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Effective Einstein theory from metric-affine gravity models via irreducible decompositions
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The irreducible decomposition technique is applied to the study of classical models of metric-affine gravity
(MAG). The dynamics of the gravitational field is described by a 12-parameter Lagrangian encompassing a
Hilbert-Einstein term, torsion and nonmetricity square terms, and one quadratic curvature piece that is built up
from Weyl's segmental curvature. Matter is represented by a hyperfluid, a continuous medium the elements of
which possess classical momentum and hypermomentum. With the help of irreducible decompositions, we are
able to express torsion and traceless nonmetricity explicitly in terms of the spin and the shear current of the
hyperfluid. Thereby the field equations reduce to an effective Einstein theory describing a metric coupled to the
Weyl 1-form (a Proca-type vector fieldand to a spin fluid. We demonstrate that a triplet of torsion and
nonmetricity 1-forms describes the general and unique vacuum solution of the field equations of MAG. Finally,
we study homogeneous cosmologies with a hyperfluid. We find that the hypermomentum affects significantly
the cosmological evolution at very early stages. However, unlike spin, shear does not prevent the formation of
a cosmological singularityf.S0556-282097)07922-§

PACS numbsgs): 04.50:+h, 03.50.Kk, 04.20.Jb

[. INTRODUCTION again of kinematic nature, and no dynamical model for mani-
fields and world spinors is available.

Within the framework of the gauge approach to gravity Recently there has been some progress both in the devel-
(see, e.g.[1]) the kinematic scheme of the metric-affine opment of the simplest viable metric-affine Lagrangians that
theory is well understood at present. However, dgeamic  generalize the Hilbert-Einstein model and in the establish-
aspects of metric-affine gravityMAG) have been rather ment of a variational theory of hyperfluidwhich seems to
poorly studied up to now. The choice of the basic Lagrangiamepresent a reasonable classical model of a continuous me-
of the theory remains an open problem, and this, in turndium with energy-momentum and hypermomentum. In the
prevents a detailed analysis of possible physical eff¢éts. paperd4,5] it was proposed to take as the gravitational La-
analysis of physical observations in MAG without specializ-grangian the sum of thégeneralizey Hilbert-Einstein term
ing to a particular Lagrangian was made[R].) As a first  and the square of the segmental curvatiines reviving the
step, one can use a correspondence principle. It is webld proposals of(6,7]). Further extensions of this model,
known that Einstein’s general relativity theory is satisfacto-which include the quadratic invariants of torsion and non-
rily supported by experimental tests on the macroscopienetricity, were investigatetin vacuum in [8—12]. A hyper-
level. Thus, whereas the gravitational gauge models providfiuid model was developed ifl3] along the lines of the
an alternative description of gravitational physics in the mi-Weyssenhoff approach to spin fluids which now reappear as
croworld, it is natural to require their correspondence witha particular case of the hyperfluidNote that a different
general relativity at large distances. Unfortunately, directvariational model of a fluid with hypermomentum was sug-
generalization of the standard Hilbert-Einstein Lagrangiargested in14].)
yields an unphysical MAG model which is projectively in-  Relativistic fluid dynamics covers a vast field of research
variant and, accordingly, imposes unphysical constraints oin gravitation, cosmology, and particle physics. Relativistic
the matter sources. fluid models are working tools in high-energy plasma astro-

Another essential difficulty in the development of a dy- physics and in nuclear physidsvhere nonideal fluids are
namical scheme of MAG was, until recently, the lack of extremely successfully applied to the description of heavy
self-consistent models which describe physiégliantum, ion reactiony see, e.g/,15]. In cosmology, hydrodynamical
semiclassical, or classigaources of MAG possessing mass description of matter is standard both for the early and for
or energy-momentum and hypermomentum. The reader maye later stages of the evolution of the univef4é]. Spin
consult[1,3] which give a modern presentation of the so-fluids are used for the consistent statistical treatment of a
called manifield and world spinor approach based on thenedium the elements of which are particles with intrinsic
theory of infinite dimensional representations of the affineangular momentunm17] (cosmological “soup” of funda-
and linear groups. However, the main achievements there araental particles in the early universe or a fluid of spinning

galaxies, clusters of galaxies, turbulent eddies during the
later times. In Poincaregauge gravity, the Weyssenhoff spin
*Permanent address: Department of Theoretical Physics, Moscofluid [18] provides an adequate description of a continuous

State University, 117234 Moscow, Russia. medium with spin degrees of freedom. Spin of matter
"Permanent address: Department of Mathematics, University oources proves to be significant in the Einstein-Cartan
Newcastle, Newcastle, NSW 2308, Australia. theory, where the cosmological singularity can be avoided
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due to effective repulsion of spinning particlEs9]. It is Our basic notations and conventions are thosd 19f
worthwhile to stress that the spin fluid can be consistentlyin particular the signature of the metric is assumed to be
derived from the quantum theory of Dirac particlg®@ne  (—,+,+,+).

may ask though: How can this be reconciled with the studies

[20] for the Einstein-Cartan-Dirac cosmology where a singu- 1I. PRELIMINARIES: METRIC-AFFINE GEOMETRY

larity is not avoided? The answer is that it is misleading to AND BASIC DECOMPOSITIONS

compare a spin fluid cosmology.e., a cosmology o&n-
semble of large numbenf gravitating particles with spjn
with a clearly unphysical classical Dirac field “cosmolo-

gyf’ (i.e., a “cosmology” O.f one gravitating particle With affine spacetime is described by the megig , the coframe
spin). The correct comparison can only be made with thel_forms 9, and the linear connection 1-forni,®. These

Einstein-Cartan-Dirac cosmology in Wh'Ch the €Nergy-4re interpreted as the generalized gauge potentials, while the
momentum and spin currents are obtained as macroscop,

$orresponding field strengths are the nonmetricity 1-form
averages from the quantum density operators. This was don P 9 9 y

. . RO . = —Dg,z and the 2-forms of torsiom“=D J“ and cur-
af af
e.g., |n_[21] with the help of the relativistic Wigner function vature Rg*=dI 3*+I',*/\T' 7. The general affine connec-
formalism, and the effective repulsion was confirnjed. Y

tion can always be decomposed into Riemannian and post-
In the framework of MAG, to the best of our knowledge, Riemannian parts,

the hyperfluid represents the only available self-consistent
dynamical model of matter with nontrivial hypermomentum.
It generalizes in a natural way the Weyssenhoff spin fluid by
including additional degrees of freedofdilation and shear
densities. At the same time, further study is certainly needed
for establishing théundamentatheory of matter with hyper-
momentum. The manifieldgl,3] seem to be a step in the - 1 ¥ vyt
right direction, but unfortunately no dynamical scheme is Nap= ~€talTa * 2(CuleglTy) 07+ (€1a]Qp ) +2Qaﬁ_
known for them(i.e., no Lagrangian, no equations of motion,

no precise form of the Noether currentdt is even unclear We denote the Riemannian connectitine Christoffel sym-

how the stan_dgrd Dirac fermion mat.ter_ can be recove_reg)ds) by T"ﬂa, and hereafter the tilde will denote purely Rie-
from the manifields when shear and dilation charges vanishy,annian geometrical objects and operators. Using(£d)

We are convinced though, that even after the fundamenty s hossible to split all quantities in the metric-affine theory
theory of matter with hypermomentum is completed, the hy5n.4 Riemannian and post-Riemannian pieties curvature
perfluid model will remain a tool useful for practical appli- _ . S el SN @ N y

this reads, e.gRz*=Rz*+DNg*+N,*/ANg?).

cations (like the relativistic fluid models are amazingly Theirreducible decompositionsf tarsion and nonmetric-
handy in nuclear physics for calculations on heavy ion reacs, [1]e € .30 e ?tco foihonds orsio ."f:. ?th etric-
tions, despite the fact that a fundamental Dirac theory i y provide a pattern for the decomposition of the gravi-

: tional gauge field momenta which enter the field equations
always also availablgl5]). a ;
In this paper we will study the classical dynamics of of MAG. In order to make the paper self-contained, we re-

metric-affine gravitational fields for the general MAG La- produce he_re the basm;formulae. . .
grangian which includes the Hilbert-Einstein term, the seg- Th? torsion 2tformT can be decomposed into three ir-
mental curvature square teliof Weyl), and all possible qua- reducible pieces:

dratic torsion and nonmetricity contractions. The hyperfluid
provides nontrivial energy-momentum and hypermomentum
currents which describe classical matter sources in the MAG
field equations. We demonstrate the exceptional effective-
ness of the technique of irreducible decompositions applied (D)ra v (Dra(@ra
to post-Riemannian geometrical objects. In particular, we TE=TO=9To=Te, (2.5
show that (i) the separation of Riemannian and post- o )
Riemannian structures ariil) the subsequent decomposition 1€ nonmetricity 1-formQ,, can be decomposed into
of the latter into irreducible pieces, leads to the solution offour irreducible pieces:

the coupled MAG field equations with respect to torsion and

In this section we recall some basic facts concerning
metric-affine geometry in four dimensions. For a more de-
tailed discussion in arbitrary dimensions $&¢ The metric-

Fﬁazrﬁa+ N,Ba' (21)

where thedistortion 1-form N,z can be expressed in terms
of torsion and nonmetricity:

2.2)

@7 =199NT, T:=e,|T?, 2.3

OTo=—3*(9*A\P), P:=*(T°A¥9,), (2.4

nonmetricity. As a result of this process, we are left with an (Z)Qaﬂ =3 *(9\Qp)), (2.9
effective Einsteinian gravitational field equation for the met- 3 . L

ric which is a direct generalization of the effective equations Qs =5((aCp)IA —19apA), 2.7
arising in the Einstein-Cartan theo(gf. [22]). Specializing

our results to the vacuum case, we are able to complete the “Qup:=045Q, (2.9
study of the ansatz of the so-callddform triplet which

underlies the results §10—17, by demonstrating its unique- Qs =Qup=?Qup—¥Qup— Q5. (2.9

ness. Namely, for generic MAG models, the solution with a

1-form triplet is not only the most general solution of the Here the shear covector part and the Weyl covector are,
secondfield equation(for terminology, se¢l1]) but it is also  respectively, Azzﬁ“eﬁjqaﬁ, and sz%g“BQaﬁ,
unique. where & ,s=Q,s—Qg,.s is the traceless piece of the
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nonmetricity. It seems worthwhile to notice that the 2-formwhere the first two terms on the right-hand side describe the
Q,:=0,- 1/3eaj(ﬁﬁ/\®ﬁ), with @azz*(Q“aB/\ﬁﬁ), kinetic and the internal energy densityof the hyperfluid,
which describes(Z)QaB, has precisely the same symmetry respectively. The latter depends on the particle densitie
properties as the 2-forrh)T<. specific entropys, and the specific hypermomentum density
Substituting(2.3—(2.5) and(2.6)—(2.9) into Eq.(2.2, we  u”g (“specific” means “per particle’). Hereu is the flow
find the following general decomposition of the distortion 3-form, so that the components of the average fluid velocity
1-form: are given byu, :=e,|*u. The first term represents the com-
bined kinetic contribution of the rotational and the strain
Nop=3{Qup— 59[.€45)(3Q—A+2T)—2e,] energy of the fluid elements, the motion of which is de-
scribed by the angular and strain velocity of a 3-volume
X(*Qgt2 (1)TB])_ (eaJeBJ@)Ty)W. (210 spanned by the material triad. It is convenient to describe the
o _ _ _ latter by two variables: a 1-forlb” with the components
The first irreducible piece of the torsion and the 2-foflly  pA:=¢ |b” and a 3-formb, with the componentsbs
appear as a linear combination here. This formula is ex:—x, A\ 9). The last term in Eq(3.2) denotes a set of
tremely useful in the analysis of the field equations of MAG. constraints to be added via Lagrange multipliers. We will not
display them herésee[13] for a detailed discussignLet us
. A MODEL FOR MAG only mention that they include the standard normalization

: ) o constraint for the velocity
In this and subsequent sections we will widely use,

along with the coframe$“, the so calledy-basis of the dual uA\*u= 7, (3.3
coframes. Namely, we definfl] the Hodge dual such
that 7:=*1 is the volume 4-form. Furthermore and the law of particle number conservation,
na::eaJn:*ﬁav naﬁ::eﬁjna:*(ﬁa/\ﬁﬁ)i naﬁy:
=€,|Map: Napys-=€slMapy. The last expression is thus d(pu)=0. (3.9
the totally antisymmetric Levi-Civita tensor.

Variation of the Lagrangia3.2) with respect to the matter

A. Gravitational Lagrangian variables yields the hypermomentum equation of motion in

] o ) . . _ the form
Direct generalization of the Hilbert-Einstein Lagrangian
Raﬁ/\naﬁ to metric-affine gravity yields an unphysical DA“g=—u® u}\DA)\ﬁ_u,B u*DA?, , (3.5
model which is invariant under projective transformations of
the connection. where the hypermomentum current 3-form
Consequently, we turn our attention to a model described
by a Lagrangian which generalizes the models studied re- A%g=ud (3.6

cently in[4,10-12:
can be expressed in terms of the hypermomentum density

3
VMAG:Z _ao Raﬁ/\naﬁ—Z)\ 77+Ta/\* lZl a| (I)Ta 1 A B u
= J”‘ﬁ=—§p,u, g bg ba. 3.7
4
+2 22 G (I)Qaﬂ)/\ﬁa/\ *Tﬁ“'QaB By construction, this tensor satisfies the generalized Frenkel
conditions
4
A*(Zl by Q| +bs(‘¥Qquy AT 3% uP=0, 3% u,=0. (3.9

1 Variational derivatives of the material Lagrangi&,
— >z RPN\DZ 4. (3.1  with respect to coframé}* and connectiod’ ;* 1-forms de-
2 fine the material sources. The canonical hypermomentum
current 3-form is given by Eq.3.6), whereas the canonical

/\*((4)Qﬁ7/\193)

Here, the coupling constantsy, ...,a3,C,,C3,C4,0q, energy-momentum 3-form reads

...,bs,z, are dimensionlessk is the standard Einstein

gravitational constant, anN is the cosmological constant. 3,=euu,+ p(na+uua)+2uuﬁgy[a *(DA”),
The segmental curvature is denoted 87 ,,5:=79.4R,”; (3.9

it is a purelypostRiemannian piece.
with the pressure defined as usual iy p(de/dp) — €.

B. Hyperfluid matter
. C. Field equations
Let us study the moddB.1) with matter represented by a

tal LagrangianVyac+ Lmat DY independent variations with
Lma=3p #"g b2 UADDY—&(p,s, ") 7+ Leonstraints respect to the cofram@“ and connectiod’;* 1-forms. The
3. corresponding so-calléfirst andsecondfield equations read



7772 OBUKHOV, VLACHYNSKY, ESSER, AND HEHL 56

DH,—E_ =2,, 3.1
DHa;_ Eo;j:aﬁ, ES.lz M=~ {9;/;}6 26‘0 7%+ 24 *(DZ7%), (314
The left hand sides of Eq$3.10 and(3.11) are given by g
an
MaB: = —ZaggﬂAG
) ” ) Eo:=ealViact (€. TA/AH g+ (e,JRs)AHE,
:_;{*(Izl b,(NQA +§b5(13<“/\*(Q/\19B)) +3(€,]Qp,)MP?, (3.15

_LlyapB * (a N\ * (1)TB)
79 (3Q+A))+c, HeN T " . o o
1
+cg I ONF (Z)TB)+Z(C3_C4) geP* } (3.12
We note, se¢l], that the equation which arise from the
variation of the Lagrangian with respect to the metric turns

= Nwac out to be redundant.
‘ aTe
4
IV. SPECIAL QUADRATIC MAG-LAGRANGIAN
(2 a, T, Z I(|>Qaﬁ/\ﬁ/3”’ Q

As a preliminary step, let us study the MAG model with
(3.13  the Lagrangian

ag 1
V(O)zﬁ[ —Rap/\n*? — WTaN* DT 4 2@TaN* 2T 4 §<3>T“/\*<3)Ta + <2>Qaﬁ/\ OBN\F DT — 2(3>Qaﬂ/\ﬁﬁ
*(2)Ta (4) BNA* (2)Ta 1(1) *(L)paB 1(2) *(2)paB 1(3) * apB
AFETE=2Q g NOPNF T +Z Qup/\*'MQ 5 Q.p\*'7Q ~3 Qup/\ 3Q + Qaﬁ

N*DQYE 1+ (3Q,, N 9*)N\* ((DQPYN D) ¢ . 4.0

It can be seen that this is a particular case of Bgl) with E<°)“B:= _ﬁa/\H(ﬁO)_ M<°>“ﬁ. (4.5)
the special values of the coupling constants.
One can verify, by direct calculation, that the gauge field

momenta for the Lagrangiai.l) are given by The identities(4.3) can be justified by the fact that
N a
HY = — == S NN,
aTe (R
VO= 22 R, g\ g P+ A9 (2T, - Qe \ 9P )
. B (4.6)
Oa ._ _
H B- IR, ,3 2K 7] B (4.2)

is, up to an exact form, thg@urely RiemannianHilbert-
Einstein Lagrangian of general relativity theory. However,
a this observation does not provide a rigorous proof of Eg.
DHO—ED= 2—0 RN 94y, DHOe—EO9 =0, (4.3), because in the derivation of the gauge field equations
K (3.10 and(3.11), see[1], one assumes that the gravitational

and, as a result, it can be straightforwardly proved that

(4.3 Lagrangian contains frame derivativeky“, only implicitly
where, similarly to Eqs(3.15 and(3.16), in torsion, while Eq.(4.6) contains such terms in the Rie-
mannian connection. Hence, a direct proof is required, and a
EO: zeaj\/(O)Jr(eaJTB)/\,_'(ﬁO)JF(eaJRﬁy)/“_'(om7 rather long calculation involving the irreducible decomposi-

tion (2.10 of the distortion 1-formN,,; demonstrates that
+35(€,]Qp,)M VA7, (4.4  Eq. (4.3 is true, indeed.
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V. DECOMPOSITION OF THE FIELD EQUATIONS
OF MAG

Let us write the LagrangiafB8.1) as

Vuag=VO+V, (5.1)
where
1 3 4
V=cs | =20+ TN Dy OT, [ +2] 2 9 Qo
2k i=1 i=2
4
ACAAN TB+QQ,BA*(E B QY |+ Bs(PQa,
=1
A9
A*(BDOBYN Y 1 RABNA* (47 2
( Q B) _524 aB (5 )
and
Qo
ar=a;+ay, ay=a—23), az=az~ 5, (5.3
=l =l ag
,31=b1—z, ,82=b2+?, ,33:b3+§,
3a0
,34:b4_?, Bs=bs—ay, (5.9
=l
Y2=C2~ %, ¥3=C3tao, Y4=Csqta. (5.9

Correspondingly, the field moment&8.12—(3.14 and the
gauge momentum and hypermomenty&l5 and (3.16
can be rewritten in the form

MeE=MOebL b H, =HP+H,,
Heg=HOe 1+ He,, (5.6)
E,—EQ+E,, E“=EQ+E, (5.7
where
. N
MeP:=—2
aQa,B
2l (= | 1
== 2 BYQY |+ 55| DA (QAD)
I=1

1
—29PF(3Q+A) |+, BN LTA

1
+ 3 SON*F TP 4 Z( ¥3—v4) 9*° *T}' (5.8

R — *

aTe K

(i al“’Ta)

I=1

7773

4
n Z 7|(')Qa5/\193) , (5.9
fe e NV wze s Zsman (510
B IR.P 4 B 298 S

andE, ,E%; are defined by putting “hats” over correspond-
ing terms in Egs(3.15 and(3.16.

Taking into account Eq(5.10 and the identitieg4.3),
one can transform the field equations of MAB.10 and
(3.1)) into

Ag— A
3R’“’/\77W,,= k(2,—DH_+E,), (5.11

Z ~ ~
?49&'3 d*dQ""ﬂ(a /\HB)_'—MQ,B:A(“B)’ (512)

ﬁ[a /\HB]:A[a,B] (513)

The last two equations are clearly the symmetric and the
antisymmetric parts of Eq3.11).

Observe that the splitting in Eq&.1)—(5.7) has two im-
portant consequences: With the help of the identi(#8),
the first MAG equation reduces to the Einstein equation with
some effective source on the right-hand s{el1), whereas
the gauge field momeni®.8) and(5.9) are linear combina-
tions of irreducible parts of torsion and nonmetricity. Thus,
in order to solve the second MAG field equati®12 and
(5.13, we require an irreducible decompositi¢similar to
those established for torsion and nonmetricity in Secofl
the gauge field momenta.

A. Irreducible decomposition of *H , .

It turns out that technically it is more convenient not to
decompose the gauge field momentum, but rather its Hodge
dual, *H,. This quantity is a vector-valued 2-form, exactly
like the torsion form, and hence its irreducible decomposi-
tion has the same structuretH,=®(*H,)+@(*H,)
+G@)(*A ), where the three irreducible pieces are defined
along the same lines as Eq8.3)—(2.5). After some algebra,
we derive from Eq(5.9) the following expressions:

. 1
(l)(*Ha)=;(a’l(1)Ta— VZ*Qa)v (5_14)
. 1
@(*HY) = ﬁﬂ“/\(az T+y3A=37,Q), (519

(5.1

A 1
(3)(* Ha): ;a3 (S)Ta_
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Frenkel condition(3.8), ﬁ“/\l3|a=0 is an immediate conse-

gebraic equation of the typ.13 can be solved explicitly quence of Eq(5.17. Subtracting, Eq(5.26) from Eq.(5.12)
with respect to the gauge field momentum. The solutionjelds a traceless algebraic equation which relates torsion

reads

(5.17

In our case, the spin current 3-fortal®#l is given in
terms of the hyperfluid expressiaf3.6). Substituting this
into the dual of the right-hand side of E¢.17), decompos-
ing it into irreducible pieces, and using Eq$.14—(5.16
for the dual of the left-hand side of E¢.17), we find that

He=—2eg]Al*Fl+ S 99N (e, Je, JAL#)).

4k
ay T =y * Q= ule I 9, N0, (518
a,T+y3A =3y, Q=0, (5.19

K
ay ITo=—sulerl 9 N0, (5.20

where we have defined,,:=J;,,; and used the Frenkel

condition (3.8).

B. Irreducible decomposition of *I\7Iaﬁ.

We observe that the Hodge dual of the gauge momentum,
*M «pg» 1S @ Symmetric tensor-valued 1-form, exactly like the

and nonmetricity to the pure shear curreiit,g :=A .z
—30.pA. Substituting Eq.(5.17 into Eq. (5.12 and de-
composing the Hodge dual of the resulting traceless equa-
tion, we find, after some algebra and on comparison with
Egs.(5.20)—(5.23,

(1) K 4 y
B1 QaB:_E U(aégy)—gumggy) 97, (5.27)

2 * (1)
§ﬂ29a+72 Ta

K 1
== §( u,u gav_ § 4 Jav +2u(a7-;/,)v> 77/“}1 (528)
K
M= 1—8*A, (5.29)

where{,z:=J(p) IS the strain(shear plus dilationdensity
and{:=¢%,=J“, the pure dilation density.

VI. GENERIC SOLUTIONS FOR TORSION
AND NONMETRICITY

We are now in a position to determine the irreducible

nonmetricityQ, 5. Hence, we can decompose this quantityparts of torsion and nonmetricity as solutions of the second

into four irreducible parts*M,z=®(*M ) +@(*M,,)

+O(*M ,5) + D (*M,p), the structure of which is deter-

mined by the patter2.6)—(2.9). From Eq.(5.8) we find

- 2
WM ap) == —B1 VQup. (5.21)
(2) (% N _ 2 * A\ 2 Q * (1)
( Maﬁ)__; Do 5,32 pt Y2 " Tl s
(5.22

. 2 1
(3)(*Maﬁ):_; (ﬂ(aeB)JM_ZgaﬁM)v (523)

@)% 2 1 1
(*Myp)=— ~9ap Ba Q— gﬂs A— 274 T/,
(5.29
where the 1-formM is defined by

4 1 1
Let us analyze the symmetric equatil12?. Separating
out the trace yields

1 1 1
2, d*dQ+ —*| —4B, Q+5 BsA+ 74T> =54,

(5.2

whereA: =A<, denotes the dilation current 3-form. For the

hyperfluid we findA=J%, u. Notice that, in view of the

field equation of MAG which has been separated into its
symmetric and antisymmetric parts, Eq5.12 and (5.13),
respectively. In order to achieve this, we have to take the
final step and resolve the combined system of algebraic
equationg5.18—(5.20), (5.27-(5.29. Firstly, let us assume

that the coupling constants; , 85, v, are such that
ky:=2a;8,—3y3+# 0. (6.1

Then, Egs(5.18 and(5.28 yield

4
2\ 3 B1+ 72
M7 = 3
a=K k—sl,l(aT’u)V
+Eu 14 —Eg LAY 24 (6.2
k3 M av 3 gaV 1 N
2(a1+27vy5) aq 1
* — - e _ - _ y
‘Q’a K( k3 u(aT/L)v—’_ k3 u,u gav 3 g Jav ¥
VAN A8 (6.3
Next, let us introduce three more constants
5 1
Ko:=4a83—3v;5, ki:=9 502,35_7374 ;
3
Kp:=3| 4B3ys— 5,3573 ; (6.9

and assume thdd,#0.
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Then Egs.(5.19 and (5.29), considered as an algebraic
system forA andT [recall (5.25], yield

PR  ON 6.5
ko~ 2k, - '
ka Y3 .
T_k_OQ_KZ_kO A. (66)
Substituting this into Eq(5.26), we find
z(d*dQ+m2*Q):1 1—£ A (6.7
4 2 9ko) '
where we have denoted
2. 1 48,4+ K +k2 6.8
m'_z4_;< Ba 2_k0'85 ko 74 (6.9

Thus, all the post-Riemannian geometrical quantities are

now determined. The Weyl 1-for@ satisfies thé’roca-type
differential equation(6.7), which describes a covector par-
ticle of massm interacting with the dilation curreni\
={ u. The remaining irreducible torsion and nonmetricity

pieces are constructed algebraically from the Weyl covector

Q. the spin currentA, 5= 7.5 U, and the strain current
Aap)=Lap U-

To summarize, the first, second, and third pieces of the

torsion are described by Eq®.2), (6.6), and(5.20), respec-
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Ao

? Napy N hR‘ﬁy_l—)\ Na = K(EZUid_FE‘geyl)’

(7.3

where the effective energy-momentum currents are given by

fluid .
an ':86ffuua+peff(77a+uua)

+7P{2(g" —uru?)e, D (U,Te ). (7.9
51 = 2 (e JdQ)/\* dQ- (e, dQ)AAQ
H(eJQ*QH (e F QAL (75

In the derivation of Eqs(7.3) and (7.4), the equation of
motion(7.1) of spin was used. The effective energy and pres-
sure are defined by

tively, whereas the 1st, 2nd, and 3rd pieces of the nonmetric-

ity are given by Eqs(5.27), (6.3, and(6.5), respectively.

This completes the solution of the second field equation

of MAG (5.12—(5.13. We now turn to the analysis of the
first field equation of MAG which has the form of an effec-
tive Einstein equatiori5.11).

VIl. EFFECTIVE EINSTEIN THEORY

K
se=e— 5 (AT, ™" +BL,,(*""=C %), (1.9
K
Pert=P— 5 (A7, 7" +B,,(*"=C ), (1.7)
where we denoted
_ 3a1+ 12’}/2+8ﬁ2 1
= 3k, +6_a3’ (7.8
Bo i, 1 7.9
cef, 1 a2 7.1
T 9ks 728, 36ko (7.10

It is straightforward to see from E@7.1) and(7.2) that

It is a straightforward task to substitute the results of thethe quadratic invariants constructed from spin and strain sat-

previous section into the right-hand side of E8.11), but an

extremely lengthy calculation is required to simplify the re-

sult. We have to expand the covariant exterior derivates
[which appear in Eqs(3.9) and in (5.11)] in terms of the

Riemannian operatdd and possible contributions from the
distortion 1-form (2.2). At this stage the decomposition
(2.10 is most useful. Anothefrelated point is the substitu-

tion of torsion and nonmetricity into the covariant exterior

derivatives in the equations of motion of the hypermomen-

tum (3.5), which then reduce to

D(7apu)=—U UMD (7, gu) +ugu*D(7y 1),  (7.0)
D(0,5u)=—u,u*D(a) gu) —ugu*D(a) )
—2k(A+ B)T)‘(aa'ﬁ))\n, (7.2

where the constant&,B are given below in Eqs.7.8) and
(7.9.

As a result of this calculation we find that the effective
Einstein equatiort5.11) reads

isfy
(7.11)

u /N d(7,,™")=2r,,7" du,

U d(2,,0"") = 22,8 du, (7.12

As usual, the translational equations of motion for matter can
be obtained from théeffective Einstein equation. Since the

covariant differentialD of the left-hand side of Eq(7.3
vanishes, one finds

D( M 3wy =y [ —uA\degg+ (et Per)dul]

—(eert peﬁ)U/\ﬁua_(”a+uua)dpeﬁ

1 k
(e B 7727 Il A
(€4JR,,)NAL- 2(1 9k0)

X(,JdQ)NA+2D (A, 5ue, [DUP)
=0, (7.13
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where Eq.(6.7) and(7.1), and the Ricci identiyR,,, /A ¥”  discard the nongeneric cases as unphysitrathis way, one
=0 were used. Contracting EG7.13 with u® and using avoids unphysical solutions with free functions, which is a
Egs.(7.11) and(7.12, one recovers the standard continuity Well-known problem in the double duality approach to Poin-
equation caregravity [25].)

u/\de —(e+p)du=0. (7.14 IX. COSMOLOGY WITH HYPERFLUID

As an example of nonvacuum dynamics of MAG, let us
consider a cosmological model with a hyperfluid as material

The main aim of this paper is to consider the hyperfluid assource. As is well known, the hydrodynamical description of
a specific example for a material source of MAG. However,cosmological matter is considered as a reasonable approxi-
it is also interesting to study theacuum casef the MAG  mation to a realistic physical source both in the early and in
model (3.1), which is recovered by putting all the material the final stages of the universe’s evolution. While the cos-
variables equal to zera;=p=r7,5={,3=0. In this case, mology in Einstein’s general relativity is confined to an ideal
our decomposition analysis provides us with the exact genfluid with structureless elements, in MAG the hyperfluid rep-
eral vacuum solution for the post-Riemannian piecesresents a less trivial medium with microstructure, E23.

VIIl. GENERAL VACUUM SOLUTION

Namely, it follows from the Eqs(5.18—-(5.20 and Eqgs. Before starting the discussion, let us specialize our gen-
(5.27—(5.29 that, in thegeneric case eral model(3.1) a bit. Although the Lagrangiaf3.1) in-
volves 11 coupling constants(,b;,ck), they can be com-
@370, B1#0, ko#0, k3#0, (8.)  bined, as we have seen, into only four essential parameters,

m?,A,B,C, which completely determine the dynamics of the
effective Einstein-Proca-hyperfluid system. Hence there is
some freedom in the choice of the coupling constants with-

[see Eq.(6.1)] the general solution for torsion and non-
metricity reads

(WTa=@)Ta=g (D —(2) -0, 8.2 out basically changing the physical content of the model. In
Qup Qup ®.2 this section we will make use of this freedom in order to
Q=kop, A=kip, T=Koo, (8.3 study more closely the model which has attracted most at-

tention in the literature, sefb,7,4,5,10—12 Consequently,
where ¢ is a 1-form. We have used E(6.5) and (6.6) to  let us specialize to the case
derive the last line. Substituting this into E¢6.7) and(7.5),
we are left with the Einstein-Proca system of equations for a=0,1=1,23, b;=0,J=1235, c«=0, K=2,3,4,

the metric and theb field, 9.9)
a so that onlyb,# 0. Then the LagrangiafB.1) reduces to a
?0 Napy /\ RET+ N7, = k31 (8.4  more manageable form
1
d*dg+m?*¢ =0, (8.9 V=5 (—ao RPN\ 1,5+ 4b,Q/\* Q)
where  S=37,k3{(e,)d¢)\*dp— (e, dg)\d¢ 1
+m?[(e,]d)* o+ (e,]* )\ p]}. Using the codifferentiab ~5Z REN*AZ 4. 9.2
and the Laplace-Beltrami operatalr. =d &+ &d, one can re-
write Eq. (8.9 in the equivalent form Substituting Eq.(9.1) into Egs. (5.3—(5.9, (6.1, (6.4),

; : ; ; 1
The 1-for'm triplet (8.3),. first 'dlscc.)vered iM10,11], was ko=—4a2, k;=0, k,=6a2, ks=-2a2, (9.3
shown to yield the effective Einstein-Proca systenjig]. 4

We have now obtained a much stronger result: Equations

(8.2 and (8.3) are not merely a convenient ansatz which ,  A4by 1 3

describes a particular vacuum solution of the MAG model m==- 4K A=B= ag’ C= 8ap’ 9.4
(3.1, but is, in fact, its unique and the most general vacuum

solution. As we can see from Sec. VII, the gravitationally interact-

For some special choices of the coupling constants, thang hyperfluid in the MAG model3.1) produces an effect
condition(8.1) may be violated; if12], e.g., the special case similar to that of matter with spifl] in the usual Einstein-
a3=0 was considered. Thein vacuum as was noticed in Cartan theory: The total hypermomentum density contributes
[12], Eq.(5.20 allows for an arbitrary 3rd irreducible torsion quadratic terms which modify the energy and pressure ac-
piece, ®)T« (or, equivalently, the pseudotrade 1-form). cording to Egs(7.6) and(7.7). Assuming the absence of the
However, such degenerate special MAG models are clearlgtrain current, we recover the Einstein-Cartan theory inter-
unphysical, becaus@) the presence of mattean unaccept- acting with a Proca-like Weyl covect®. The dilation den-
able constraint will be imposed on the source. The abovsity ¢ “counteracts” the spin and shear, both of which pro-
mentioneda;= 0 yields, via Eq(5.20, the vanishing of the duce an effective repulsion. The resulting dynamics of the
spin currentA, 5= 7,5u=0. Hence, we should confine our gravitational field depends crucially on the relative values of
attention to the generic models satisfying E8.1), and we the quadratic terms in Eqé7.6) and(7.7).
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Since the effect of pure spigffective repulsionis well Supplementing Eqs(9.8) and (9.9 by the equation of
known in cosmology, let us concentrate here on the particustate p=p(e), we can solve Eq(7.14) explicitly. Let us
lar case of hyperfluid with diagonal specific hypermomentunconsider the casp=y ¢ with constanty. Then Eq.(7.14
density, namelyu”g=u 65. Then Eq.(3.2) reduces to the yields
dilation hyperfluid, the elements of which have only one
“internal” degree of freedom: they cafin an element’s rest €0
frame) change uniformly their scale. Examples of such me- €= R31 7’ (9.1
dia are well known in nonrelativistic continuum mechanics.

These are, e.g., continua with finely dispersed sphericglheres. is a PN ; ; ;
. L : e positive integration constant. Equatin9) is
voids and liquids with nondiffusing gas bubblEz3]. The redundgnt, as follows from Eq¢9.8) and (9.11. Thus the

hypermomentum currert8.6) is then determined by the hy- 4y hamics of the scale factd(t) is determined by the first
permomentum density order equatior(9.8), with Eq. (9.11) inserted. Interestingly,
1 for the coupling constarii, = 3ag, this dynamics turns out to
@ _gya _ T sa a o _ be completely standard, yielding the well-known cosmologi-
V=% 3(55+u Uglé,  7%6=0, ©.9 cal solutions of general relativity theory. However, if one
wants to interpret the@)? term in(3.1) as the mass term for
so that the effective term in the energy and pres$teeall  the dilation field, then one must take a negative see, Eq.
Eqg. (9.4)] reads (9.4). Consequently, the dilation correction1/R® enters
into the right-hand side of9.8) with a positive coefficient,
which corresponds to an additional effectattractiveforce

2ag

Therefore we conclude that purely dilational matter amplifies

3

N 552) = 48a0_ 2 (9.6 dominating during the very early stages of evolution. Near
gravitational attraction. In particular, it accelerates rather R3(t)~

than retards the possible collapse of a system. This happens,

the singularity
klo [1 3
4 dp b4
though, at extremely small distances due to the smallness of

the correctior(9.6) which enters Eqg7.6) and(7.7) with the ~ This is true for any value of the spatial curvatiteand for

t. (9.12

gravitational constan. an arbitrary equation of state with<0y<<1.
In the general case, a massive dilati@mr Weyl) field
affects gravitation in a nontrivial way. However, in homoge- X. CONCLUSION

neous cosmology, there are solutions WRtf'=2dQ=0. In

that case the kinetic terms of the typ@Q@)? in the effective . ) .
Einstein equatior(7.5) disappear, whereas pure mass termg " technique to the study of th?’ classical MAG. mo_(ﬁall) .
which has recently attracted quite some attention in the lit-

(Q)? simply supply new corrections to energy and pressure, . ) )
Let us be more specific and look for the standard cosmologigrature: Our main observations are as fOHOWS: .
Torsion and traceless nonmetricity are explicitly express-

cal solutions with the space-time interval in the Friedman, , . . i
form P ible in terms of the spin and shear currents of the hyperfluid.

This enables us to reduce the general MAG field equations to
the effective Einstein theorg7.3) with a source represented
+r2de2+ rZSin29d¢2)_ by the energy-momentum tensors of the WéRtoca-type
covector field(7.5) and of the effectivdWeyssenhoff-type
(9.7 spin fluid (7.4).
o ) ] ] ) ] In vacuum the 1-form triplet(8.3) describes the general
Substituting Eq.(9.7) into the effective Einstein equations gng unique solution of the field equations of MAG. This

In this paper we have applied the irreducible decomposi-

2

— _ A2 2
ds’= —dt?+R (t)(l_Kr2

(7.3 and taking Eq(7.12) into account, we find result completes previous studies of the 1-form trifl€—
. 12].
R? K 3a,) 5 As an example of a nontrivial case with matter, we have
3 EJF RZ| =K 8+48a0 ~ by Rel (989 studied homogeneous cosmologies with hyperfluid. Like in

the Einstein-Cartan theory, we conclude that the hypermo-
mentum affects significantly the cosmological evolution only
in the very early stages. However, contrary to the effect of
spin, shear does not prevent the formation of a cosmological
singularity but rather promotes it. Homogeneous cosmolo-
gies in MAG models withideal fluid were recently studied in
124].

. (99

K ( 330) 16

where(, is an integration constant. In accordance with Eqs
(6.7), (3.5, and(7.2), we obtain
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