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Spacetime structure of an inflating global monopole
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The evolution of a global monopole with an inflating core is investigated. An analytic expression for the
exterior metric at large distances from the core is obtained. The overall spacetime structure is studied numeri-
cally, both in vacuum and in a radiation backgrouf®0556-282197)02424-1
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[. INTRODUCTION where ¢? is a triplet of scalar fieldsa=1,2,3. The model
has a global €8) symmetry spontaneously broken down to
It has been argued in Refd.,2] that inflation can occurin  U(1). A global monopole of unit topological charge is de-
the cores of topological defects. The condition for this is thatscribed by the “hedgehog” configurationp®= ¢(r)§(a,
the symmetry-breaking scale of the defects satis
n>nc.~O(mMp). An attractive feature of this topological in-
flation is that it does not require fine-tuning of the initial
conditions. The qualitative arguments of Ref%,2] were

f34/\/here§<a is a radial unit vector. Outside the monopole core,
¢(r)=~n. By soving Einstein’s equation in the asymptotic
region outside the core, the metric is found to[B¢

later verified in numerical simulations by Salket al. [3]. 2GM
They found in particular that the critical value gffor do- ds*=— ( 1-87Gn’~ T)dT2+ 1-87Gn?
main walls and global monopoles ig=0.33n,.
In this paper, we would like to discuss the spacetime 2GM\ 1 5 oo
structure of inflating defects. This issue was partially ad- _T) dR°+R°dQ”. (2.2

dressed in Refd2,3]. However, some questions still remain
unanswered. In particular, it is not clear what inflating de-(We usefi=c=1 ,Gzl/ms_)
fects look like from the outside. To be specific, consider the At large distances from the core, the mass term can be

case of global monopoles. Foy<7., the metric at large neglected, and after rescalifigandR coordinates the metric
distances from the core has a solid deficit angletakes the form

A=47(87G7?) [4]. When 5> 7., the solid deficit angle
exceeds 4 and static solutions do not exist. It was conjec- ds’=—dT'?+dR"?+(1-87G7*)R'?d0? (2.3

tured in Ref[2] and verified in Ref[3] that static solutions , ) . , . >
cease to exist at the same value £ 7, for which topo- This metric exhibits a solid angle defichk=47(87G 7).

logical inflation becomes possible. The problem is then to\Nother useful form of the global monopole metric can be
determine the metric outside the inflating monopole. WwePPtained by a coordinate transformation
shall address this problem both analytically and numerically.

In the next section, we review the static monopole solu- t= (T'—vR'), r= 1 (R —vT")
tion of Ref.[4] and conjecture that the metric we are looking V]1-07] ' V]1-07] '
for is obtained by continuing this static metric fo>4. (2.4

This conjecture is then verified in Sec. Il by numerically o
solving combined Einstein’s and scalar field equationsWherev=y87G7*. This gives

(Here, we follow the technique of Sakei al) The overall _ 5 42 = RO
spacetime structure of the inflating monopole is discussed in ds’=—dt*+dr®+(r + J87G7°t)?d0% (2.9

Sec. IV. In Sec. V, we study the global monopole dynamics Let us now formally consider the metri2.2) with a solid

with cosmological initial condtions which include a radiation deficit angleA > 4. In this case, the asymptotic form of the
background. Our conclusions are summarized in Sec. VI. metric is ' ’

Il. ASYMPTOTIC METRIC ds’=—dR2+dT'2+(87G7°—1)R'2dQ2%. (2.6

The simplest model that gives rise to global monopoles isHere, T’ is a spacelike an®’ is a timelike coordinate. The
described by the Lagrangian natural ranges of these coordinates aree<T’'<% and
1 1 0<R’<. The metric(2.6) then represents a “cylindrical”
__ - aju pa_ aga_ . 2\2 universe of topologyRx S(2). The expansion of this uni-
£ 2(7"(ZS ¢ 4M¢ ¢ @ verse is highly anisotropic: There is no expansion inThe
direction along the axis of the cylinder, while the radius of
the spherical sections grows proportionally to tink& ).

*Electronic address: cho@cosmos2.phy.tufts.edu The coordinate transformatid@.4) brings Eq.(2.6) to the
TElectronic address: vilenkin@cosmos2.phy.tufts.edu form (2.5). Note that the metri¢2.5 applies to botiA <4«
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FIG. 1. A plot of A(t,r) vs Hor atHgt=1,2,3 for »=0.6m,. FIG. 2. A plot of HorB(t,r) vs Hor at Hot=0,1,2,3,4,5 for
Lower curves correspond to earlier imes. At smali\(t,r) grows 7= 0-6m,. Lower curves correspond to earlier times. In the
rapidly with time. In the asymptotic regiod(t,r)~1. asymptotic region, lines are equally spaced and the separation is
~\87G 7]2.
and A>44. It is easily verified that Eq(2.5 solves Ein-
stein’s equations with an energy-momentum tensor correwhich is the horizon radius at the monopole center. At small
sponding to the ansai®= ¢(r)x2. r we clearly have inflation: BotiA andB rapidly grow with

It seems reasonable to assume that E3$) and (2.6)  time, with A~B.
represent the exterior asymptotic region of an inflating Now, it is easily verified that for=4H;* the metric is
monopole. In the next section, we shall verify this assumpwell approximated by Eq.(2.9: Figure 1 shows that
tion by numerically solving Einstein’s and scalar field equa-A(t,r)~1, and Fig. 2 shows that the graphs Bft,r)r at
tions. Hot=0,1,2,3,4,5 are equally spaced straight lines. The quan-
titative agreement with the coefficieRf8=G 7 in Eq. (2.5

IIl. NUMERICAL RESULTS is also easily checked.

In this section, we use the technique of Saddal. [3] to
study the monopole evolution numerically. We use the gen- IV. SPACETIME STRUCTURE

eral spherically symmetric ansatz for the metric . ) ,
The overall spacetime structure of an inflating monopole

ds?= —dt2+A(t,r)2dr2+B(t,r)%r2dQ? (3.1 is illustrated in arr-t diagram in Fig. 3. The inflating region
of spacetime is the region where the slow-roll condition is
and the scalar field satisfied,

3= p(t,1)x2 (3.2
t/HO'1

The corresponding field equations are shown in the Appen-
dix.

Following Sakaiet al, we set up the initial conditions by
assuming the 3-metric to be flat at the initial momert0.

The initial monopole field(0,r) is obtained by numerically
solving the static flat-space field equation with the boundary
conditions ¢(r=0)=0 and ¢(r=x)= 5. Finally, we set
#(0r)=0 and evaluaté\(0,r) andB(0,) from the Hamil-
tonian and the momentum constraifésl) and (A2).

We solved the field equations with these initial conditions
for several values of the symmetry-breaking scaleOur
results are in full agreement with those of Sakaal. [3].
While the latter authors concentrated mainly on the inflating
region in the monopole core, we shall analyze the asymptotic
region and the overall structure of the monopole spacetime. FIG. 3. r-t diagram illustrating the spacetime structure of an

~ Toillustrate our results, we shall takg=0.6mp, which j;iating monopole ofy=0.6m,. The light dotted lines are ingoing
is greater than the critical valug.=0.33m;. The solutions  ang outgoing null geodesics. The lifeis the boundary of the
A(t,r) andB(t,r)r are shown as functions of at several inflating region and the lin€ is the boundary of the monopole core
moments of time in Figs. 1 and 2 respectively. In the figureswhere ¢(t,r) = 7/2. These two linesl andC, represent spacelike
r andt are shown in units OHO =[87GV(¢p=0)/3]" %2, hypersurfaces. The heavy dotted lifiés the location of the throat.

———
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FIG. 4. Evolution of the scalar field at a fixed, for
Hor=0.1,0.5,1,2,3,4 from the bottom. The scalar field at small
spends much time near the top of the potential while it undergoes

inflation. The field at larger comes out of the inflating region
earlier and oscillates about its vacuum expectation value

V'($)<(487G)YA/( ). (4.1

The boundary of this region is shown by lihein the dia-
gram. Also shown is the boundary of the monopole core,
which is defined as the region inside the surfae,r) = 5/2
(line C). Both surfaces are spacelikas all surfaces of con-
stant¢ in the slow-roll region.

Let us consider the evolution of the metric and the scalar
field along a timelike geodesic=const(the geodesic is not
shown in the figure In Fig. 4, the field¢ is shown as a
function oft for several values af. We first choose <H, *,
so that the comoving observer, whose trajectory this geode-
sic represents, starts inside the cord-=ap. As the field¢
rolls down the slope of the potential, the observer will come
out of the core region and later out of the inflating region. At A 40
this point ¢ will start to oscillate about its vacuum expecta-

Ell_?ln v?fluet'n. (This t(.)scm?t'otnt |sfclearlth|S|bIe I'rl]l I:'Ig. ? Id ometry embedded in a 3D Euclidean spacklgtt=1,3,5 (from the
€ efteclive equation ot state Tor such an osciffating fie ‘top down. The space gets curved around the monopole core and an

averaged over the period of oscillation, is that of a pre_ssurq-nﬂating balloon is formed later while the asymptotic region re-
less dust. Hence, our observer emerges from an inflating t0 @,ins fiat. A throat is developed between these two regions.
matter-dominated region. In a more realistic model, the os-

cillations of ¢ would be damped by particle production, re- ds®=A(t,r)%dr2+B(t,r)?r2d 6. 4.2

sulting in a hot thermal radiation, but this does not happen in ) ) . . . .
our simple model. Embeddings of this metric in a 3-dimension@D) Euclid-

Observers with a comoving coordinatebetweeanl ean spacg5] are shown in Fig. 5 for several moments of

and 3"51 start outside the monopole core, but otherwiset'me' We see that the spatial geometry is that of an inflating

follow the same evolution and end up in a matter dominate(?alloon connected by a throat to an asymptotically flat region
: : . at larger. The throat is developed soon after the onset of
region. On the other hand, observers with 4H,* have g ! velop

. . ) : i . : _inflation. Figure 5 is similar to the figure in Saket al. [3],
their starting points outS|de_the inflating region, _and the_lrWhich shows a 3D graph of proper raditB(t,r) vs proper
surrqundmgs are well described by the asymptotic eXte”O[engtth(t,r)dr (rather than the embedded 2-geomgtry
me;r]c (2.5. . . o . The location of the throat, determined frat(Br)/dr=0,

ince the boun.dary of the mflatmg region Is §pacel|ke, N0 indicated by lineT in Fig. 3. It is well approximated by a
observer can get into that region from the exterior or matter- tante line. r~H-1
dominated regions. This can be seen by examinimg the nufionstan ' 0 -
geodesics, shown by dotted lines in Fig. 3.

To illustrate the geometry of equal-time surfaces,

t=const, in the monopole spacetime, we shall use a lower-
dimensional version of the metri@.1) with one of the an- So far, we considered global monopoles coupled only to

gular dimensions suppressed. The 2-metric is then gravitation. But cosmologically, monopoles are formed at a

FIG. 5. A 2D slice of the inflating monopolen=0.6m,) ge-

V. MONOPOLE EVOLUTION
WITH COSMOLOGICAL INITIAL CONDITIONS
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phase transition, and the monopole energy is taken from the 35
energy of thermal radiation. In this section we shall considers/a
the evolution of a global monopole in a radiation back-
ground. 3
We use the same metric and scalar field ansatz as in Se:
lll. The energy-momentum tensor of monopole-plus-

radiation system is 25

Tﬁ?}): TE/TJ) + TELFI)} ) (5.2

The energy-momentum tensor of radiation is that of a perfect

fluid with an equation of state= % p, 151

p
T =(p+P)u,u,+Pg,,=3(4u,u,+9,,), (52

*

0 5 10 15 r/H,"

Mo i -
whereu® is the velocity 4-vector, FIG. 6. A plot of B(Lr)/A(tr) vs Hor at Ho(t—to)

1 v =0,1,2,3,4,5 for a monopole of=0.6m, with the initial radiation
00]. density p((to,r)=0.1V(0). Lower curves correspond to earlier
J1-v2 AJ1—02"" times. It shows tha#\(t,r)~B(t,r) at small and large. The posi-
tions wherep(™ = p(") are indicated by an asterisk.
Prior to the phase transition, the space is filled with iso-

ut=

tropic radiation fluid, and so the metric is that of Friedman- ) )
Robertson-Walker(FRW) in the radiation-dominated era, P~ m T
and B(t,1)2r?  (t/to)r?

. (5.3 On the other hand, the radiation density is approximately
327 Gt? homogeneous, but it damps more rapidly with time as in Eq.

o . , (5.3). The two densities are comparable at
A realistic initial condition at the time of monopole forma-

tion, to, is p"(ty,r)=pM(tg,r)+p(ty,r)=const, with

p(t)=

p™~p() near the monopole core. For computational pur- r~(32rG %o 13 VAt=1.9(nl po)\tet. (5.6
poses, it is better to use a somewhat different initial condi-
tion

We can expect the region outside this surface to be well
approximated by a FRW radiation-dominated universe, and
the interior region to have spacetime structure similar to that

We tried them both and found the results to be very similar®f the vacuum solution discussed in the preceding section.

The initial condition(5.4) is preferable because it allows us
to choose the initial value g5’ somewhat lower than the

core energy density(0) and run the evolution until a later

cosmic time.(We stop the run when numerical instabilities
develop in the inflating core region.

The results presented below in this section were obtainec
using the following initial conditionsA(ty,r)=B(ty,r)=1,
v(ty,r)=0, ¢(tg,r) the same as in the vacuum case,
#(to,r)=0 andp(to,r)=0.1V(0). Themomentt, is de-
termined by the initial value op") from Eq. (5.3).

The field equations for the monopole-plus-radiation sys-
tem, with a brief outline of the method of their solutions, are
given in the Appendix. Not surprisingly, we found that the
critical symmetry-breaking scale. is the same as in the
vacuum casez~0.33m,. Our results forp=0.6m, are
presented in Figs. 6-8. % 5 0 15 rH,

Figure 6 shows thaB/A~1 in the inflating core and in
the asymptotic region. We have checked that the region of FIG. 7. A plot of HorB(t,r) vs Hor at Ho(t—t0)=0,1,2,3,4,5
larger exhibits the usual radiation-dominated evolution, ~ for a monopole of=0.6m, with the initial radiation density

pN(ty,r)=0.1V(0). Lower curves correspond to earlier times. To
A~B~(t/ty)'2 (5.5)  the left of the asterisks, the plot is similar to that of the vacuum
solution in Fig. 2. The positions whep™ = p(") are indicated by
In this region, the energy density of the monopole falls off asan asterisk.

pV(ty,r)=const. (5.4

Br/H,"
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region near the core. However, this energy is redshifted
faster than that of the scalar field, and as a result the bound-
ary of the radiation-dominated region is pushed to larger and
larger distances. The spacetime structure emerging attarge
inside this boundary is very similar to that in the vacuum
case without radiation.

| It would be interesting to perform a similar analysis for

d topological defects other than global monopoles. In the case
of gauge monopoles, we expdef the exterior region to be
described by the Reissner-Nordstranetric. For strings and
domain walls, the situation is not so clear. This problem is
now being investigated.
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FIG. 8. r-t diagram illustrating the spacetime structure of an support.
inflating monopole ofp=0.6m; in a radiation background with
p(ty,r)=0.1V(0). Theline | is the boundary of the inflating
region and the lineC is the boundary of the monopole core where
é(t,r)=7/2. The lineR is the boundary wherp(™=p(",

APPENDIX: FIELD EQUATIONS
FOR THE MONOPOLE-RADIATION SYSTEM

Einstein’s equations with the metri8.1) and energy-
These expectations are supported by our numerical resultsiomentum tensof5.1) are
We see a structure very similar to Fig. 2 emerging on the
left-hand side of Fig. 7. o L2 ) B” B'?2 A'B’ B’
The overall spacetime structure is shown in Fig. 8, where —Go= KZ(ZK_3K2)_2AzB T g +2 s oag
the surface™=p(") is indicated by the lindR. This line is '
reasonably well approximated by E&.6). (The fact that the A’ 1 1
line R coincides with the boundary of the inflating regibat T2 ==t —
t=t, is a numerical coincidence. A’ ATt Ber
Comparing Eq.(5.6) with the null geodesic in metric o ,2 2
(5.5, r=2\/ﬁ, we see that the boundarfs.6) expands =87G ¢_+ ¢_+ ¢;+ f((ﬁz_ 7%)?
faster than the speed of ligtinless perhaps whenis very 2 2A%” Bx¥% 4
close toz.). Hence, physical observers cannot get from the
exterior vacuum regiofdominated by the scalar figldb the 1( 4

radiation-dominated region. + 3 1—p2

1|p|, (A1)

!

_+_
B r

VI. CONCLUSIONS R
(3K2—K)

, : : : 1G01: K3+
We have investigated the spacetime structure of an inflat- 2
ing global monopole, both inside and outside the inflating
core. We found that the inflating region near the core is —47G
surrounded by a “matter” region, where the dominant con-
tribution to the energy is that of an oscillating scalar field.
The inflating region and most of the matter region are con- 1 0 5 3 o 1o 25
tained in an expanding “balloon” which is connected by a 5(G1F G+ G3—Go) =K—(Kp)*=2(K3)
throat to the exterior region.
The exterior metric at large distances from the throat is
well approximated by Eq(2.5. This metric is obtained by =87G
analytic continuation of the static monopole met@ic?), fol-
lowed by a coordinate transformatid@.4). It describes a
nonstationary spacetime with a highly anisotropic expansion. +Z
A spaceship from the exterior region can pass through the 3
throat and get into the matter-dominated region, but it cannot
get into the inflating region. The inflating region is boundedwhere
by a spacelike hypersurface and is seen by observers in the , ,
matter region as an epoch in their past. Kl A K2— K3 — B
To simulate the formation of an inflating monopole at a - A 273 g
cosmological phase transition, we studied the monopole evo-
lution in a radiation background. At the initial moment, the The conservation of the energy-momentum tensor,
radiation energy dominates everywhere, except in the centrét’l;v(’)’wzo , gives two equations fqgs andv:

; (A2)

Y 4 v
'~ 3 >Ap

. A
¢2—Z(¢2— 7%)?

. (A3)

1+v?
1-1—21_02 p

K=K!. (A4)
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PP A LA Gl A5
B 'r/ A (AS)
( 8 . 4(1-3? 4(1—3v?
b Ausah a0
P 3(1-v?? 3A(1-0v?)?2 3(1-v?)
+K2 8 (8’4—1) Bv (AB)
?3(1-v2) | B r/3a(1-0?)

The field equation fokp is
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2¢ dV
¢ N,

¢// A/ ZBI 2)¢/+
AT B r/a Buz dé

bk
(A7)

With the initial conditions given in Sec. \K(ty,r) and
Kg(to,r) are evaluated by the Hamiltonian and the momen-
tum constraint equationfAl) and (A2). In the next time
step,v(t,r) andp(t,r) are calculated by Eq$A5) and(A6).
A(t,r) andB(t,r) are calculated by EqA4), ¢(t,r) by the
scalar field equatiotA7), and K§ and K by the constraint
equationg(A2) and (A3). We apply the regularity condition
Ki(t,r=0)=K5(t,r=0) at the origin.

The field equations in the vacuum case are obtained by
settingp=0 in Eqgs.(A1)—(A3).
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