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Expressions for the complete perturbations of the solution of the Einstein-Maxwell-dilaton equations which
represents the spacetime for gravitational waves, possibly coupled with electromagnetic waves and with dilaton
fields, bound to collision are determined in terms of complex scalar potentials. These expressions are obtained
using Wald’s method of adjoint operators without imposing any gauge condition on the perturbed tetrad. The
complex scalar potentials satisfy a system of five second-order linear partial differential equations.
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I. INTRODUCTION

Recently there has been considerable interest in the study
of exact solutions of the Einstein-Maxwell-dilaton~EMD!
equations which are motivated by higher-dimensional unified
theories, such as string theory or Kaluza-Klein theory, where
a scalar dilaton field appears naturally as an essential ingre-
dient @1–5#. The presence of the dilatonic field changes radi-
cally certain features of the solutions in comparison with
those that appear in ordinary Einstein-Maxwell~EM! theory,
for example, changes in the casual structure@3#, implications
on the black-hole thermodynamics@2#, and other questions.
The special nature of the dilaton comes from the fact that this
scalar field is nonminimally coupled to the tensor fields, un-
like the scalar fields considered in the ordinary general rela-
tivity, where they are weakly coupled to the EM fields@6#.

The four-dimensional action describing the Einstein-
Maxwell fields interacting with the dilaton is@7#

S5E d4xA2g@2R12~¹f!21jF2#,

wherej[e22af, F2[FmnFmn, f is the dilaton field,Fmn is
the electromagnetic field,R is the scalar curvature,
g5det(gmn), and m,n50,1,2,3. The constanta, called the
dilaton coupling constant, is a parameter that governs the
coupling of the dilaton to the electromagnetic field. Extrem-
izing the action as usual, the EMD fields satisfy the follow-
ing field equations:

¹m~jFmn!50, ¹ [mFnl]50 ~Maxwell!, ~1!

¹m¹mf1
1

2
ajF250 ~dilaton!, ~2!

Rmn2
1

2
gmnR5Tmn ~Einstein!, ~3!

with the energy-momentum tensorTmn given by

Tmn52~]mf!~]nf!

2gmn~]af!~]af!12jS FmlFn
l2

1

4
gmnF2D . ~4!

One way of understanding the attributes of any exact so-
lution of some set of field equations such as the EMD equa-
tions ~1!–~4!, is to investigate how it reacts under external
perturbations and, in the first instance, infinitesimal perturba-
tions and how these are affected. To this purpose, in this
paper we are especially interested in the linearized versions
of Eqs. ~1!–~4!, and for that reason we consider small per-
turbation fields~metric, electromagnetic field, and dilaton
field perturbations! around a general background solution in
order to obtain the equations governing the perturbations; the
explicit form and the discussions about these linearized
equations are given in Sec. II.

In this work we shall study the perturbations of the plane
wave geometries, which are not only important in ordinary
general relativity but also in string theory, since these geom-
etries correspond to exact solutions of the string theory at all
orders of the string tension parameter@1,2#. In the framework
of classical EM theory, Chandrasekhar and Xanthopoulos
have studied the coupled perturbations of the Bell-Szekeres
solution, which represents the collision of two plane electro-
magnetic waves, in the regions containing the incoming
waves @8#, and their results were that there not exist non-
trivial incoming perturbations; however, in a recent paper@9#
Torres del Castillo has demonstrated that in those regions
there exist nontrivial purely incoming perturbations, contrary
to the claim made in Ref.@8#. Besides, Xanthopoulos@10#
considered also the coupled perturbations for the general
metric representing plane waves bound for a collision in the
same framework of EM theory and he obtained similar re-
sults to those of Ref.@8#, however, also in this case it has
been demonstrated that actually there exist nontrivial purely
incoming perturbations@11#, the reasons of these discrepan-
cies are widely discussed in Refs.@9,11#. The approach fol-
lowed in Refs.@9,11# to solve the equations for the perturba-
tions ~which is very different from that used in Refs.@8,10#!,
is Wald’s method of adjoint operators, which applies when
we can obtain a decoupled set of equations from the original
equations for the perturbations@12–16#. In Sec. III, we dis-
cuss the self-adjoint character of the operators that govern
the perturbations of the EMD fields, which is necessary in
order to find the perturbations in terms of scalar potentials.

In Sec. IV, the perturbations of the spacetime correspond-
ing to gravitational plane waves possibly coupled to electro-
magnetic waves and dilaton fields bound to a collision are
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studied in the framework of the EMD theory. Using the
Newman-Penrose formalism, we find a decoupled system of
equations and then we generate the master equations for the
scalar potentials which determine the complete perturbations
to the metric, electromagnetic potential and dilaton field.
These expressions are used in Sec. V to demonstrate that the
existence of the purely incoming perturbations is a property
that persists in the more general framework of the EMD
theory. In the Appendix we write Eqs.~1!–~4! in the
Newman-Penrose formalism, which are useful in Sec. IV and
for future reference.

II. LINEARIZED EINSTEIN-MAXWELL-DILATON
EQUATIONS

In order to find the linearized equations from the field
equations ~1!–~4!, we consider linear small perturbation
fields around a general background solution and, first of all,
we determine the linear perturbations of the various quanti-
ties appearing in those equations; in the following expres-
sions and throughout the superscript B denotes the corre-
sponding perturbations. In particular, the metric, vector
potential, and dilaton perturbations are represented byhmn ,
bm , andfB, respectively.

One easily can demonstrate that

~gmn!B52hmn,

Fmn
B 5]mbn2]nbm ,

jB[~e22af!B522ajfB, ~5!

~Gmn
l !B5

1

2
glr@¹mhnr1¹nhmr2¹rhmn#,

RB5gmnRmn
B 2Rmnhmn,

we do not require the explicit form ofRmn
B in terms ofhmn ,

because this perturbed quantity appears in other references
@12# in the framework of the EM theory and then its features
are well known. The indices are raised and lowered by
means of the background metricgmn , for example
hmn5gmagnbhab , which will be useful below. Furthermore,
using symmetry properties ofFmn we can find that

~F2!B52FlmFa
lhma12FmnFmn

B ,

~FmlFn
l!B52Fm

lFn
ghgl22Fl

~mFn)l
B . ~6!

Let us consider first the linearized Maxwell equation; for that
purpose it is suitable to write Eq.~1! in the form

gma¹a~jFmn!5gma@]a~jFmn!2Gan
l jFml2Gam

l jFln#50.

Now we consider linear perturbations around a background
solution; using Eqs.~5! and ~6! and grouping suitably, the
preceding equation takes the form

8ajFa
n¹afB24$gn

m¹r~j¹r!2¹m~j¹n!%bm

14H @¹ajFm
n#1jFFa

n¹m1gm
nFra¹r

2
1

2
gmaFr

n¹rG J hma50, ~7!

where we have multiplied by a factor24 for future conve-
nience@12#.

Similarly, we can write the dilaton equation~2! as

gma@]a~]mf!2Gam
l ]lf#1

1

2
ajF250,

now taking linear perturbations and multiplying by a factor
24, the linearized dilaton equation is

4~a2jF22¹m¹m!fB28ajFmn¹mbn14H ~¹a¹mf!

1ajFmlFa
l1~¹af!¹m2

1

2
gma~¹rf!¹rJ hma50.

~8!

In order to find the linearized version of Eqs.~3!, we first
linearize the various terms appearing in the energy-
momentum tensor given in Eq.~4!. It is not difficult to dem-
onstrate that the linearized first term is given by

2~]mf]nf!B54]~mf]n)f
B. ~9!

The second term can be suitably written as

2gmn~]af!~]af!52gmngla~]lf!~]af!,

then

2@gmn~]af!]af#B5$gmn~]lf!~]af!2~]rf!

3~]rf!gn
lgm

a%hla

22gmn~]af!]afB. ~10!

The linearized third term can be expressed as

~jTmn
M !B5Tmn

M jB1j~Tmn
M !B,

where

Tmn
M 52FFmlFn

l2
1

4
gmnF2G , ~11!

is the usual energy-momentum tensor of the electromagnetic
field. The last expression can be written using the formulas
~5! and ~6!, as follows:

~jTmn
M !B522ajTmn

M fB22jFFm
aFn

g1 1
4 F2gm

agn
g

1
1

2
gmnFlgFa

lGhag22jF2Fg
~mFn)g

B

1
1

2
gmnFagFag

B G . ~12!
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As we can see from this last expression, the metric per-
turbations coming from this linearized third term are the
same that appear in the case when the only matter field
present is the electromagnetic field@12#, except for the phase
factor j, which does not change the multiplicative character
of the overall factor acting onhag ; this point will be impor-
tant in the next section where we will discuss the self-
adjointness of this factor.

Finally, from Eqs.~3!, ~9!–~12! the linearized Einstein
equations are given by

2$ajTmn
M 1gmn~]af!]a22~]~mf!]n)%f

B22j@2ga
~mFn)

g

22gg
~mFn)

a2gmnFag#¹abg1$EG81~]rf!

3~]rf!gm
agn

l2gmn~]lf!~]af!%hal50, ~13!

where the operators acting on the metric perturbationshmn

coming from the linearization of the first member of Eq.~3!

Rmn
B 2 1

2 (gmnR)B, and those coming from Eq.~12! have been
represented by the operatorEG8, whose explicit form is not
important, because it is essentially the same appearing in the
framework of the EM theory@see the paragraph after Eqs.~5!
and ~12!# and then it is well known@12#.

The linearized EMD equations~7!, ~8!, and ~13! can be
expressed in the following form for future convenience:

F ED EDE EDG

EED EE EEG

EGD EGE EG

GF fB

~bm!

~hmn!
G50, ~14!

where ED , EDE , EDG , EED , EE , EEG , EGD , EGE, and
EG are linear partial differential operators involving the back-
ground fields, whose explicit forms can be read from Eqs.
~7!, ~8!, and~13!, which correspond to the second, first, and
third rows, respectively.

III. WALD’S METHOD

In order to find expressions for the complete solutions of
systems of linear partial differential equations in terms of
scalar potentials, Wald introduced a method which makes
use of the concept of the adjoint of a linear operator@12#. If
E corresponds to a linear partial differential operator which
mapsm-index tensor fields inton-index tensor fields then,
the adjoint operator ofE, denoted byE†, is that linear partial
differential operator mappingn-index tensor fields into
m-index tensor fields such that

trs . . . @E~ f mn . . . !#rs . . . 5@E†~ trs . . . !#mn . . . f mn . . . 1¹mvm,

~15!

wherevm is some vector field, and similarly for any other
operator. For example, in the Newman-Penrose formalism
we have that

D†52~D1«1 «̄ 2r2 r̄ !, D†52~D2g2 ḡ 1m1m̄ !,

d†52~d1b2 ā2t1p̄ !, d̄ †52~ d̄ 1 b̄2a2 t̄ 1p!,

~16!

which will be useful below.
On the other hand, from Eqs.~7!, ~8!, and~13!, the defi-

nition ~15! and assuming that the background fields satisfy
Eqs.~1!–~4! one can demonstrate that

ED
† 5ED , EE

†5EE , EG
† 5EG ,

EDE
† 5EED , EDG

† 5EGD , EGE
† 5EEG , ~17!

in this manner, from Eqs.~17! we have found that the adjoint
of the matrix operator appearing in Eq.~14! is @16#

F ED EDE EDG

EED EE EEG

EGD EGE EG

G †

5F ED EDE EDG

EED EE EEG

EGD EGE EG

G , ~18!

which means that this operator is self-adjoint. It is important
to point out that, on a curved background, the operators cor-
responding to the Weyl neutrino equation and the linearized
Yang-Mills are also self-adjoint. On the other hand, the op-
erator corresponding to the usual free massless field equa-
tions of spin greater that one is not self-adjoint on a curved
spacetime.

Besides, as we shall see in the next section, when the
background solution is the spacetime corresponding to plane
waves bound to collision, a decoupled system of equations
can be obtained from Eqs.~14!, which can also be written in
matrix form @see Eq.~43!#.

IV. COLLIDING WAVES AND THEIR PERTURBATIONS

A. Solution to be perturbed

The spacetime corresponding to the colliding plane waves
can be specified by the line element@4#

ds252e2Mdudv1e2U@e2V~dx2!21eV~dx1!2#, ~19!

or in equivalent form, by the null tetrad

D5
A2

N
]u , D5

A2

N
]v ,

d5
1

A2H
~x21/2]x11 ix1/2]x2!,

d̄ 5
1

A2H
~x21/2]x12 ix1/2]x2!, ~20!

whereu, v, x1, andx2 are real coordinates and for simplicity
we have defined

N2[2e2M, H[e2U, x[eV.

The tetrad~20! applies to the entire spacetime, with the met-
ric functionsN5N(u,v), H5H(u,v), x5x(u,v), potential
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Am5Am(u,v), and dilaton fieldf5f(u,v) taking different
forms in the four regions of the usual framework of colliding
waves.

Specifically in the region prior to the collision, which con-
tains one of the approaching waves, we have that the metric
componentsgmn , f, andAm fields depend only onv @4#:

U~v !, V~v !, M ~v !, f~v !, Am~v !; ~21!

besides, the only nonvanishing spin coefficients are

g~v !52
1

A2N

d

dv
lnN, m~v !52

1

A2N

d

dv
lnH,

l~v !5
1

A2N

d

dv
lnx, ~22!

and the only nonvanishing component of the spinor Weyl is

C452
1

2Fd2V

dv2
2

dV

dv S dU

dv
2

dM

dv D G . ~23!

Region II supports null electromagnetic fields, therefore,
if we take the tetrad vectorl m along the principal null direc-
tion of the background electromagnetic field, then we have
that

w0505w1 , ~24!

w2(v) being the only nonvanishing component. Using Eq.
~24!, from Eqs.~A8! the Einstein field equations reduce to

F2252~Df!212jw2w2, ~25!

sinceDf is the only nonvanishing derivative off.

B. Decoupled equations for the perturbations
and master equations

From the Maxwell equations~A1! and~A3! and from Eqs.
~21! and ~24! we obtain

d̄ w0
B2Dw1

B2w2kB52pj21l m j m , ~26!

~D22g1m2aDf!w0
B2dw1

B2w2sB1aw2~Df!B

52pj21mm j m , ~27!

where it has been included a sourcej m for the electromag-
netic perturbations~see Ref.@9# and references cited therein!.
One of the reasons to choose Eqs.~A1! and ~A3! is that the
components of the perturbed tetrad acting onw0 andw1 do
not appear, because these last quantities vanish in the back-
ground in accordance with Eq.~24!. Moreover, from the
Ricci identities and by considering that the only nonvanish-
ing spin coefficients are given in Eq.~22!, one finds that

DsB2dkB5C0
B. ~28!

Applying d to Eq. ~26! and D to Eq. ~27!, subtracting and
considering Eq.~28! and that@D,d#50, we have that

OEw0
B2w2C0

B1aw2D~Df!B52pSE~ j m!, ~29!

with

OE5D~D22g1m2aDf!2d d̄ ,

SE~ j m!5j21@D~mm j m!2d~ l m j m!#. ~30!

On the other hand, from the Bianchi identities and by con-
sidering that the only nonvanishing spinor Weyl component
is given in Eq.~23! we obtain that

d̄ C0
B2DC1

B54p@d~ l ml nTmn!2D~ l mmnTmn!#, ~31!

~D24g1m!C0
B2dC1

B12jw2Dw0
B54p@d~ l mmnTmn!

2 l̄ l ml nTmn2D~mmmnTmn!#, ~32!

where we also have included an additional source for the
gravitational perturbations,Tmn @9#. Applying the same pro-
cedure used in Eqs.~26! and ~27! to eliminatew1

B , we can
cancel the terms withC1

B of Eqs.~31! and ~32! and we get

OGC0
B12jw2D2w0

B54pSG~Tmn!, ~33!

where

SG~Tmn!5$D@d~ l mmnTmn!2D~mmmnTmn!2 l̄ l ml nTmn#

1d@D~ l mmnTmn!2d~ l ml nTmn!#%,

OG5D~D24g1m!2d d̄ . ~34!

With the purpose to complete the system of Eqs.~29! and
~33! and to avoid the appearance of undesirable perturbed
quantities@17#, before considering the perturbations, we ap-
ply D to Eq. ~A6! and we obtain

D~D1m2g2 ḡ !Df2 r̄ DDf2~Df!D r̄ 1D~ t̄ df!

1D~2d1 ā2b1t! d̄ f1
1

4
aD~jF2!

50. ~35!

Using the commutation relations the fifth term can be ex-
pressed as

D~2d1 ā2b1t! d̄ f

52~d2 ā2b1p̄ !~ d̄ 2a2 b̄1p!Df

1~d2 ā2b1p̄ ! k̄Df2~d2 ā2b1p̄ !

3@~r1 «̄ 2«! d̄ f1 s̄df#1kD d̄ f

2~ r̄ 1 «̄ 2«!d d̄ f2s d̄ 2f

1D@~ ā2b1t! d̄ f# ~36!

and using the fact that the only nonvanishing spin coeffi-
cients are those given in Eq.~22!, the linearization of Eq.
~36! is given by
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@D~2d1 ā2b1t! d̄ f#B52d d̄ ~Df!B1Dfd k̄ B. ~37!

Furthermore, the linearization of nonvanishing remaining
terms of Eq.~35! is given by

@D~D1m2g2 ḡ !Df#B5D~D1m2g2 ḡ !~Df!B,

2@~Df!~D r̄ !#B52~Df!D r̄ B, ~38!

@D~jF2!#B54j@w2Dw0
B1w2Dw0

B#,

and from the Ricci identities we can find that

D r̄ B2d k̄ B50. ~39!

Then, from Eqs.~37!–~39! the linearization of Eq.~35! fi-
nally takes the form

OD~Df!B1aj@w2Dw0
B1w2Dw0

B#

54p@SDfs1Df l ml nTmn# , ~40!

where

OD5D~D1m2g2 ḡ !2d d̄ ,

SD5
1

2
D, ~41!

andfs represents a source for the dilaton field perturbations,
additional to those considered in Eqs.~29! and ~33!.

The system of three equations given by Eqs.~29!, ~33!,
and ~40! actually does not represent a linear system for the
three unknowns (Df)B, w0

B , andC0
B , because in Eq.~40!

the quantityw0
B is present, which must be considered as a

new unknown. To rectify this situation, we need to consider
the complex conjugates of Eqs.~29! and ~33! to obtain two
additional equations:

OEw0
B2w2C̄0

B1aw2D~Df!B52p S̄E~ j m!,

ŌGC̄0
B12jw2D2w 0̄

B54p S̄G~Tmn!, ~42!

where the operatorsS̄E and S̄G correspond to the complex
conjugates of those of Eqs.~30! and~34!, and we have con-

sidered that (Df)B5(Df̄)B, becauseDf is real. Hence the
complete system of five equations~30!, ~33!, ~40!, and~42!

now represents a system for five unknowns (Df)B, w0
B ,

C0
B , w 0̄

B, andC̄0
B . Note that the complex conjugate of Eq.

~40! is itself, sinceŌD5OD , which follows from the fact
that D, D, m, andg are real and@d, d̄ #50 @see Eqs.~20!–
~22!#. This system of five equations can be expressed in the
following matrix form:

S OG 2jw 2̄D2 0 0 0

2w2 OE 0 0 aw 2̄D

0 0 ŌG 2jw2D2 0

0 0 2w 2̄ ŌE aw2D

0 ajw2D 0 ajw 2̄D OD

D
3S C0

B

w0
B

C̄0
B

w 0̄
B

~Df!B

D 54pS SGTmn

1

2
SEj m

S̄GTmn

1

2
S̄Ej m

SDfs1Df l ml nTmn

D .~43!

The right-hand side corresponds to

SF ~Tmn!

~ j m!

fs

G , ~44!

whereS is given by the following 533 matrix:

S5S SG 0 0

0
1

2
SE 0

S̄G 0 0

0
1

2
S̄E 0

Df l ml n 0 SD

D . ~45!

With O being the matrix operator appearing on the left-hand
and using Eqs.~16!, ~30!, ~34!, and~41!, we find that

O†5S OG
† 2w2 0 0 0

2jw 2̄D2 OE
† 0 0 2ajw2D

0 0 ŌG
† 2w 2̄ 0

0 0 2jw2D2 ŌE
† 2ajw 2̄D

0 2aw 2̄D 0 2aw2D OD
†

D , ~46!
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where

OG
† 5~D12g1m!D2 d̄ d,

OE
†5~D1m1aDf!D2 d̄ d, ~47!

OD
† 5~D1m!D2 d̄ d,

and

S†5S SG
† 0 S̄G

† 0 Df l ml n

0
1

2
SE

† 0
1

2
S̄E

† 0

0 0 0 0 SD
†

D , ~48!

where

SG
† 52 l ml n@d22 l̄D#2mmmnD212l ~mmn)dD,

SE
†5 j21@ l md2mmD#, ~49!

SD
† 52

1

2
D,

where we have used the fact thatj21 andw2 depend only on
v and @d,D#50.

In this manner, if the matrix potential (c) satisfies
O†(c)50 with

~c!5S cG

cE

c̄G

c̄E

cD

D , ~50!

it means, using Eq.~46!, that

OG
† cG2w2cE50,

2jw 2̄D2cG1OE
†cE2ajw2DcD50,

2aw 2̄DcE2aw2D c̄E1OD
† cD50, ~51!

ŌG
† c̄G2w 2̄c̄E50,

2jw2D2c̄G1ŌE
† c̄E2ajw 2̄DcD50,

then the metric, vector potential, and dilaton field perturba-
tions are given by@12#

S hmn

bm

fB
D 5S†~c!5S SG

† cG1 S̄G
† c̄G1Df l ml ncD

1

2
SE

†cE1
1

2
S̄E

† c̄E

SD
† cD

D , ~52!

where the last equality follows from Eqs.~48! and~50!. Us-
ing Eqs.~49!, we have finally that thereal perturbations are

hmn522$ l ml n@d22 l̄D#1mmmnD222l ~mmn)dD%cG1c.c.

1Df l ml ncD ,

bm5
1

2
j21~ l md2mmD !cE1c.c., ~53!

fB52
1

2
DcD .

Hence the perturbations given in Eq.~53! are defined com-
pletely by the five scalar potentialscG , c̄G , cE , c̄E , and
cD which satisfy the five coupled equations~51!, called the
master equations@10#. It should be emphasized that since no
gauge condition has been imposed on the perturbed null tet-
rad, then our results are independent on the six degrees of
perturbed tetrad gauge freedom, contrary to other approaches
which make use of this gauge freedom in order to simplify
the equations for the perturbations@8,10#. In summary, the
linearized EMD equations~14! have been solved in a gauge
invariant way in the special case when the background solu-
tion is the spacetime corresponding to colliding waves in the
incoming regions.

C. Expressions for the field perturbations

The components of the electromagnetic field perturbations
can be obtained from Eqs.~53!, using the formula
Fmn

B 5]mbn2]nbm and the following definitions:

w 0̄
B[ l mm̄nFmn

B 5
1

2
j21D2cE,

w 1̄
B[

1

2
~ l mnn1mmm̄n!Fmn

B 5
1

2
j21dDcE, ~54!

w 2̄
B[mmnnFmn

B 5
1

2
j21~d22 l̄D !cE1w2D2c̄G

2
1

2
aj21~Df!D c̄E2

1

2
aw 2̄DcD .

Similarly, the components of the Weyl spinor perturbations
can be obtained from Eq.~53! making use of the formula

CACDE
B 5

1

2
¹R8

~A¹S8
ChDE)R8S81

1

2
h~AC

R8S8FDE)R8S8.

Then, we find that

C̄0
B52D4cG,

C̄1
B52dD3cG,

C̄2
B52~d22 l̄D !D2cG1 1

6 DfD2cD , ~55!

C̄3
B52~d223l̄D !dDcG1 1

4 DfdDcD ,
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C̄4
B52~d223l̄D !~d22 l̄D !cG2d2~ d̄ 22lD !c̄G

1F1

2
F222~D12g1m!~D1m!GD2c̄G

1@2~D12g12m!d1 l̄ d̄ # d̄ D c̄G1Df~d̄22l̄D !cD,

whereF22 is given by Eq.~25!. As we can see from Eqs.
~54! and ~55!, the perturbations of the electromagnetic field
and of the spinor Weyl are completely determined by the
quantities given in Eqs.~53!, and in this manner they have
the same gauge independence@see the paragraph after Eq.
~53!#, which allows us, for example, to appropriately define
fluxes of energy@18#, and to study the junction conditions
between the different regions occurring in the collision of
plane waves@19#.

V. EXISTENCE OF PURELY INCOMING
PERTURBATIONS

The purely incoming perturbations correspond to the
u-independent perturbations; these special perturbations
were studied by Xanthopoulos@10# in the framework of the
EM theory and he found that there exist no nontrivial
u-independent perturbations, contrary to the recent results
presented in Refs.@9,11# within the same scheme of the EM
theory. We will demonstrate that the existence of purely in-
coming perturbations found in Refs.@9,11# is a property that
persists in the more general framework of the EMD theory
and, for this end, it is convenient to define the complex vari-
able

z[
1

A2
@x1/2x11 ix21/2x2#, ~56!

and its complex conjugate to replace the real coordinatesx1

andx2. With this definition, the relevant components of the
null tetrad ~20! can be rewritten asd̄ 5(1/AH)]z and
d5(1/AH)] z̄ . A direct way to obtainu-independent field
perturbations is to assume that the potentialscE , cG , and
cD do not depend onu; then the master equations~51! re-
duce to

1

H
]z] z̄cG1w2cE50, ]z] z̄cE50, ]z] z̄cD50,

~57!

whose solutions can be written as

cE52
1

w2
H]zF~v,z!,

cG5H2@ z̄F~v,z!1G~v,z!#, ~58!

cD5J~v,z!,

where F(v,z), G(v,z), and J(v,z) are arbitrary functions
and the factor (1/w2)H and H are introduced for conve-
nience. The only nonvanishing components of the electro-
magnetic field perturbations and of the Weyl field perturba-
tions can be obtained from Eqs.~54! and ~55!,

w 2̄
B52

1

2w2
j21]z

3F~v,z!,

C̄4
B52]z

4$ z̄F~v,z!1G~v,z!%1
Df

H
]z

2J~v,z!, ~59!

and from Eqs.~53! we obtain that

fB50. ~60!

Thus there exist nontrivial incoming perturbations. In the
framework of the EM theory where, of course, one has only
electromagnetic field and gravitational perturbations, if the
electromagnetic field vanishes~i.e., ]z

3F50) in Eq. ~59!, the
remaining nonvanishing purely gravitational perturbations
not only would correspond to a solution of the linearized EM
equations but they also would correspond to anexactsolu-
tion of the EM equations@20#. Since the dilaton field pertur-
bations vanish in Eq.~60!, does the nonvanishing purely
gravitational perturbation~59! also correspond to an exact
solution of the EMD equations? Because we do not have yet
an analogous result in the EMD theory to that given in Ref.
@20# for the EM theory, this is an open question.

VI. CONCLUDING REMARKS

The self-adjointness of the operators governing the linear-
ized EMD equations has shown its usefulness in order to find
particular solutions of these equations in terms of few scalar
potentials in a direct way and without imposing any gauge
condition on the perturbed tetrad. This property opens the
possibility to find the linear perturbations of any exact solu-
tion of the EMD theory, with only the finding of the corre-
sponding decoupled system remaining. One interesting case
would be the spacetime for colliding plane waves in the in-
teraction region, whose perturbations will allow us to study
the stability of the singularities emerging in this region@4#
and the matching of these perturbations with those found in
this paper in the incoming region. Another case is the study
of the charged black holes in string theory, which have new
implications for black-hole thermodynamics@2# and for the
possible violation of the cosmic censorship@3#. All this will
be the subject of forthcoming communications.
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APPENDIX: EMD FIELD EQUATIONS
IN THE NEWMAN-PENROSE FORMALISM

Projecting on the null tetradl n , nn , mn , andm̄n as usual,
the Maxwell field equations~1! take the form

j$~ d̄ 1p22a!w02~D22r!w12kw2

2a@w0 d̄ 1w 0̄d2~w11w 1̄!D#f%

50, ~A1!

7706 56R. CARTAS-FUENTEVILLA



j$2~d12b2t!w21~D12m!w12nw0

2a@~w11w 1̄!D2w2d2w 2̄ d̄ #f%50, ~A2!

j$~D22g1m!w02~d22t!w12sw2

2a@w0D1~w 1̄2w1!d2w 2̄D#f%50, ~A3!

j$2~D2r12«!w21~ d̄ 12p!w12lw0

2a@w 0̄D1~w12w 1̄! d̄ 2w2D#f%50. ~A4!

Writing the operator¹m¹m in the Newman-Penrose for-
malism, the dilaton field equation~2! takes the form

2@mD1~D1«1 «̄ 2 r̄ !D2pd1~2d1 ā2b2p̄ ! d̄ #f

1
1

2
ajF250, ~A5!

or, using the usual commutation relations

2@~D1m2g2 ḡ !D2 r̄ D1 t̄ d1~2d1 ā2b1t! d̄ #f

1
1

2
ajF250, ~A6!

where

F254@w0w21w 0̄w 2̄2w1
22w 1̄

2#. ~A7!

Moreover, from Fmn[2 1
2 (Rmn2 1

4 gmnR) and from the
Ricci tensor given by

Rmn52~]mf!~]nf!12jS FmlFn
l2

1

4
gmnF2D ,

the Ricci scalars can be expressed in the form

F00[ l ml nFmn52~Df!212jw0w 0̄,

F11[ l mnnFmn52
1

2
@~Df!~Df!1~df!~ d̄ f!#12jw1w 1̄,

F22[nmnnFmn52~Df!212jw2w 2̄,

F01[ l mmnFmn52~Df!~df!12jw0w 1̄,

F02[mmmnFmn52~df!212jw0w 2̄, ~A8!

F12[mmnnFmn52~Df!~df!12jw1w 2̄,

L[ 1
24R5

1

6
@~Df!~Df!2~df!~ d̄ f!#,

with F i j̄ 5F j i ( i , j 50,1,2).
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