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The irreducible decomposition technique is applied to the study of classical models of metric-affine gravity
~MAG!. The dynamics of the gravitational field is described by a 12-parameter Lagrangian encompassing a
Hilbert-Einstein term, torsion and nonmetricity square terms, and one quadratic curvature piece that is built up
from Weyl’s segmental curvature. Matter is represented by a hyperfluid, a continuous medium the elements of
which possess classical momentum and hypermomentum. With the help of irreducible decompositions, we are
able to express torsion and traceless nonmetricity explicitly in terms of the spin and the shear current of the
hyperfluid. Thereby the field equations reduce to an effective Einstein theory describing a metric coupled to the
Weyl 1-form ~a Proca-type vector field! and to a spin fluid. We demonstrate that a triplet of torsion and
nonmetricity 1-forms describes the general and unique vacuum solution of the field equations of MAG. Finally,
we study homogeneous cosmologies with a hyperfluid. We find that the hypermomentum affects significantly
the cosmological evolution at very early stages. However, unlike spin, shear does not prevent the formation of
a cosmological singularity.@S0556-2821~97!07922-8#

PACS number~s!: 04.50.1h, 03.50.Kk, 04.20.Jb

I. INTRODUCTION

Within the framework of the gauge approach to gravity
~see, e.g.,@1#! the kinematic scheme of the metric-affine
theory is well understood at present. However, thedynamic
aspects of metric-affine gravity~MAG! have been rather
poorly studied up to now. The choice of the basic Lagrangian
of the theory remains an open problem, and this, in turn,
prevents a detailed analysis of possible physical effects.~An
analysis of physical observations in MAG without specializ-
ing to a particular Lagrangian was made in@2#.! As a first
step, one can use a correspondence principle. It is well
known that Einstein’s general relativity theory is satisfacto-
rily supported by experimental tests on the macroscopic
level. Thus, whereas the gravitational gauge models provide
an alternative description of gravitational physics in the mi-
croworld, it is natural to require their correspondence with
general relativity at large distances. Unfortunately, direct
generalization of the standard Hilbert-Einstein Lagrangian
yields an unphysical MAG model which is projectively in-
variant and, accordingly, imposes unphysical constraints on
the matter sources.

Another essential difficulty in the development of a dy-
namical scheme of MAG was, until recently, the lack of
self-consistent models which describe physical~quantum,
semiclassical, or classical! sources of MAG possessing mass
or energy-momentum and hypermomentum. The reader may
consult @1,3# which give a modern presentation of the so-
called manifield and world spinor approach based on the
theory of infinite dimensional representations of the affine
and linear groups. However, the main achievements there are

again of kinematic nature, and no dynamical model for mani-
fields and world spinors is available.

Recently there has been some progress both in the devel-
opment of the simplest viable metric-affine Lagrangians that
generalize the Hilbert-Einstein model and in the establish-
ment of a variational theory of ahyperfluidwhich seems to
represent a reasonable classical model of a continuous me-
dium with energy-momentum and hypermomentum. In the
papers@4,5# it was proposed to take as the gravitational La-
grangian the sum of the~generalized! Hilbert-Einstein term
and the square of the segmental curvature~thus reviving the
old proposals of@6,7#!. Further extensions of this model,
which include the quadratic invariants of torsion and non-
metricity, were investigated~in vacuum! in @8–12#. A hyper-
fluid model was developed in@13# along the lines of the
Weyssenhoff approach to spin fluids which now reappear as
a particular case of the hyperfluid.~Note that a different
variational model of a fluid with hypermomentum was sug-
gested in@14#.!

Relativistic fluid dynamics covers a vast field of research
in gravitation, cosmology, and particle physics. Relativistic
fluid models are working tools in high-energy plasma astro-
physics and in nuclear physics~where nonideal fluids are
extremely successfully applied to the description of heavy
ion reactions!, see, e.g.,@15#. In cosmology, hydrodynamical
description of matter is standard both for the early and for
the later stages of the evolution of the universe@16#. Spin
fluids are used for the consistent statistical treatment of a
medium the elements of which are particles with intrinsic
angular momentum@17# ~cosmological ‘‘soup’’ of funda-
mental particles in the early universe or a fluid of spinning
galaxies, clusters of galaxies, turbulent eddies during the
later times!. In Poincare´ gauge gravity, the Weyssenhoff spin
fluid @18# provides an adequate description of a continuous
medium with spin degrees of freedom. Spin of matter
sources proves to be significant in the Einstein-Cartan
theory, where the cosmological singularity can be avoided

*Permanent address: Department of Theoretical Physics, Moscow
State University, 117234 Moscow, Russia.

†Permanent address: Department of Mathematics, University of
Newcastle, Newcastle, NSW 2308, Australia.

PHYSICAL REVIEW D 15 DECEMBER 1997VOLUME 56, NUMBER 12

560556-2821/97/56~12!/7769~10!/$10.00 7769 © 1997 The American Physical Society



due to effective repulsion of spinning particles@19#. It is
worthwhile to stress that the spin fluid can be consistently
derived from the quantum theory of Dirac particles.@One
may ask though: How can this be reconciled with the studies
@20# for the Einstein-Cartan-Dirac cosmology where a singu-
larity is not avoided? The answer is that it is misleading to
compare a spin fluid cosmology~i.e., a cosmology ofen-
semble of large numberof gravitating particles with spin!
with a clearly unphysical classical Dirac field ‘‘cosmolo-
gy’’ ~i.e., a ‘‘cosmology’’ of one gravitating particle with
spin!. The correct comparison can only be made with the
Einstein-Cartan-Dirac cosmology in which the energy-
momentum and spin currents are obtained as macroscopic
averages from the quantum density operators. This was done,
e.g., in@21# with the help of the relativistic Wigner function
formalism, and the effective repulsion was confirmed.#

In the framework of MAG, to the best of our knowledge,
the hyperfluid represents the only available self-consistent
dynamical model of matter with nontrivial hypermomentum.
It generalizes in a natural way the Weyssenhoff spin fluid by
including additional degrees of freedom~dilation and shear
densities!. At the same time, further study is certainly needed
for establishing thefundamentaltheory of matter with hyper-
momentum. The manifields@1,3# seem to be a step in the
right direction, but unfortunately no dynamical scheme is
known for them~i.e., no Lagrangian, no equations of motion,
no precise form of the Noether currents!. It is even unclear
how the standard Dirac fermion matter can be recovered
from the manifields when shear and dilation charges vanish.
We are convinced though, that even after the fundamental
theory of matter with hypermomentum is completed, the hy-
perfluid model will remain a tool useful for practical appli-
cations ~like the relativistic fluid models are amazingly
handy in nuclear physics for calculations on heavy ion reac-
tions, despite the fact that a fundamental Dirac theory is
always also available@15#!.

In this paper we will study the classical dynamics of
metric-affine gravitational fields for the general MAG La-
grangian which includes the Hilbert-Einstein term, the seg-
mental curvature square term~of Weyl!, and all possible qua-
dratic torsion and nonmetricity contractions. The hyperfluid
provides nontrivial energy-momentum and hypermomentum
currents which describe classical matter sources in the MAG
field equations. We demonstrate the exceptional effective-
ness of the technique of irreducible decompositions applied
to post-Riemannian geometrical objects. In particular, we
show that ~i! the separation of Riemannian and post-
Riemannian structures and~ii ! the subsequent decomposition
of the latter into irreducible pieces, leads to the solution of
the coupled MAG field equations with respect to torsion and
nonmetricity. As a result of this process, we are left with an
effective Einsteinian gravitational field equation for the met-
ric which is a direct generalization of the effective equations
arising in the Einstein-Cartan theory~cf. @22#!. Specializing
our results to the vacuum case, we are able to complete the
study of the ansatz of the so-called1-form triplet, which
underlies the results of@10–12#, by demonstrating its unique-
ness. Namely, for generic MAG models, the solution with a
1-form triplet is not only the most general solution of the
secondfield equation~for terminology, see@1#! but it is also
unique.

Our basic notations and conventions are those of@1#,
in particular the signature of the metric is assumed to be
~2,1,1,1!.

II. PRELIMINARIES: METRIC-AFFINE GEOMETRY
AND BASIC DECOMPOSITIONS

In this section we recall some basic facts concerning
metric-affine geometry in four dimensions. For a more de-
tailed discussion in arbitrary dimensions see@1#. The metric-
affine spacetime is described by the metricgab , the coframe
1-forms qa, and the linear connection 1-formsGb

a. These
are interpreted as the generalized gauge potentials, while the
corresponding field strengths are the nonmetricity 1-form
Qab52Dgab and the 2-forms of torsionTa5Dqa and cur-
vatureRb

a5dGb
a1Gg

a`Gb
g. The general affine connec-

tion can always be decomposed into Riemannian and post-
Riemannian parts,

Gb
a5G̃b

a1Nb
a, ~2.1!

where thedistortion 1-form Nab can be expressed in terms
of torsion and nonmetricity:

Nab52e@acTb]1
1
2 ~eacebcTg!qg1~e@acQb]g!qg1 1

2 Qab .
~2.2!

We denote the Riemannian connection~the Christoffel sym-
bols! by G̃b

a, and hereafter the tilde will denote purely Rie-
mannian geometrical objects and operators. Using Eq.~2.1!,
it is possible to split all quantities in the metric-affine theory
into Riemannian and post-Riemannian pieces~for curvature
this reads, e.g.,Rb

a5R̃b
a1D̃Nb

a1Ng
a`Nb

g).
The irreducible decompositionsof torsion and nonmetric-

ity @1# provide a pattern for the decomposition of the gravi-
tational gauge field momenta which enter the field equations
of MAG. In order to make the paper self-contained, we re-
produce here the basic formulae.

The torsion 2-formTa can be decomposed into three ir-
reducible pieces:

~2!Ta:5 1
3 qa`T, T:5eacTa, ~2.3!

~3!Ta:52 1
3 * ~qa`P!, P:5* ~Ta`qa!, ~2.4!

~1!Ta:5Ta2 ~2!Ta2 ~3!Ta. ~2.5!

The nonmetricity 1-formQab can be decomposed into
four irreducible pieces:

~2!Qab :5 2
3 * ~q~a`Vb)!, ~2.6!

~3!Qab :5 4
9 ~q~aeb)cL2 1

4 gabL!, ~2.7!

~4!Qab :5gabQ, ~2.8!

~1!Qab :5Qab2 ~2!Qab2 ~3!Qab2 ~4!Qab . ~2.9!

Here the shear covector part and the Weyl covector are,
respectively, L:5qaebc Q↗ab , and Q:5 1

4 gabQab ,
where Q↗ab5Qab2Qgab is the traceless piece of the
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nonmetricity. It seems worthwhile to notice that the 2-form
Va :5Qa2 1/3eac(qb`Qb), with Qa :5* (Q↗ab`qb),
which describes(2)Qab , has precisely the same symmetry
properties as the 2-form(1)Ta.

Substituting~2.3!–~2.5! and~2.6!–~2.9! into Eq.~2.2!, we
find the following general decomposition of the distortion
1-form:

Nab5 1
2 $Qab2 2

3 q@aeb] c~3Q2L12T!22e@ac
3~* Vb]12 ~1!Tb] !2~eacebc ~3!Tg!qg. ~2.10!

The first irreducible piece of the torsion and the 2-formVa
appear as a linear combination here. This formula is ex-
tremely useful in the analysis of the field equations of MAG.

III. A MODEL FOR MAG

In this and subsequent sections we will widely use,
along with the coframesqa, the so calledh-basis of the dual
coframes. Namely, we define@1# the Hodge dual such
that h:5* 1 is the volume 4-form. Furthermore
ha :5each5* qa , hab :5ebcha5* (qa`qb), habg :
5egchab , habgd :5edchabg . The last expression is thus
the totally antisymmetric Levi-Civita tensor.

A. Gravitational Lagrangian

Direct generalization of the Hilbert-Einstein Lagrangian
Rab`hab to metric-affine gravity yields an unphysical
model which is invariant under projective transformations of
the connection.

Consequently, we turn our attention to a model described
by a Lagrangian which generalizes the models studied re-
cently in @4,10–12#:

VMAG5
1

2kF2a0 Rab`hab22lh1Ta`* S (
I 51

3

aI
~ I !TaD

12S (
I 52

4

cI
~ I !QabD `qa` * Tb1Qab

`* S (
I 51

4

bI
~ I !QabD 1b5~ ~3!Qag `qa!

`* ~ ~4!Qbg`qb!G2
1

2
z4 Rab`* ~4!Zab . ~3.1!

Here, the coupling constantsa0 , . . . ,a3 ,c2 ,c3 ,c4 ,b1 ,
. . . ,b5 ,z4 are dimensionless,k is the standard Einstein
gravitational constant, andl is the cosmological constant.
The segmental curvature is denoted by(4)Zab :5 1

4 gabRg
g;

it is a purelypost-Riemannian piece.

B. Hyperfluid matter

Let us study the model~3.1! with matter represented by a
hyperfluid @13#. The matter Lagrangian reads

Lmat5
1
2 r mA

B ba
B u`DbA

a2«~r,s,mA
B!h1Lconstraints,

~3.2!

where the first two terms on the right-hand side describe the
kinetic and the internal energy density« of the hyperfluid,
respectively. The latter depends on the particle densityr, the
specific entropys, and the specific hypermomentum density
mA

B ~‘‘specific’’ means ‘‘per particle’’!. Hereu is the flow
3-form, so that the components of the average fluid velocity
are given byua :5eac* u. The first term represents the com-
bined kinetic contribution of the rotational and the strain
energy of the fluid elements, the motion of which is de-
scribed by the angular and strain velocity of a 3-volume
spanned by the material triad. It is convenient to describe the
latter by two variables: a 1-formbA with the components
ba

A :5eacbA and a 3-form bA with the componentsbA
a

:5* (bA`qa). The last term in Eq.~3.2! denotes a set of
constraints to be added via Lagrange multipliers. We will not
display them here~see@13# for a detailed discussion!. Let us
only mention that they include the standard normalization
constraint for the velocity

u`* u5h, ~3.3!

and the law of particle number conservation,

d~ru!50. ~3.4!

Variation of the Lagrangian~3.2! with respect to the matter
variables yields the hypermomentum equation of motion in
the form

DDa
b52ua ulDDl

b2ub ulDDa
l , ~3.5!

where the hypermomentum current 3-form

Da
b5uJa

b ~3.6!

can be expressed in terms of the hypermomentum density

Ja
b52

1

2
r mA

B bb
B bA

a . ~3.7!

By construction, this tensor satisfies the generalized Frenkel
conditions

Ja
b ub50, Ja

b ua50. ~3.8!

Variational derivatives of the material LagrangianLmat
with respect to coframeqa and connectionGb

a 1-forms de-
fine the material sources. The canonical hypermomentum
current 3-form is given by Eq.~3.6!, whereas the canonical
energy-momentum 3-form reads

Sa5«uua1p~ha1uua!12uubgg@a * ~DDg
b] !,

~3.9!

with the pressure defined as usual byp5r(]«/]r)2«.

C. Field equations

The metric-affine field equations are derived from the to-
tal LagrangianVMAG1Lmat by independent variations with
respect to the coframeqa and connectionGb

a 1-forms. The
corresponding so-calledfirst andsecondfield equations read
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DHa2Ea5Sa , ~3.10!

DHa
b2Ea

b5Da
b . ~3.11!

The left hand sides of Eqs.~3.10! and ~3.11! are given by

Mab:522
]VMAG

]Qab

52
2

kF * S (
I 51

4

bI
~ I !QabD 1

1

2
b5„q~a`* ~Q`qb)!

2 1
4 gab * ~3Q1L!…1c2 q~a`* ~1!Tb)

1c3 q~a`* ~2!Tb)1
1

4
~c32c4! gab* TG , ~3.12!

Ha :52
]VMAG

]Ta

52
1

k
* F S (

I 51

3

aI
~ I !TaD 1S (

I 52

4

cI
~ I !Qab`qbD G ,

~3.13!

Ha
b :52

]VMAG

]Ra
b

5
a0

2k
ha

b1z4 * ~ ~4!Za
b!, ~3.14!

and

Ea :5eacVMAG1~eacTb!`Hb1~eacRb
g!`Hb

g

1 1
2 ~eacQbg!Mbg, ~3.15!

Ea
b :52qa`Hb2Ma

b . ~3.16!

We note, see@1#, that the equation which arise from the
variation of the Lagrangian with respect to the metric turns
out to be redundant.

IV. SPECIAL QUADRATIC MAG-LAGRANGIAN

As a preliminary step, let us study the MAG model with
the Lagrangian

V~0!5
a0

2kH 2Rab`hab 2 ~1!Ta`* ~1!Ta 1 2~2!Ta`* ~2!Ta 1
1

2
~3!Ta`* ~3!Ta 1 ~2!Qab`qb`* ~1!Ta 2 2~3!Qab`qb

`* ~2!Ta 2 2~4!Qab`qb`* ~2!Ta 1
1

4
~1!Qab`* ~1!Qab 2

1

2
~2!Qab`* ~2!Qab 2

1

8
~3!Qab`* ~3!Qab 1

3

8
~4!Qab

`* ~4!Qab 1 ~ ~3!Qag ` qa!`* ~ ~4!Qbg`qb!J . ~4.1!

It can be seen that this is a particular case of Eq.~3.1! with
the special values of the coupling constants.

One can verify, by direct calculation, that the gauge field
momenta for the Lagrangian~4.1! are given by

Ha
~0! :52

]V~0!

]Ta
[2

a0

2k
Nmn`hamn ,

H ~0!a
b :52

]V~0!

]Ra
b

5
a0

2k
ha

b , ~4.2!

and, as a result, it can be straightforwardly proved that

DHa
~0!2Ea

~0![
a0

2k
R̃mn`hamn , DH ~0!a

b2E~0!a
b[0,

~4.3!

where, similarly to Eqs.~3.15! and ~3.16!,

Ea
~0! :5eacV~0!1~eacTb!`Hb

~0!1~eacRb
g!`H ~0!b

g

1 1
2 ~eacQbg!M ~0!bg, ~4.4!

E~0!a
b :52qa`Hb

~0!2M ~0!a
b . ~4.5!

The identities~4.3! can be justified by the fact that

V~0![
a0

2k
$2R̃ab`hab1d@qa`* ~2Ta2Qab`qb!#%

~4.6!

is, up to an exact form, thepurely RiemannianHilbert-
Einstein Lagrangian of general relativity theory. However,
this observation does not provide a rigorous proof of Eq.
~4.3!, because in the derivation of the gauge field equations
~3.10! and~3.11!, see@1#, one assumes that the gravitational
Lagrangian contains frame derivatives,dqa, only implicitly
in torsion, while Eq.~4.6! contains such terms in the Rie-
mannian connection. Hence, a direct proof is required, and a
rather long calculation involving the irreducible decomposi-
tion ~2.10! of the distortion 1-formNab demonstrates that
Eq. ~4.3! is true, indeed.
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V. DECOMPOSITION OF THE FIELD EQUATIONS
OF MAG

Let us write the Lagrangian~3.1! as

VMAG5V~0!1V̂, ~5.1!

where

V̂5
1

2k F22lh1Ta`* S (
I 51

3

a I
~ I !TaD 12S (

I 52

4

g I
~ I !QabD

`qa`* Tb1Qab`* S (
I 51

4

b I
~ I !QabD 1b5~ ~3!Qag

`qa!

`* ~ ~4!Qbg`qb!G2
1

2
z4 Rab`* ~4!Zab , ~5.2!

and

a15a11a0 , a25a222a0 , a35a32
a0

2
, ~5.3!

b15b12
a0

4
, b25b21

a0

2
, b35b31

a0

8
,

b45b42
3a0

8
, b55b52a0 , ~5.4!

g25c22
a0

2
, g35c31a0 , g45c41a0 . ~5.5!

Correspondingly, the field momenta~3.12!–~3.14! and the
gauge momentum and hypermomentum~3.15! and ~3.16!
can be rewritten in the form

Mab5M ~0!ab1M̂ab, Ha5Ha
~0!1Ĥa ,

Ha
b5H ~0!a

b1Ĥa
b , ~5.6!

Ea5Ea
~0!1Êa , Ea

b5E~0!a
b1Êa

b , ~5.7!

where

M̂ab:522
]V̂

]Qab

52
2

kF * S (
I 51

4

b I
~ I !QabD 1

1

2
b5S q~a`* ~Q`qb)!

2
1

4
gab * ~3Q1L! D1g2 q~a`* ~1!Tb)

1g3 q~a`* ~2!Tb)1
1

4
~g32g4! gab * TG , ~5.8!

Ĥa :52
]V̂

]Ta
52

1

k
* F S (

I 51

3

a I
~ I !TaD

1S (
I 52

4

g I
~ I !Qab`qbD G , ~5.9!

Ĥa
b :52

]V̂

]Ra
b

5z4 * ~ ~4!Za
b!5

z4

2
db

a* dQ, ~5.10!

andÊa ,Êa
b are defined by putting ‘‘hats’’ over correspond-

ing terms in Eqs.~3.15! and ~3.16!.
Taking into account Eq.~5.10! and the identities~4.3!,

one can transform the field equations of MAG~3.10! and
~3.11! into

a0

2
R̃mn`hamn5k~Sa2DĤa1Êa!, ~5.11!

z4

2
gab d* dQ1q~a `Ĥb)1M̂ab5D~ab! , ~5.12!

q@a `Ĥb]5D@ab# . ~5.13!

The last two equations are clearly the symmetric and the
antisymmetric parts of Eq.~3.11!.

Observe that the splitting in Eqs.~5.1!–~5.7! has two im-
portant consequences: With the help of the identities~4.3!,
the first MAG equation reduces to the Einstein equation with
some effective source on the right-hand side~5.11!, whereas
the gauge field momenta~5.8! and ~5.9! are linear combina-
tions of irreducible parts of torsion and nonmetricity. Thus,
in order to solve the second MAG field equation~5.12! and
~5.13!, we require an irreducible decomposition~similar to
those established for torsion and nonmetricity in Sec. II! of
the gauge field momenta.

A. Irreducible decomposition of * Ĥ a .

It turns out that technically it is more convenient not to
decompose the gauge field momentum, but rather its Hodge
dual, * Ĥa . This quantity is a vector-valued 2-form, exactly
like the torsion form, and hence its irreducible decomposi-
tion has the same structure:* Ĥa5 (1)(* Ĥa)1 (2)(* Ĥa)
1 (3)(* Ĥa), where the three irreducible pieces are defined
along the same lines as Eqs.~2.3!–~2.5!. After some algebra,
we derive from Eq.~5.9! the following expressions:

~1!~* Ĥa!5
1

k
~a1

~1!Ta2g2* Va!, ~5.14!

~2!~* Ĥa!5
1

3k
qa`~a2 T1g3 L23g4 Q!, ~5.15!

~3!~* Ĥa!5
1

k
a3

~3!Ta. ~5.16!

56 7773EFFECTIVE EINSTEIN THEORY FROM METRIC- . . .



As is well known~see, e.g.,@1# Appendix A.1.7!, an al-
gebraic equation of the type~5.13! can be solved explicitly
with respect to the gauge field momentum. The solution
reads

Ĥa522ebcD@ab#1 1
2 qa`~emcencD@mn#!. ~5.17!

In our case, the spin current 3-formD@ab# is given in
terms of the hyperfluid expression~3.6!. Substituting this
into the dual of the right-hand side of Eq.~5.17!, decompos-
ing it into irreducible pieces, and using Eqs.~5.14!–~5.16!
for the dual of the left-hand side of Eq.~5.17!, we find that

a1
~1!Ta 2 g2 * Va5

4k

3
u(atm)n qm`qn , ~5.18!

a2T1g3L23g4 Q50, ~5.19!

a3
~3!Ta52

k

2
u@atmn] qm`qn , ~5.20!

where we have definedtmn :5J@mn# and used the Frenkel
condition ~3.8!.

B. Irreducible decomposition of * M̂ ab .

We observe that the Hodge dual of the gauge momentum,
* M̂ab , is a symmetric tensor-valued 1-form, exactly like the
nonmetricityQab . Hence, we can decompose this quantity
into four irreducible parts* M̂ab5 (1)(* M̂ab)1 (2)(* M̂ab)
1 (3)(* M̂ab)1 (4)(* M̂ab), the structure of which is deter-
mined by the pattern~2.6!–~2.9!. From Eq.~5.8! we find

~1!~* M̂ab!52
2

k
b1

~1!Qab , ~5.21!

~2!~* M̂ab!52
2

k
* S q~a`F2

3
b2 Vb)1g2 * ~1!Tb)G D ,

~5.22!

~3!~* M̂ab!52
2

k S q~aeb)cM2
1

4
gabMD , ~5.23!

~4!~* M̂ab!52
2

k
gabS b4 Q2

1

8
b5 L2

1

4
g4 TD ,

~5.24!

where the 1-formM is defined by

M:5
4

9
b3 L1

1

3
g3 T2

1

2
b5 Q. ~5.25!

Let us analyze the symmetric equation~5.12!. Separating
out the trace yields

z4 d * dQ1
1

k
* S 24b4 Q1

1

2
b5L1g4TD5

1

2
D,

~5.26!

whereD:5Da
a denotes the dilation current 3-form. For the

hyperfluid we findD5Ja
a u. Notice that, in view of the

Frenkel condition~3.8!, qa`Ĥa50 is an immediate conse-
quence of Eq.~5.17!. Subtracting, Eq.~5.26! from Eq.~5.12!
yields a traceless algebraic equation which relates torsion
and nonmetricity to the pure shear currentD↗ (ab) :5D (ab)
2 1

4 gabD. Substituting Eq.~5.17! into Eq. ~5.12! and de-
composing the Hodge dual of the resulting traceless equa-
tion, we find, after some algebra and on comparison with
Eqs.~5.21!–~5.23!,

b1
~1!Qab52

k

2S u~azbg)2
z

6
u~agbg)Dqg, ~5.27!

2

3
b2Va1g2*

~1!Ta

52
k

3S umFzan2
1

3
z ganG12u~atm)nDhmn, ~5.28!

M5
k

18
* D, ~5.29!

wherezab :5J(ab) is the strain~shear plus dilation! density
andz:5za

a5Ja
a the pure dilation density.

VI. GENERIC SOLUTIONS FOR TORSION
AND NONMETRICITY

We are now in a position to determine the irreducible
parts of torsion and nonmetricity as solutions of the second
field equation of MAG which has been separated into its
symmetric and antisymmetric parts, Eqs.~5.12! and ~5.13!,
respectively. In order to achieve this, we have to take the
final step and resolve the combined system of algebraic
equations~5.18!–~5.20!, ~5.27!-~5.29!. Firstly, let us assume
that the coupling constantsa1 ,b2 ,g2 are such that

k3 :52a1b223g2
2 Þ 0. ~6.1!

Then, Eqs.~5.18! and ~5.28! yield

~1!Ta5kS 2S 4

3
b11g2D
k3

u~atm)n

1
g2

k3
umFzan2

1

3
z ganG D qm`qn, ~6.2!

* Va5kS 2~a112g2!

k3
u~atm)n1

a1

k3
umFzan2

1

3
z ganG Dqm

`qn. ~6.3!

Next, let us introduce three more constants

k0 :54a2b323g3
2 , k1 :59S 1

2
a2b52g3g4D ,

k2 :53S 4b3g42
3

2
b5g3D , ~6.4!

and assume thatk0Þ0.
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Then Eqs.~5.19! and ~5.29!, considered as an algebraic
system forL andT @recall ~5.25!#, yield

L 5
k1

k0
Q1k

a2

2k0
* D, ~6.5!

T 5
k2

k0
Q2k

g3

2k0
* D. ~6.6!

Substituting this into Eq.~5.26!, we find

z4~d* dQ1m2 * Q!5
1

2S 12
k1

9k0
DD, ~6.7!

where we have denoted

m2:5
1

z4kS 24b41
k1

2k0
b51

k2

k0
g4D . ~6.8!

Thus, all the post-Riemannian geometrical quantities are
now determined. The Weyl 1-formQ satisfies theProca-type
differential equation~6.7!, which describes a covector par-
ticle of mass m interacting with the dilation currentD
5z u. The remaining irreducible torsion and nonmetricity
pieces are constructed algebraically from the Weyl covector
Q, the spin currentD@ab#5tab u, and the strain current
D (ab)5zab u.

To summarize, the first, second, and third pieces of the
torsion are described by Eqs.~6.2!, ~6.6!, and~5.20!, respec-
tively, whereas the 1st, 2nd, and 3rd pieces of the nonmetric-
ity are given by Eqs.~5.27!, ~6.3!, and~6.5!, respectively.

This completes the solution of the second field equation
of MAG ~5.12!–~5.13!. We now turn to the analysis of the
first field equation of MAG which has the form of an effec-
tive Einstein equation~5.11!.

VII. EFFECTIVE EINSTEIN THEORY

It is a straightforward task to substitute the results of the
previous section into the right-hand side of Eq.~5.11!, but an
extremely lengthy calculation is required to simplify the re-
sult. We have to expand the covariant exterior derivativesD
@which appear in Eqs.~3.9! and in ~5.11!# in terms of the
Riemannian operatorD̃ and possible contributions from the
distortion 1-form ~2.2!. At this stage the decomposition
~2.10! is most useful. Another~related! point is the substitu-
tion of torsion and nonmetricity into the covariant exterior
derivatives in the equations of motion of the hypermomen-
tum ~3.5!, which then reduce to

D̃~tabu!52uaulD̃~tlbu!1ubulD̃~tlau!, ~7.1!

D̃~sabu!52uaulD̃~slbu!2ubulD̃~slau!

22k~A1B!tl
~asb)lh, ~7.2!

where the constantsA,B are given below in Eqs.~7.8! and
~7.9!.

As a result of this calculation we find that the effective
Einstein equation~5.11! reads

a0

2
habg ` R̃bg1lha 5 k~Sa

fluid1Sa
weyl!, ~7.3!

where the effective energy-momentum currents are given by

Sa
fluid :5«eff uua1peff~ha1uua!

1hb$2~gmn2umun!emcD̃~u(atb)n%. ~7.4!

Sa
weyl :5

z4

2
$~eacdQ!`* dQ2~eac* dQ!`dQ

1m2@~eacQ!* Q1~eac* Q!`Q#%, ~7.5!

In the derivation of Eqs.~7.3! and ~7.4!, the equation of
motion~7.1! of spin was used. The effective energy and pres-
sure are defined by

«eff5«2
k

2
~Atmntmn1Bzmnzmn2C z2!, ~7.6!

peff5p2
k

2
~Atmntmn1Bzmnzmn2C z2!, ~7.7!

where we denoted

A5
3a1112g218b2

3k3
1

1

6a3
, ~7.8!

B5
a1

3k3
1

1

12b1
, ~7.9!

C5
a1

9k3
1

1

72b1
2

a2

36k0
. ~7.10!

It is straightforward to see from Eq.~7.1! and ~7.2! that
the quadratic invariants constructed from spin and strain sat-
isfy

u ` d~tmntmn!52tmntmn du, ~7.11!

u ` d~zmnzmn!52zmnzmn du. ~7.12!

As usual, the translational equations of motion for matter can
be obtained from the~effective! Einstein equation. Since the
covariant differentialD̃ of the left-hand side of Eq.~7.3!
vanishes, one finds

D̃~Sa
fluid1Sa

weyl!5ua@2u`d«eff1~«eff1peff!du#

2~«eff1peff!u`D̃ua2~ha1uua!dpeff

2~eacR̃mn!`D@mn#2
1

2S 12
k1

9k0
D

3~eacdQ!`D12D̃~D@ab#u
lelcD̃ub!

50, ~7.13!
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where Eq.~6.7! and ~7.1!, and the Ricci identityR̃mn ` qn

50 were used. Contracting Eq.~7.13! with ua and using
Eqs. ~7.11! and ~7.12!, one recovers the standard continuity
equation

u`d«2~«1p!du50. ~7.14!

VIII. GENERAL VACUUM SOLUTION

The main aim of this paper is to consider the hyperfluid as
a specific example for a material source of MAG. However,
it is also interesting to study thevacuum caseof the MAG
model ~3.1!, which is recovered by putting all the material
variables equal to zero,«5p5tab5zab50. In this case,
our decomposition analysis provides us with the exact gen-
eral vacuum solution for the post-Riemannian pieces.
Namely, it follows from the Eqs.~5.18!–~5.20! and Eqs.
~5.27!–~5.29! that, in thegeneric case,

a3Þ0, b1Þ0, k0Þ0, k3Þ0, ~8.1!

@see Eq.~6.1!# the general solution for torsion and non-
metricity reads

~1!Ta5 ~3!Ta50, ~1!Qab5 ~2!Qab50, ~8.2!

Q5k0f, L5k1f, T5k2f, ~8.3!

wheref is a 1-form. We have used Eq.~6.5! and ~6.6! to
derive the last line. Substituting this into Eqs.~6.7! and~7.5!,
we are left with the Einstein-Proca system of equations for
the metric and thef field,

a0

2
habg ` R̃bg1lha 5 kSa

$f% , ~8.4!

d * df1m2 * f 5 0, ~8.5!

where Sa
$f%5 1

2 z4k0
2$(eacdf)`* df2(eac* df)`df

1m2@(eacf)* f1(eac* f)`f#%. Using the codifferentiald
and the Laplace-Beltrami operatorh:5dd1dd, one can re-
write Eq. ~8.5! in the equivalent form

~h1m2!f50, df50. ~8.6!

The 1-form triplet ~8.3!, first discovered in@10,11#, was
shown to yield the effective Einstein-Proca system in@12#.
We have now obtained a much stronger result: Equations
~8.2! and ~8.3! are not merely a convenient ansatz which
describes a particular vacuum solution of the MAG model
~3.1!, but is, in fact, its unique and the most general vacuum
solution.

For some special choices of the coupling constants, the
condition~8.1! may be violated; in@12#, e.g., the special case
a350 was considered. Thenin vacuum, as was noticed in
@12#, Eq.~5.20! allows for an arbitrary 3rd irreducible torsion
piece, (3)Ta ~or, equivalently, the pseudotraceP 1-form!.
However, such degenerate special MAG models are clearly
unphysical, because,in the presence of matter, an unaccept-
able constraint will be imposed on the source. The above
mentioneda350 yields, via Eq.~5.20!, the vanishing of the
spin current,D@ab#5tabu50. Hence, we should confine our
attention to the generic models satisfying Eq.~8.1!, and we

discard the nongeneric cases as unphysical.~In this way, one
avoids unphysical solutions with free functions, which is a
well-known problem in the double duality approach to Poin-
carégravity @25#.!

IX. COSMOLOGY WITH HYPERFLUID

As an example of nonvacuum dynamics of MAG, let us
consider a cosmological model with a hyperfluid as material
source. As is well known, the hydrodynamical description of
cosmological matter is considered as a reasonable approxi-
mation to a realistic physical source both in the early and in
the final stages of the universe’s evolution. While the cos-
mology in Einstein’s general relativity is confined to an ideal
fluid with structureless elements, in MAG the hyperfluid rep-
resents a less trivial medium with microstructure, see@23#.

Before starting the discussion, let us specialize our gen-
eral model~3.1! a bit. Although the Lagrangian~3.1! in-
volves 11 coupling constants (aI ,bJ ,cK), they can be com-
bined, as we have seen, into only four essential parameters,
m2,A,B,C, which completely determine the dynamics of the
effective Einstein-Proca-hyperfluid system. Hence there is
some freedom in the choice of the coupling constants with-
out basically changing the physical content of the model. In
this section we will make use of this freedom in order to
study more closely the model which has attracted most at-
tention in the literature, see@6,7,4,5,10–12#. Consequently,
let us specialize to the case

aI50, I51,2,3, bJ50, J51,2,3,5, cK50, K52,3,4,
~9.1!

so that onlyb4Þ0. Then the Lagrangian~3.1! reduces to a
more manageable form

Vdil5
1

2k
~2a0 Rab`hab14b4Q`* Q!

2
1

2
z4 Rab`* ~4!Zab . ~9.2!

Substituting Eq.~9.1! into Eqs. ~5.3!–~5.5!, ~6.1!, ~6.4!,
~6.8!, ~7.8!–~7.10!, we find

k0524a0
2 , k150, k256a0

2 , k35
1

4
a0

2 , ~9.3!

m252
4b4

z4k
, A5B5

1

a0
, C5

3

8a0
. ~9.4!

As we can see from Sec. VII, the gravitationally interact-
ing hyperfluid in the MAG model~3.1! produces an effect
similar to that of matter with spin@1# in the usual Einstein-
Cartan theory: The total hypermomentum density contributes
quadratic terms which modify the energy and pressure ac-
cording to Eqs.~7.6! and~7.7!. Assuming the absence of the
strain current, we recover the Einstein-Cartan theory inter-
acting with a Proca-like Weyl covectorQ. The dilation den-
sity z ‘‘counteracts’’ the spin and shear, both of which pro-
duce an effective repulsion. The resulting dynamics of the
gravitational field depends crucially on the relative values of
the quadratic terms in Eqs.~7.6! and ~7.7!.
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Since the effect of pure spin~effective repulsion! is well
known in cosmology, let us concentrate here on the particu-
lar case of hyperfluid with diagonal specific hypermomentum
density, namelymA

B5m dB
A . Then Eq.~3.2! reduces to the

dilation hyperfluid, the elements of which have only one
‘‘internal’’ degree of freedom: they can~in an element’s rest
frame! change uniformly their scale. Examples of such me-
dia are well known in nonrelativistic continuum mechanics.
These are, e.g., continua with finely dispersed spherical
voids and liquids with nondiffusing gas bubbles@23#. The
hypermomentum current~3.6! is then determined by the hy-
permomentum density

Ja
b5za

b5
1

3
~db

a1uaub!z, ta
b50, ~9.5!

so that the effective term in the energy and pressure@recall
Eq. ~9.4!# reads

1

2a0
S zmnzmn2

3

8
z2D52

1

48a0
z2. ~9.6!

Therefore we conclude that purely dilational matter amplifies
gravitational attraction. In particular, it accelerates rather
than retards the possible collapse of a system. This happens,
though, at extremely small distances due to the smallness of
the correction~9.6! which enters Eqs.~7.6! and~7.7! with the
gravitational constantk.

In the general case, a massive dilation~or Weyl! field
affects gravitation in a nontrivial way. However, in homoge-
neous cosmology, there are solutions withRa

a52dQ50. In
that case the kinetic terms of the type (dQ)2 in the effective
Einstein equation~7.5! disappear, whereas pure mass terms
(Q)2 simply supply new corrections to energy and pressure.
Let us be more specific and look for the standard cosmologi-
cal solutions with the space-time interval in the Friedman
form,

ds252dt21R2~ t !S dr2

12Kr 2 1r 2du21r 2sin2udf2D .

~9.7!

Substituting Eq.~9.7! into the effective Einstein equations
~7.3! and taking Eq.~7.12! into account, we find

3S Ṙ2

R2
1

K

R2D 5kF «1
k

48a0
S 12

3a0

b4
D z0

2

R6G , ~9.8!

22
R̈

R
2

Ṙ2

R2
2

K

R2 5kF p1
k

48a0
S 12

3a0

b4
D z0

2

R6G , ~9.9!

wherez0 is an integration constant. In accordance with Eqs.
~6.7!, ~3.5!, and~7.2!, we obtain

Q52
kz0

8b4

dt

R3~ t !
. ~9.10!

Evidently dQ50.

Supplementing Eqs.~9.8! and ~9.9! by the equation of
state p5p(«), we can solve Eq.~7.14! explicitly. Let us
consider the casep5g « with constantg. Then Eq.~7.14!
yields

«5
«0

R3~11g!
, ~9.11!

where«0 is a positive integration constant. Equation~9.9! is
redundant, as follows from Eqs.~9.8! and ~9.11!. Thus the
dynamics of the scale factorR(t) is determined by the first
order equation~9.8!, with Eq. ~9.11! inserted. Interestingly,
for the coupling constantb453a0, this dynamics turns out to
be completely standard, yielding the well-known cosmologi-
cal solutions of general relativity theory. However, if one
wants to interpret the (Q)2 term in ~3.1! as the mass term for
the dilation field, then one must take a negativeb4, see, Eq.
~9.4!. Consequently, the dilation correction;1/R6 enters
into the right-hand side of~9.8! with a positive coefficient,
which corresponds to an additional effectiveattractive force
dominating during the very early stages of evolution. Near
the singularity

R3~ t !'S kz0

4
A 1

a0
2

3

b4
D t. ~9.12!

This is true for any value of the spatial curvatureK and for
an arbitrary equation of state with 0<g,1.

X. CONCLUSION

In this paper we have applied the irreducible decomposi-
tion technique to the study of the classical MAG model~3.1!
which has recently attracted quite some attention in the lit-
erature. Our main observations are as follows:

Torsion and traceless nonmetricity are explicitly express-
ible in terms of the spin and shear currents of the hyperfluid.
This enables us to reduce the general MAG field equations to
the effective Einstein theory~7.3! with a source represented
by the energy-momentum tensors of the Weyl~Proca-type!
covector field~7.5! and of the effective~Weyssenhoff-type!
spin fluid ~7.4!.

In vacuum, the 1-form triplet~8.3! describes the general
and unique solution of the field equations of MAG. This
result completes previous studies of the 1-form triplet@10–
12#.

As an example of a nontrivial case with matter, we have
studied homogeneous cosmologies with hyperfluid. Like in
the Einstein-Cartan theory, we conclude that the hypermo-
mentum affects significantly the cosmological evolution only
in the very early stages. However, contrary to the effect of
spin, shear does not prevent the formation of a cosmological
singularity but rather promotes it. Homogeneous cosmolo-
gies in MAG models withideal fluid were recently studied in
@24#.
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