtraction, all summations start at 1:

Pr@U~s!;0#52 PrF (
k,l 51

`
4l 2

~k21 l 2!11s~4l 221!
;0G ,

where we have usedd(k,l )54. Next, we subtract 1 in the
numerator; this is possible since

( ~k21 l 2!212s~4l 221!21

is finite ats50 „the upper bound

211
p2

12
1S ln22

1

2Dpcothp'0.43

is easily found…. This cancels the (4l 221) factor. The re-
maining double sum evaluates to

(
k,l 51

`
1

~k21 l 2!11s
5

1

4
Z2~212s!2zR~212s!,

where
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Z2~p!5 (
k,l 52`

`

8 ~k21 l 2!2p/2

is a generalized zeta function of Epstein type; the prime de-
notes the omission of thek5 l 50 term in the sum. Epstein
showed in Ref.@11# that Z2(p) is analytic except for a
simple pole atp52, with residue 2p. Since the Riemann
zeta functionzR(212s) is finite for s50, we find

2Pr@U~s!;0#5
1

2
Pr@Z2~212s!;0#5

1

2S 2p

2s D5
p

2s
.

Therefore, by Eq.~3.8!, we find thatz (2)(0)52p/2, and, by
Eq. ~3.7!, we obtain the result

q252
1

4p
.

We have thus shown that a 2D conformal scalar field with
exponential dilaton coupling has the trace anomaly

T5
1

24p
@R26~¹f!222hf#.

The scale factor-dependent part of the one-loop effective ac-
tion is

W* 51
1

48pE d2xAgF1

2
R

1

h
R26~¹f!2

1

h
R22fRG .

It is interesting to note that the last term was inserted by
hand in the RST model, albeit with a different coefficient. By
Eq. ~2.1!, the effective action will also contain a term
2(1/2)z(0)lnm2. TheR andhf terms in the trace anomaly
give only a topological contribution toz(0), which does not
affect the equations of motion. The term
(1/8p)lnm2*d2xAg(¹f)2, however, must be taken into ac-
count.

With our result, it will be possible to study black hole
radiation in a large class of 2D models, including those that
derive from 4D general relativity.
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