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Perturbations of Einstein-Maxwell-dilaton fields

R. Cartas-Fuentevilla
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Expressions for the complete perturbations of the solution of the Einstein-Maxwell-dilaton equations which
represents the spacetime for gravitational waves, possibly coupled with electromagnetic waves and with dilaton
fields, bound to collision are determined in terms of complex scalar potentials. These expressions are obtained
using Wald’'s method of adjoint operators without imposing any gauge condition on the perturbed tetrad. The
complex scalar potentials satisfy a system of five second-order linear partial differential equations.
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I. INTRODUCTION One way of understanding the attributes of any exact so-
lution of some set of field equations such as the EMD equa-
Recently there has been considerable interest in the studions (1)—(4), is to investigate how it reacts under external
of exact solutions of the Einstein-Maxwell-dilatdEMD)  perturbations and, in the first instance, infinitesimal perturba-
equations which are motivated by higher-dimensional unifiedions and how these are affected. To this purpose, in this
theories, such as string theory or Kaluza-Klein theory, whergyaper we are especially interested in the linearized versions
a scalar dilaton field appears naturally as an essential ingref Egs. (1)—(4), and for that reason we consider small per-
dient[1-5]. The presence of the dilatonic field changes radi-turbation fields(metric, electromagnetic field, and dilaton
cally certain features of the solutions in comparison withfield perturbationsaround a general background solution in
those that appear in ordinary Einstein-Maxw@M) theory,  order to obtain the equations governing the perturbations; the

for example, changes in the casual strucf@jeimplications  explicit form and the discussions about these linearized
on the black-hole thermodynami€8], and other questions. equations are given in Sec. Il.

The special nature of the dilaton comes from the fact that this |n this work we shall study the perturbations of the plane
s_calar field is npnminimal!y coup_led to the_ tensor fields, unwave geometries, which are not only important in ordinary
like the scalar fields considered in the ordinary general relageneral relativity but also in string theory, since these geom-

tivity, where they are weakly coupled to the EM fiel#.  etries correspond to exact solutions of the string theory at all
The four-dimensional action describing the Einstein-orders of the string tension parameftes2]. In the framework
Maxwell fields interacting with the dilaton is7] of classical EM theory, Chandrasekhar and Xanthopoulos
have studied the coupled perturbations of the Bell-Szekeres
S:J' d4xV—a[ — R+ 2(V )2+ £F2], solutlon_, which rep_resents the_ collision o_f t_wo plane_ elect_ro-
ol (Vé)"+&F] magnetic waves, in the regions containing the incoming

. ) ] . waves[8], and their results were that there not exist non-
whereé=e™ %%, F?=F ,,F**, ¢ is the dilaton fieldF ,, is  trivial incoming perturbations: however, in a recent pajer
the electromagnetic fieldR is the scalar curvature, Torres del Castillo has demonstrated that in those regions
g=det(@,,), and u,»=0,1,2,3. The constard, called the there exist nontrivial purely incoming perturbations, contrary
dilaton coupling constant, is a parameter that governs thg the claim made in Ref.8]. Besides, Xanthopoulogl0]
coupling of the dilaton to the electromagnetic field. Extrem-considered also the coupled perturbations for the general
izing the action as usual, the EMD fields satisfy the follow- metric representing plane waves bound for a collision in the

ing field equations: same framework of EM theory and he obtained similar re-
o _ sults to those of Ref[8], however, also in this case it has
Vu(EF*)=0, V,F =0 (Maxwell), (1) been demonstrated that actually there exist nontrivial purely
1 incoming perturbationfl1], the reasons of these discrepan-
P 2_ : cies are widely discussed in Ref9,11]. The approach fol-
ViVt 2 agF"=0  (dilaton, @ lowed in Refs[9,11] to solve the equations for the perturba-

tions (which is very different from that used in Ref8,10]),
is Wald’s method of adjoint operators, which applies when

Ruv— EgMVR:T//-V (Einstein, (3 we can obtain a decoupled set of equations from the original
equations for the perturbatiof$2-14. In Sec. Ill, we dis-
with the energy-momentum tensdy,, given by cuss the self-adjoint character of the operators that govern
the perturbations of the EMD fields, which is necessary in
Tu=2(0,#)(d,9) order to find the perturbations in terms of scalar potentials.

In Sec. IV, the perturbations of the spacetime correspond-
ing to gravitational plane waves possibly coupled to electro-
magnetic waves and dilaton fields bound to a collision are

—0u(0°P) (9o P) + 28

1
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studied in the framework of the EMD theory. Using the 8a§F“,,Va¢B—4{g,,“V”(§Vp)—V“(gVV)}bM
Newman-Penrose formalism, we find a decoupled system of
equations and then we generate the master equations for the
scalar potentials which determine the complete perturbations +4
to the metric, electromagnetic potential and dilaton field.
These expressions are used in Sec. V to demonstrate that the

. . . . . — —_gQMeFP VY
existence of the purely incoming perturbations is a property 29 vV¥p
that persists in the more general framework of the EMD
theory. In the Appendix we write Eqs(l)—(4) in the where we have multiplied by a facter4 for future conve-
Newman-Penrose formalism, which are useful in Sec. IV ancdhience[12].
for future reference. Similarly, we can write the dilaton equatid@) as

[VEERH®, ]+ & F* Vi+gH FPev,

h,uazov (7)

1
II. LINEARIZED EINSTEIN-MAXWELL-DILATON g"‘“[&a(&’uqﬁ)—rzﬂaxqﬁ]-i— §a§F2=O,
EQUATIONS

In order to find the linearized equations from the field "OW taking linear perturbations and multiplying by a factor
equations (1)—(4), we consider linear small perturbation —4. the linearized dilaton equation is
fields around a general background solution and, first of all,
we determine the linear pertur.batior.]s of the vari.ous quanti- 4(a2¢F2-VHY ) ¢B—BatF 'V b, + 4
ties appearing in those equations; in the following expres-
sions and throughout the superscript B denotes the corre- 1
sponding perturbations. In particular, the metric, vector +atFAFY + (Vi) VH— 59”“(V”¢)Vp] h.e=0.
potential, and dilaton perturbations are representeti py
b,,, and ¢®, respectively. 8

One easily can demonstrate that

(VEVEP)

In order to find the linearized version of Ed8), we first
(g")B= —h#v linearize the variogs tgrms appearing. i'n the energy-
' momentum tensor given in E@). It is not difficult to dem-
onstrate that the linearized first term is given by

£=(e”%%)B=—-2aiq¢", (5 The second term can be suitably written as

=00 B)(90h) == 9,9 (9, 9) (3ah),

B _
F8,=a,b,—d,b

v o

(T )leg”’[V h,,+V,h,—V h,]
nv 2 pvp viiup p vl

then
_ a B_ A a )
RB:Q’WR;B“,_ R’uyh,u,v, [g,u,v((g d’)aad)] {g,um((7 ¢)(’9 d)) ((7 d))
X(U’)pqs)gv)\g,ua}h)\a
we do not require the explicit form d®;, in terms ofh,,,,, —ZQW(&%WMB- (10)

because this perturbed quantity appears in other references
[12] in the framework of the EM theory and then its featuresThe linearized third term can be expressed as
are well known. The indices are raised and lowered by

means of the background metrig,,, for example (ET))B=T)L 8+ &T),)8,
h“”zg““g"ﬁhaﬁ, which will be useful below. Furthermore,
using symmetry properties &,, we can find that where
2\B AEa uvpeB TM_2F [=3RN 1 E2 11
(F?)B=2F"F*h,  +2F*F5 w= 2 F P = 79,7 (12)
(F,nF,MB= —FM”FV’/hﬂ—ZF"(#F?)A. (6)  is the usual energy-momentum tensor of the electromagnetic

field. The last expression can be written using the formulas

Let us consider first the linearized Maxwell equation; for that(s) and(6), as follows:

purpose it is suitable to write Eq1) in the form

(ET),)B=—2a¢T)y, ¢B— 24 F ,“F "+ F?9,°9,”

0“V o £F 1) = 0#“T0a(€F ) — T}, 6F 0 — T} ,€F,,1=0. .
+-g,,F\F¢ }ha —25[2F7 FB

Now we consider linear perturbations around a background 2=F B Y

solution; using Egs(5) and (6) and grouping suitably, the 1

preceding equation takes the form +§9quachBw}- (12)
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As we can see from this last expression, the metric per-pt_ —(D+8+8_—p— ), AT=—(A— 7‘7“‘#“‘5,
turbations coming from this linearized third term are the
same that appear in the case when the only matter field
present is the electromagnetic fi¢lP], except for the phase
factor &, which does not change the multiplicative character (16)
of the overall factor acting oh,,.,; this point will be impor-

St=—(6+B—a—r+m), & =—(6+B—a—71+m),

ay;

tant in the next section where we will discuss the self-which will be useful below. .
adjointness of this factor. On the other hand, from Eqé7), (8), and(13), the defi-

Finally, from Egs.(3), (9)—(12) the linearized Einstein nition (15) and assuming that the background fields satisfy
equations are given by Egs.(1)—(4) one can demonstrate that

=&, El=&, &i=&;,
2{agT, 49, (0°}) 00— 2(d(, )9, #°B— 26[29° ,F )"

&e=Eep. Ehe=fep: ELe=Cec. 17
_ZgV(MFV)a_gMVFUY]Vaby+{5G’+((9P¢)
an A N N _ in this manner, from Eq417) we have found that the adjoint
X(9,$)9,°9," — 93" $)(9*P) =0, (13 of the matrix operator appearing in Ed4) is [16]

+

where the operators acting on the metric perturbatiops o e oo o Eoe épo

coming from the linearization of the first member of Eg) &b & &ee| =|%p & Eael|, (19

REV—%(QWR)B, and those coming from Eq12) have been Eep Eee & Esp Ece o

represented by the operatég’, whose explicit form is not _ . ] o o

important, because it is essentially the same appearing in thghich means that this operator is self-adjoint. It is important

framework of the EM theor{see the paragraph after E¢s)  t0 point out that, on a curved background, the operators cor-

and(12)] and then it is well knowr12]. responding to the Weyl neutrino equation and the linearized
The linearized EMD equationd), (8), and (13) can be  Yang-Mills are also self-adjoint. On the other hand, the op-

expressed in the following form for future convenience: ~ €rator corresponding to the usual free massless field equa-
tions of spin greater that one is not self-adjoint on a curved

8 spacetime.
&b Cpe Cpe|| ¢ Besides, as we shall see in the next section, when the
Cep & Eeell| (b | =0, (14) background solution .is. the spacetime corresponding to p.lane
< < < h waves bound to collision, a decoupled system of equations
GD “GE e JL () can be obtained from Egé&l4), which can also be written in

matrix form[see Eq.(43)].

where &, &e, €pe, by e Eecy &by Ece. and
&g are linear partial differential operators involving the back- 1V. COLLIDING WAVES AND THEIR PERTURBATIONS
ground fields, whose explicit forms can be read from Egs.

(7), (8), and(13), which correspond to the second, first, and
third rows, respectively. The spacetime corresponding to the colliding plane waves

can be specified by the line elemgn

A. Solution to be perturbed

Ill. WALD’S METHOD ds?=2e Mdudv +e Y[e V(dx?)?+e"(dx})?], (19

In order to find expressions for the complete solutions ofor in equivalent form, by the null tetrad
systems of linear partial differential equations in terms of
scalar potentials, Wald introduced a method which makes V2 _ V2
use of the concept of the adjoint of a linear operdid]. If N %u A= N %
£ corresponds to a linear partial differential operator which
mapsm-index tensor fields intm-index tensor fields then, 1
the adjoint operator of, denoted byt", is that linear partial 5= ——(x Y29,0+ix%02),
differential operator mappingn-index tensor fields into V2H
m-index tensor fields such that

D:

— 1
S=—=(x"Y20,0—1x"%,2), (20)

Y0k, J2H

whereu, v, x}, andx? are real coordinates and for simplicity
(15)  we have defined

R (P R U C AR L

J7A 72

N?=2e™M H=e Y, y=e".
wherev* is some vector field, and similarly for any other
operator. For example, in the Newman-Penrose formalisnThe tetrad20) applies to the entire spacetime, with the met-
we have that ric functionsN=N(u,v), H=H(u,v), x=x(u,v), potential
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A,=A,(u,v), and dilaton fieldp= ¢(u,v) taking different @E¢g_ ¢2qu+ a@D(D¢)B=2wSE(jM), (29
forms in the four regions of the usual framework of colliding
waves. with
Specifically in the region prior to the collision, which con-
tains one of the approaching waves, we have that the metric Oc=D(A—2y+u—al¢)— 86,
components,,,, ¢, andA,, fields depend only on [4]:
Se(j ) =& D(mHj ) — 814 ,)]. 30
Uw), V), M@, 6, A @ e(J ) =& IDM*] )= 6&(1%) )] (30)
On the other hand, from the Bianchi identities and by con-
besides, the only nonvanishing spin coefficients are sidering that the only nonvanishing spinor Weyl component

is given in Eq.(23) we obtain that

d
—InH,

d 1
—InN, M(v):_ﬁdv

1
y(v)=— NYCE SVS—-DVE=4a[5(14"T,,)—D(1*m*T,,)], (31)

1 d (A—4y+p)Vo—sVE+2£0,D =4[ 5(1#m"T,,)
Nv)=—=— Iny, (22

J2N dv

and the only nonvanishing component of the spinor Weyl isvhere we also have included an additional source for the
gravitational perturbations; ,, [9]. Applying the same pro-
cedure used in Eq$26) and (27) to eIiminatego?, we can

(23 cancel the terms with’§ of Egs.(31) and(32) and we get

— AT, —D(m*m*T,,)], (32

1

d?v dv/du dMm
\If4=—§ —_—

dv?2 duldv dv

B —mn2,.B_
Region Il supports null electromagnetic fields, therefore, OcWot2802D g =4756(T ), (33

if we take the tetrad vectdt along the principal null direc- where
tion of the background electromagnetic field, then we have

that Sa(T,,)={D[8(1*m*T )~ D(M*m"T,,,) — XI#I*T ]

¢o=0=¢4, (29) +o[D(I#*m*T,,) = o(1“1"T ,,) 1}

¢o(v) being the only nonvanishing component. Using Eg.
(24), from Eqgs.(A8) the Einstein field equations reduce to

D= —(AP) 2+ 2£0,05,

sinceA ¢ is the only nonvanishing derivative @f.

Oc=D(A—4y+pu)—55. (34)

(25) With the purpose to complete the system of ES) and
(33) and to avoid the appearance of undesirable perturbed
quantities[17], before considering the perturbations, we ap-
ply D to Eqg.(A6) and we obtain

B. Decoupled equations for the perturbations

and master equations D(A+u—y=vy)D¢p—pDAS—(A¢)Dp+D(75¢)

From the Maxwell equation@1) and(A3) and from Egs.

— — 1
(21) and(24) we obtain +D(—5+a—B+T)5¢+ZaD(§F2)

55— Dei—porP=2mg M, (26) =0. 39
_ Using the commutation relations the fifth term can be ex-
=2mgtmj (27)

D(—6+a—B+7)6¢

where it has been included a souiigefor the electromag- — - —

netic perturbationgsee Ref[9] and references cited thergin =—(6—a-B+m)(6—a—p+mD¢
One of the reasons to choose E@s1) and(A3) is that the Bt e S
components of the perturbed tetrad actingggnand ¢, do t(o-a=prmkAd—(o—a=ptm)

not appear, because these last quantities vanish in the back- X (p+e—g)od+oddl+KkAdd
ground in accordance with Eq24). Moreover, from the [(pte—e)d¢toddltriod
Ricci identities and by considering that the only nonvanish- —(pte—e)66¢p—0d%d

ing spin coefficients are given in ER2), one finds that o o
+D[(a—B+7) 5] (36)
DoB— sxkB=wE. (28)
and using the fact that the only nonvanishing spin coeffi-
Applying 6 to Eq. (26) andD to Eq. (27), subtracting and cients are those given in E¢22), the linearization of Eq.
considering Eq(28) and thaf D, 5]=0, we have that (36) is given by
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[D(—8+a—B+7)5¢]B=—55(Dd)B+ApSkE. (377  how represents a system for five unknowr3 ¢ B, ¢f,
qu, ®o’, andﬁg. Note that the complex conjugate of Eq.
(40) is itself, since(’TD=(9D, which follows from the fact
thatD, A, u, andy are real and 8, 5]=0 [see Eqs(20)—

[D(A+u—7y—y)Dp]B=D(A+pu—y—y)(De)®, (22)]. This system of five equations can be expressed in the
following matrix form:

Furthermore, the linearization of nonvanishing remaining
terms of Eq.(35) is given by

~[(A¢)(Dp)]°=—(A¢)Dp", (38) -
Oc 2£p,D? O 0 0
[D(6F%)]P=4¢l 02D g+ $2D 00", “es Oc 0 0  agD
and from the Ricci identities we can find that 0 0 Og 2&pD? 0
D pB— sxB=0. (39) 0 0 —¢, O agD

0 aép,D 0 0,D @)
Then, from Eqs(37)—(39) the linearization of Eq(35) fi- Ee2 age,D b

nally takes the form SeT o
— e — B
Ob(D $)®+aél 2D ¢p+ ¢2D %] Vo 1
6 2%
=4m[Spps+ApI#1"T,,], (40) il -
x| Wg | =4n ST, (43
where -
B 1
®o —Sci
e B 2 Elu
Op=D(A+u—y—7y)— 88, (D¢)
Spps+APIMI'T,,
1
SD:ED’ (42 The right-hand side corresponds to
and ¢, represents a source for the dilaton field perturbations, (T,,)
additional to those considered in E429) and (33). *
The system of three equations given by E@®9), (33), S| Gw |, (44)
and (40) actually does not represent a linear system for the bs
three unknowns ¢)B, 5, and¥§, because in Eq40) o . .
the quantity@g® is present, which must be considered as avheres is given by the following 53 matrix:
new unknown. To rectify this situation, we need to consider
the _c_omplex conjugates of EqR9) and(33) to obtain two Se 0 0
additional equations: 1
0 8 O
—B_ ——\/B B_9, C (i .
ZDE(IDO (IDZ\I’OJF a(,DzD(D(ZS) 27T‘SE(J ,u)l S= SG 0 0 . (45)
OV §+2£0,D%0o°=4mSc(T,.,), (42 0 %S—E 0
where the operator§g and Sg correspond to the complex AU 0 S,

conjugates of those of Eq&30) and (34), and we have con-

sidered that D ¢)B= (D ¢)®, becausé® ¢ is real. Hence the With O being the matrix operator appearing on the left-hand
complete system of five equatiof30), (33), (40), and(42) and using Eqs(16), (30), (34), and(41), we find that

oL — ¢, 0 0 0
2¢9,D2  Of 0 0  —afe,D
of=| 0 0 [ —¢5 o |, (46)
0 0 2¢¢,D? of —aép,D
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where h,,=—2{l [ 82~ XD]+m,m,D2- 2l ,m, 8D} ¢s+c.C.
OL=(A+2y+pu)D— 85, +A¢l Lo,
OLl=(A+pu+aA¢p)D— 684, (47) 1,
o bM=§§ (I,6—m,D)yge+c.c, (53
OL=(A+pu)D- 56,
1
and ¢B= _ED l//D .
S& 0 Sstoo Aglv
1 1 Hence the perturbations given in E&§3) are defined com-
S'=| 0 ESE 0 EEE o |, (48 pletely by the five scalar potentialss, g, ¥e, e, and
¥p which satisfy the five coupled equatio(i&l), calledthe
0 0 0 0 SE master equationglQ]. It should be emphasized that since no
gauge condition has been imposed on the perturbed null tet-
where rad, then our results are independent on the six degrees of
. g — 5 () perturbed tetrad gauge freedom, contrary to other approaches
Sg=—1#*I"[6°“=AD]—m*m"D“+21'*m" éD, which make use of this gauge freedom in order to simplify
i the equations for the perturbatiof®,10]. In summary, the
Sg= & [I*6—m*D], (49 linearized EMD equationél4) have been solved in a gauge
invariant way in the special case when the background solu-
St —ED tion is the spacetime corresponding to colliding waves in the
D 2 incoming regions.

where we have used the fact that' and ¢, depend only on
v and[6,D]=0.

In this manner, if the matrix potentialy{) satisfies
O'(y)=0 with

e
e
(p)=| ¥c |, (50)
e
o
it means, using Eq46), that
O&¥c— 210e=0,
2£0,D2+ Ol e —age,Dyp=0,
—ag,Difg—ag,D e+ Obyp=0, (51)

OLe— ¢21be=0,

2£0,D% Yo+ OLpe—ate,Dyp=0,

C. Expressions for the field perturbations

The components of the electromagnetic field perturbations
can be obtained from Eqs(53), using the formula
Fﬁyzﬁﬂby—aybu and the following definitions:

_ 1
go”=Im'FL, =56 D%y,

B 1 v B 1 -1
=S (e memORE =26 1Dy, (54

1 — _
e P=mn"FL, =2 £ 1 (8~ AD) e+ ¢2D% g

1 1
_535 (A¢)D'/’E_§a¢2D¢D-

Similarly, the components of the Weyl spinor perturbations
can be obtained from E@53) making use of the formula

B _ R/ ’ R/ U
‘I’ACDE—EV (AVS chogrrs Eh(AC S Dpeyrrsr-

then the metric, vector potential, and dilaton field perturba-Then, we find that

tions are given by12]

SLic+SLet+Adl o

hlw
1 1—
b, | =8"(y)= ESE¢E+§§£¢E , (52
¢B
Shio

where the last equality follows from Eqgl8) and (50). Us-
ing Eqgs.(49), we have finally that theeal perturbations are

@:_Déllﬂe:
\I_I?: - 5D3‘/IGI
WB=— (62~ \D)D2yc+ A ¢pD%yyp, (55)

5= —(8°~3\D) D+ ;AhSD iy,
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PB— — (2—3ND) (52— ND)ho— 6% 32— AD) vre —5__ 1 .
4 ( )( )wG ( )lﬂG (sz:—z—(Pzg l(?iF(U,Z),

1 _
+| 5P (A+2y+u)(A+p) |D?g

2 B vy Ad
T o \If4=—&Z{ZF(U,Z)+G(v,z)}+Wo72J(v,Z), (59
+[2(A+2y+2u)5+\ 816D g+ Ad(5°—\D) p,

L and from Eqgs(53) we obtain that

where ®,, is given by Eq.(25). As we can see from Egs.
(54) and (55), the perturbations of the electromagnetic field $B=0. (60
and of the spinor Weyl are completely determined by the ) S ) )
quantities given in Eqd53)' and in this manner they have Thus there exist nontrivial |nC0m|ng perturbat|0ns. In the
the same gauge independer[see the paragraph after Eq framework of the EM theory Where, of course, one has Only
(53)], which allows us, for example, to appropriately define€lectromagnetic field and gravitational perturbations, if the
fluxes of energy[18], and to study the junction conditions electromagnetic field vanishéise., 3F =0) in Eq.(59), the
between the different regions occurring in the collision offemaining nonvanishing purely gravitational perturbations

plane wave$19]. not only would correspond to a solution of the linearized EM
equations but they also would correspond toexactsolu-
V. EXISTENCE OF PURELY INCOMING tion of the EM equation$20]. Since the dilaton field pertur-
PERTURBATIONS bations vanish in Eq(60), does the nonvanishing purely

gravitational perturbatiorf59) also correspond to an exact

The purely incoming perturbations correspond to thesolution of the EMD equations? Because we do not have yet
u-independent perturbations; these special perturbationsn analogous result in the EMD theory to that given in Ref.
were studied by Xanthopould40] in the framework of the [20] for the EM theory, this is an open question.
EM theory and he found that there exist no nontrivial
u-independent perturbations, contrary to the recent results VI. CONCLUDING REMARKS
presented in Ref$9,11] within the same scheme of the EM o ] ]
theory. We will demonstrate that the existence of purely in- The self-adjointness of the operators governing the linear-
coming perturbations found in Ref@,11] is a property that |zed_ EMD equations has shown its usef_ulness in order to find
persists in the more general framework of the EMD theorypartlcular solutions of these equations in terms of few scalar

and, for this end, it is convenient to define the complex variPotentials in a direct way and without imposing any gauge
able condition on the perturbed tetrad. This property opens the

possibility to find the linear perturbations of any exact solu-
1 tion of the EMD theory, with only the finding of the corre-
7= —[ XY +ix Y2, (56)  sponding decoupled system remaining. One interesting case
V2 would be the spacetime for colliding plane waves in the in-

dit | ‘ugate t | th | diret teraction region, whose perturbations will allow us to study
and '23 Ss.rt?]ptﬁ.x c(joriiu%g € t?]rep lace te rea coortl f?ﬁ the stability of the singularities emerging in this regigt
anax=. Wi IS definition, the relevant components ot the 5, the matching of these perturbations with those found in

null tetrad (20) can be rewritten asé=(1/VH)d, and  this paper in the incoming region. Another case is the study
8=(1/\H)a,. A direct way to obtainu-independent field of the charged black holes in string theory, which have new
perturbations is to assume that the potentisls ¥, and  implications for black-hole thermodynami¢g] and for the

¥p do not depend omi; then the master equatiortS1) re-  possible violation of the cosmic censorshid. All this will

duce to be the subject of forthcoming communications.
1
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2
APPENDIX: EMD FIELD EQUATIONS
o=HIZF(1.2)+G(v.2)] (58) IN THE NEWMAN-PENROSE FORMALISM

Projecting on the null tetrad,, n,,, m,, and@ as usual,

Yo=3(v.2), the Maxwell field equationgl) take the form

where F(v,z), G(v,z), and J(v,z) are arbitrary functions - e B
and the factor (,)H and H are introduced for conve- (o m=2a)9o=(D=2p)p1= ko2

nience. The only nonvanishing components of the electro- Al ond+ ond— (0 + oD

magnetic field perturbations and of the Weyl field perturba- [e0d+¢0d~(e1+¢1)DI¢}

tions can be obtained from Eq&4) and (55), =0, (A1)



H—(6+2B— 1)t (A+2u) 01— veq

—al(@1+¢1)A— 00— ¢,6]}=0, (A2)
HA=2y+p)po—(6-27) 01— 0¢;
—al@oA + (o1~ ¢1) 8~ ¢2D1p} =0, (A3)

E—(D—p+2¢) o+ (5+2m) @1~ N

—a[poA + (g1~ ¢1) 5~ ;D] 4} =0. (A4)

Writing the operatoV#V , in the Newman-Penrose for-
malism, the dilaton field equatiof2) takes the form

2[uD+(D+e+e—p)A—md+(—6+a—B—m) 5]
1
+ Ea§|:2=o, (A5)
or, using the usual commutation relations
2[(A+pu—y—y)D—pA+ 75+(—S+a—B+71)5]d
1
+ §a§F2=0, (A6)
where

F2=4[ popo+ 0opa— 92— @12]. (A7)

PERTURBATIONS OF EINSTEIN-MAXWELL-DILATON FIELDS
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Moreover, from ®,,=-3(R,,—19,,R) and from the
Ricci tensor given by

R.,=2(3,9)(d,¢)+2¢

FMAFI))_ %9#1;':2),
the Ricci scalars can be expressed in the form
Doo=11"D,,, =~ (D$)*+ 2000,
Gy=14n"d,,=— %[(D@(Agﬁ)+<5¢><?¢>]+2§¢1E
Dp=n*n"d®,,=—(Agp)*+ 260007,
Doy=1#m"®,,, =~ (D$)(5¢) +2£00p1,
Dop=mm*D,,, = — (8)°+2é¢0¢s,

(A8)
Dp=mFn'® =~ (Ad)(8p) +2£¢1 5,
1 _
A=%R=[(D$)(Ah)—(5¢)(5)],
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