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A general relativistic version of the Euler equation for perfect fluid hydrodynamics is applied to a system of
two neutron stars orbiting each other. In the quasiequilibrium phase of the evolution of this system, a first
integral of motion can be derived for certain velocity fields of the neutron star fluid including the~academic!
case of corotation with respect to the orbital motion~synchronized binaries! and the realistic case of counter-
rotation with respect to the orbital motion. The velocity field leading to this latter configuration can be
computed by solving three-dimensional vector and scalar Poisson equations.@S0556-2821~97!05024-8#
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I. INTRODUCTION

Considerable effort by many groups in the world is cur-
rently devoted to the computation of the gravitational radia-
tion from binary neutron star coalescences~see, e.g.,@1# or
@2# for recent reviews!. These phenomena constitute one of
the most promising sources of gravitational radiation for the
interferometric detectors GEO600, the Laser Interferometric
Gravitational Wave Observatory~LIGO! and VIRGO cur-
rently under construction@3,4#. Basically two different ap-
proaches are used to tackle this problem.

~A1! high-order Post-Newtonian analytical calculations in
the point-mass limit for the two coalescing objects~see@2#
for a review!.

~A2! hydrodynamical numerical simulations which treat
the neutron stars as perfect fluid balls. In this latter category,
different methods, based on different approximations, can be
distinguished.

~A2a! Newtonian affine approximations which consist in
modeling the stars by triaxial ellipsoids, thereby reducing the
dynamical degrees of freedom of a star to a finite number
and leading to ordinary differential equations for the evolu-
tion, instead of partial differential equations@5–8#.

~A2b! post-Newtonian affine approximations, at the first
post-Newtonian~1PN! order@9–11# or at the 2PN order@12#.

~A2c! Newtonian hydrodynamical simulations, either
based on finite difference methods@13–17# or on the smooth
particles hydrodynamical~SPH! method @18–21# ~see Ref.
@17# for a comparison of various codes!.

~A2d! post-Newtonian~at the order 1PN! hydrodynamical
simulations with a finite difference method@22,23#.

~A2e! fully relativistic hydrodynamical simulations within
the 311 formalism of general relativity and using the ap-
proximation of a conformally flat spatial three-metric along
with no gravitational field dynamics@24–28# ~see also@29#!.

The analytical post-Newtonian approach~A1! allows to
compute the evolution of the binary system from an arbitrary
early stage, when the separation between the two compo-
nents is large, up to the rapid inspiral phase driven by the
rapid loss of orbital energy by gravitational radiation. This

approach breaks down when finite size effects~tidal forces,
disruption of one of the stars! become important, i.e., during
the coalescence phase. This final stage can be studied only
by means of the numerical hydrodynamical methods~A2!.
But in this case one faces the problem of the initial condi-
tions. Indeed, due to the limitation of computer resources,
the initial conditions cannot be set when the separation be-
tween the two stars is much larger than their radii: this would
require a prohibitive number of time steps for the evolution
codes: the time to coalescence increases with the fourth
power of the initial separationa0 between the two objects. In
practice, all the fully hydrodynamical computations listed in
~A2! have been performed witha0 set to at most a few times
the stellar radiusR: a0.5R in Ref. @21#, a0.4R in Refs.
@18,19#, a0.3R in Refs.@14,15,17#, a052R ~!! in Ref. @22#.
For the calculations employing the affine approximation in-
stead of the full hydrodynamics, the initial separation is
taken to be somewhat larger:a0.5R in Ref. @9#, a0.15R in
Ref. @12#. Now at such small separations, two effects are
important: ~i! tidal forces, i.e., the influence of the gravita-
tional field of star 1~respectively 2! on the internal structure
of star 2~respectively 1!, and~ii ! general relativity.

Tidal effects have not been taken into account in the com-
putation of the initial conditions of most of the fully hydro-
dynamical studies listed in~A2!, the only exceptions being
the works by Nakamura and Oohara@13#, Rasio and Shapiro
@20#, and Baumgarteet al. @26–28#, all in the case ofsyn-
chronizedbinaries, i.e., when the stars have zero spin in the
frame comoving with the two centers of mass. However, this
rotation state is unrealistic. Indeed it can be seen@5,30# that
the neutron star matter shear viscosity is too small and the
binary evolution too rapid to lead to a synchronization of the
spin periods with the orbital period.1 In other words, the
inspiral of the binary system can be described in terms of
perfect fluids and, in first approximation, all the forces acting

1As shown by Kochanek@5#, this conclusion remains valid even if
one takes into account the much higher effective viscosity arising
when the neutron star’s solid crust enters the plastic flow regime.
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on the fluid are gradients of some scalar potentials~gravita-
tional force, gravitational radiation reaction force!,2 so that
Kelvin’s theorem applies: the circulation of the fluid velocity
~with respect to some inertial frame! on any closed contour
comoving with the star~e.g., the stellar equator! is con-
served. For each star, the circulation around the equator is
roughlyC.2Av whereA is the area of the equatorial cross
section of the star andv its mean angular velocity with
respect to some inertial frameR: v5Vorb1Vspin, where
Vorb is the angular orbital velocity of the system with respect
toR andVspin is the rotation angular velocity of the star with
respect to the co-orbiting frame. Since the variation ofA is
small during the evolution to the coalescence, the conserva-
tion of C is equivalent to the conservation ofv. When the
separation is largeVorb is negligible andv is equal to the
rotation rate of the star. When the separation is that of the
initial conditions of the numerical computations~A2! (a;50
km! Vorb;23103 rad s21, which is much larger thanv,
except for neutron stars rotating initially at millisecond peri-
ods. Consequently, one must have

Vspin52Vorb ~1!

in order to have a constant circulation. We call configura-
tions obeying Eq.~1! counter-rotating configurations. They
represent realistic initial conditions for neutron star binary
coalescence.

Some of the fully hydrodynamical calculations listed in
~A2! employ Eq. ~1! as initial conditions@14,15,21#. But
none of them take into account the tidal effects: the stars are
taken to be either spherical@15,21# or axisymmetric@14# ~as
mentioned above, the only computations with self-consistent
initial conditions concerns synchronized binaries@13,20,26–
28#, for which Vspin50). To date, the only self-consistent
initial conditions obeying Eq.~1! have been computed by
Bonazzola and Marck@32#. As can be seen in Fig. 3 of Ref.
@32#, the tidal deformation is quite important when the sepa-
ration isa0.3R. However, these initial conditions have not
been employed in evolution calculations.

It must be noticed that some of the studies performed in
the affine approximation~A2a! make use of self-consistent
counter-rotating initial conditions. They correspond toirro-
tational Darwin-Riemann ellipsoids@6,8# or ~in the approxi-
mation of a large separation! irrotational Roche-Riemann el-
lipsoids @5#.

As regards general relativistic effects, the often used
Newtonian approximation@items ~A2a! and ~A2c!# is very
crude, in particular for the neutron star internal structure: let
us recall that for a typical 1.4M ( neutron star, the central
value of the metric coefficientg00 is around 0.4, which
shows that even a~first order! post-Newtonian approxima-
tion is not sufficient for describing these objects.

The purpose of the present paper is to give a method for
computing self-consistent~i.e., including the tidal and rota-
tional distortion! and realistic@i.e., obeying Eq.~1!# initial

conditions for binary neutron stars in the framework of the
full general relativity. Therefore, this work can be conceived
as the extension to general relativity of Bonazzola and Marck
results@32#.

The envisaged problem can be decomposed in two parts:
~i! the computation of the gravitational field~i.e., the space-
time metric! generated by the two stars and their motion and
~ii ! the computation of the stellar structure~density distribu-
tion, velocity field, . . . ) in that gravitational field. Part~i! is
the main topic of numerical relativity and can be, at least in
principle, achieved by means of the classical 311 formalism
~see, e.g.,@33# and@34#!. This paper focuses on the determi-
nation of the stellar structure. For this purpose, we consider
that in the vicinity of the searched initial conditions, the sys-
tem evolves along a sequence of equilibrium states. We ob-
tain a first integral of motion for certain classes of velocity
field inside the neutron stars, including the corotating and the
~realistic! counter-rotating cases.

The plan of the paper is as follows. Section II translates
the basic assumption of quasiequilibrium in geometrical
terms~a spacetime symmetry! which leads to the definition
of a privileged observer~the ‘‘co-orbiting’’ observer!. The
~relativistic! Euler equation for the fluid velocity is then de-
rived in the frame of that observer~Sec. III!. Necessary and
sufficient conditions to get a first integral of the Euler equa-
tion are given in Sec. IV. This first integral is trivially ob-
tained in the~unrealistic! case of corotating stars. The astro-
physically relevant case of counter-rotating stars is presented
in Sec. V. A method of resolution is discussed in Sec. VI.

II. SPACETIME SYMMETRY AND CHOICE
OF COORDINATES

A. Quasiequilibrium hypothesis

When the separation between the centers of the two neu-
tron stars is about 50 km~in harmonic coordinates! the time
variation of the orbital periodṖorb computed at the 2PN or-
der by means of the formulas established by Blanchetet al.
@35# is about 2%. The evolution at this stage can thus be still
considered as a sequence of equilibrium configurations.
Moreover, the orbits are expected to be circular~vanishing
eccentricity!, as a consequence of the gravitational radiation
reaction@36#. In terms of the spacetime geometry, we trans-
late these assumptions by demanding that there exists a Kill-
ing vector fieldl a which is expressible as

l a5ka1Vorbm
a, ~2!

where Vorb is a constant, to be identified with the orbital
angular velocity with respect to a distant inertial observer,
andka andma are two vector fields with the following prop-
erties.ka is timelike at least far from the binary and is nor-
malized so that far from the star it coincides with the four-
velocity of inertial observers.ma is spacelike, has closed
orbits, is zero on a two-dimensional timelike surface, called
the rotation axis, and is normalized so that
¹m(mrmr)¹m(msms)/(4mnmn) tends to 1 on the rotation
axis @this latter condition ensures that the parameterf asso-
ciated withma along its trajectories byma5(]/]f)a has the
standard 2p periodicity#. Let us calll a thehelicoidal Killing
vector. We assume thatl a is a symmetry generator not only

2This is not true for the so-called ‘‘gravitomagnetic’’ force; this
latter induces some circulation of the fluid, as studied recently by
Shapiro @31#. However this effect is important only for neutron-
star–black-hole binaries, with a maximally rotating black hole.
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for the spacetime metricgab but also for all the matter fields.
In particular,l a is tangent to the world tubes representing the
surface of each star, hence its qualification ofhelicoidal ~see
Fig. 1!.

The approximation suggested above amounts to neglect
outgoing gravitational radiation. For nonaxisymmetric
systems—as binaries are—it is well known that imposingl a

as an exact Killing vector leads to a spacetime which is not
asymptotically flat@37#. Thus, in solving for the gravitational
field equations, a certain approximation has to be devised in
order to avoid the divergence of some metric coefficients at
infinity. For instance such an approximation could be the
Wilson and Mathews scheme@38# that amounts to solve only
for the Hamiltonian and momentum constraint equations.
This approximation has been used in all the fully relativistic
studies to date@24–28# and is consistent with the existence
of the helicoidal Killing vector field~2!. Note also that since
the gravitational radiation reaction shows up only at the
2.5PN order, the helicoidal symmetry is exact up to the 2PN
order.

B. 311 foliation of spacetime

For the considered problem, two types of coordinates can
be envisaged: ‘‘nonrotating’’ coordinates (t,xi) which are
Minkowskian at infinity, so thatka is the first vector of the
natural basis corresponding to these coordinates and ‘‘coro-
tating’’ coordinates (t8,xi 8) so thatl a is the first vector of
their natural basis. There is a lot of ways to do this. We
choose both coordinate systems so that the hypersurfaces
t5const andt85const coincides and are maximal spacelike
hypersurfaces. More precisely, we suppose that there exists a
slicing of spacetime by a family of spacelike hypersurfaces
(S t) so that~i! eachS t is spacelike and~ii ! ma is tangent to
S t .

1. Nonrotating coordinates

On eachS t , we choose a system of Cartesian coordinates
xi5(x,y,z), such that (t,xi) is a system of spacetime coor-
dinates satisfying

ka5S ]

]t D
a

, ~3!

ma52yS ]

]xD a

1xS ]

]yD a

. ~4!

The lapse function Nand shift vector Na associated with
these coordinates are defined by

ka5Nna2Na and nmNm50, ~5!

wherena is the future directed unit four-vector normal to the
hypersurfaceS t .

2. Rotating coordinates

We callrotating coordinatesany coordinate systemxi 8 on
S t such that (t85t,xi 8) is a spacetime coordinate system
satisfying to

l a5S ]

]t8D
a

. ~6!

In other words, the linesxi 85const are the trajectories ofl a.
This latter being a Killing vector, this means thatt8 is an
ignorablecoordinate for such systems. In numerical studies,
we will use these types of coordinates to reduce thea priori
four-dimensional~4D! problem to a 3D one. In practice,
three rotating coordinate systems can be used: one centered
on each star, to describe properly the hydrodynamics, and a
third one centered on the rotation axis, to describe the gravi-
tational field. The lapse function and shift vector associated
with rotating coordinates are immediately deduced from Eqs.
~2! and ~5! which result in

l a5Nna2Ba, ~7!

with

Ba:5Na2Vorbm
a. ~8!

Sincema is parallel toS t , Ba is indeed the shift associated
with rotating coordinates~see Fig. 1!. Note that rotating and
nonrotating coordinates have the same lapseN for they de-
fine the same spacetime foliation.

The Killing equation ¹al b1¹bl a50, once projected
ontoS t , leads to the following relation between the extrinsic
curvature tensorKab of the hypersurfacesS t and the deriva-
tives of the shift vectorBa,

2NKab52¹aBb2¹bBa22nanbnm¹mN ~9!

or, equivalently,

2NKab52¹̂aBb2¹̂bBa , ~10!

FIG. 1. Spacetime foliationS t , helicoidal Killing vectorl a and

its trajectoriesxi 85const, which are the worldlines of the co-
orbiting observer~four-velocity: va). Also shown are the rotating-
coordinate shift vectorBa and the unit future-directed vectorna,
normal to the spacelike hypersurfaceS t .
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where¹̂a stands for the covariant derivative associated with
the three-metrichab induced bygab onto the hypersurfaces
S t . Note thatKab is linked to the covariant derivative ofna

by the formula

¹bna52Kab2¹̂a~ lnN!nb . ~11!

In the following an extensive use is made of this relation,
without explicitly mentioning it.

C. The co-orbiting observer

Let us call theco-orbiting observerthe observerO whose
world lines coincide with the trajectories of the symmetry
group when these latter are timelike, which encompasses the
region occupied by the two stars.O’s four-velocity va can
be written

va5e2Fl a, ~12!

whereF is a scalar field which is uniquely specified by the
normalization relationvmvm521. It can be seen easily that
F is related to the lapseN, the shift vectorsBa andNa, the
azimuthal vectorma, and the orbital angular velocityVorb by

e2F5N22BmBm5N22Vorb
2 mmmm12VorbmmNm2NmNm.

~13!

Let qab be the projector onto the three-planesP orthogo-
nal to va:

qab :5gab1vavb . ~14!

The kinematics of the observerO is entirely specified by the
Ehlers decomposition@39# of the covariant~with respect to
gab) derivative ofva:

¹bva5vab1uab2aavb , ~15!

where

vab :5qa
mqb

n¹ [nvm] ~16!

is the rotation two-formof O,

uab :5qa
mqb

n¹ (nvm) ~17!

is theexpansion tensorof O, and

aa :5vm¹mva ~18!

is thefour-accelerationof O. The property~12!, namely, that
va is collinear to a Killing vector, means thatva is an iso-
metric flow@39# and leads to

uab50 ~19!

and

aa5¹aF. ~20!

Equation~19! shows thatva is a rigid flow.
The three-dimensional vector spaceP represents the local

rest frame ofO. Note that sinceO is rotating (vabÞ0, see
below!, P is not integrable into global three-surfaces.qab is

the ~positive definite! metric tensor induced bygab on P.
We can introduce the alternating tensor withinP as

ē abg :5vmemabg , ~21!

where eabgd is the spacetime alternating tensor associated
with the spacetime metricgab . The rotation two-form ofO
is fully specified by its dual withinP: vab52vm ē mab ,
where

va:52
1

2
ē amnvmn5

1

2
ē amn¹mvn . ~22!

Note that the Raychaudhuri identity for the flowva reduces
to a simple relation between the norm ofva and the Laplac-
ian of F:

vmvm52¹m¹mF1
1

2
Rmnvmvn, ~23!

whereRab is the Ricci tensor of the metricgab .
By means of Eqs.~12!, ~7!, ~8!, and the Killing identity

¹al b1¹bl a50, the rotation vector~22! can be expressed as

va5
e2F

2
ē amn@Vorb¹mmn2¹mNn

12~Vorbmm2Nm!¹nlnN#. ~24!

III. RELATIVISTIC EULER EQUATION
IN THE ROTATING FRAME

A. Fluid motion

As stated in the Introduction, the matter constituting the
neutron stars can be considered as a perfect fluid, so that its
stress-energy tensor is written as

Tab5~e1p!uaub1pgab. ~25!

The fluid four-velocityua can be decomposed orthogonally
with respect to the rotating observerO as follows:

ua5G~Va1va!, ~26!

whereG is the Lorentz factor

G:52vmum, ~27!

andVa is the fluid three-velocitywith respect toO:

Va:5
1

G
qa

mum. ~28!

Va belongs toP and is the fluid velocity as measured by the
observerO ~i.e., with respect toO’s proper time!. As an
immediate consequence ofumum521, one has the usual
relation betweenG andVa:

G5~12VmVm!21/2. ~29!

To a very good approximation the~cold! neutron star matter
equation of state~EOS! can be considered as barotropic:
e5e(n) andp5p(n), wheren is the proper baryon density.
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It is then worthwhile to introduce the logarithm of the ratio
of enthalpy per baryon and the baryon mean rest massmB by

H:5 lnS e1p

mBn D , ~30!

which we call thelog enthalpy, to re-express (¹ap)/(e1p)
as a gradient of a scalar: indeed, by virtue of the first law of
thermodynamics, the following identity holds for any baro-
tropic EOS:

¹ap

e1p
5¹aH. ~31!

Then the fundamental energy-momentum conservation
equation

¹mTma50 ~32!

can easily be shown to be equivalent to the system of the
following two equations:

¹m~num!50, ~33!

um¹mua1¹aH1um¹mHua50. ~34!

Note that Eq.~34! is nothing but theuniformly canonical
equation of motionfor a single-constituent perfect fluid as
given by Carter@40#.

B. Baryon number conservation

Inserting Eq.~26! into the baryon number conservation
equation~33! and using the fact thatva is divergence-free
@Eq. ~19!# leads to

¹mVm1Vm¹mln~nG!50. ~35!

C. Momentum conservation

By projecting Eq.~34! ontova ~i.e., along the world lines
of the co-orbiting observerO), one obtains the relation

Vm¹m~H1F1 lnG!50, ~36!

which can be considered as a relativistic generalization of the
classical Bernouilli theorem, for it means that the quantity
H1F1 lnG is constant along the fluid lines.

By projecting Eq.~34! perpendicularly tova ~i.e., onto
the local rest frame of the co-orbiting observerO), one ob-
tains the relativistic version of the Euler equation for the
fluid velocity with respect toO:

Vm¹mVa12 ē a
mnvmVn1¹aF2Vm¹mFVa1G22¹aH

50. ~37!

At the Newtonian limit, theVm¹mVa gives the classical term
(VW •¹W )VW and 2ē a

mnvmVn gives the Coriolis term 2vW 3VW ,
induced by the rotation of the observerO with respect to
some inertial frame. The term¹aH gives the classical pres-
sure term. FinallyF reduces to the sum of the gravitational
and centrifugal potentials@cf. Eq. ~13!#

F →
Newt.

Fgrav2
1

2
~VW orb3rW !2, ~38!

Fgrav being defined so that the gravitational field writes
gW 52¹W Fgrav.

In order to exhibit from Eq.~37! a first integral of motion,
we shall write as much terms as possible under the form of
gradients. First, it can be seen easily that, similarly to the
usual flat space formula, the following identity holds

Vm¹mVa5 ē a
mn~¹`V!mVn1¹aS 1

2
VmVmD , ~39!

where we have introduced the curl ofVa within the three-
spaceP:

~¹`V!a:5 ē a
mn¹mVn. ~40!

Putting Eq.~39! into Eq. ~37! and performing slight rear-
rangements results in

¹a~H1F1 lnG!1G2$ ē amn@~¹`V!m12vm#Vn

1VmVmPa
n¹nF%50, ~41!

where

Pa
b:5qa

b2
VaVb

VmVm ~42!

is the projector onto the two-space orthogonal toVa, i.e.,
orthogonal to the fluid lines with respect toO. Note that in
the case where the fluid is at rest with respect toO, Pa

b is
not defined; however, the productVmVmPa

b which appears
in Eq. ~41! remains well defined and is equal to zero. In the
derivation of Eq.~41!, use has been made of Eq.~29! to
replace the term¹a(VmVm/2) coming from Eq.~39! by
G22¹alnG.

D. Number of independent components

From the fundamental equation¹mTma50, which hasa
priori four independent components, we have derived two
scalar equations@Eqs.~35! and Eqs.~36!# and one vectorial
equation@Eq. ~41!#. Equations~36! and~41! are not indepen-
dent: the former is a direct consequence of the latter, as seen
easily by projecting Eq.~41! along Va. Moreover, from its
construction, Eq.~41! has only three independent compo-
nents for it lies into the three-planesP orthogonal tova.

We will take the scalar equation~35! and the vectorial
equation lying inP ~41! as the fundamental equations to be
satisfied for our problem.

IV. CONSTRAINT ON THE VELOCITY FIELD
AND FIRST INTEGRAL OF MOTION

The only assumption underlying Eq.~41! is that the ob-
serverO, with respect to which the fluid velocityVa is de-
fined, has world lines parallel to the helicoidal Killing vector
l a. Equation~41! is equivalent to the system
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ē amn@~¹`V!m12vm#Vn1VmVmPa
n¹nF5G22¹aG,

~43!

H1F1 lnG1G5const, ~44!

whereG is a scalar field defined at least in the stars’ world
tubes. The relation~44! constitutes a first integral of motion
of the system.

A. The corotating case

Equation~43! is trivially satisfied in the caseVa50 by
takingG5const. The first integral of motion reduces then to

H1F5const. ~45!

This case is the co-rotating one (Vspin50) mentioned in the
Introduction; it corresponds tosynchronizedbinaries, which
are not expected to represent realistic close neutron star bi-
naries, as discussed in Sec. I.

The first integral~45! follows directly from the fact that in
the corotating case the fluid four-velocity is parallel to a
Killing vector @41#: Va50 is indeed equivalent to
ua5va5e2Fl a @cf. Eq. ~26!#. The integral ~45! is well
known in the case of a single rigidly rotating star~see, e.g.,
@42#!. For the problem of the initial conditions of a binary
coalescence, it has been used by Nakamura and Oohara@13#
~at the Newtonian approximation! and Baumgarteet al. @26–
28#.

B. Formulation of the problem in the general case

From now on, we suppose thatVaÞ0. By performing the
vector product~with respect toē abg) of Eq. ~43! by Va, one
can see easily that Eq.~43! is equivalent to the system

Vm¹mG50, ~46!

~¹`V!a522va2 ē amnVm¹nF

1~G2VsVs!21 ē amnVm¹nG1FVa, ~47!

where

F:5
1

VnVn Vm@~¹`V!m12vm#. ~48!

The gravitational field being given, the problem of getting
a solution amounts to finding a vector fieldVa and a scalar
field G such that the Eqs.~35!, ~46!, and~47! are satisfied. In
Eq. ~35!, the scalar fieldn is that related to the gravitational
field, V and G by the first integral ~44! via the EOS
n5n(H). More precisely, let us consider an iterative method
for solving this problem. Let us suppose that at a given step,
the gravitational field equations have been solved; the poten-
tial F and the rotation vectorva are then known. The en-
thalpyH can be then deduced from the first integral~44!, by
taking forG andG the values at the previous step or making
some extrapolation from a few previous steps. The baryon
densityn is computed fromH by means of the EOS. The
system of equations~35!, ~46!, and~47! is then to be solved
in Va andG. It is, however, not obvious that a solution exists
in the general case. What can be said is that in the Newtonian

and incompressible case, solutions do exist and are consti-
tuted byS-type Darwin-Riemann ellipsoids@43#.

V. THE COUNTER-ROTATING CASE

A. Definition

Let us focus on the interesting case of counter-rotating
binaries. The concept of counter-rotation has to be defined in
the relativistic framework. We shall define it by requiring
VaÞ0 and the scalar fieldG introduced in Eqs.~43!,~44! to
be constant:

G5const. ~49!

This definition is motivated by the fact that at the Newtonian
limit 3 it implies 1/2(¹`V)a52va, which is the definition
~1! of counter-rotation@cf. Eq. ~24!#.

With the choice~49!, Eq. ~46! is trivially satisfied and Eq.
~47! becomes

~¹`V!a522va2 ē amnVm¹nF1FVa. ~50!

B. 311 decomposition

From the numerical point of view, it is desirable to reduce
the problem to the resolution of three-dimensional equations.
Now Eq. ~50! involves four-vectors: even ifVa is spacelike
and belongs to three-planes orthogonal tova, due to the ro-
tation of this latter, there exists no coordinate system in
which Va would have only three nonvanishing components.
Therefore, we choose to recast Eq.~50! according to the
311 foliation of spacetime introduced in Sec. II B. In this
manner, we will consider only three-vectors belonging to the
spacelike hypersurfacesS t . The first step is to introduce the
orthogonal decomposition with respect toS t of the fluid ve-
locity Va with respect to the co-orbiting observer

Va5Wa1Zna, ~51!

where

Wa5ha
mVm and Z52nmVm, ~52!

where hab :5gab1nanb is the orthogonal projector onto
S t , or equivalently, the three-metric induced bygab in S t .
Due to the orthogonality relationvmVm50, the scalarZ is
not independent fromWa: by inserting Eqs.~12! and~7! into
vmVm50, one gets

Z52
1

N
BmWm52

1

N
BiW

i . ~53!

In the last part of this equation, we have introduced Latin
indices, which range from 1 to 3, whereas the Greek indices
range from 0 to 3. We will systematically do this in the
following for all the tensor fields that lie inS t , such the
vectorsBa andWa. In this way the three-dimensional char-
acter of the equations will clearly appear.

3Details about the Newtonian limit will be presented in Sec. V D.
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The curl on the left-hand side of Eq.~50! is defined within
respect to the alternating tensorē abg, which is neither par-
allel nor orthogonal to the (S t) foliation. Let us introduce
instead the alternating tensorêabg within the space (S t ,hab)
as

êabg:5nmemabg. ~54!

Inserting the identityeabgd524n[aêbgd] into the definition
~21! of ē abg, we arrive at the following expression ofē abg

in term of êabg:

ē abg5e2F~Nêabg2naBmêmbg2nbBmêmga2ngBmêmab!.
~55!

Besides, we can express the four-dimensional covariant
derivative ofVa which appears in the curl ofVa in terms of
the three-dimensional covariant derivative ofWa with re-
spect tohab :

¹aVb5¹̂aWb2nanm¹mWb2KamWmnb1nb¹aZ2ZKab

2Zna¹̂blnN. ~56!

A useful formula is that which gives the derivative along
na of any tensor fieldXa ~i! which lies inS t and~ii ! which
respects the heloicoidal symmetry~i.e.,LlX

a50):

nm¹mXa5
1

N
~Bm¹mXa2Xm¹mBa!2Ka

mXm1
Xm

N
¹̂mNna.

~57!

This formula can be used to express the derivative ofWa

alongna which appear in the right-hand side of Eq.~56!. We
can also apply it toBa and get

nm¹mBa52Ka
mBm1

Bm

N
¹̂mNna. ~58!

By combining Eqs.~40!, ~56!, ~55!, and~57!, we arrive at
the 311 decomposition of (¹`V)a

~¹`V!a5e2FêamnFN¹̂mWn1
Bm

N
~Bs¹̂sWn2Ws¹̂sBn!

2Z
Bm

N
¹̂nN1Bn¹̂mZ22Km

sWsBnG
2e2FnaêlmnBl¹̂mWn . ~59!

The term withêamn in factor is parallel to the hypersurface
S t ~becauseêamn is!, whereas the second term is alongna.

Similarly Eqs.~22!, ~12!, ~7!, ~55!, and ~58! lead to the
311 splitting of the rotation vectorva

va5e22FêamnF2
N

2
¹̂mBn2Bm¹̂nN1Km

sBsBnG
1

e22F

2
naêlmnBl¹̂mBn . ~60!

We also need to perform the 311 decomposition of the
second term on the right-hand side of Eq.~50!. The result is

ē amnVm¹nF5e2Fêamn

3FNWm¹̂nF1ZBm¹̂nF2
Bs

N
¹̂sFWmBnG

2e2FnaêlmnBlWm¹̂nF. ~61!

Thanks to Eqs.~59!, ~60!, and ~61!, the orthogonal pro-
jection of Eq.~50! onto the hypersurfacesS t is straightfor-
ward and leads to the three-dimensional equation

ê i jkFN¹̂ jWk1
Bj

N
~Bl¹̂ lWk2Wl¹̂ lBk!

2Z
Bj

N
¹̂kN1Bk¹̂ jZ22K j

lWlBkG
5 ê i jkFe2F~N¹̂ jBk12Bj ¹̂kN22K j

lBlBk!

2NWj ¹̂kF2ZBj ¹̂kF

1
1

N
WjBkB

l¹̂ lFG1eFFWi . ~62!

The baryon number conservation equation~35!, once recast
in terms of three-dimensional quantities with the help of Eq.
~56!, is written as

¹̂ iW
i1Wi¹̂ i ln~NGn!1

Z

N
Bi¹̂ i ln~ZGn!50. ~63!

A boundary condition onWi can be derived by multiplying
this equation byn and settingn50 ~definition of the star’s
surface! into the result. One obtains, using Eq.~53!,

S Wi2
BiBjW

j

N2 D ¹̂ inU
surface

50. ~64!

The equations to be solved are the three-dimensional vec-
tor equation~62! and the scalar equation~63!, altogether
with the boundary condition~64!. Note that once Eq.~62! is
satisfied, the other part of the four-dimensional equation
~50!, namely, the part alongna, is automatically fulfilled.
Indeed, the projection of Eq.~50! alongna leads to@cf. Eqs.
~59!, ~60!, ~61!, and~53!#

ê i jkBi¹̂ jWk5e2Fê i jkBi¹̂ jBk2 ê i jkBiWj ¹̂kF1
1

N
BiW

iF,

~65!

which is nothing else than the orthogonal projection of Eq.
~62! onto Bi .

Referring to the discussion in Sec. III D, we conclude that
if a three-vectorWi of S t obeying Eqs.~62! and~63! can be
found, the problem is completely resolved. Note that the
baryon densityn which appears in Eq.~63! is given via the
EOS by the log enthalpyH, itself being fully determined~for
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a fixed gravitational field! by Wi via the first integral of
motion ~44!, which becomes in the counter-rotating case

H1F1 lnG5const, ~66!

where@cf. Eqs.~29! and ~51!#

G5~12WiW
i1Z2!21/2. ~67!

C. Formulation in terms of Poisson equations

The equations to be solved, namely, Eqs.~62! and ~63!,
can be recast into Poisson equations by looking for solutions
under the form

Wi5 ê i jk¹̂ jAk1¹̂ ic, ~68!

where c is a scalar field andAi is a three-vector ofS t ,
which without any loss of generality can be taken to be
divergence-free:

¹̂ iA
i50. ~69!

This latter property implies that the curl ofWi is related to
the Laplacian ofAi by

ê i jk¹̂ jWk52¹̂ j ¹̂
jAi1R̂i

jA
j , ~70!

whereR̂i j is the Ricci tensor of the three-metrichi j of S t .
Inserting Eq.~70! into Eq. ~62! leads to the following vector
Poisson equation forAi :

¹̂ j ¹̂
jAi5 ê i jk H 2e2FS ¹̂ jBk12

Bj

N
¹̂kN2

2

N
K j

lBlBkD
1Wj ¹̂kF1

1

NFZBj ¹̂kF2
1

N
WjBkB

l¹̂ lF

1
Bj

N
~Bl¹̂ lWk2Wl¹̂ lBk!2Z

Bj

N
¹̂kN1Bk¹̂ jZ

22K j
lWlBkG J 2

eFF

N
Wi1R̂i

jA
j . ~71!

The divergence ofWi evaluated from Eq.~68! is

¹̂ iW
i5¹̂ i¹̂

ic1
1

2
ê i jk R̂kli j A

l , ~72!

whereR̂kli j is the Riemann tensor associated with the three-
metric hi j . By virtue of the symmetry properties of the Rie-
mann tensor in three dimensions, the last term on the right-
hand side of Eq.~72! vanishes identically, so that the
divergence ofWi is simply the Laplacian ofc and Eq.~63!
becomes

¹̂ i¹̂
ic52Wi¹̂ i ln~NGn!2

Z

N
Bi¹̂ i ln~ZGn!. ~73!

D. Newtonian limit

In the Newtonian limit,F takes the form~38! and va

becomes@cf. Eq. ~24!#

va→
Newt

VW orb. ~74!

The rotating-coordinate shift vectorBa reduces to
Ba52Vorbm

a @cf Eq. ~8!#, so that Eq.~71! becomes

DAW 52VW orb, ~75!

whose divergence-free solution is

AW 5
1

2
~eW z3rW !2VW orb, ~76!

whereeW z :5VW orb/Vorb. Finally, Eq.~73! becomes

Dc52VW •¹W lnn. ~77!

Once this equation is solved, the fluid velocity field with
respect to the co-orbiting observer is computed by taking the
curl of Eq. ~76!:

VW 52VW orb3rW1¹W c. ~78!

This is the solution obtained by Bonazzola and Marck@32#.

VI. DISCUSSION

A. Iterative method of resolution

The resolution of the problem amounts to solving the vec-
tor Poisson equation~71! for Ai and the scalar Poisson equa-
tion ~73! for c, with the boundary condition~64! at the sur-
face of each star. These equations involve Laplacian with
respect to thecurved three-metrichi j , so that even if the
right-hand side of the equations is supposed to be known
~e.g., from a previous step in an iterative method!, the nu-
merical solution is not straightforward. A technique which
has shown to be successful consists in introducing onS t a
flat three-metrich̄ i j and decomposing the operators into flat-
space ordinary Laplacians plus curvature terms@44,45#.

With this technique, the following iterative method can be
envisaged to get counter-rotating binary neutron star con-
figurations. The starting point of the procedure can be very
crude approximations such as constant density spherical stars
with Wi50 and a flat spacetime metric. At a given step, the
gravitational field equations are to be solved,4 leading to new
values for the functionsN, hi j , Ki j , Bi , and F @via. Eq.
~13!#. The first integral of motion Eq.~66! yields then to the
value of the log enthalpyH throughout the stars. The Lorentz
factorG which appears in the first integral is to be evaluated
by inserting the previous step values ofWi in Eq. ~67!. From
H the baryon number densityn is computed by means of the
EOS and inserted in the right-hand side of the scalar Poisson
equation~73!. In this right-hand side, as well as in the right-
hand side of the vector Poisson equation~71!, the value of
Wi is to be taken from the previous step. This is of course

4Although the gravitational field equations are not discussed in the
present paper, let us note that thanks to Eq.~10!, the momentum
constraint equation can be expressed as a three-dimensional vector
Poisson equation forBi .
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also the case of the functions ofWi : Z @deduced fromWi by
Eq. ~53!# andF @deduced fromWi by Eq.~48!#. The Poisson
equations~73! and ~71! are then to be solved, respectively,
for c andAi . The solutions are obtained up to the addition of
harmonic functions. These latter are determined in order that
the boundary condition~64! is fulfilled. The vector fieldWi

is deduced from the obtained values ofc andAi via Eq.~68!
and a new iteration may begin.

Of course, we do not have any theorem about the conver-
gence of this iterative procedure. All that we can say is that
similar schemes have been applied successfully to the com-
putation of axisymmetric@42# and triaxial@41,45# models of
single neutron stars and that in the axisymmetric case, a rig-
orous proof of convergence has been recently given by
Schaudt and Pfister@46#.

B. Conclusion

Before the inner most stable orbit is reached, the evolu-
tion of a binary system of neutron stars can be approximated
by a sequence of quasiequilibrium configurations. For each
of these configurations, the spacetime possesses the helicoi-
dal symmetry discussed in Sec. II A. The hydrodynamical
part of the problem is then trivial in the case of synchronized
binaries, because of the existence of the first integral of mo-

tion ~45!, which means that once the gravitational field is
known, the matter distribution in the stars is obtained imme-
diately. However, realistic neutron star binaries on the verge
of coalescence are not synchronized but rather in counter-
rotation. In this case, the velocity field inside the stars with
respect to the co-orbiting observer is not zero and has to be
computed so that the Euler equation~37! is satisfied. We
have presented a formalism which reduces the problem of
finding this velocity field to the resolution of three-
dimensional scalar and vector Poisson equations. We are cur-
rently applying the numerical techniques we have recently
developed for solving such equations with spherical-type co-
ordinates@44,45# in order to get numerical models. We will
present the results of this work in a future article.

The formulation presented in this article is independent of
any prescription for solving the gravitational field equations
~Einstein equations!. It simply relies on the assumption of
the spacetime helicoidal symmetry and can be used in con-
junction with any set of equations for the gravitational field,
such as the Wilson-Mathew scheme@38,25# or the 2PN
scheme recently proposed by Asada and Shibata@47#. Note
that both schemes involve nothing else but the resolution of
Poisson-type equations, so that the method that we propose
does not require a numerical technique specific to the hydro-
dynamical equations.
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