
Spacetime structure of an inflating global monopole

Inyong Cho* and Alexander Vilenkin†

Tufts Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155
~Received 5 August 1997!

The evolution of a global monopole with an inflating core is investigated. An analytic expression for the
exterior metric at large distances from the core is obtained. The overall spacetime structure is studied numeri-
cally, both in vacuum and in a radiation background.@S0556-2821~97!02424-7#
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I. INTRODUCTION

It has been argued in Refs.@1,2# that inflation can occur in
the cores of topological defects. The condition for this is that
the symmetry-breaking scale of the defects satisfy
h.hc;O(mp). An attractive feature of this topological in-
flation is that it does not require fine-tuning of the initial
conditions. The qualitative arguments of Refs.@1,2# were
later verified in numerical simulations by Sakaiet al. @3#.
They found in particular that the critical value ofh for do-
main walls and global monopoles ishc.0.33mp .

In this paper, we would like to discuss the spacetime
structure of inflating defects. This issue was partially ad-
dressed in Refs.@2,3#. However, some questions still remain
unanswered. In particular, it is not clear what inflating de-
fects look like from the outside. To be specific, consider the
case of global monopoles. Forh,hc , the metric at large
distances from the core has a solid deficit angle
D.4p(8pGh2) @4#. When h.hc , the solid deficit angle
exceeds 4p and static solutions do not exist. It was conjec-
tured in Ref.@2# and verified in Ref.@3# that static solutions
cease to exist at the same value ofh5hc for which topo-
logical inflation becomes possible. The problem is then to
determine the metric outside the inflating monopole. We
shall address this problem both analytically and numerically.

In the next section, we review the static monopole solu-
tion of Ref.@4# and conjecture that the metric we are looking
for is obtained by continuing this static metric toD.4p.
This conjecture is then verified in Sec. III by numerically
solving combined Einstein’s and scalar field equations.
~Here, we follow the technique of Sakaiet al.! The overall
spacetime structure of the inflating monopole is discussed in
Sec. IV. In Sec. V, we study the global monopole dynamics
with cosmological initial condtions which include a radiation
background. Our conclusions are summarized in Sec. VI.

II. ASYMPTOTIC METRIC

The simplest model that gives rise to global monopoles is
described by the Lagrangian

L52
1

2
]mfa]mfa2

1

4
l~fafa2h2!2, ~2.1!

wherefa is a triplet of scalar fields,a51,2,3. The model
has a global O~3! symmetry spontaneously broken down to
U~1!. A global monopole of unit topological charge is de-
scribed by the ‘‘hedgehog’’ configurationfa5f(r ) x̂a,
wherex̂a is a radial unit vector. Outside the monopole core,
f(r )'h. By soving Einstein’s equation in the asymptotic
region outside the core, the metric is found to be@4#

ds252S 128pGh22
2GM

R DdT21S 128pGh2

2
2GM

R D 21

dR21R2dV2. ~2.2!

~We use\5c51 ,G51/mp
2 .)

At large distances from the core, the mass term can be
neglected, and after rescalingT andR coordinates the metric
takes the form

ds252dT821dR821~128pGh2!R82dV2. ~2.3!

This metric exhibits a solid angle deficitD54p(8pGh2).
Another useful form of the global monopole metric can be
obtained by a coordinate transformation

t5
1

Au12v2u
~T82vR8!, r 5

1

Au12v2u
~R82vT8!,

~2.4!

wherev5A8pGh2. This gives

ds252dt21dr21~r 1A8pGh2t !2dV2. ~2.5!

Let us now formally consider the metric~2.2! with a solid
deficit angleD.4p. In this case, the asymptotic form of the
metric is

ds252dR821dT821~8pGh221!R82dV2. ~2.6!

Here,T8 is a spacelike andR8 is a timelike coordinate. The
natural ranges of these coordinates are2`,T8,` and
0,R8,`. The metric~2.6! then represents a ‘‘cylindrical’’
universe of topologyR3S(2). The expansion of this uni-
verse is highly anisotropic: There is no expansion in theT8
direction along the axis of the cylinder, while the radius of
the spherical sections grows proportionally to time (R8).

The coordinate transformation~2.4! brings Eq.~2.6! to the
form ~2.5!. Note that the metric~2.5! applies to bothD,4p
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and D.4p. It is easily verified that Eq.~2.5! solves Ein-
stein’s equations with an energy-momentum tensor corre-
sponding to the ansatzfa5f(r ) x̂a.

It seems reasonable to assume that Eqs.~2.5! and ~2.6!
represent the exterior asymptotic region of an inflating
monopole. In the next section, we shall verify this assump-
tion by numerically solving Einstein’s and scalar field equa-
tions.

III. NUMERICAL RESULTS

In this section, we use the technique of Sakaiet al. @3# to
study the monopole evolution numerically. We use the gen-
eral spherically symmetric ansatz for the metric

ds252dt21A~ t,r !2dr21B~ t,r !2r 2dV2 ~3.1!

and the scalar field

fa5f~ t,r !x̂a. ~3.2!

The corresponding field equations are shown in the Appen-
dix.

Following Sakaiet al., we set up the initial conditions by
assuming the 3-metric to be flat at the initial moment,t50.
The initial monopole fieldf(0,r ) is obtained by numerically
solving the static flat-space field equation with the boundary
conditions f(r 50)50 and f(r 5`)5h. Finally, we set
ḟ(0,r )50 and evaluateȦ(0,r ) and Ḃ(0,r ) from the Hamil-
tonian and the momentum constraints~A1! and ~A2!.

We solved the field equations with these initial conditions
for several values of the symmetry-breaking scaleh. Our
results are in full agreement with those of Sakaiet al. @3#.
While the latter authors concentrated mainly on the inflating
region in the monopole core, we shall analyze the asymptotic
region and the overall structure of the monopole spacetime.

To illustrate our results, we shall takeh50.6mp , which
is greater than the critical valuehc50.33mp . The solutions
A(t,r ) and B(t,r )r are shown as functions ofr at several
moments of time in Figs. 1 and 2, respectively. In the figures,
r and t are shown in units ofH0

215@8pGV(f50)/3#21/2,

which is the horizon radius at the monopole center. At small
r we clearly have inflation: BothA andB rapidly grow with
time, with A'B.

Now, it is easily verified that forr *4H0
21 the metric is

well approximated by Eq.~2.5!: Figure 1 shows that
A(t,r )'1, and Fig. 2 shows that the graphs ofB(t,r )r at
H0t50,1,2,3,4,5 are equally spaced straight lines. The quan-
titative agreement with the coefficientA8pGh2 in Eq. ~2.5!
is also easily checked.

IV. SPACETIME STRUCTURE

The overall spacetime structure of an inflating monopole
is illustrated in anr -t diagram in Fig. 3. The inflating region
of spacetime is the region where the slow-roll condition is
satisfied,

FIG. 1. A plot of A(t,r ) vs H0r at H0t51,2,3 forh50.6mp .
Lower curves correspond to earlier times. At smallr , A(t,r ) grows
rapidly with time. In the asymptotic region,A(t,r )'1.

FIG. 2. A plot of H0rB(t,r ) vs H0r at H0t50,1,2,3,4,5 for
h50.6mp . Lower curves correspond to earlier times. In the
asymptotic region, lines are equally spaced and the separation is
'A8pGh2.

FIG. 3. r -t diagram illustrating the spacetime structure of an
inflating monopole ofh50.6mp . The light dotted lines are ingoing
and outgoing null geodesics. The lineI is the boundary of the
inflating region and the lineC is the boundary of the monopole core
wheref(t,r )5h/2. These two lines,I andC, represent spacelike
hypersurfaces. The heavy dotted lineT is the location of the throat.
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V8~f!!~48pG!1/2V~f!. ~4.1!

The boundary of this region is shown by lineI in the dia-
gram. Also shown is the boundary of the monopole core,
which is defined as the region inside the surfacef(t,r )5h/2
~line C). Both surfaces are spacelike~as all surfaces of con-
stantf in the slow-roll region!.

Let us consider the evolution of the metric and the scalar
field along a timelike geodesicr 5const~the geodesic is not
shown in the figure!. In Fig. 4, the fieldf is shown as a
function oft for several values ofr . We first chooser ,H0

21,
so that the comoving observer, whose trajectory this geode-
sic represents, starts inside the core att50. As the fieldf
rolls down the slope of the potential, the observer will come
out of the core region and later out of the inflating region. At
this pointf will start to oscillate about its vacuum expecta-
tion valueh. ~This oscillation is clearly visible in Fig. 4.!
The effective equation of state for such an oscillating field,
averaged over the period of oscillation, is that of a pressure-
less dust. Hence, our observer emerges from an inflating to a
matter-dominated region. In a more realistic model, the os-
cillations of f would be damped by particle production, re-
sulting in a hot thermal radiation, but this does not happen in
our simple model.

Observers with a comoving coordinater betweenH0
21

and 3H0
21 start outside the monopole core, but otherwise

follow the same evolution and end up in a matter-dominated
region. On the other hand, observers withr .4H0

21 have
their starting points outside the inflating region, and their
surroundings are well described by the asymptotic exterior
metric ~2.5!.

Since the boundary of the inflating region is spacelike, no
observer can get into that region from the exterior or matter-
dominated regions. This can be seen by examinimg the null
geodesics, shown by dotted lines in Fig. 3.

To illustrate the geometry of equal-time surfaces,
t5const, in the monopole spacetime, we shall use a lower-
dimensional version of the metric~3.1! with one of the an-
gular dimensions suppressed. The 2-metric is then

ds25A~ t,r !2dr21B~ t,r !2r 2du2. ~4.2!

Embeddings of this metric in a 3-dimensional~3D! Euclid-
ean space@5# are shown in Fig. 5 for several moments of
time. We see that the spatial geometry is that of an inflating
balloon connected by a throat to an asymptotically flat region
at larger . The throat is developed soon after the onset of
inflation. Figure 5 is similar to the figure in Sakaiet al. @3#,
which shows a 3D graph of proper radiusrB(t,r ) vs proper
length*A(t,r )dr ~rather than the embedded 2-geometry!.

The location of the throat, determined fromd(Br)/dr50,
is indicated by lineT in Fig. 3. It is well approximated by a
constant-r line, r .H0

21.

V. MONOPOLE EVOLUTION
WITH COSMOLOGICAL INITIAL CONDITIONS

So far, we considered global monopoles coupled only to
gravitation. But cosmologically, monopoles are formed at a

FIG. 4. Evolution of the scalar field at a fixedr , for
H0r 50.1,0.5,1,2,3,4 from the bottom. The scalar field at smallr
spends much time near the top of the potential while it undergoes
inflation. The field at larger comes out of the inflating region
earlier and oscillates about its vacuum expectation valueh.

FIG. 5. A 2D slice of the inflating monopole (h50.6mp) ge-
ometry embedded in a 3D Euclidean space atH0t51,3,5 ~from the
top down!. The space gets curved around the monopole core and an
inflating balloon is formed later while the asymptotic region re-
mains flat. A throat is developed between these two regions.
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phase transition, and the monopole energy is taken from the
energy of thermal radiation. In this section we shall consider
the evolution of a global monopole in a radiation back-
ground.

We use the same metric and scalar field ansatz as in Sec.
III. The energy-momentum tensor of monopole-plus-
radiation system is

Tmn
~tot!5Tmn

~m!1Tmn
~r ! . ~5.1!

The energy-momentum tensor of radiation is that of a perfect

fluid with an equation of stateP5 1
3 r,

Tmn
~r !5~r1P!umun1Pgmn5

r

3
~4umun1gmn!, ~5.2!

whereum is the velocity 4-vector,

um5S 1

A12v2
,

v

AA12v2
,0,0D .

Prior to the phase transition, the space is filled with iso-
tropic radiation fluid, and so the metric is that of Friedman-
Robertson-Walker~FRW! in the radiation-dominated era,
and

r~r !~ t !5
3

32pGt2
. ~5.3!

A realistic initial condition at the time of monopole forma-
tion, t0, is r~tot!(t0 ,r )5r (m)(t0 ,r )1r (r )(t0 ,r )5const, with
r (m);r (r ) near the monopole core. For computational pur-
poses, it is better to use a somewhat different initial condi-
tion

r~r !~ t0 ,r !5const. ~5.4!

We tried them both and found the results to be very similar.
The initial condition~5.4! is preferable because it allows us
to choose the initial value ofr (r ) somewhat lower than the
core energy densityV(0) and run the evolution until a later
cosmic time.~We stop the run when numerical instabilities
develop in the inflating core region.!

The results presented below in this section were obtained
using the following initial conditions:A(t0 ,r )5B(t0 ,r )51,
v(t0 ,r )50, f(t0 ,r ) the same as in the vacuum case,
ḟ(t0 ,r )50 andr (r )(t0 ,r )50.1V(0). Themomentt0 is de-
termined by the initial value ofr (r ) from Eq. ~5.3!.

The field equations for the monopole-plus-radiation sys-
tem, with a brief outline of the method of their solutions, are
given in the Appendix. Not surprisingly, we found that the
critical symmetry-breaking scalehc is the same as in the
vacuum case,hc'0.33mp . Our results forh50.6mp are
presented in Figs. 6–8.

Figure 6 shows thatB/A'1 in the inflating core and in
the asymptotic region. We have checked that the region of
large r exhibits the usual radiation-dominated evolution,

A'B'~ t/t0!1/2. ~5.5!

In this region, the energy density of the monopole falls off as

r~m!;
h2

B~ t,r !2r 2
;

h2

~ t/t0!r 2
.

On the other hand, the radiation density is approximately
homogeneous, but it damps more rapidly with time as in Eq.
~5.3!. The two densities are comparable at

r'~32pGh2t0 /3!1/2At'1.9 ~h/hc!At0t. ~5.6!

We can expect the region outside this surface to be well
approximated by a FRW radiation-dominated universe, and
the interior region to have spacetime structure similar to that
of the vacuum solution discussed in the preceding section.

FIG. 6. A plot of B(t,r )/A(t,r ) vs H0r at H0(t2t0)
50,1,2,3,4,5 for a monopole ofh50.6mp with the initial radiation
density r (r )(t0 ,r )50.1V(0). Lower curves correspond to earlier
times. It shows thatA(t,r )'B(t,r ) at small and larger . The posi-
tions wherer (m)5r (r ) are indicated by an asterisk.

FIG. 7. A plot of H0rB(t,r ) vs H0r at H0(t2t0)50,1,2,3,4,5
for a monopole ofh50.6mp with the initial radiation density
r (r )(t0 ,r )50.1V(0). Lower curves correspond to earlier times. To
the left of the asterisks, the plot is similar to that of the vacuum
solution in Fig. 2. The positions wherer (m)5r (r ) are indicated by
an asterisk.
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These expectations are supported by our numerical results:
We see a structure very similar to Fig. 2 emerging on the
left-hand side of Fig. 7.

The overall spacetime structure is shown in Fig. 8, where
the surfacer (m)5r (r ) is indicated by the lineR. This line is
reasonably well approximated by Eq.~5.6!. ~The fact that the
line R coincides with the boundary of the inflating regionI at
t5t0 is a numerical coincidence.!

Comparing Eq.~5.6! with the null geodesic in metric
~5.5!, r 52At0t, we see that the boundary~5.6! expands
faster than the speed of light~unless perhaps whenh is very
close tohc). Hence, physical observers cannot get from the
exterior vacuum region~dominated by the scalar field! to the
radiation-dominated region.

VI. CONCLUSIONS

We have investigated the spacetime structure of an inflat-
ing global monopole, both inside and outside the inflating
core. We found that the inflating region near the core is
surrounded by a ‘‘matter’’ region, where the dominant con-
tribution to the energy is that of an oscillating scalar field.
The inflating region and most of the matter region are con-
tained in an expanding ‘‘balloon’’ which is connected by a
throat to the exterior region.

The exterior metric at large distances from the throat is
well approximated by Eq.~2.5!. This metric is obtained by
analytic continuation of the static monopole metric~2.2!, fol-
lowed by a coordinate transformation~2.4!. It describes a
nonstationary spacetime with a highly anisotropic expansion.

A spaceship from the exterior region can pass through the
throat and get into the matter-dominated region, but it cannot
get into the inflating region. The inflating region is bounded
by a spacelike hypersurface and is seen by observers in the
matter region as an epoch in their past.

To simulate the formation of an inflating monopole at a
cosmological phase transition, we studied the monopole evo-
lution in a radiation background. At the initial moment, the
radiation energy dominates everywhere, except in the central

region near the core. However, this energy is redshifted
faster than that of the scalar field, and as a result the bound-
ary of the radiation-dominated region is pushed to larger and
larger distances. The spacetime structure emerging at larget
inside this boundary is very similar to that in the vacuum
case without radiation.

It would be interesting to perform a similar analysis for
topological defects other than global monopoles. In the case
of gauge monopoles, we expect@2# the exterior region to be
described by the Reissner-Nordstro”m metric. For strings and
domain walls, the situation is not so clear. This problem is
now being investigated.
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APPENDIX: FIELD EQUATIONS
FOR THE MONOPOLE-RADIATION SYSTEM

Einstein’s equations with the metric~3.1! and energy-
momentum tensor~5.1! are

2G0
05K2

2~2K23K2
2!22

B9

A2B
2

B82

A2B2
12

A8B8

A3B
26

B8

A2Br

12
A8

A3r
2

1

A2r 2
1

1

B2r 2

58pGF ḟ2

2
1

f82

2A2
1

f2

B2r 2
1

l

4
~f22h2!2

1
1

3 S 4

12v2
21D rG , ~A1!

1

2
G015K2

281S B8

B
1

1

r D ~3K2
22K !

54pGS ḟf82
4

3

v

12v2
Ar D , ~A2!

1

2
~G1

11G2
21G3

32G0
0!5K̇2~K1

1!222~K2
2!2

58pGF ḟ22
l

4
~f22h2!2

1
1

3 S 112
11v2

12v2D rG , ~A3!

where

K1
152

Ȧ

A
, K2

25K3
352

Ḃ

B
, K5Ki

i . ~A4!

The conservation of the energy-momentum tensor,
T;n

(r )mn50 , gives two equations forr andv:

FIG. 8. r -t diagram illustrating the spacetime structure of an
inflating monopole ofh50.6mp in a radiation background with
r (r )(t0 ,r )50.1V(0). The line I is the boundary of the inflating
region and the lineC is the boundary of the monopole core where
f(t,r )5h/2. The lineR is the boundary wherer (m)5r (r ).
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~32v2!v̇52
2v
A

v82
3~12v2!2

4A

r8

r
12~K1

12K2
2!v~12v2!

12S B8

B
1

1

r D v2~12v2!

A
, ~A5!

ṙ

r
5

8v

3~12v2!2
v̇2

4~123v2!

3A~12v2!2
v81K1

1 4~123v2!

3~12v2!

1K2
2 8

3~12v2!
2S B8

B
1

1

r D 8v

3A~12v2!
. ~A6!

The field equation forf is

f̈2Kḟ2
f9

A2
2S 2

A8

A
1

2B8

B
1

2

r Df8

A2
1

2f

B2r 2
1

dV

df
50.

~A7!

With the initial conditions given in Sec. V,K(t0 ,r ) and
K2

2(t0 ,r ) are evaluated by the Hamiltonian and the momen-
tum constraint equations~A1! and ~A2!. In the next time
step,v(t,r ) andr(t,r ) are calculated by Eqs.~A5! and~A6!.
A(t,r ) andB(t,r ) are calculated by Eq.~A4!, f(t,r ) by the
scalar field equation~A7!, and K2

2 and K by the constraint
equations~A2! and ~A3!. We apply the regularity condition
K1

1(t,r 50)5K2
2(t,r 50) at the origin.

The field equations in the vacuum case are obtained by
settingr50 in Eqs.~A1!–~A3!.

@1# A. D. Linde, Phys. Lett. B327, 208 ~1994!.
@2# A. Vilenkin, Phys. Rev. Lett.72, 3137~1994!.
@3# N. Sakai, H. Shinkai, T. Tachizawa, and K. Maeda, Phys. Rev.

D 53, 655 ~1996!; N. Sakai,ibid. 54, 1548~1996!.
@4# M. Barriola and A. Vilenkin, Phys. Rev. Lett.63, 341

~1989!.

@5# The metric of a 3D Euclidean space isds25dz2

1dr21r2du2. Comparing this with Eq.~4.2!, we haver5Br
andz856@A22(B8r 1B)2#1/2, where the primes indicate de-
rivatives with respect tor . The embedding is specified by the
functionsr(r ) and z(r ) which can be found from the above
equations. The vertical axis in Fig. 5 is thez axis.
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