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Rotating boson stars in general relativity
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We have succeeded in obtaining highly relativistic structures of stationary axisymmetric configurations
consisting of massive complex scalar fields, i.e., rotating boson stars. Scalar fields are assumed to have
harmonic azimuthal angular dependence, ifes,¢o(t,r,6) €™, wherem is an integer. Equilibrium configu-
rations are characterized by valuesw§o that the total angular momentum of the boson star becomes discrete.
We have solved sequences of equilibrium states withl andm=2 by changing one parameter which
characterizes the model. The maximum masserl models is 1.31¥ ,2;.|/,u, whereMp, andu are the Planck
mass and the mass of the scalar field, respectively. It is interesting that properly defined specific angular
momentum for rotating boson stars is constant in spe@8556-282197)04714-Q

PACS numbes): 04.20.Jb, 04.40.Dg

[. INTRODUCTION It is remarkable that there existationary solutions for
scalar fields. However, there are several unsatisfactory points
Gravitational bound states of scalar fields were first ob-about their solutions. First, Schunck and Mie[{&] did not
tained by Kaugd 1] and by Ruffini and Bonazzolg2]. Such  solve sequence®f equilibrium configurations but obtained
objects have recently been considered important in the corenly one or two configurations for different values .
text of cosmology and have been called boson stseg, Second, they solved models with very weak gravity so that
e.g., Refs[3-5] for recent reviews The self-gravity of such most of their solutions were nearly Newtonian. Third, there
an object is balanced by the dispersive effect due to the wavie a curious behavior in the distribution of the energy den-
character of the scalar field. It is important to note that theresity; i.e., there are “spikelike” structures in the energy den-
is a critical mass for boson stars which is of the order ofsity contour near the “rotation” axis in their solutions.
M3/, whereMp, and u are the Planck mass and the mass In this paper, we will obtairequilibrium sequencesf
of the scalar field, respectively. There can be no equilibriunfotating boson stars even fetrong gravity Equilibrium se-
states for boson stars with larger masses and furthermofences can be computed by changing model parameters
boson stars with higher densities are unstable against grawhich characterize equilibrium configurations. By using
tational collapse in the radial directig6—11]. those equilibrium sequences we will be able to know the
Until recently, people have mainly studied spherical con-maximum mass model beyond which equilibrium states be-
figurations for boson starfsl,2,12,13, because it has been come unstable against gravitational collapse. Furthermore,
uncertain whether axisymmetric solutions of boson stars exfrom newly obtained solutions we will be able to show
ist or not. Only a few years ago, however, Silveira and devhether or not the peculiar behavior of the solutions of
Sousa[14] and Schupp and van der Hij5] obtained axi- Schunck and Mielk¢18] appear.
symmetric equilibrium configurations of massive scalar The plan of this paper is as follows. In Sec. I, we derive
fields in the framework oNewtonian gravitysee, also, Ref. the basic equations for stationary axisymmetric equilibrium
[16]). Since scalar fields can be either spherical or nonspherfonfigurations of boson stars. The basic equations are con-
cal, there arises a possibility that the source of gravity isverted into an integral representation, because boundary con-
nonspherical. Consequently axisymmetric equilibrium con-ditions can be easily taken into account. In Sec. Ill, we de-
figurations can exist for massive scalar fields without em-cribe our numerical method and present numerical results.
ploying unnatural assumptions. In the final section we summarize and discuss our results.
In the framework of general relativity, on the other hand,
it is very recently that two different kinds of axisymmetric || ROTATING BOSON STARS AND THE SPACETIME
solutions have been obtained. The first solutions siatic
ones obtained by Yoshida and Erigu€h?]. These solutions
are an extension of the Newtonian solutions obtained by The basic equations for the complex massive scalar field
Schupp and van der BfjL5], and the distributions of scalar coupled with the Einstein gravity are well knowfor details
fields are equatorially antisymmetric. The second solutionsee, e.g., Ref§3—-5]|). Here we will summarize them briefly
found by Schunck and MielkgL8] belong to axisymmetric  without going into details. The scalar field is assumed to
and stationary ones, i.e., rotating solutions. They obtainedbey the equation derived from the Lagrangian density
their solutions by assuming that scalar fields have azimuthal
angular dependence @= ¢,(t,r,0)e'™¢, wherem is any Lu=V-9(—g""¢%,b.,— u? $|?), (2.2
integer. It implies that scalar fields in their equilibrium solu-
tions are not axially symmetric, although the spacetime isvhereg,, andg are the metric and its determinant, respec-
stationary and axisymmetric. tively. Here the asterisk denotes complex conjugate and the

A. General framework
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semicolon is used for covariant derivative with respect to theSchunck and Mielk¢18], in particular for the metric func-

guantity followed. Throughout this paper we will use units in tions.

whichc=#A=1. Since we want to investigate a stationary and axisymmet-
Since the Lagrangiani2.1) is invariant under the (1) ric spacetime, the metric can be written as

global gauge transformation, i.ep—e'*¢, where\ is an

arbitrary real constant, we obtain the continuity equation as ds?=—edt*+e’“(dr?+r?d6?)
follows: +e2Pr2sirt0(d e — wdt)?, 2.9
1 —. wherev, «, B, andw are functions ofr and 6. Here the
_ — M — ’ l I .
/—g( 9i").,=0, (2.2 spherical coordinates (6, ¢) are used. In this paper we fol-

low the sign convention of Misner, Thorne, and Wheeler
where the comma denotes usual differentiation with respedtl9].
to the quantity followed an@* is the conserved current four- We assume the following time dependence andepen-

vector defined by dence for the scalar fields just as Schunck and Mielke
adopted 18]
jh=—igh($ % — b%d). 23 _
¢:¢0(r16)eil(o—t7k¢)i (29)
The conserved Noether charfjecan be expressed as
where ¢, is a real function of and 6, ando andk are two
_ 3 0 real constants. Since scalar fields must be single-valued func-
N_f d X\/__gj : 24 tions with respect tap, the scalar fields must obey the peri-

odic condition
From the Lagrangian2.1l), we obtain the scalar field

equation d(t,r,0,0)=(t,r,0,0+27). (2.10
g’”d;;,”—,uzd;:O (2.5 From this periodicity, values df must be integer. Thus we

o ] will denote m instead of k hereafter, i.e.,k=m=0,
and the Einstein equations +1,%2,... .Models withm=0 correspond to spherical

and static axisymmetric configurations which have been ex-
tensively investigated thus far. Therefore we will concentrate
our attention on models whose valuesrofare nonzero in
the following of this paper.

R,,~39,,R=87GT,,, (2.6)

where the energy-momentum tendgy, is defined by

=X b+ b b~ 9,9 ¢ ¢ st u?l |21 By writing down the energy-momentum tensor explicitly, -
we can easily see that the energy-momentum tensor is axi-
symmetric:
HereR,,, R, andG are the Ricci tensor, the scalar curva- 0 N U U, )
ture, and the gravitational constant, respectively. Tho=—(0"—m w)e “¢o"—e ““(bo,)
Once appropriate initial conditions and/or boundary con- 1 m2
ditions are specified, the scalar fiefdand the metric up to —e*2ar—2(¢0’6)2—e*23r28m20¢02—,u2¢02,
certain coordinate choices can be determined from Eqgs.
(2.5 —(2.7). It should be noted that we do not need to specify (2.11
an equation of state for this system, because full information
about the matter is contained in the scalar figld 1 > oy, 2. 2 s ol
THh=(o—mo)°e Vo +e ““(do,) — _2(¢00)
B. Stationary axisymmetric configurations 2
Very recently, a prescription for relativistic rotating boson —e*25r23i¥0 b0’ — u o2, (2.12

stars has been proposed by Schunck and Migligg Their

remarkable solutions can be obtained by allowing the har- 1

monic azimuthal angle dependence of scalar fields. As is 12 2= (0—Mw)2e™ 2 dy2—e 2% do,) 2+ 25 (o ,)>
shown below, it implies that the scalar field is no longer r
axisymmetric but that the energy-momentum tensor can be

axisymmetric. C;onsequently .the spac_etir_ne around a poson e 28 n2 bo2— ulPo?, (2.13
star can be stationary and axisymmetric; i.e., the dragging of résin’e

the inertial frame will not vanish.

However, as discussed in the Introduction, their solutions T3
seem to behave unnaturally and cannot be regarded as sat|s 37
factory ones. Therefore we will develop a new scheme to 2
compute sequences of equilibrium configurations of rotating -28 2_ 242
boson stars by adopting the clever assumption about the sca- e T gy Po” T # b’ (214
lar fields proposed by Schunck and MielK3]. It should be
noted that our notation is somewhat different from that of T°3=2m(o—mw)e‘2”¢02, (2.15

1
( 2_m2w2)e—2v¢02_e—2a(¢0’r)2_e—2ar_2(¢0]0)2
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m Here, for the sake of simplicity, quantities with a tilde are

T3 =—20| w(o—mw)e ?"+ e_zﬁr—m b0’ used for real physical, i.e., dimensional, quantities and those
(2.16 without a tilde are regarded as nondimensional ones.

Our basic equations consist of four Einstein equations and

ThL=2e"%pg, do 4, (2.17  the scalar field equation as follows:
and Az[pe”?]=S,(r,0), (2.20
1 i V21— gj
T21:2972ar—2¢o,r¢0,a- (2.19 Aj[r sing ye¥“]=r sing S(r,0), (2.21
. L L 1 d* ; ~2p)/2
From this expression it is clearly seen thatnif is not Ag+ 750 702 [r sind cosp wel?~20)12)
zero, T°3 does not vanish. Nonvanishing; allows the
spacetime to be stationary and axisymmetric. It is also noted =r sind cosp S,(r,H), (2.22
that the stress-energy tensor of the scalar field is not isotropic
as seen from the above expression. Consequently the scalar @ g=—v g+ S,(r,0), (2.23

field can behave differently from the perfect fluid.
Since it is convenient to use nondimensional quantities irand
numerical computations, we introduce the following vari-

ables and use them hereafter: 2

0 ) )
2 imey_— ime
Ag+ r2si?0 9p2  ~ [Poe™¢]=Sy(r, 6)e™?,

r—uf, M—=GuM, ¢o—(47G)Y%p,, (2.24
oc—olu, ool (2.19  where
|
p=v—_, (2.29
y=v+p, (2.26
k’>=1- 02, (2.2
_1&20+1 a_ea -
=12\ o ar Tsing 36> 5a)° (2.28
19 9 +1 &2 -
AT (229

1 1
S,(r,0)=e"22e?*(T3,—T%)—20T%) + | vetocotdy,

P o Yr Y.6
+ E(zeZ (TH+T2%)— 5(2+ry,r)— ?(2 cotd+y 4)

+e 2SI o(r?w’ + %) |, (2.30
12 oezartl 4122 Y owzagrl L2t 2 L
Sy(r,0)=ey 26 (T 1+T 2)+§ 29 (T 1+T 2)_5’)”r _?’}/’0 y (23])
1 1
S.(r.0) =e<7‘2’3>’2[ — gz T 0| €(TH 4 T2 2T+ 2T% + 40T0%) — F( 2p,+ 5 y,r)
1 1 1 2 2 1 2 2 —2pcj 2 2 2
—r—2C0t0 2p,0+§7,0 +Z(4p,r_7,r)+m(4p,0_ 7,0)_9 psanG(r w,r+w,0) ) (2.32




56 ROTATING BOSON STARS IN GENERAL RELATIVITY 765

1 - 1 2 22 1 2 ;
S,(r,0)=| B| cos9+ Esmayﬁ ¥,9+SiN6B EA(A—1)+v,0—r v+ E(yygg—r Yorr) +S|n20rA(2v'rvyg+ Y.ro)
1 H 2 -2 2 2 2 1 H 3 -2 H 2 2712 1 H 1 H 2
+Zsm30r Be 2¢(r w’,—w‘e)—ism“er Ae %o @ ,+sinfe?*[Bri(T%,—T1))+2 singrAT,] [sir?6A
+B?], (2.33
A=1+ry,, (2.39
B=cosf+sindy 4, (2.395
and
2ar 24— 2« 2, 2v m2 2(a—p) 1
Sy(r,0)=—e““[ke ““+(c—mw)e “"—1]py+ rzsinzﬁ(e _1)¢o_7,r¢0,r_r_27’,0¢0,0- (2.36

C. Boundary conditions and integral representation 1 w - 2
of basic equations r sinf cospw=— Ee(z’r”’zf dr’J da’f de'r’3
0 0 0

If appropriate boundary conditions are imposed, the sys-
tem of the partial differential equations mentioned in the
previous subsection can be regarded as a set of equations for
an eigenvalue problem.

Conceming the scalar field, we investigate boson starsyhereS (r, 6) is the analytically continued source term into
i.e., the matter confined within a finite region by its self- the ranger< 6<2# by defining[20]
gravity. This implies that the scalar field must tend to vanish
very rapidly as a function of the distance from the origin. S.(r,0)=S(r,0— ). (2.40
The compactness of the matter distribution necessarily re- [ [
quires that the metric must satisfy the asymptotically flat
condition. These boundary conditions at infinity cannot be]c
easily treated in the usual approach in which partial differ-into the integral form by using other three-dimensional
ential equations are solved directly. Green’s function as

There is a simple way to include the boundary conditions
mentioned above. If we can find proper Green'’s functions 1 (= - o
which satisfy the required boundary conditions, we trans- ¢Oeim¢:__j dr/f dng de'r'2
form the basic equation into an integral representation. Thus 4mJo 0 0
the integral representation has the advantage that we need o
not worry about the boundary conditions any more. There- < sing’ Sy(r',0")e'™m?
fore, in this subsection, we will derive integral equations [r—r'|
which are equivalent to our basic equatiof®s20—(2.24
supplemented by proper boundary conditions. This procett should be noted that the quantity is real and positive
dure is essentially the same as the methods used in compyefinite, because we consider gravitational bound states of
tations of static axisymmetric configurations of boson starscalar fields. Otherwise the wave field extends to infinity.
[17] and rapidly rotating relativistic staf20-23. In the integral representations described above, if the

Three metric functions are expressed in the integral forngource terms are appropriate' we can eas"y see that the
by using three-dimensional and two-dimensional Green'ssymptotic flatness of spacetime is automatically satisfied
functions for the Laplacian in thfat space as and that the scalar fields are gravitationally bound.

_ 1 yI2 * ’ 7T ’ 2m P12 /SP(r,’a,) . . N .
p=- Ee fo dr jo dé fo do'r’“sing W D. Equatorially symmetric distributions
of scalar fields and metric functions

S,(r',6")
Ir—r’|

X sirf 0’ cosp’ , (2.39

As for the scalar field, since the equation is a partial dif-
erential equation of the Helmholtz type, we can transform it

e «r=r'l.(2.4D

(2.37

As far as the scalar field is either equatorially symmetric

1 . o or equatorially antisymmetric, metric functions are equatori-
rsindy= _evl2f dr’J’ do'r'2sing’S,(r’,6") ally symmetric as can be seen from the Einstein equations.

2@ 0 0 Thus, we will consider only equatorially symmetric scalar

fields.
!

XIn[r—r'], (2.39 By using a series expansion of Green’s functions and as-

sumptions both for the spacetime and for the scalar field, we
and can rewrite our basic equations as
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> 0 2
p=—e 2> f dr’f dé’'r'2sing’
n=0 JO 0

X1f2n(rlr,)PZn(a)PZn(ar)Sp(r,10,)1 (242'

2 * ®© /2
rsingy=——e 72, f dr’f do'r’?sing’
™ n=0 JO 0

Xofonsa(r,r’) sin((2n+1)6]

2n+1

Xsin(2n+1)0'1S(r',8"), (2.43

” S w2
rsinfw=—e2r= 72y f dr’f deé’r’3sirt ¢’
n=0 JO 0

Xafonsa(r,r )m

X P31 1(0)P31(0)S,(r",0"), (2.44)

and

* o0 /2
bo=K > (4n+2|m|+1)f dr’f de’r’2sing’
n=0 0 0

X 3o ml (12T P20 mi () P2 mi () S(r ", 6),
(2.49

where

(Ar)(r'Ir)™ for r'<r,

lfn(rir,):{(llr/)(r/r!)n (246)

for r'>r,

o (r'/r)"
2fn(r=r )_ (r/r/)n

for r’'=r,

(2.47)

for r’'>r,
and

jn(icr YA V(ikr) for r'<r,

(2.48

If metric coefficients exceptr and the scalar field satisfy
appropriate boundary conditions at spatial infinity calcu-
lated from Eq.(2.49 automatically satisfies its boundary
condition.

. METHOD OF SOLUTIONS
AND NUMERICAL RESULTS

A. Method of solutions

Rotating boson stars can be specified by one parameter if
both the number of nodes and the azimuthal quantum num-
berm are prescribed. In this paper, we choose the following
quantity P as the parameter which characterizes the model:

P=max ¢(r,0)}. (3.1

This quantity will be used to show the behavior of equilib-
rium sequences.

Once the value oP is specified, we can, in principle,
solve the equations which govern the spacetime and the sca-
lar field. However, since basic equations are nonlinear, we
need some iteration procedure to get solutions numerically.
In this paper, we will follow a procedure similar to that
adopted by Yoshida and ErigucHi7]. This scheme is basi-
cally one of the self-consistent-field methods. In the actual
computations it is easier to specify the value of the scalar
field at a certain point rather at point of the maximum value
of the field. Thus the value of the scalar field at a certain but
fixed point is chosen to specify a model for our numerical
computations. The detailed procedure for numerical compu-
tations can be found in Yoshida and Erigu€hv].

In actual computations, we employ equi-distantly spaced
discrete meshes both in tmedirection (0<r=<r,,,) and in
the @ direction (0< §</2). Values ofr o« are chosen ap-
propriately for each boson star. In practice, the value of
I max IS chosen to be 5 times larger than the radius of boson
stars defined below.

Basic equations are discretized on these mesh points. The
number of mesh points is Z1301 (#Xr). The functions of
the metric,p, vy, «, andw, and the scalar field, are ex-
panded up tm=5 in Egs.(2.42—(2.45. The iteration for
the metric functions and the scalar field is pursued until the
relative changes of the functions between two iteration
cycles become small enough, i.e.,”t0n this paper.

3fn(rvr,):[

jn(ikr)hM(ikr’y for r'>r.

Here,P,, P, j., and hgl) are the Legendre polynomial, B. Physical quantities of equilibrium configurations
the associated Legendre function, the spherical Bessel func- gnce a consistent solution is obtained, we can compute

tion, and the spherical Hankel function of the first kind, re- conserved quantities characterizing the configuration. The to-

spectively. o _ _ _tal gravitational mass of a boson stdris defined as
The metric coefficientar is obtained from other metric

functions by using the equation 1
M=—-—— f Rpeh 033, 3.2
4

a=pB(r,0=0)—v(r,0)+v(r,6=0)+ f:d@’sa(r,ﬁ’).

(2.49 :f (—2T%+T,)V—gdrdéde (3.3
In the above integral representation, the local flathess condi- L
tion on the symmetry axis is imposed, that is, :ﬁf [20(0—ma)e 2"~ 1} ¢2e”*22drdode,

a(r,0=0)=p(r,0=0). (2.50 (3.9
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Finally, the total angular momentum of a boson star is cal-

culated by

B 1
27

wheregﬁ) is the time Killing vector. The total particle num-
N

ber can be computed as

(3.6

(3.10

J=mN.

if equilibrium configurations with

the same total particle numb&t are considered, the total

As a result of this relation

1
87

angular momentum has to be discrete, i.e., quantized. This

3.7

32&

s
péie)d

RLY

J=

property contrasts clearly with that of rotating perfect fluid

JT°3\/—gdrd0d<p

stars. The angular momentum of rotating stars with the same
baryon number can be any value, as far as equilibrium states

exist.

(3.9
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FIG. 2. The same as Fig. 1 but for the model witl+ 2.

In order to understand the behavior of equilibrium se-
guences easily, it is convenient to define the mean radius of

boson stars as follows, although such a radius is not an in-

variant quantity:

(3.11

C. Numerical results

In this paper we consider scalar fields without nodes for

simplicity. Therefore equilibrium configurations of boson
stars can be characterized by two paramdteandm. Since

the main purpose of this paper is to show existence of rotat-

ing boson stars itighly relativistic regions

, we only com-

pute two sequences corresponding to different values,of

=2.

1 andm
Our procedure to solve eigenvalue problems explained in

the previous section works nicely and we have succeeded in
obtaining sequences of rotating boson stars. The distributions
of the mass-energy density, the metric potentials, and the

i.e.,m=

FIG. 3. The gravitational mass of the boson star in units of
M2/ u (solid line) and the particle number in units 83/ 2 (dot-

ted line are plotted as a function d® in units of (4m)~ YMp,.

Attached labelsn

1,2 denote the azimuthal quantum numbers.
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FIG. 4. The gravitational mass of the boson star in units of FIG. 5. The eigenvalue in units gf is plotted as a function of
M2/u is plotted as a function of the mean radiBsin units of P in units of (4m) Y2Mp. Attached labelsn=1,2 denote the
1/u. Attached labelsn=1,2 denote the azimuthal quantum num- azimuthal quantum numbers.
bers.

Nma= 1.3 M3/ u?],
scalar fields of two typical solutions with different values of max— 1.3 M/ ]

m but the same values of the parame®eare shown in Figs.  respectively. These maximum states are realized when the
1 (m:].) and 2 (n:2) The selected value ¢ is value of the paramet@ is

P=0.10Q (47) Y2Mp|]. P=0.108 (4m) YMp|].

As seen from these figures, distributions of the mass-energy For them=2 equilibrium sequence we could not reach
density—T?, are very different from those of spherical con- the maximum state because of numerical difficulties, al-
figurations, i.e., almost toroidal distributions. As a result ofthough we think we have obtained almost the maximum
these distributions of the mass-energy density, the spacetimgates. From our results fan=2 equilibrium states, the

structure of our solutions is considerably nonspherical, i.e.lower limit of the maximum mass and the maximum particle

strongly axisymmetric. The main difference iaT?, distri-  number form=2 can be estimated as
butions between the two models with=1 andm=2 can be
seen on the symmetry axis. Fon=1 models values of Mmax>2.21[M§|/,u],

—T9% on the symmetry axis near the origin are nonzero. On
the other hand, values of T%; for solutions havingn=2  and
(and|m|=2) must vanish on the symmetry axis. This prop- 2, 2
erty is obvious from Eqs(2.11) and (2.45 becausepg ,/r Nmax=2.4Q M/ u7],
does not vanish fom=1. _ ) .

In Fig. 3 we plot the total gravitational mass and the par-"eSPectively. It is well known that the maximum mass of
ticle number againg®. Here we do not show the total angu- SPherical boson stars with no nodes is Q[@‘a%/{“]- Con-
lar momentum of boson stars, because the angular momefgduently, as expected, equilibrium solutions with larger val-
tum is easily determined from E¢3.10. In Fig. 4 the total ~Ues ofm have lager maximum masses.
gravitational mass is plotted against the mean radius of the In Fig. 5 the eigenvalues are plotted againg®. As seen
boson star. These curves are similar to those of sphericalffom Eq.(2.9), the oscillation pattern of scalar fieldsturns
symmetric boson stars and also those of static axisymmetrigut to be rotating around the symmetry axis with the phase
boson stars. Fan=1 equilibrium sequence it is clearly seen velocity a/m. Thus behavior of the phase velocity of the
that there exists the maximum mass state. For smaller valu@$cillation pattern can be evaluated from Fig. 5. For larger
of P the mass is smaller because gravity of the boson star i¢alues ofP the boson star has smaller phase velocities. As
weak. On the other hand, the small values of the mass ari#¢ tendency of the curve fan=1 shows, the eigenfre-
the particle number for larger values &f are due to the guency may come to the minimum at a certain valuePof
compactness of the configurations. It should be noted that th@"d begin to increase beyond that point, although we have
maximum state of the mass and that of the particle numbepot pursued it numerically in this paper.
coincide each other just as the case for ordinary spherical
stars. IV. DISCUSSION AND CONCLUSIONS

From Fig. 3 the values of the maximum mass and the A Discussion
maximum particle number fan=1 are '

In order to see the rotational nature of boson stars, we will
M max= 1.3T M3/ 1], define the specific angular momenttjmby

and T=T%1j°. (4.2)
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This definition is the natural extension of that for perfect Concerning the distribution of physical quantities of their
fluid stars[24]. By applying the definition of the specific results[18], as discussed before, it seems strange that the
angular momentum above, we have the following relation formass-energy density near the symmetry axis shows “spike-
boson stars: like” structures for models withm=1. Moreover, as shown

in the previous section, for models withh=1, the mass-
energy density must not vanish on this rotation axis. How-
gver, the mass-energy density of their solutions seems to
vanish exactly there. The spikelike structure may be caused
by this inappropriate boundary conditions. Furthermore, the
slopes of the mass-energy density distribution of their solu-
tions do not seem continuous in some regions. In our present
results, as seen from Fig(d), there are no such peculiar

. _ behaviors. The reason of these differences is not certain at
be said that boson stars with larger valuesrohave larger the moment. However, since there is no reason for the

spc\e/smc anéglilar TOTG”M”’!- K d with rot tenergy—density distribution to behave nonsmoothly, our solu-
. € need 1o refer 1o previous works concerned with rotaty;, \ o 'can pe said to represent real behaviors of rotating boson
ing boson stars in general relativity. First of all, the relation tars

of our results to the investigation by Kobayashi, Kasai, an In.this paper we could not obtain the maximum mass
Futa_mase{25] has to be discussed. '_I'hey tried to get SIOWIymodel withm=2, although equilibrium solutions with rela-
rotating boson stars by a perturbational approach and COI?i’vely strong gravity are obtained. The reason can be consid-
cluded that rotating boson stars could not exit as far as slo

rotation aporoximation was used. However. we have to poin red as follows. The convergence of iteration depends cru-
PP ' . poir ially on the choice of model parameters. Thus our model
out that they assumed not only slow rotation but also axi-

. : . arameter for numerical computations may not be appropri-
symmetry of scalar fields. Therefore their conclusion onlyp P y PRrop

applies for axisymmetric scalar fields but not for our modelsate for highly compact models with=2 cases. If one could

in which nonaxisymmetric scalar fields have been treated find more proper .model parameters, we would be able to
. ’ . . " .obtain solutions with larger values of and for much stron-
As discussed in the Introduction, concerning the work of .
Schunck and Mielk¢18] who solved relativistic rotating bo- ger gravity.
son stars, we are not satisfied with their results from several
standpoints. Although they obtained equilibrium solutions
for a wide range of azimuthal quantum numbers

(1=m=500), they only calculated one or two solutions for  \ye have investigated rotating boson stars and have suc-
eachm, and obtained solutions were nearly Newtonian aseeded in showing numerically that there exist equilibrium
seen from their figures, e.g., Fig. 6.6 in their paper. On thesnfigurations of rotating boson stars eenhighly relativ-
contrary, in the present investigation, we have obtained Sg;ic regions We have also found that there is a maximum
guences of equilibrium solutions to h.ighly relatiyistic regions mass model along the equilibrium sequence which is charac-
form=1 andm=2, although our basic assumption about theerized by one parameter. The obtained solutions show that
scalar field is exactly same as theirs. configurations and the spacetime have toroidal topology. The

For the case om=1, we can compare our results with jmportant finding is that the specific angular momentum is
those of Schunck and Mielke for weakly relativistic models. .onstant in space for rotating boson stars.

The total particle numbeN seems to agree each other to

within 2.7% for the model withM=0.6166M3/u]. As

seen from Fig. 3, however, gravity for this value is weak so ACKNOWLEDGMENTS

that it is hard to identify corresponding models exactly be-

cause the difference between the mass and the particle num- A part of the present numerical computation was carried
ber is rather small. Therefore we may not say definitely thabut at the Computer Center of National Astronomical Obser-

T=m. (4.2)

Thus we may say that the rotation law of boson stars in th

present investigations correspond jtaconstant law of ordi-
nary fluid stars. However, it should be reminded that for
boson stars the value gf must be integer due to E¢2.10.
Therefore, similar to the total angular momentdynthe spe-
cific angular momentum is quantized. From E4.2), it can

B. Conclusion

these results are in good agreement. vatory of Japan.
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