PHYSICAL REVIEW D VOLUME 56, NUMBER 12 15 DECEMBER 1997

Relativistic formalism to compute quasiequilibrium configurations
of nonsynchronized neutron star binaries

Silvano Bonazzola, Eric Gourgoulhon, and Jean-Alain Marck
Departement d’Astrophysique Relativiste et de Cosmologie, UPR 176 du C.N.R.S., Observatoire de Paris,
F-92195 Meudon Cedex, France
(Received 7 July 1997

A general relativistic version of the Euler equation for perfect fluid hydrodynamics is applied to a system of
two neutron stars orbiting each other. In the quasiequilibrium phase of the evolution of this system, a first
integral of motion can be derived for certain velocity fields of the neutron star fluid includin@tiaglemic
case of corotation with respect to the orbital motisgnchronized binarigsand the realistic case of counter-
rotation with respect to the orbital motion. The velocity field leading to this latter configuration can be
computed by solving three-dimensional vector and scalar Poisson equaB0656-282197)05024-9

PACS numbsg(s): 04.30.Db, 04.25.Dm, 04.40.Dg, 97.60.Jd

[. INTRODUCTION approach breaks down when finite size effgtigal forces,
disruption of one of the starbecome important, i.e., during
Considerable effort by many groups in the world is cur-the coalescence phase. This final stage can be studied only
rently devoted to the computation of the gravitational radiay means of the numerical hydrodynamical meth¢ag).
tion from binary neutron star coalescendsse, e.g.[1] or  But in this case one faces the problem of the initial condi-
[2] for recent reviews These phenomena constitute one oftions. Indeed, due to the limitation of computer resources,
the most promising sources of gravitational radiation for thethe initial conditions cannot be set when the separation be-
interferometric detectors GEOG600, the Laser Interferometri¢ween the two stars is much larger than their radii: this would
Gravitational Wave Observatorft IGO) and VIRGO cur- require a prohibitive number of time steps for the evolution
rently under constructiofi3,4]. Basically two different ap- codes: the time to coalescence increases with the fourth
proaches are used to tackle this problem. power of the initial separatioa, between the two objects. In
(A1) high-order Post-Newtonian analytical calculations in practice, all the fully hydrodynamical computations listed in
the point-mass limit for the two coalescing obje¢sse[2]  (A2) have been performed withy, set to at most a few times
for a review. the stellar radiusR: ap=5R in Ref. [21], ap=4R in Refs.
(A2) hydrodynamical numerical simulations which treat[18,19, ap=3R in Refs.[14,15,17, ap=2R (!) in Ref.[22].
the neutron stars as perfect fluid balls. In this latter category-or the calculations employing the affine approximation in-
different methods, based on different approximations, can betead of the full hydrodynamics, the initial separation is
distinguished. taken to be somewhat largerz=5R in Ref.[9], ag=15R in
(A2a) Newtonian affine approximations which consist in Ref. [12]. Now at such small separations, two effects are
modeling the stars by triaxial ellipsoids, thereby reducing themportant: (i) tidal forces, i.e., the influence of the gravita-
dynamical degrees of freedom of a star to a finite numbetional field of star 1(respectively 2 on the internal structure
and leading to ordinary differential equations for the evolu-of star 2(respectively 1, and(ii) general relativity.
tion, instead of partial differential equatiofs—8]. Tidal effects have not been taken into account in the com-
(A2b) post-Newtonian affine approximations, at the firstputation of the initial conditions of most of the fully hydro-
post-Newtoniar{1PN) order[9—11] or at the 2PN orddrl2].  dynamical studies listed i(A2), the only exceptions being
(A2c) Newtonian hydrodynamical simulations, either the works by Nakamura and Oohdf8], Rasio and Shapiro
based on finite difference metholds3—17 or on the smooth [20], and Baumgartet al. [26—28§, all in the case okyn-
particles hydrodynamicalSPH method[18-21 (see Ref. chronizedbinaries, i.e., when the stars have zero spin in the

[17] for a comparison of various codes frame comoving with the two centers of mass. However, this
(A2d) post-Newtoniariat the order 1PNhydrodynamical rotation state is unrealistic. Indeed it can be sg&80] that
simulations with a finite difference meth¢@2,23. the neutron star matter shear viscosity is too small and the

(A2e) fully relativistic hydrodynamical simulations within binary evolution too rapid to lead to a synchronization of the
the 3+1 formalism of general relativity and using the ap- spin periods with the orbital periddin other words, the
proximation of a conformally flat spatial three-metric alonginspiral of the binary system can be described in terms of
with no gravitational field dynamid24—2§ (see alsq29]).  perfect fluids and, in first approximation, all the forces acting

The analytical post-Newtonian approathl) allows to
compute the evolution of the binary system from an arbitrary
early stage, when the separation between the two compo-*As shown by Kochanef], this conclusion remains valid even if
nents is large, up to the rapid inspiral phase driven by thene takes into account the much higher effective viscosity arising
rapid loss of orbital energy by gravitational radiation. Thiswhen the neutron star’s solid crust enters the plastic flow regime.
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on the fluid are gradients of some scalar potenfigiavita-  conditions for binary neutron stars in the framework of the
tional force, gravitational radiation reaction foy@eso that  full general relativity. Therefore, this work can be conceived
Kelvin's theorem applies: the circulation of the fluid velocity as the extension to general relativity of Bonazzola and Marck
(with respect to some inertial frasen any closed contour results[32].

comoving with the stare.g., the stellar equatois con- The envisaged problem can be decomposed in two parts:
served. For each star, the circulation around the equator i) the computation of the gravitational fie(de., the space-
roughly C=2Aw whereA is the area of the equatorial cross time metrig generated by the two stars and their motion and
section of the star and its mean angular velocity with (ii) the computation of the stellar structuigensity distribu-
respect to some inertial framB: w=Qqp,+ Qg0 Where  tion, velocity field . . .) inthat gravitational field. Pax) is

Q. is the angular orbital velocity of the system with respectthe main topic of numerical relativity and can be, at least in
to R and(Qqpnis the rotation angular velocity of the star with principle, achieved by means of the classical Bformalism
respect to the co-orbiting frame. Since the variatiorAos  (see, e.g.[33] and[34]). This paper focuses on the determi-
small during the evolution to the coalescence, the conservaration of the stellar structure. For this purpose, we consider
tion of C is equivalent to the conservation af. When the that in the vicinity of the searched initial conditions, the sys-
separation is largé),,, is negligible andw is equal to the tem evolves along a sequence of equilibrium states. We ob-
rotation rate of the star. When the separation is that of théain a first integral of motion for certain classes of velocity
initial conditions of the numerical computatio2) (a~50 field inside the neutron stars, including the corotating and the
km) Qo~2x10% rad $'1, which is much larger tham,  (realistio counter-rotating cases.

except for neutron stars rotating initially at millisecond peri-  The plan of the paper is as follows. Section Il translates

ods. Consequently, one must have the basic assumption of quasiequilibrium in geometrical
terms(a spacetime symmetryhich leads to the definition
Qepi=—Qorb (1)  of a privileged observe(the “co-orbiting” observey. The

(relativistio Euler equation for the fluid velocity is then de-
in order to have a constant circulation. We call configura-fived in the frame of that observegec. Il). Necessary and

tions obeying Eq(1) counter-rotating configurationsThey sufficient conditions to get a first integral of the Euler equa-

represent realistic initial conditions for neutron star binary!ion are given in Sec. IV. This first integral is trivially ob-
coalescence. tained in the(unrealistig case of corotating stars. The astro-

Some of the fully hydrodynamical calculations listed in physically relevant case of cou_nter_—rotating starg is presented
(A2) employ Eq.(1) as initial conditions[14,15,23. But N Sec. V. A method of resolution is discussed in Sec. VI.
none of them take into account the tidal effects: the stars are
taken to be either sphericfl5,21] or axisymmetrid 14] (as Il. SPACETIME SYMMETRY AND CHOICE
mentioned above, the only computations with self-consistent OF COORDINATES
initial conditions concerns synchronized binarf&8,20,26—
28], for which Qg,,=0). To date, the only self-consistent
initial conditions obeying Eq(1) have been computed by When the separation between the centers of the two neu-
Bonazzola and Marck32). As can be seen in Fig. 3 of Ref. tron stars is about 50 krtin harmonic coordinateghe time
[32], the tidal deformation is quite important when the sepawariation of the orbital period®,,, computed at the 2PN or-
ration isap=3R. However, these initial conditions have not der by means of the formulas established by Blanetel.
been employed in evolution calculations. [35] is about 2%. The evolution at this stage can thus be still

It must be noticed that some of the studies performed irtonsidered as a sequence of equilibrium configurations.
the affine approximatioiA2a) make use of self-consistent Moreover, the orbits are expected to be circubaanishing
counter-rotating initial conditions. They correspondin®-  eccentricity, as a consequence of the gravitational radiation
tational Darwin-Riemann ellipsoidgs,8] or (in the approxi-  reaction[36]. In terms of the spacetime geometry, we trans-
mation of a large separatipirotational Roche-Riemann el- |ate these assumptions by demanding that there exists a Kill-

A. Quasiequilibrium hypothesis

lipsoids[5]. ing vector fieldl® which is expressible as
As regards general relativistic effects, the often used
Newtonian approximatiofitems (A2a) and (A2c)] is very [“=Kk*+ Qgopm?, (2

crude, in particular for the neutron star internal structure: let
us recall that for a typical 1M neutron star, the central where (), is a constant, to be identified with the orbital
value of the metric coefficienty, is around 0.4, which angular velocity with respect to a distant inertial observer,
shows that even &irst orde) post-Newtonian approxima- andk® andm® are two vector fields with the following prop-
tion is not sufficient for describing these objects. erties.k” is timelike at least far from the binary and is nor-
The purpose of the present paper is to give a method fomalized so that far from the star it coincides with the four-
computing self-consisterit.e., including the tidal and rota- velocity of inertial observersm® is spacelike, has closed
tional distortion and realistic[i.e., obeying Eq(1)] initial ~ orbits, is zero on a two-dimensional timelike surface, called
the rotation axis and is normalized so that
V,.(m,m?)V#(m,m?)/(4m,m") tends to 1 on the rotation
2This is not true for the so-called “gravitomagnetic” force; this axis[this latter condition ensures that the paramefeasso-
latter induces some circulation of the fluid, as studied recently byciated withm® along its trajectories byn®=(d/d¢)“ has the
Shapiro[31]. However this effect is important only for neutron- Standard 2r periodicity]. Let us calll* the helicoidal Killing
star—black-hole binaries, with a maximally rotating black hole. ~ vector We assume thdt' is a symmetry generator not only
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1. Nonrotating coordinates

- On eachX,, we choose a system of Cartesian coordinates
x'=(X,Y,2), such that {,x') is a system of spacetime coor-

t dinates satisfying

k*= )" 3

- E ] ( )

r= i a+ ak 4

la mi=-y & X W . ( )

of
' The lapse function Nand shift vector N' associated with
\ these coordinates are defined by
Zt -—BE;‘ k*=Nn*-=N® and n,N*=0, (5)

wheren® is the future directed unit four-vector normal to the
FIG. 1. Spacetime foliatio,,, helicoidal Killing vectorl* and hypersurface,; .

its trajectoriesx’ =const, which are the worldlines of the co-

orbiting observer(four-velocity: v*). Also shown are the rotating- 2. Rotating coordinates
coordinate shift vectoB* and the unit future-directed vector”, . . . o
normal to the spacelike hypersurfake. We callrotating coordinatesany coordinate systemi on

3, such that (’=t,x") is a spacetime coordinate system
for the spacetime metrig,; but also for all the matter fields. satisfying to
In particular,| ¢ is tangent to the world tubes representing the 9\
surface of each star, hence its qualificatiorheficoidal (see [*= (W) . (6)
Fig. 1.

The approximation suggested above amounts to neglect o ] )
outgoing gravitational radiation. For nonaxisymmetric N other words, the lines" =const are the trajectories bf.
systems—as binaries are—it is well known that impogihg | NS latter being a Killing vector, this means thtis an
as an exact Killing vector leads to a spacetime which is no{gnorablecoordmate for such systems. In numerical studies,

asymptotically flaf37]. Thus, in solving for the gravitational we will use these types of coordinates to reducesttgeiori

field equations, a certain approximation has to be devised i our-d|men.S|onaI(4D') problem to a 3D one. lr,] practice,
: . . g ree rotating coordinate systems can be used: one centered
order to avoid the divergence of some metric coefficients a

infinity. For instance such an approximation could be th on each star, to describe properly the hydrodynamics, and a
intinity. ! u pproximati u hird one centered on the rotation axis, to describe the gravi-

Wilson and Mathews schenfi88] that amounts to solve only  yaiiqna) field. The lapse function and shift vector associated

for the Hamiltonian and momentum constraint equations,yit, yotating coordinates are immediately deduced from Egs.
This approximation has been used in all the fully relat|V|st|c(2) and (5) which result in
studies to dat¢24—28 and is consistent with the existence
of the helicoidal Killing vector field2). Note also that since |*=Nn“— B¢, 7
the gravitational radiation reaction shows up only at the
2.5PN order, the helicoidal symmetry is exact up to the 2PNyith
order.
B* =N*—Qym®. (8)

B. 3+1 foliation of spacetime Sincem*® is parallel to3;, B“ is indeed the shift associated
with rotating coordinatessee Fig. 1 Note that rotating and
For the considered problem, two types of coordinates canonrotating coordinates have the same lalstr they de-
be envisaged: “nonrotating” coordinates,X') which are fine the same spacetime foliation.
Minkowskian at infinity, so thak® is the first vector of the The Killing equationV ,l;+V,4l,=0, once projected
natural basis corresponding to these coordinates and “cor@ntos,, leads to the following relation between the extrinsic
tating” coordinates {',x') so thatl“ is the first vector of ~curvature tensoK,z of the hypersurfaceX, and the deriva-
their natural basis. There is a lot of ways to do this. Wetives of the shift vectoB*,
choose both coordinate systems so that the hypersurfaces
t=const and’ =const coincides and are maximal spacelike 2NK,p= =V Bg—VB,—2n,ngn*V N 9
hypersurfaces. More precisely, we suppose that there exists a
slicing of spacetime by a family of spacelike hypersurface®r, equivalently,
(%) so that(i) eachZ; is spacelike andii) m* is tangent to A A
3. 2NK,5=—V,Bz—V;B,, (10
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whereV , stands for the covariant derivative associated withthe (positive definit¢ metric tensor induced bg,; on II.
the three-metrid,,; induced byg,; onto the hypersurfaces We can introduce the alternating tensor withinas

2. Note thatK , 4 Is linked to the covariant derivative of*
by the formula

VN, =—Kap—Va(INN)ng. (12)

In the following an extensive use is made of this relation,is fully specified by its dual withinll: w,;=—w"€

without explicitly mentioning it.

C. The co-orbiting observer

Let us call theco-orbiting observethe observe® whose

€apy =V €uapy, (21

where €., is the spacetime alternating tensor associated
with the spacetime metrig, ;. The rotation two-form o0

paps
where

a._— _ _ _apv —_ auv
0% e*w 5€ Vuu,.

2 Owr

(22

world lines coincide with the trajectories of the symmetry gie that the Raychaudhuri identity for the flaw reduces

group when these latter are timelike, which encompasses thg 5 simple relation between the normaof and the Laplac-

region occupied by the two star€’s four-velocity v* can
be written
a_ efﬁlJl a

v (12

where® is a scalar field which is uniquely specified by the
normalization relatiow ,v#= —1. It can be seen easily that whereR,

® is related to the lapsH, the shift vector8¢ andN¢, the
azimuthal vectom®, and the orbital angular veloci® ., by

e?®=N?—B,B*=N?—QZm,m¥+2Q ,ym, N# — N#lzl”.)
13

Let g, be the projector onto the three-plariésorthogo-
nal tov®:

qaﬁ::gaﬁ“l‘vavﬁ. (14)
The kinematics of the observér is entirely specified by the
Ehlers decompositiof39] of the covariantwith respect to
d.p) derivative ofy*:

Vﬁva=waﬁ+ GQB—aavlg, (15)
where
wap:=0a"0p V110 (16
is therotation two-formof O,
Oup:= oA"YV (20 ) 17)
is the expansion tensoof O, and
A, =0"V 0, (18)

is thefour-acceleratiorof O. The property(12), namely, that
v® is collinear to a Killing vector, means that* is aniso-
metric flow[39] and leads to

0,5=0 (19

and

a,=V,P. (20)
Equation(19) shows thawv“ is a rigid flow.

The three-dimensional vector spdderepresents the local
rest frame ofO. Note that since? is rotating (w,z#0, see
below), IT is not integrable into global three-surfacegg is

ian of ®:

1
w,w'=-V Vid+ ERWU”U”, (23
is the Ricci tensor of the metrig, ;.
By means of Eqs(12), (7), (8), and the Killing identity
V.l g+ Vgl,=0, the rotation vectof22) can be expressed as

P

e
0 =5 e Q¥ M, ~ VN,

+2(Qopm,—N,)V,INN]. (24

Ill. RELATIVISTIC EULER EQUATION
IN THE ROTATING FRAME

A. Fluid motion

As stated in the Introduction, the matter constituting the
neutron stars can be considered as a perfect fluid, so that its
stress-energy tensor is written as

T =(e+p)ucuP+pg*®. (25)
The fluid four-velocityu® can be decomposed orthogonally
with respect to the rotating observéras follows:

u*=Tr(V*+v9), (26)
wherel is the Lorentz factor
I':=-v,u*, (27)
and V¢ is the fluid three-velocitywith respect toO:
1
Ve = anﬂu/‘. (28

V< belongs tdl and is the fluid velocity as measured by the
observerO (i.e., with respect ta0’s proper timg. As an
immediate consequence of u“=—1, one has the usual
relation betweed” andV<:

F=(1-Vv, v~ 12 (29
To a very good approximation tHeold) neutron star matter
equation of statdEOS can be considered as barotropic:
e=e(n) andp=p(n), wheren is the proper baryon density.
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It is then worthwhile to introduce the logarithm of the ratio Newt.

1 . -
of enthalpy per baryon and the baryon mean rest mgsiy D — Doy 5( QX2 (38)
erp : , _— ) .
H:= In( ] (30 ®g,, being defined so that the gravitational field writes
B - >
g=- V(I)grav- o o )
which we call thelog enthalpy to re-expressY,p)/(e+ p) In order to exhibit from Eq(37) a first integral of motion,

as a gradient of a scalar: indeed, by virtue of the first law ofwe shall write as much terms as possible under the form of

thermodynamics, the following identity holds for any baro- gradients. First, it can be seen easily that, similarly to the
tropic EOS: usual flat space formula, the following identity holds

Vp

— " a:_oz YIAVAZ a
aip- Ve (31 VAV Vo= €%, (VAV)V'+V

1
EVMV") . (39

Then the fundamental energy-momentum conservatioivhere we have introduced the curl ¥f* within the three-
equation spacell:

VuTH=0 (32 (VAV)@: = €%, VAV, (40)

can easily be shown to be equivalent to the system of the

following two equations: Putting Eq.(39) into Eq.(37) and performing slight rear-

rangements results in

V,.(nu¥)=0, (33 _
Va(H+@+InD)+T2{ €, [(VAV)“+ 20 V"
UMVMUQ‘FVQH‘FU'U“V#HUQZO. (34) LV VAP VY (I)}:O (41)
M a 14 ’
Note that Eq.(34) is nothing but theuniformly canonical
. . . : . where
equation of motiorfor a single-constituent perfect fluid as
given by Cartef40]. V. VA
PP = (42)

—q B—
a _qa
B. Baryon number conservation VuVE
Inserting Eq.(26) into the baryon number conservation s the projector onto the two-space orthogonaM i.e.,
equation(33) and using the fact that* is divergence-free orthogonal to the fluid lines with respect @. Note that in
[Eq. (19)] leads to the case where the fluid is at rest with respecttoP * is
not defined; however, the produ\z’LV“Paﬁ which appears

VuVE+VEV, In(nI) =0. (39 in Eqg. (41) remains well defined and is equal to zero. In the
derivation of Eq.(41), use has been made of EQ9 to
C. Momentum conservation replace the termv ,(V,V#/2) coming from Eq.(39) by

-2
By projecting Eq.(34) ontov “ (i.e., along the world lines [V, Inl.

of the co-orbiting observe®), one obtains the relation
D. Number of independent components

" =
VAV, (H+ @ +Inl') =0, (36) From the fundamental equation, T#“=0, which hasa

priori four independent components, we have derived two
scalar equationgEgs. (35) and Eqs.(36)] and one vectorial
equation Eqg. (41)]. Equationq36) and(41) are not indepen-
dent: the former is a direct consequence of the latter, as seen
easily by projecting Eq(41) along V“. Moreover, from its
construction, Eq(41) has only three independent compo-
nents for it lies into the three-planék orthogonal tov *.

We will take the scalar equatio(85) and the vectorial
VAV Vo426, ohVP+ VD — VAT dVI+T 2y apy ggtlf;tileog fl())/lrnguLng[ro(slle)rﬁ.s the fundamental equations to be

=0. (37

which can be considered as a relativistic generalization of th
classical Bernouilli theorem, for it means that the quantity
H+® +InI" is constant along the fluid lines.

By projecting Eq.(34) perpendicularly tov® (i.e., onto
the local rest frame of the co-orbiting obsenéy, one ob-
tains the relativistic version of the Euler equation for the
fluid velocity with respect taD:

IV. CONSTRAINT ON THE VELOCITY FIELD
At the Newtonian limit, the/#V ,V* gives the classical term AND FIRST INTEGRAL OF MOTION
(V-V)V and 2¢%,,0*V" gives the Coriolis term &X V,
induced by the rotation of the observér with respect to The only assumption underlying E41) is that the ob-
some inertial frame. The terM“H gives the classical pres- serverQ, with respect to which the fluid velocity® is de-
sure term. Finallyd reduces to the sum of the gravitational fined, has world lines parallel to the helicoidal Killing vector
and centrifugal potentialsf. Eq. (13)] |*. Equation(41) is equivalent to the system
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e [(VAV) 4+ 20H IV +V VFP 'V & =T"2V G and incompressible case, solutions do exist and are consti-
oy peoae ““(a3  tuted byS-type Darwin-Riemann ellipsoidst3].
H+® +Inl'+ G=const, (44) V. THE COUNTER-ROTATING CASE
whereG is a scalar field defined at least in the stars’ world A. Definition

tubes. The relatiori44) constitutes a first integral of motion

Let us focus on the interesting case of counter-rotating
of the system.

binaries. The concept of counter-rotation has to be defined in
_ the relativistic framework. We shall define it by requiring
A. The corotating case Ve+#0 and the scalar fiel& introduced in Eqs(43),(44) to

Equation(43) is trivially satisfied in the cas&*=0 by  be constant:

taking G=const. The first integral of motion reduces then to G= const. (49)

H+ ®=const. (45)
This definition is motivated by the fact that at the Newtonian
This case is the co-rotating on€{,,=0) mentioned in the limit® it implies 1/2(V/AV)*= — ¢, which is the definition
Introduction; it corresponds tsynchronizedinaries, which (1) of counter-rotatioricf. Eq. (24)].
are not expected to represent realistic close neutron star bi- With the choicg(49), Eq. (46) is trivially satisfied and Eq.

naries, as discussed in Sec. |. (47) becomes
The first integral45) follows directly from the fact that in
the corotating case the fluid four-velocity is parallel to a (V/\V)“=—Zw“—?WVV#VVCI)JrFV“. (50)

Killing vector [41]: V*=0 is indeed equivalent to
u®=pv®=e"?® [cf. Eq. (26)]. The integral (45) is well

known in the case of a single rigidly rotating staee, e.g.,
[42]). For the problem of the initial conditions of a binary =~ From the numerical point of view, it is desirable to reduce
coalescence, it has been used by Nakamura and Oft@ra the problem to the resolution of three-dimensional equations.

B. 3+1 decomposition

(at the Newtonian approximatipand Baumgartet al.[26—  Now Eq. (50) involves four-vectors: even ¥* is spacelike
28|. and belongs to three-planes orthogonal to due to the ro-
tation of this latter, there exists no coordinate system in
B. Formulation of the problem in the general case which V* would have only three nonvanishing components.

. Therefore, we choose to recast E§O) according to the
From now on, we suppose thdt'+0. By performing the 3+1 foliation of spacetime introduced in Sec. Il B. In this

vector productwith respect toe ,5,) of Eq.(43) by V¥, one  manner, we will consider only three-vectors belonging to the

can see easily that E¢43) is equivalent to the system spacelike hypersurfac® . The first step is to introduce the
VAV G=0 (46) orthogonal decomposition with respect3p of the fluid ve-
u ' locity V¢ with respect to the co-orbiting observer
(VAV)*= =20 = €™V, V,0 Ve=We+2Zne, (50)
+(T2V, V) Te™V,V,G+FV®, (4D Lhere
where We=h* V# and Z=-n,V~, (52)
F:= v VVVM[(V/\V)’“F 20w*]. (48)  whereh,z:=g,5+n,ng is the orthogonal projector onto

2, or equivalently, the three-metric induced gy in ;.

The gravitational field being given, the problem of getting Pue to the orthogonality relation,V#=0, the scalaZ is
a solution amounts to finding a vector fikf and a scalar not independent frordv*: by inserting Eqs(12) and(7) into
field G such that the Eq$35), (46), and(47) are satisfied. In  v.V*=0, one gets
Eq. (35), the scalar fieldh is that related to the gravitational
field, V and G by the first integral(44) via the EOS 7o 1o wee— law 53
n=n(H). More precisely, let us consider an iterative method N # N~
for solving this problem. Let us suppose that at a given step,
the gravitational field equations have been solved; the poterin the last part of this equation, we have introduced Latin
tial ® and the rotation vecton® are then known. The en- indices, which range from 1 to 3, whereas the Greek indices
thalpyH can be then deduced from the first integéd), by  range from 0 to 3. We will systematically do this in the
taking forT" andG the values at the previous step or making following for all the tensor fields that lie ik, such the
some extrapolation from a few previous steps. The baryowectorsB® andW¢. In this way the three-dimensional char-
densityn is computed fromH by means of the EOS. The acter of the equations will clearly appear.
system of equationg35), (46), and(47) is then to be solved
in V¥ andG. It is, however, not obvious that a solution exists
in the general case. What can be said is that in the Newtonian®Details about the Newtonian limit will be presented in Sec. V D.
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The curl on the left-hand side of E(O) is defined within We also need to perform thet3l decomposition of the

respect to the alternating tensefA”, which is neither par- second term on the right-hand side of E50). The result is
allel nor orthogonal to theX;) foliation. Let us introduce

~ apy AP aur
instead the alternating tenset?” within the spaceX; ,h,z) €YV, V,p=e Te™
as X i B

X|NW,V,®+2B,V,&—- —V, 0W,B,
e®BY-—n emaBy (54) N
=n, .
. —e ®n,e*B,W,V, 0. 61

Inserting the identitye®#7?= — 4nl*ef791 into the definition M (61
(21) of €%#7, we arrive at the following expression @f*?” Thanks to Egs(59), (60), and(61), the orthogonal pro-
in term of e¥A7: jection of Eq.(50) onto the hypersurfaces; is straightfor-

ward and leads to the three-dimensional equation

eBY= e—q’(N”Ean_ naBM;P«BV_ nBBM;MW_ anM;uab’)_ "

(59 ;‘Jk[Nﬁjwk+W‘(B'ﬁlwk—w'ﬁlsk)

Besides, we can express the four-dimensional covariant
derivative ofV* which appears in the curl /¢ in terms of
the three-dimensional covariant derivative \W* with re-

spect toh,,z:

B: . .
—ZWJVKN+ BkVJ-Z—ZKJ-'W|Bk}

— 4iik

e ®(NV;B,+2B;V,N—2K;'B,By)

Vo V=V W=,V ,W5— K, Wrng+ngV ,Z—ZK g

—2Zn,V 4NN, (56) —NW,V,®—-2B;V,®
i i ; At 1 _
A useful formula is that which gives the derivative along + ZWB.B'Y,® | +e®FW 62
n“ of any tensor fieldX (i) which lies in,, and (i) which JEk= ' (62

respects the heloicoidal symmeffiye., £,X*=0):
The baryon number conservation equat{@6), once recast
1 X in terms of three-dimensional quantities with the help of Eq.
n#V , Xe=5 (BHV X = XKV, BY) =K, X#+ V,,Nn. (56), is written as
(57)

This formula can be used to express the derivativeMsf
alongn® which appear in the right-hand side of E§6). We
can also apply it t* and get A boundary condition o'W can be derived by multiplying

this equation byn and settingh=0 (definition of the star’s

A A Z .
ViW'+W'Viln(NFn)+NB'ViIn(ZFn)=O. (63

B# . surface into the result. One obtains, usin 3,
n*v ,B%=—K®, B#+ WVMNn“. (58) ¢ 9 E83
. BBW| . B
By combining Eqs(40), (56), (55), and(57), we arrive at W= N?2 vin surface_O. 64)

the 3+1 decomposition of Y/AV)*

B The equations to be solved are the three-dimensional vec-
oD apv| N Prinot _\wot tor equation(62) and the scalar equatio(63), altogether
(VAV)?=e""e NV W, + N (B7V,W,~W7V,B,) with the boundary conditio64). Note that once Eq62) is
satisfied, the other part of the four-dimensional equation
—Zﬁ@ N+B. Y Z—2K “W B (50), namely, the part along®, is automatically fulfilled.
N7 v pooy Indeed, the projection of E¢50) alongn® leads tdcf. Egs.
(59, (60), (61), and(53)]

—e Pnve B,V W, . (59
The term withe®*” in factor is parallel to the hypersurface €*BiV;W,=e~*€'*B;V B~ €*B;W;V, @ + NBiWIFa
PN (becauses“*” is), whereas the second term is alomyy (65)
Similarly Egs.(22), (12), (7), (55), and (58) lead to the
3+ 1 splitting of the rotation vecton® which is nothing else than the orthogonal projection of Eq.

(62) onto B'.

Referring to the discussion in Sec. lll D, we conclude that
if a three-vectoM' of 3, obeying Egs(62) and(63) can be
found, the problem is completely resolved. Note that the
baryon densityn which appears in Eq63) is given via the
EOS by the log enthalph, itself being fully determinedfor

a=g 2P eany —Eﬁ B,—B,V,N+K,’B,B
w =e € 2 u-w nYv " oy

e—2¢
+

n“e*B,V B, . (60)
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a fixed gravitational field by W' via the first integral of Newt
motion (44), which becomes in the counter-rotating case 0% — Qg (74
H+®+Inl"=const, (66) The rotating-coordinate shift vectoB® reduces to

B¥=—-0 “ [cf EqQ. hat Eq(71
where[cf. Egs.(29) and(51)] oM [cf Eq. (8)], s0 that Eq(71) becomes

I=(1-WW+Zz?)~12 (67) AA=2Q0 4, (79

whose divergence-free solution is
C. Formulation in terms of Poisson equations

The equations to be solved, namely, E(2) and (63), A= l(é X120 (76)
can be recast into Poisson equations by looking for solutions 2°* orbr
under the form . .
o . wheree,: =Q g,/ Qo Finally, Eq.(73) becomes
W =€V, A+ Vi, (68) o
) Ay=-V-VInn. (77)
where ¢ is a scalar field and\' is a three-vector o,
which without any loss of generality can be taken to beOnce this equation is solved, the fluid velocity field with
divergence-free: respect to the co-orbiting observer is computed by taking the
curl of Eq.(76):

V.AI=0. (69)
) o o V==QupuXr+Vi. (79
This latter property implies that the curl 9" is related to
the Laplacian ofA' by This is the solution obtained by Bonazzola and Ma8R].
B U
e VW= —V;VIA+RYA, (70) VI. DISCUSSION
whereR;; is the Ricci tensor of the three-metiii; of 3, A. lterative method of resolution

Inserting Eq.(70) into iEQ- (62) leads to the following vector  The resolution of the problem amounts to solving the vec-
Poisson equation foh': tor Poisson equatiofv1) for A" and the scalar Poisson equa-
tion (73) for #, with the boundary conditiof64) at the sur-

@Jﬁin:;iik( —_e @ @jBkJr Zi@kN—EKJ'BBk face of each star. These equations involve Laplacian with
N N respect to thecurved three-metrich;;, so that even if the
A 1 A 1 A right-hand side of the equations is supposed to be known
+W,V @+ - ZB;V, - —WJ-BkB'V|<I> (e.g., from a previous step in an iterative methdtie nu-
N N merical solution is not straightforward. A technique which

B. . A B. . . has shown to be successful consists in introducing.pm
+ Wj(Blvl\Nk—lelBk) _ZWJVKI\H' BkV;Z flat three-metrich;; and decomposing the operators into flat-
space ordinary Laplacians plus curvature tefig45.

| @ NPT With this technique, the following iterative method can be
— 2K WiBy | — W+ RAL (71)  envisaged to get counter-rotating binary neutron star con-
figurations. The starting point of the procedure can be very
The divergence otV evaluated from Eq(69) is crude approximations such as constant density spherical stars
with W'=0 and a flat spacetime metric. @t a given step, the
A oA A 1.4 gravitational field equations are to be solvddading to new
ViW'=ViViy+ EfllkRkliJAl* (72) values for the functiondN, h;;, Kj;, B', and ® [via. Eq.

(13)]. The first integral of motion E(66) yields then to the
whereRy,;; is the Riemann tensor associated with the threevalue of the log enthalpli throughout the stars. The Lorentz
metric hIJ . By virtue of the symmetry properties of the Rie- faCFOFF Wthh appea}rs in the first Integl’al is to be evaluated
mann tensor in three dimensions, the last term on the righ®y inserting the previous step valueswf in Eq. (67). From
hand side of Eq.(72) vanishes identically, so that the H the baryon number densityis computed by means of the
divergence ofVV is simply the Laplacian ofs and Eq.(63) EOS and inserted in the right-hand side of the scalar Poisson
becomes equation(73). In this right-hand side, as well as in the right-

hand side of the vector Poisson equati@id), the value of

o oa . Z ., W is to be taken from the previous step. This is of course
ViV'g=—-W'V;In(N['n) — NB'ViIn(ZFn). (73

“4Although the gravitational field equations are not discussed in the
present paper, let us note that thanks to Bd), the momentum
In the Newtonian limit,® takes the form(38) and w® constraint equation can be expressed as a three-dimensional vector
becomedcf. Eq. (24)] Poisson equation foB'.

D. Newtonian limit
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also the case of the functions Wf': Z [deduced from\W' by  tion (45), which means that once the gravitational field is
Eq. (53)] andF [deduced from\V' by Eq.(48)]. The Poisson known, the matter distribution in the stars is obtained imme-
equations(73) and (71) are then to be solved, respectively, diately. However, realistic neutron star binaries on the verge
for  andA'. The solutions are obtained up to the addition ofof coalescence are not synchronized but rather in counter-
harmonic functions. These latter are determined in order thd@tation. In this case, the velocity field inside the stars with
the boundary conditiol64) is fulfilled. The vector fieldw! respect to the co-orbiting observer is not zero 'ar.]d has to be
is deduced from the obtained valuesjofindAl via Eq.(68) ~ Computed so that the Euler equatigdy) is satisfied. We
and a new iteration may begin. have presented a formalism which reduces the problem of

Of course, we do not have any theorem about the convelf—inding this velocity field to the resolution of three-

gence of this iterative procedure. All that we can say is thapmensmnal_ scalar and vector Poisson equations. We are cur-
similar schemes have been applied successfully to the conjently applying thg numerical teqhmqugs we hgve recently
putation of axisymmetri€42] and triaxial[41,45 models of developed for solving such equations with spherical-type co-

single neutron stars and that in the axisymmetric case, a ri%rdlnates[44,43 in order to get numerical models. We wil

orous proof of convergence has been recently given b re_?r(]antfthe r:astglts of thlstw(;.)r_k |trr1].afutt.u7e _arfuc(lje. dent of
Schaudt and Pfistd6]. e formulation presented in this article is independent o

any prescription for solving the gravitational field equations

(Einstein equations It simply relies on the assumption of

the spacetime helicoidal symmetry and can be used in con-
Before the inner most stable orbit is reached, the evolujunction with any set of equations for the gravitational field,

tion of a binary system of neutron stars can be approximateduch as the Wilson-Mathew scheni88,25 or the 2PN

by a sequence of quasiequilibrium configurations. For eackcheme recently proposed by Asada and Ship&fa Note

of these configurations, the spacetime possesses the helictitat both schemes involve nothing else but the resolution of

dal symmetry discussed in Sec. Il A. The hydrodynamicalPoisson-type equations, so that the method that we propose

part of the problem is then trivial in the case of synchronizeddoes not require a numerical technique specific to the hydro-

binaries, because of the existence of the first integral of modynamical equations.

B. Conclusion
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