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We have succeeded in obtaining highly relativistic structures of stationary axisymmetric configurations
consisting of massive complex scalar fields, i.e., rotating boson stars. Scalar fields are assumed to have
harmonic azimuthal angular dependence, i.e.,f5f0(t,r ,u) e

imw, wherem is an integer. Equilibrium configu-
rations are characterized by values ofm so that the total angular momentum of the boson star becomes discrete.
We have solved sequences of equilibrium states withm51 andm52 by changing one parameter which
characterizes the model. The maximum mass form51 models is 1.314MPl

2 /m, whereMPl andm are the Planck
mass and the mass of the scalar field, respectively. It is interesting that properly defined specific angular
momentum for rotating boson stars is constant in space.@S0556-2821~97!04714-0#

PACS number~s!: 04.20.Jb, 04.40.Dg

I. INTRODUCTION

Gravitational bound states of scalar fields were first ob-
tained by Kaup@1# and by Ruffini and Bonazzola@2#. Such
objects have recently been considered important in the con-
text of cosmology and have been called boson stars~see,
e.g., Refs.@3–5# for recent reviews!. The self-gravity of such
an object is balanced by the dispersive effect due to the wave
character of the scalar field. It is important to note that there
is a critical mass for boson stars which is of the order of
MPl

2 /m, whereMPl andm are the Planck mass and the mass
of the scalar field, respectively. There can be no equilibrium
states for boson stars with larger masses and furthermore
boson stars with higher densities are unstable against gravi-
tational collapse in the radial direction@6–11#.

Until recently, people have mainly studied spherical con-
figurations for boson stars@1,2,12,13#, because it has been
uncertain whether axisymmetric solutions of boson stars ex-
ist or not. Only a few years ago, however, Silveira and de
Sousa@14# and Schupp and van der Bij@15# obtained axi-
symmetric equilibrium configurations of massive scalar
fields in the framework ofNewtonian gravity~see, also, Ref.
@16#!. Since scalar fields can be either spherical or nonspheri-
cal, there arises a possibility that the source of gravity is
nonspherical. Consequently axisymmetric equilibrium con-
figurations can exist for massive scalar fields without em-
ploying unnatural assumptions.

In the framework of general relativity, on the other hand,
it is very recently that two different kinds of axisymmetric
solutions have been obtained. The first solutions arestatic
ones obtained by Yoshida and Eriguchi@17#. These solutions
are an extension of the Newtonian solutions obtained by
Schupp and van der Bij@15#, and the distributions of scalar
fields are equatorially antisymmetric. The second solutions
found by Schunck and Mielke@18# belong to axisymmetric
and stationary ones, i.e., rotating solutions. They obtained
their solutions by assuming that scalar fields have azimuthal
angular dependence off5f0(t,r ,u)e

imw, wherem is any
integer. It implies that scalar fields in their equilibrium solu-
tions are not axially symmetric, although the spacetime is
stationary and axisymmetric.

It is remarkable that there existstationarysolutions for
scalar fields. However, there are several unsatisfactory points
about their solutions. First, Schunck and Mielke@18# did not
solve sequencesof equilibrium configurations but obtained
only one or two configurations for different values ofm.
Second, they solved models with very weak gravity so that
most of their solutions were nearly Newtonian. Third, there
is a curious behavior in the distribution of the energy den-
sity; i.e., there are ‘‘spikelike’’ structures in the energy den-
sity contour near the ‘‘rotation’’ axis in their solutions.

In this paper, we will obtainequilibrium sequencesof
rotating boson stars even forstrong gravity. Equilibrium se-
quences can be computed by changing model parameters
which characterize equilibrium configurations. By using
those equilibrium sequences we will be able to know the
maximum mass model beyond which equilibrium states be-
come unstable against gravitational collapse. Furthermore,
from newly obtained solutions we will be able to show
whether or not the peculiar behavior of the solutions of
Schunck and Mielke@18# appear.

The plan of this paper is as follows. In Sec. II, we derive
the basic equations for stationary axisymmetric equilibrium
configurations of boson stars. The basic equations are con-
verted into an integral representation, because boundary con-
ditions can be easily taken into account. In Sec. III, we de-
scribe our numerical method and present numerical results.
In the final section we summarize and discuss our results.

II. ROTATING BOSON STARS AND THE SPACETIME

A. General framework

The basic equations for the complex massive scalar field
coupled with the Einstein gravity are well known~for details
see, e.g., Refs.@3–5#!. Here we will summarize them briefly
without going into details. The scalar field is assumed to
obey the equation derived from the Lagrangian density

LM5A2g~2gmnf ;m* f ;n2m2ufu2!, ~2.1!

wheregmn andg are the metric and its determinant, respec-
tively. Here the asterisk denotes complex conjugate and the
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semicolon is used for covariant derivative with respect to the
quantity followed. Throughout this paper we will use units in
which c5\51.

Since the Lagrangian~2.1! is invariant under the U~1!
global gauge transformation, i.e.,f→eilf, wherel is an
arbitrary real constant, we obtain the continuity equation as
follows:

1

A2g
~A2g jm! ,m50, ~2.2!

where the comma denotes usual differentiation with respect
to the quantity followed andj m is the conserved current four-
vector defined by

j m52 igmn~f ,nf*2f ,n* f!. ~2.3!

The conserved Noether chargeN can be expressed as

N5E d3xA2g j0. ~2.4!

From the Lagrangian~2.1!, we obtain the scalar field
equation

gmnf ;mn2m2f50 ~2.5!

and the Einstein equations

Rmn2 1
2gmnR58pGTmn , ~2.6!

where the energy-momentum tensorTmn is defined by

Tmn5f ,m* f ,n1f ,n* f ,m2gmn@gabf ,a* f ,b1m2ufu2#.
~2.7!

HereRmn , R, andG are the Ricci tensor, the scalar curva-
ture, and the gravitational constant, respectively.

Once appropriate initial conditions and/or boundary con-
ditions are specified, the scalar fieldf and the metric up to
certain coordinate choices can be determined from Eqs.
~2.5!–~2.7!. It should be noted that we do not need to specify
an equation of state for this system, because full information
about the matter is contained in the scalar fieldf.

B. Stationary axisymmetric configurations

Very recently, a prescription for relativistic rotating boson
stars has been proposed by Schunck and Mielke@18#. Their
remarkable solutions can be obtained by allowing the har-
monic azimuthal angle dependence of scalar fields. As is
shown below, it implies that the scalar field is no longer
axisymmetric but that the energy-momentum tensor can be
axisymmetric. Consequently the spacetime around a boson
star can be stationary and axisymmetric; i.e., the dragging of
the inertial frame will not vanish.

However, as discussed in the Introduction, their solutions
seem to behave unnaturally and cannot be regarded as satis-
factory ones. Therefore we will develop a new scheme to
compute sequences of equilibrium configurations of rotating
boson stars by adopting the clever assumption about the sca-
lar fields proposed by Schunck and Mielke@18#. It should be
noted that our notation is somewhat different from that of

Schunck and Mielke@18#, in particular for the metric func-
tions.

Since we want to investigate a stationary and axisymmet-
ric spacetime, the metric can be written as

ds252e2ndt21e2a~dr21r 2du2!

1e2br 2sin2u~dw2vdt!2, ~2.8!

wheren, a, b, andv are functions ofr and u. Here the
spherical coordinates (r ,u,w) are used. In this paper we fol-
low the sign convention of Misner, Thorne, and Wheeler
@19#.

We assume the following time dependence andw depen-
dence for the scalar fields just as Schunck and Mielke
adopted@18#:

f5f0~r ,u!e2 i ~st2kw!, ~2.9!

wheref0 is a real function ofr andu, ands andk are two
real constants. Since scalar fields must be single-valued func-
tions with respect tow, the scalar fields must obey the peri-
odic condition

f~ t,r ,u,w!5f~ t,r ,u,w12p!. ~2.10!

From this periodicity, values ofk must be integer. Thus we
will denote m instead of k hereafter, i.e., k5m50,
61,62, . . . . Models withm50 correspond to spherical
and static axisymmetric configurations which have been ex-
tensively investigated thus far. Therefore we will concentrate
our attention on models whose values ofm are nonzero in
the following of this paper.

By writing down the energy-momentum tensor explicitly,
we can easily see that the energy-momentum tensor is axi-
symmetric:

T0052~s22m2v2!e22nf0
22e22a~f0,r !

2

2e22a
1

r 2
~f0,u!22e22b

m2

r 2sin2u
f0

22m2f0
2,

~2.11!

T115~s2mv!2e22nf0
21e22a~f0,r !

22e22a
1

r 2
~f0,u!2

2e22b
m2

r 2sin2u
f0

22m2f0
2, ~2.12!

T225~s2mv!2e22nf0
22e22a~f0,r !

21e22a
1

r 2
~f0,u!2

2e22b
m2

r 2sin2u
f0

22m2f0
2, ~2.13!

T335~s22m2v2!e22nf0
22e22a~f0,r !

22e22a
1

r 2
~f0,u!2

1e22b
m2

r 2sin2u
f0

22m2f0
2, ~2.14!

T0352m~s2mv!e22nf0
2, ~2.15!
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T30522sFv~s2mv!e22n1e22b
m

r 2sin2uGf0
2,

~2.16!

T1252e22af0,rf0,u , ~2.17!

and

T2152e22a
1

r 2
f0,rf0,u . ~2.18!

From this expression it is clearly seen that ifm is not
zero, T03 does not vanish. NonvanishingT3

0 allows the
spacetime to be stationary and axisymmetric. It is also noted
that the stress-energy tensor of the scalar field is not isotropic
as seen from the above expression. Consequently the scalar
field can behave differently from the perfect fluid.

Since it is convenient to use nondimensional quantities in
numerical computations, we introduce the following vari-
ables and use them hereafter:

r→m r̃ , M→GmM̃ , f0→~4pG!1/2f 0̃,

s→s̃ /m, v→ṽ/m. ~2.19!

Here, for the sake of simplicity, quantities with a tilde are
used for real physical, i.e., dimensional, quantities and those
without a tilde are regarded as nondimensional ones.

Our basic equations consist of four Einstein equations and
the scalar field equation as follows:

D3@reg/2#5Sr~r ,u!, ~2.20!

D2@r sinu geg/2#5r sinu Sg~r ,u!, ~2.21!

S D31
1

r 2sin2u

]2

]w2D @r sinu cosw ve~g22r!/2#

5r sinu cosw Sv~r ,u!, ~2.22!

a ,u52n ,u1Sa~r ,u!, ~2.23!

and

S D31
1

r 2sin2u

]2

]w2 2k2D @f0e
imw#5Sf~r ,u!eimw,

~2.24!

where

r5n2b, ~2.25!

g5n1b, ~2.26!

k2512s2, ~2.27!

D35
1

r 2S ]

]r
r 2

]

]r
1

1

sinu

]

]u
sinu

]

]u D , ~2.28!

D25
1

r

]

]r
r

]

]r
1
1

r 2
]2

]u2
, ~2.29!

Sr~r ,u!5eg/2F2e2a~T332T0022vT03!1
1

r S g ,r1
1

r
cotug ,uD1

r

2S 2e2a~T111T22!2
g ,r

2r
~21rg ,r !2

g ,u

2r 2
~2 cotu1g ,u! D

1e22rsin2u~r 2v ,r
2 1v ,u

2 !G , ~2.30!

Sg~r ,u!5eg/2F2e2a~T111T22!1
g

2S 2e2a~T111T22!2
1

2
g ,r

22
1

2r 2
g ,u

2D G , ~2.31!

Sv~r ,u!5e~g22r!/2H 2
4

r 2sin2u
e2~a1r!T031vFe2a~T111T2222T3312T0014vT03!2

1

r S 2r ,r1
1

2
g ,r D

2
1

r 2
cotuS 2r ,u1

1

2
g ,uD1

1

4
~4r ,r

2 2g ,r
2 !1

1

4r 2
~4r ,u

2 2g ,u
2 !2e22rsin2u~r 2v ,r

2 1v ,u
2 !G J , ~2.32!
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Sa~r ,u!5FBS cosu1
1

2
sinug ,uDg ,u1sinuBS 12A~A21!1n ,u

2 2r 2n ,r
2 1

1

2
~g ,uu2r 2g ,rr ! D1sin2urA~2n ,rn ,u1g ,ru!

1
1

4
sin3ur 2Be22r~r 2v ,r

2 2v ,u
2 !2

1

2
sin4ur 3Ae22rv ,rv ,u1sinue2a@Br2~T222T11!12 sinurAT12#G Y @sin2uA2

1B2#, ~2.33!

A511rg ,r , ~2.34!

B5cosu1sinug ,u , ~2.35!

and

Sf~r ,u!52e2a@k2e22a1~s2mv!2e22n21#f01
m2

r 2sin2u
~e2~a2b!21!f02g ,rf0,r2

1

r 2
g ,uf0,u . ~2.36!

C. Boundary conditions and integral representation
of basic equations

If appropriate boundary conditions are imposed, the sys-
tem of the partial differential equations mentioned in the
previous subsection can be regarded as a set of equations for
an eigenvalue problem.

Concerning the scalar field, we investigate boson stars,
i.e., the matter confined within a finite region by its self-
gravity. This implies that the scalar field must tend to vanish
very rapidly as a function of the distance from the origin.
The compactness of the matter distribution necessarily re-
quires that the metric must satisfy the asymptotically flat
condition. These boundary conditions at infinity cannot be
easily treated in the usual approach in which partial differ-
ential equations are solved directly.

There is a simple way to include the boundary conditions
mentioned above. If we can find proper Green’s functions
which satisfy the required boundary conditions, we trans-
form the basic equation into an integral representation. Thus
the integral representation has the advantage that we need
not worry about the boundary conditions any more. There-
fore, in this subsection, we will derive integral equations
which are equivalent to our basic equations~2.20!–~2.24!
supplemented by proper boundary conditions. This proce-
dure is essentially the same as the methods used in compu-
tations of static axisymmetric configurations of boson stars
@17# and rapidly rotating relativistic stars@20–23#.

Three metric functions are expressed in the integral form
by using three-dimensional and two-dimensional Green’s
functions for the Laplacian in theflat space as

r52
1

4p
eg/2E

0

`

dr8E
0

p

du8E
0

2p

dw8r 82sinu8
Sr~r 8,u8!

ur2r 8u
,

~2.37!

rsinug5
1

2p
eg/2E

0

`

dr8E
0

2p

du8r 82sinu8Sg~r 8,u8!

3 lnur2r 8u, ~2.38!

and

r sinu coswv52
1

4p
e~2r2g!/2E

0

`

dr8E
0

p

du8E
0

2p

dw8r 83

3sin2u8cosw8
Sv~r 8,u8!

ur2r 8u
, ~2.39!

whereSg(r ,u) is the analytically continued source term into
the rangep,u<2p by defining@20#

Sg~r ,u!5Sg~r ,u2p!. ~2.40!

As for the scalar field, since the equation is a partial dif-
ferential equation of the Helmholtz type, we can transform it
into the integral form by using other three-dimensional
Green’s function as

f0e
imw52

1

4pE0
`

dr8E
0

p

du8E
0

2p

dw8r 82

3sinu8
Sf~r 8,u8!eimw8

ur2r 8u
e2kur2r8u. ~2.41!

It should be noted that the quantityk is real and positive
definite, because we consider gravitational bound states of
scalar fields. Otherwise the wave field extends to infinity.

In the integral representations described above, if the
source terms are appropriate, we can easily see that the
asymptotic flatness of spacetime is automatically satisfied
and that the scalar fields are gravitationally bound.

D. Equatorially symmetric distributions
of scalar fields and metric functions

As far as the scalar field is either equatorially symmetric
or equatorially antisymmetric, metric functions are equatori-
ally symmetric as can be seen from the Einstein equations.
Thus, we will consider only equatorially symmetric scalar
fields.

By using a series expansion of Green’s functions and as-
sumptions both for the spacetime and for the scalar field, we
can rewrite our basic equations as
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r52e2g/2(
n50

` E
0

`

dr8E
0

p/2

du8r 82sinu8

31f 2n~r ,r 8!P2n~u!P2n~u8!Sr~r 8,u8!, ~2.42!

rsinug52
2

p
e2g/2(

n50

` E
0

`

dr8E
0

p/2

du8r 82sinu8

32f 2n11~r ,r 8!
1

2n11
sin@~2n11!u#

3sin@~2n11!u8#Sg~r 8,u8!, ~2.43!

rsinuv52e~2r2g!/2(
n50

` E
0

`

dr8E
0

p/2

du8r 83sin2u8

31f 2n11~r ,r 8!
1

~2n12!~2n11!

3P2n11
1 ~u!P2n11

1 ~u8!Sv~r 8,u8!, ~2.44!

and

f05k (
n50

`

~4n12umu11!E
0

`

dr8E
0

p/2

du8r 82sinu8

33f 2n1umu~r ,r 8!P2n1umu
m ~u!P2n1umu

m ~u8!Sf~r 8,u8!,

~2.45!

where

1f n~r ,r 8!5H ~1/r !~r 8/r !n for r 8<r ,

~1/r 8!~r /r 8!n for r 8.r ,
~2.46!

2f n~r ,r 8!5H ~r 8/r !n for r 8<r ,

~r /r 8!n for r 8.r ,
~2.47!

and

3f n~r ,r 8!5H j n~ ikr 8!hn
~1!~ ikr ! for r 8<r ,

j n~ ikr !hn
~1!~ ikr 8! for r 8.r .

~2.48!

Here,Pn , Pn
m , j n , andhn

(1) are the Legendre polynomial,
the associated Legendre function, the spherical Bessel func-
tion, and the spherical Hankel function of the first kind, re-
spectively.

The metric coefficienta is obtained from other metric
functions by using the equation

a5b~r ,u50!2n~r ,u!1n~r ,u50!1E
0

u

du8Sa~r ,u8!.

~2.49!

In the above integral representation, the local flatness condi-
tion on the symmetry axis is imposed, that is,

a~r ,u50!5b~r ,u50!. ~2.50!

If metric coefficients excepta and the scalar field satisfy
appropriate boundary conditions at spatial infinity,a calcu-
lated from Eq.~2.49! automatically satisfies its boundary
condition.

III. METHOD OF SOLUTIONS
AND NUMERICAL RESULTS

A. Method of solutions

Rotating boson stars can be specified by one parameter if
both the number of nodes and the azimuthal quantum num-
berm are prescribed. In this paper, we choose the following
quantityP as the parameter which characterizes the model:

P[max$f0~r ,u!%. ~3.1!

This quantity will be used to show the behavior of equilib-
rium sequences.

Once the value ofP is specified, we can, in principle,
solve the equations which govern the spacetime and the sca-
lar field. However, since basic equations are nonlinear, we
need some iteration procedure to get solutions numerically.
In this paper, we will follow a procedure similar to that
adopted by Yoshida and Eriguchi@17#. This scheme is basi-
cally one of the self-consistent-field methods. In the actual
computations it is easier to specify the value of the scalar
field at a certain point rather at point of the maximum value
of the field. Thus the value of the scalar field at a certain but
fixed point is chosen to specify a model for our numerical
computations. The detailed procedure for numerical compu-
tations can be found in Yoshida and Eriguchi@17#.

In actual computations, we employ equi-distantly spaced
discrete meshes both in ther direction (0<r<rmax) and in
the u direction (0<u<p/2). Values ofrmax are chosen ap-
propriately for each boson star. In practice, the value of
rmax is chosen to be 5 times larger than the radius of boson
stars defined below.

Basic equations are discretized on these mesh points. The
number of mesh points is 213301 (u3r ). The functions of
the metric,r, g, a, andv, and the scalar fieldf0 are ex-
panded up ton55 in Eqs.~2.42!–~2.45!. The iteration for
the metric functions and the scalar field is pursued until the
relative changes of the functions between two iteration
cycles become small enough, i.e., 1024 in this paper.

B. Physical quantities of equilibrium configurations

Once a consistent solution is obtained, we can compute
conserved quantities characterizing the configuration. The to-
tal gravitational mass of a boson starM is defined as

M52
1

4pE Ra
bj~ t !

b d3Sa ~3.2!

5E ~22T001Ta
a!A2gdrdudw ~3.3!

5
1

2pE $2s~s2mv!e22n21%f0
2eg12adrdudw,

~3.4!
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wherej (t)
a is the time Killing vector. The total particle num-

ber can be computed as

N5E j 0A2gdrdudw ~3.5!

5
1

2pE ~s2mv!f0
2e2a2rdrdudw.

~3.6!

Finally, the total angular momentum of a boson star is cal-
culated by

J5
1

8pE Ra
bj~w!

b d3Sa ~3.7!

5E T03A2gdrdudw ~3.8!

5
m

2pE ~s2mv!f0
2e2a2rdrdudw, ~3.9!

wherej (w)
a is the rotational Killing vector.

From Eqs.~3.6! and ~3.9!, we obtain the important rela-
tion of a rotating boson star which was found by Schunck
and Mielke@18# as follows:

J5mN. ~3.10!

As a result of this relation, if equilibrium configurations with
the same total particle numberN are considered, the total
angular momentum has to be discrete, i.e., quantized. This
property contrasts clearly with that of rotating perfect fluid
stars. The angular momentum of rotating stars with the same
baryon number can be any value, as far as equilibrium states
exist.

FIG. 1. The distributions of the mass-energy density, the metric coefficients, and the scalar field in the meridional plane are shown for
the model withP50.100@(4p)21/2MPl# andm51. Here variablesx andz are defined asx5r sinu cosw andz5r cosu, respectively.~a!
The mass-energy density2T00 in units ofm

2MPl
2 /(4p). ~b! The same as~a!, but for the metric functionn. ~c! The same as~a!, but for the

metric functiona. ~d! The same as~a!, but for the metric functionb. ~e! The same as~a!, but for the metric functionv. ~f! The same as~a!,
but for the scalar fieldf0 in units of (4p)21/2MPl .
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In order to understand the behavior of equilibrium se-
quences easily, it is convenient to define the mean radius of
boson stars as follows, although such a radius is not an in-
variant quantity:

R[
E r j 0A2gd3x

E j 0A2gd3x

. ~3.11!

C. Numerical results

In this paper we consider scalar fields without nodes for
simplicity. Therefore equilibrium configurations of boson
stars can be characterized by two parametersP andm. Since
the main purpose of this paper is to show existence of rotat-
ing boson stars inhighly relativistic regions, we only com-
pute two sequences corresponding to different values ofm,
i.e.,m51 andm52.

Our procedure to solve eigenvalue problems explained in
the previous section works nicely and we have succeeded in
obtaining sequences of rotating boson stars. The distributions
of the mass-energy density, the metric potentials, and the

FIG. 2. The same as Fig. 1 but for the model withm52.

FIG. 3. The gravitational mass of the boson star in units of
MPl

2 /m ~solid line! and the particle number in units ofMPl
2 /m2 ~dot-

ted line! are plotted as a function ofP in units of (4p)21/2MPl .
Attached labelsm51,2 denote the azimuthal quantum numbers.
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scalar fields of two typical solutions with different values of
m but the same values of the parameterP are shown in Figs.
1 (m51) and 2 (m52). The selected value ofP is

P50.100@~4p!21/2MPl#.

As seen from these figures, distributions of the mass-energy
density2T00 are very different from those of spherical con-
figurations, i.e., almost toroidal distributions. As a result of
these distributions of the mass-energy density, the spacetime
structure of our solutions is considerably nonspherical, i.e.,
strongly axisymmetric. The main difference in2T00 distri-
butions between the two models withm51 andm52 can be
seen on the symmetry axis. Form51 models values of
2T00 on the symmetry axis near the origin are nonzero. On
the other hand, values of2T00 for solutions havingm52
~and umu>2) must vanish on the symmetry axis. This prop-
erty is obvious from Eqs.~2.11! and ~2.45! becausef0,u /r
does not vanish form51.

In Fig. 3 we plot the total gravitational mass and the par-
ticle number againstP. Here we do not show the total angu-
lar momentum of boson stars, because the angular momen-
tum is easily determined from Eq.~3.10!. In Fig. 4 the total
gravitational mass is plotted against the mean radius of the
boson star. These curves are similar to those of spherically
symmetric boson stars and also those of static axisymmetric
boson stars. Form51 equilibrium sequence it is clearly seen
that there exists the maximum mass state. For smaller values
of P the mass is smaller because gravity of the boson star is
weak. On the other hand, the small values of the mass and
the particle number for larger values ofP are due to the
compactness of the configurations. It should be noted that the
maximum state of the mass and that of the particle number
coincide each other just as the case for ordinary spherical
stars.

From Fig. 3 the values of the maximum mass and the
maximum particle number form51 are

Mmax51.31@MPl
2 /m#,

and

Nmax51.38@MPl
2 /m2#,

respectively. These maximum states are realized when the
value of the parameterP is

P50.108@~4p!21/2MPl#.

For them52 equilibrium sequence we could not reach
the maximum state because of numerical difficulties, al-
though we think we have obtained almost the maximum
states. From our results form52 equilibrium states, the
lower limit of the maximum mass and the maximum particle
number form52 can be estimated as

Mmax>2.21@MPl
2 /m#,

and

Nmax>2.40@MPl
2 /m2#,

respectively. It is well known that the maximum mass of
spherical boson stars with no nodes is 0.633@MPl

2 /m#. Con-
sequently, as expected, equilibrium solutions with larger val-
ues ofm have lager maximum masses.

In Fig. 5 the eigenvaluess are plotted againstP. As seen
from Eq.~2.9!, the oscillation pattern of scalar fieldsf turns
out to be rotating around the symmetry axis with the phase
velocity s/m. Thus behavior of the phase velocity of the
oscillation pattern can be evaluated from Fig. 5. For larger
values ofP the boson star has smaller phase velocities. As
the tendency of the curve form51 shows, the eigenfre-
quency may come to the minimum at a certain value ofP
and begin to increase beyond that point, although we have
not pursued it numerically in this paper.

IV. DISCUSSION AND CONCLUSIONS

A. Discussion

In order to see the rotational nature of boson stars, we will
define the specific angular momentumj̃ by

j̃ 5T03 / j
0. ~4.1!

FIG. 4. The gravitational mass of the boson star in units of
MPl

2 /m is plotted as a function of the mean radiusR in units of
1/m. Attached labelsm51,2 denote the azimuthal quantum num-
bers.

FIG. 5. The eigenvalue in units ofm is plotted as a function of
P in units of (4p)21/2MPl . Attached labelsm51,2 denote the
azimuthal quantum numbers.
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This definition is the natural extension of that for perfect
fluid stars @24#. By applying the definition of the specific
angular momentum above, we have the following relation for
boson stars:

j̃ 5m. ~4.2!

Thus we may say that the rotation law of boson stars in the
present investigations correspond toj̃ constant law of ordi-
nary fluid stars. However, it should be reminded that for
boson stars the value ofj̃ must be integer due to Eq.~2.10!.
Therefore, similar to the total angular momentumJ, the spe-
cific angular momentum is quantized. From Eq.~4.2!, it can
be said that boson stars with larger values ofm have larger
specific angular momentum.

We need to refer to previous works concerned with rotat-
ing boson stars in general relativity. First of all, the relation
of our results to the investigation by Kobayashi, Kasai, and
Futamase@25# has to be discussed. They tried to get slowly
rotating boson stars by a perturbational approach and con-
cluded that rotating boson stars could not exit as far as slow
rotation approximation was used. However, we have to point
out that they assumed not only slow rotation but also axi-
symmetry of scalar fields. Therefore their conclusion only
applies for axisymmetric scalar fields but not for our models
in which nonaxisymmetric scalar fields have been treated.

As discussed in the Introduction, concerning the work of
Schunck and Mielke@18# who solved relativistic rotating bo-
son stars, we are not satisfied with their results from several
standpoints. Although they obtained equilibrium solutions
for a wide range of azimuthal quantum numbers
(1<m<500), they only calculated one or two solutions for
eachm, and obtained solutions were nearly Newtonian as
seen from their figures, e.g., Fig. 6.6 in their paper. On the
contrary, in the present investigation, we have obtained se-
quences of equilibrium solutions to highly relativistic regions
for m51 andm52, although our basic assumption about the
scalar field is exactly same as theirs.

For the case ofm51, we can compare our results with
those of Schunck and Mielke for weakly relativistic models.
The total particle numberN seems to agree each other to
within 2.7% for the model withM50.6166@MPl

2 /m#. As
seen from Fig. 3, however, gravity for this value is weak so
that it is hard to identify corresponding models exactly be-
cause the difference between the mass and the particle num-
ber is rather small. Therefore we may not say definitely that
these results are in good agreement.

Concerning the distribution of physical quantities of their
results @18#, as discussed before, it seems strange that the
mass-energy density near the symmetry axis shows ‘‘spike-
like’’ structures for models withm51. Moreover, as shown
in the previous section, for models withm51, the mass-
energy density must not vanish on this rotation axis. How-
ever, the mass-energy density of their solutions seems to
vanish exactly there. The spikelike structure may be caused
by this inappropriate boundary conditions. Furthermore, the
slopes of the mass-energy density distribution of their solu-
tions do not seem continuous in some regions. In our present
results, as seen from Fig. 1~a!, there are no such peculiar
behaviors. The reason of these differences is not certain at
the moment. However, since there is no reason for the
energy-density distribution to behave nonsmoothly, our solu-
tions can be said to represent real behaviors of rotating boson
stars.

In this paper we could not obtain the maximum mass
model withm52, although equilibrium solutions with rela-
tively strong gravity are obtained. The reason can be consid-
ered as follows. The convergence of iteration depends cru-
cially on the choice of model parameters. Thus our model
parameter for numerical computations may not be appropri-
ate for highly compact models withm52 cases. If one could
find more proper model parameters, we would be able to
obtain solutions with larger values ofm and for much stron-
ger gravity.

B. Conclusion

We have investigated rotating boson stars and have suc-
ceeded in showing numerically that there exist equilibrium
configurations of rotating boson stars evenfor highly relativ-
istic regions. We have also found that there is a maximum
mass model along the equilibrium sequence which is charac-
terized by one parameter. The obtained solutions show that
configurations and the spacetime have toroidal topology. The
important finding is that the specific angular momentum is
constant in space for rotating boson stars.
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