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Trace anomaly of dilaton-coupled scalars in two dimensions
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Conformal scalar fields coupled to the dilaton appear naturally in two-dimensional models of black hole
evaporation. We show that their trace anomaly is (#IR—6(V ¢$)2—20¢]. It follows that a Russo-
Susskind-Thorlacius—type counterterm appears naturally in the one-loop effective action.
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I. INTRODUCTION

1
S= —J d?\—ge 2[R+2(V ¢)?]+2—2Q%??.
In the study of black hole radiation, many useful results 167G g [ (V)] Q

have been obtained from two-dimensiof2D) models. It is

hoped that the results will extend, at least partly, to the beTrivedi and Stromingef5,6] used this action with 2D mini-
havior of realistic black holes in four or more dimensions. Tomally coupled scalars. They had to claim they were
make this claim plausible, the 2D actions were usually obbosonizations of 4D fermions. It would be more natural,
tained by a dimensional reduction from a higher-dimensionahowever, to use a minimally coupled 4D scalar fildOn
theory. In the seminal papers of Callan, Giddings, Harveydimensional reduction with the above ansatz, its kinetic term
and Strominge{CGHS [1], and of Russo, Susskind, and acquires an exponential coupling to the dilaton:
Thorlacius(RST) [2], the classical action is

1
sz_if d?x\—ge ?#(Vf)2. (1.1
1
S=——| d®y—ge ?[R+4(V¢)?+4N7].
167G g : (V) | Dilaton coupling can also arise in other ways. Therefore it is

of interest to calculate the trace anomaly and effective action

CGHS introduced this theory primarily as a toy model, but]cor dilaton coupled scalars in two dimensions.

with the physical motivation that it could be obtained by

dimensional reduction of dilaton black holg3,4]. In order Il. METHODS

to study black hole radiatiotN matter fields are added and a

large N limit is taken, in which the quantum fluctuations of

¢ and the 2D metric are neglected. In the spirit of a toy

model, CGHS chose the simplest possible matter fields, sca-

lar fields that are minimally coupled in 2D, with the physical {(s)=trA™ 5= Z A, S,

justification that this could be obtained by dimensional re- n

duction of Ramond-Ramond fields. Such minimally coupled o

scalars have the well-knowR/24 trace anomaly and this 1his sum converges for a sufficiently large real pars.oBy

determines the effective action up to boundary conditior@n@lytic extension, it defines a meromorphic functionsof

terms. which is regular even in regions where the sum diverges. The
In other 2D models, however, couplings of the scalars tg®ne-loop effective actio is given by

the dilaton arise naturally. For example, the dimensional re- 1

gﬁgg(tnzn of spherically symmetric general relativity by the W= — §[§,(0)+§(0)|n,u2], 2.1

From the eigenvalues, of the operato, one defines a
generalized zeta functidi7,8]

ds?=g, dxtdx’+e24d0)? where{’=d{/ds. Under a rescaling of the operator,
=0,

A[k]=k 1A, (2.2

gives the 2D action ) _
the one-loop effective action transforms as
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We denote the trace anomaly Ay Let us summarize This follows from Eqg. (2.4), since R=—2p. [A more
some of its general properties i-dimensional spacetimes straightforward result for the last term would bip(1/0)R.
[7]. If D is odd, the trace anomaly is zero.Df is even, it It is related to the term we use by two integrations by parts;
consists of termd; that are generally covariant and homo- the difference can at most be a boundary term. It will become
geneous of ordeD in derivatives:T=Xq;T;. The dimen- clear below why we choose the forgaR.] We must only
sionless numbers); are universal, i.e., independent of the determine the universal numbaers, q,, andq; to obtain the
background metric. This property will allow us to choosetrace anomaly completely.

convenient backgrounds to determine their values. First consider the case whef is identically zero. Then
The integral of the trace anomaly over the manifold isEq. (3.2) simplifies toT ,—o=0q;R. Butif $=0, the operator
given by Ain Eq. (3.1) becomesA ,_,=—[. This is the operator for

the minimally coupled scalar, for which the trace anomaly is

dw ST = i
f dOx\gT= Sl (2.4 well known [9]: Tin=R/24m. Therefore, one finds that
k=1
1
where k is defined as a scale factor of the metrg” q1_247-r'
=k~ 'g**. But under this scale transformation, the eigenval-
ues ofA transform as in Eq(2.2). Therefore, Eq(2.3) can Now consider the case whegeis constantgp=¢ .. Then
be used, which yields the elegant result the one-loop effective action, E@.3), simplifies to
D _ 1
J d°xJgT=4(0). @9 Wi g = Wiint 5 f dx\ggeR (34

Given an operatof, one could, in principle, calculate the

one-loop effective action directly from E@.1). In practice, To make sure that the integral over the Ricci scalar does not

it is often simpler to calculate the trace anomaly from Eq.vamSh’ we can specify that a background with the topology

(2.5), because the zeta function is usually easier to obtairgf a twc;:pherf _be_lé'zceg' gor Chf?”?'ta?‘“ theh ope_re}torﬁl\l
than its derivative. By requiring that E.4) hold, the ef-  °€COMENg=g = ~€ - But this Is just the minimally
fective action can be inferred up to terms that do not depengoupled operator, rescaled by a constant fakfor=e .
on the scale factorWe shall useV* to denote a quantity 1 herefore, Eqs(2.3) and(2.9) yield

which differs from the effective action only by such terjns.

Also, if the effective action is known for the operatoA, W (O =W — f 2
one can use Eq2.3) to obtainW for the operatoA. W= W™ Felmal0) = Wion ™ 3. | X\/ER(' 5
3.

Ill. DILATON COUPLED SCALAR . .
Comparison with Eq(3.4) shows that

Variation of the action, Eq.1.1), with respect td, yields
the equation of motiod\f=0, with the field operator 1
O3=—20:=— 127"

A=e 2¥(—0O+2VHpV ). (3.1

The trace anomaly consists of covariant terms with two met. The same consideration also vindicates the choicgRf

ric derivatives. For the operator at hand, there are only threfor the last term in the effective action, Eq3.3: If

such expressionsR, (V¢)2, and ¢. In principle, these [ $(1/L)R was used, the last term in E(.4) would be

terms could still be multiplied by arbitrary functions gf. ~ Z€r0, since¢ is constant. It would then be impossible to

But consider shiftingp by a constant valud . This corre- ~ Match Eq(3.4) to Eq.(3.9), in which the last term is nonzero

sponds merely to multiplying the kinetic term in the action O @ two-sphere background. _

by a factore 22¢; the trace anomaly will remain the same. In conformal gauge the field operator will take the form

Therefore a functional dependence of any of its termspon

can be excluded. Consequently, we can write #? 9 ap d dp 9
q y A=e 26-2p ____+2(_¢_+_¢_) i
_ 2 a2 ox? at gt aIx Ix
T=q1R+02(Ve)“+aslé. 3.2
By writing the metric in conformal gauge, Consider a Euclidean background manifold of toroidal topol-
ogy, in whicht andx are periodically identified, with period
ds?=e2?tX(dt?+ dx?), 2. The integral over the Ricci scalar is a topological invari-

ant and vanishes on a torus. Sindeb is a total divergence,
it is easy to check that this anomaly derives from the effecits integral vanishes as well. Thus,
tive action

q; 1 2 1 INojiri and Odintsov[10] suggest a more general form for the

—R=R+ —R+ . . . . - L

2 RD R+G2(V ) O Rt dsdR effective action, in which the last term is given loy[a¢R+ (1
3.3 —a)d¢(1/O)R]. This would give a different value afs.

1
wW* sz dZX\/a




7790 RAPHAEL BOUSSO AND STEPHEN HAWKING 56

—S

2
1+ 62)\§ )

§(0)=J'd2X\/§T=q2J d*xVo(Ve)2. (3.6 Z(s)= 2 d(k,D(AD)~S

Therefore we can determirgg by calculatingZ(0) from the %
operator eigenvalues in a conveniently chosen toroidal back- Z d(k,) (A S( 1—e?s—
ground, and dividing the result bfd?x\/g(V ¢)>2. =0

A useful choice of background is the field configuration
¢=—p=esint, wheree<1. The operator takes the form

={s)- €’ Z d(kl)(A(O))HS
PP

- ﬁ - (?7 + ZGCOSE where a Taylor expansion to second ordee iwas used. The
sum in the last line does not includie=0 because\(?)=0.

For e=0, this operator is just the flat space Laplacian, forSince this excludek=1=0, itis safe to dropM at thls point.
which £(0) is known to vanish. The integral on the right- Thus we have
hand side of Eq(3.6) yields 2m2€2. Thus we can proceed as

follows. The eigenvalues & will be found perturbatively in

e. This will allow us to expand;(s) to second order ir:

{2(0)=—limsU(s), (3.9

s—0

©) " 2.42) where we view the double sum as a meromorphic function of
{(s)=0"(s)+ el P (s)+ e (s). s:

Since{(®(0)=0, we have = 2
el M(0)+€2{?(0)=27m%q,€%, k:ozl:l d(k’l)(k2+lz)“5(4lz—1) '
Consistency requires that®(0)=0; we will indeed find We need to find only the principal part of the Laurent
that to be the case. Therefore, series ofU arounds=0, PfU(s);0], because the regular
part will be annulled by the factor of in Eg. (3.8). But
1 P{U(s);0]=P{U(s)+V(s);0] for any function V(s)
Q2==—{'?(0). (3.7  which is regular ats=0. Thus, by adding suitable finite
2m terms to the double sum, we can bring it into a form which
can be evaluated.
For =0, the eigenvalues of the operatér are A({’ First, we note that the contribution frok=0 is finite at
=k2+12, with degeneracies s=0:

4 if k=1, |=1,
d(k,h)={ 2 if k=1, 1=0 or k=0, I=1,
1 if k=I1=0.

2> 2(412-1)"1=2.
=1

After its subtraction, all summations start at 1:

o

P{U(s);0]=2P1 > o 0
r[ (S), ]_ K1 (k2+|2)1+5(4|2_1)1 !

Clearly, the zeta function

()= 2 d(k(A) S
k,I=0 .
where we have used(k,1)=4. Next, we subtract 1 in the

contains an ill-defined termk=1=0. This problem can be nNumerator; this is possible since

dealt with by introducing a mass term into the operaor

A—A+M?2. Then{(0) can be defined in the limit 8d —0. z (K2+12)7175(4]12—1) "t
Now take e#0, and consider the eigenvalue equation

Af=Af. With f(t,x)=T(t)X(x) the equation separates into is finite ats=0 (the upper bound

—X"=0¢X, —T+2ecosT=\T. 2

-1+ =+
1 12

1
In2—§) mrcothm~0.43
Standard perturbation theory yields that, to second order in

the eigenvalues ok are is easily found. This cancels the (4—1) factor. The re-

) maining double sum evaluates to
I

A=K+ 12+ M2+ €

©

412-1' L

3 g 22t 29 2+ 29),

with the same degeneraciekk,l) as in the unperturbed
case. The zeta function is given by where
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0

’ 1 2
Zap)= 3 (k172 W"=+@fd g

J=—0o

1R1R6V 21R2R
>R5R-6(Ve)"5R-24R|.

is a generalized zeta function of Epstein type; the prime de-

notes the omission of thie=1=0 term in the sum. Epstein It is interesting to note that the last term was inserted by
showed in Ref.[11] that Z,(p) is analytic except for a hand in the RST model, albeit with a different coefficient. By
simple pole atp=2, with residue Zr. Since the Riemann Eq. (2.1), the effective action will also contain a term
zeta function{r(2+2s) is finite for s=0, we find —(1/2)£(0)Inu?. TheR and[] ¢ terms in the trace anomaly
give only a topological contribution t¢(0), which does not

1 1/ 27 T . .
2Pr[U(s);O]=§ pr[zz(2+25);o]:§(2_) =5 affect the equations of motion. The term
S S (1/8) Inp2f d>+/g(V #)2, however, must be taken into ac-
count.

Therefore, by Eq(3.8), we find that(?(0)= — #/2, and, by

Eq. (3.7), we obtain the result With our result, it will be possible to study black hole

radiation in a large class of 2D models, including those that

1 derive from 4D general relativity.
%= 7
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