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We propose to explain the present large scale structure of the universe in terms of a first order phase
transition in a two field inflation: the seeds of structure are assumed to be the ensuing strong, non-Gaussian,
bubblelike inhomogeneities generated by the tunneling field. Along with this, of course, the ordinary zero-point
fluctuations of the slow rolling inflaton are also present: they are seen as Gaussian and small perturbations of
the microwave background on the large angular scales. We describe a biparametric model of bubbles in the
matter dominated era~MDE! in which caustics form at a redshiftz* in the surrounding shells and we assume
that the caustics themselves are the loci of galaxy formation, i.e., the places where light is turned on.~Most
likely z* will then define also the epoch of reionization.! The two parameters are then determined by the
bubble’s two main features, present depth andz* . The caustics will evolve into the shells of galaxies observed
today around the nearly empty and spherical voids. Among the possible scenarios we focus on two that yield
late or early caustic formation. In the MDE the shells born with the caustics experience a strong overcomoving
growth ~the larger the deeper is the central cavity!: this phenomenon may turn bubbles substantially subdomi-
nant at decoupling~i.e., filling then only a small fraction of the available space! into the dominant features by
the present time, as the observations require. Forcompensatedvoids, from the Sachs-Wolfe, adiabatic, and
Doppler effects, we find that the largest present radii compatible with COBE amount to'100h21 Mpc in
either scenario. Thus, if the large scale structure were generated by bubbles, the present luminous universe
could look bubbly up to scales of the order of one hundred Mpc mimicking a fractal with dimensionD'2
without conflicting with the isotropy of the microwave background, because homogeneity is restored there-
above.@S0556-2821~97!03324-9#

PACS number~s!: 98.80.Cq, 98.80.Es

I. INTRODUCTION

One of the fundamental challenges of cosmology is to
explain the variety of large-scale structures observed in cur-
rent redshift surveys. Among these structures, the voids are
the most prominent in terms of volume. Very recently, cata-
logs of voids have been compiled in the SSRS2@1# and
Infrared Astronomy Satellite~IRAS! @2# surveys. Moreover,
the analysis of peculiar velocity fields shows that these voids
can be really empty of matter@3#. Deep surveys give an
indication that strongly underdense regions, separated by
walls of matter, can extend to very large distances@4#. In a
series of papers, we explored the possibility that these voids
are in fact remnants of an inflationary phase transition, as
first suggested by La@5,6#. In this paper we expand our pre-
vious work by modeling the bubble evolution in the matter
dominated era~MDE!.

In a two-field inflation@7,8#, two fluctuation generating
processes are at work at the same time: one is the small
fluctuations of the slow rolling fieldv, the other arises from
the tunneling of the other fieldc toward the lower-energy
minimum in the potential. At the end of inflation we will
have then a bubblelike pattern imprinted overc, and a much
more homogeneous background inv. At reheating, the two
fields convert their energy into a background of baryonic and
dark matter. The present structure will in general be the re-
sult of the superposition of the two fluctuation fields. Since
we will require that bubbles smaller than 100h21 Mpc cover
most of the volume by today, we assume that the large scale
structure below a few hundreds Mpc is dominated by the

bubblelike density fluctuations. Above this scale, no bubble
has been nucleated and only the inflaton perturbations are
present: therefore, homogeneity is restored, and the smallv
field fluctuations match the large angle cosmic microwave
background ~CMB! observations as in cold dark matter
~CDM! scenarios@9#. On the scales dominated by the
bubbles, the galaxies are distributed mainly on surfaces,
where a fractal dimensionD'2 naturally arises. In the space
between bubbles, galaxies can also grow from the small scale
fluctuations of thev field: we will comment on this possi-
bility at the end, ignoring it momentarily for the sake of
clarity.

The plan of the paper is the following. In Sec. II we
briefly recall the physics of primordial bubbles enucleation,
with emphasis on the effective Lagrangian of fourth order
gravity. In Sec. III we study the dynamics of bubble expan-
sion in the MDE. In Sec. IV we evaluate the maximum size
allowed for the bubbles by the CMB constraints. In Sec. V
we draw our conclusions.

II. PRIMORDIAL BUBBLES

A convenient start is from previous work of ours@10#
where the underlying physics is a fourth order gravity~FOG!
obtained by adding a quadratic correction to the canonical
Hilbert-Einstein action@11#

Lgrav52R1
R2

6M2W~c!
~2.1!
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and by further introducing a nonminimal coupling ofc to R2

throughW(c) @12#. In the sequelW(c) will act as a double
well potential. The material LagrangianLmat has instead its
usual form with an ordinary potentialV(c) ~in our case
single welled! and the field equations are derived from
L5Lgrav1Lmat. Although not all the features contained in
Eq. ~2.1! are essential for bubble physics to work and al-
though one can certainly build anad hocpotential in general
relativity ~GR! with the desired properties, and despite its
complex origin, the FOG formalism is unexpectedly trans-
parent and may be used as a toy model. In addition, it has the
advantage of requiring only one scalar fieldc, the otherv
being provided by gravity itself through the conformal trans-
formation,

g̃ab5e2vgab . ~2.2!

A suitable choice ofv @13# casts the theory in Einstein’s
form: minimally coupled gravity with two scalar fieldsv and
c governed by a potential

U~v,c!5e22vFV~c!1
3M2

32p
W~c!~e2v21!2G . ~2.3!

If W(c)5118lc2(c2c0)2/c0
4 has two degenerate vacua,

these become two nondegenerate vacuum channels in
U(v,c), because the degeneracy is removed by
V(c)5(1/2)m2c2: in Fig. 1~a! we show an example of the
conformal potential shaped in the appropriate way. The mo-
tion is then a slow roll down the false vacuum~FV! channel,
followed by quantum tunneling to the true vacuum~TV!
channel and concluded by another slow roll down the latter
channel to the absolute true vacuum. Both slow rolling
phases can be described by a simple analytical approxima-
tion

4

3
N5~e2v21!, ~2.4!

whereN'50@1 is the number ofe foldings to the end of
inflation.

Coleman’s theory of bubble nucleation@14# can now be
used to evaluate the number of bubbles nucleated per unit
time dnB /dt and the fraction of volumeX contained in
bubbles of comoving radiusL @15#:

dX

dL
5S L

LH
D 3 dnB

dL
. ~2.5!

Two examples are given in Fig. 1~b!. In the latter it is as-
sumed that bubbles that reenter the horizon before matter-
radiation equality~hereafter equivalence for shortness! are
erased by radiation inflow@16#. This is schematically dis-
played by a vertical cut indX/dL at 10h21 Mpc, roughly the
horizon size at equivalence: dotted curves indicate the com-
plete spectra. The fraction of space occupiedat decoupling
by the surviving bubbles can now be evaluated@15#,

X5E
10h21Mpc

` dX

dL
dL, ~2.6!

in each case; it depends mainly on the value ofN where the
transition is culminating. As shown, we have in mind cases
whereX is definitely less than one. Correspondingly, at de-
coupling theL.10h21 Mpc bubbles do not percolate, but
are embedded in a background perturbed in two ways: by the
small bubbles, almost completely thermalized, and by the
ordinary zero-point fluctuations, seen by the Cosmic Back-
ground Explorer~COBE! on large angular scales.

FIG. 1. ~a! Potential governing the slow roll and the quantum
tunneling in the special case of a two field inflation derived from a
fourth order gravity. The false vacuum~FV! channel is to the left;
the true vacuum~TV! channel to the right. The phase transition
does not occur at the end of inflation, but someN'50 e-foldings
before.~b! Examples of bubble spectra at the end of the RDE. The
assumption is that bubbles smaller than'10h21 Mpc ~approxi-
mately the horizon at equivalence! are erased by subhorizon astro-
physics, hence the vertical cuts; dotted lines complete the spectra.
The two spectra are obtained when a suitable parameterN0 ~ap-
proximately indicating when the phase transition is culminating!
attains the values shown. A good approximation to the bubble spec-
tra @32# is a power lawnB(L)5(Lmax/L)p, where Lmax'30h21

Mpc andp'10.
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III. SPHERICAL CAUSTICS

Explosions @17,18# and underdensities@19# have long
been advocated in order to generate expanding high density
spherical shells, snowplowing the cosmic medium and pro-
ducing galaxies in their interiors. Here we rely upon a third
possibility @20#, a ‘‘metric blast’’ based upon the Tolman
solution—anexact solution of Einstein’s field equations—
plus a convenient energy ansatz.

Of course Newtonian physics amply suffices for such a
problem~for instance~3.2! below is the simplest energy con-
servation!: however, the use of a GR metric is necessaryi!
for the study of the null geodesics@25#, and ii ! the possible
connection with the physics of bubble nucleation.

A spherical perturbation to the Hubble flow in the MDE
can be described by the line element

ds25c2dt22S ]R

]mD 2 dm2

G2~m!
2R2~m,t !~du21sin2udf2!,

~3.1!

wherem, the observable mass, is conserved and can be used
as a Lagrangian comoving coordinate. Furthermore, in the
pressureless approximationG(m), also a conserved quantity
generalizing the Lorentzg, is specified by the field equation

G2511
1

c2S ]R

]t D 2

2
2Gm

c2R
. ~3.2!

For a hyperbolic perturbation, i.e., an energy excess,

G2~m!511G1
2 ~m!>1, G1~`!50, ~3.3!

the solution which corresponds to an initial uniform density
developing into acompensatedcavity, takes the familiar
parametric form

R~m,t !5
Gm

c2G1
2 ~coshh21!,

t5
Gm

c3G1
3 ~sinhh2h!. ~3.4!

The perturbation strength can be measured by its energy,
i.e., c2 times the difference between the gravitating massm
and the proper mass

mp~m!5E
0

m dm8

G~m8!
; ~3.5!

in the bound Newtonian case this yields the binding energy
with its negative sign. Under the assumption 0,G1

2 (m)!1,
it gives

W~`!5
c2

2 E0

`

dmG1
2 ~m!>0. ~3.6!

We now proceed to make an ansatz forG1
2 (m) that of

course guarantees the convergence of Eq.~3.6!: by callingM
a fiducial mass scale and after defining a dimensionless
x5m/M , we put@20#

G1
2 ~m!5b3

LS

LD
x2/3gn~x!, gn~0!51,

LS5
2GM

c2 , LH5
c

H0
,

L5LS
1/3LH

2/3'100h22/3S M

1018M (

D 1/3

Mpc,

LD5
L

~11zD!
,

LS

LD
!1, ~3.7!

where 11zD'103 is the redshift of the decoupling epoch.
We normalize our perturbation so that Eq.~3.6! yields

W~`!5b3
3

5

GM2

LD
; ~3.8!

for this purpose in@20# we chose

gn~x!5exp~2anx5n/3!,

an5F1

n
GS 1

nD Gn

. ~3.9!

Clearly, asn grows, gn approximates better and better the
Heaviside function; we note in passing that forn51, a151
and that for n→` an→a5exp(2gEM)50.5614,. . . ,
wheregEM50.5572,. . . , is theEuler-Mascheroni constant
@21#.

Thus, this bubble model is characterized by~i! tunable
depth, determined byb, see Eq.~3.21! below, and~ii ! tun-
able sharpness of the outer shell, determined byn, see Eq.
~3.23! below, both of which are in principle linked to the
inflationary potential@34#.

Density profiles can now be evaluated through the field
equation

r~m,t !5
1

4pR2~]R/]m!
. ~3.10!

The procedure is thath(x,z) is first determined explicitly
through the second of Eq.~3.4!,

sinhh2h5
4

3
BZ

3/2gn
3/2~x!, ~3.11!

where

B5b~11zD!, BZ5
B

~11z!
, ~3.12!

and then thrown into the first of Eq.~3.4! to derive the mo-
tion
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R~m,t !5LZ~11z!r ~x,z!,

LZ5
L

~11z!
,

r ~x,z!5
1

2B
x1/3

coshh21

gn~x!
. ~3.13!

Note that the first of the above splits the physical scaleLZ
from the dimensionless comoving radial distance

y~x,z!5~11z!3r ~x,z!; ~3.14!

also note that in front of the perturbation, in the asymptotic
Hubble flow (x→`,gn→0), one hasy'x1/3 accordingly.
Instead, due to the overcomoving motion, in the perturbed
regiony increases with time at any fixedx.

From Eq.~3.10! we find then

r~x,z!

r~`,z!
5

x

r 3~11z!33
1

~3x/r !~]r /]x!
, ~3.15!

where

r~`,z!5
3H0

2

8pG
~11z!3. ~3.16!

We plot with solid lines in Figs. 2–4 density profiles~3.15!
vs comoving radiusy, Eq. ~3.14!.

We now elucidate the role of the two free parametersB or
b andn: a useful insight is gained from an analytic approxi-
mation for the density profiles possible for smallBZ . If we
define

Beff~x,z!5BZgn~x!~<BZ!1!, ~3.17!

we find first from Eq.~3.11! that

h~x,z!52Beff
1/2~12Beff/15!, ~3.18!

and from Eq.~3.15!

r~x,z!

r~`,z!
5

123Beff/5

12annBeffx
5n/3

, ~3.19!

where the numerator corresponds to the first factor of Eq.
~3.15! and the denominator to the second. Likewise, for the
Hubble parameter we find

H~x,z!

H~`,z!
511

1

5
Beff . ~3.20!

In particular at decoupling, ifB!1000,

dD5
dr

r
5

r~0,103!

r~`,103!
2152

3

5
3b, ~3.21!

which gives a simple physical meaning tob.
In @20# we gave examples only of nonsingular density

profiles: we found that the larger isB the deeper is the cen-
tral cavity, the rule of thumb being that, regardless ofn,
B51 digs a hole whose central density at present is 60% of

the asymptotic density: hence, to account for the observa-
tions @3# B@1. On the other hand, increasingn at fixed B,
that is sharpening the energy profile of the perturbation,
sharpens the density profile of the shell around the central
cavity at all epochs and hastens the formation of a caustic. In
fact, unlike @20#, we concentrate here on the cases where a
singularity

]R

]m
50 ~3.22!

develops in Eq.~3.10! for the first time at a chosen redshift
z* . This implies the occurrence of shell crossing for~colli-
sionless! DM and of shocking for~collisional! baryonic mat-
ter and signals—we assume—the first generation of galactic
objects on the spherical shells and the trigger of reionization
of the intergalactic gas.

In order to get a feeling of hown andB are related toz* ,
we extrapolate the validity of Eq.~3.19! to the region where
the denominator vanishes and we get

~nB!'e3~11z* !, ~3.23!

while more precise values are to be obtained from the nu-
merical work.

FIG. 2. Upper panel: Density profiles~solid lines! in MDE
voids. The two free parametersn andB are chosen so that a caustic
forms at 11z* 510: for n51,2,4, respectively,B'40,17,8. Gal-
axies form on this caustic; furthermore the caustic sweeps up the
galaxies possibly born in the interbubble space. The subsequent
evolution to the present is obtained through the method of the infi-
nitely thin shell @22#. The horizontal axis plots a comoving radial
measure: it is therefore possible to read the overcomoving expan-
sion in each case, which amounts to a factorg'2. The volume
available at the present to bubbles grows therefore by a factor of
about 8. Dotted lines are derived from the Tolman solution which
remains valid in the central region. Lower panel: Density profiles of
the above configurations at 11z51000, needed to evaluate the
adiabatic and Doppler contribution. The central depth of the cavity
at decoupling is given by Eq.~3.21!.
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After z* the Tolman solution can yield only the extreme
inner part and the extreme outer part of the density profiles,
but not the intermediate part where shell crossing invalidates
the dust assumption. Mathematically, this solution produces
a region, bounded by two caustics, where]R/]m,0: an
approximate expression for thex coordinates of the caustics
at eachz is obtained from the vanishing of the denominator
of Eq. ~3.19!,

ue12u5
11z

11z*
, u5anx5n/3. ~3.24!

For any z,z* there are in fact two such solutions,
uinf,1,usup, which degenerate in one,u51, for z5z* :
for z!z* the corresponding two values ofx also satisfy
xn, inf,1,xn,sup, with the two roots approaching unity from
below and above forn→`, but as fory,

y~xn, inf ,z!@y~xn,sup,z!'1, ~3.25!

due to shell crossing.
Physically, however, hydrodynamics~with dissipative

shocking for baryonic matter! will play a crucial role be-
tween the caustics: we will assume that a thin dense shell of
galaxies~or of bound protostructures! is formed and that its
position at any later time is given by the method@22# of the
singular shell separating an inner Friedmann open model
from an outer Friedmann flat model. In the upper panels of

Figs. 2–4, solid lines give the position of the caustic at its
formation,z* , as well as the position of the singular shell at
later epochs 11z510,1.

The total overcomoving growthg up to the present or up
to earlier times can thus be read directly from the abscissae
of the vertical portion of the solid curves. Alternatively and
approximately, the position of the singular shell can also be
derived from the Einstein-Sedov asymptotic self-similar so-
lution @23# R}t4/5 which entails an overcomoving growth
}(11z)21/5 and is valid when the cavity is completely
empty. Accordingly the total overcomoving, self-similar
growth factor at anyzf in is given simply by

gss5y* 3S 11z*
11zf in

D 1/5

, ~3.26!

where y* , given by Eq. ~3.14! at z* , accounts for the
growth already attained atz* ; gss is certainly an upper limit
of g. Dotted-dashed vertical lines in the upper panels of Figs.
2 and 3 displaygss at the present and at 11z510. The
agreement between solid and dotted-dashed lines is better the
deeper the cavity and is particularly good in the left upper
panels of Figs. 2 and 3~where the central density is the
lowest!. Finally the density profiles derived from the Tolman
solution are given by dotted lines: their inner parts are in
agreement with the solid lines.

Now we can estimate by how much the fraction of space
occupied by bubbles is increased by the overcomoving ex-
pansion: anX,1 at decoupling becomesY5g3X.X by the
present time. Whenever anY@1 results, an overpacking is

FIG. 3. Upper panel: As in Fig. 2 density profiles~solid lines! in
MDE voids for early caustics: 11z* 5500. Forn51,2,4, respec-
tively, B'2000,900,400. Solid lines also display the position of the
singular shell at 11z510 and 1: the corresponding growth factors
g are larger than in Fig. 2. Dashed-dotted vertical lines display the
position of the singular shell obtained via Eq.~3.26!: the agreement
with the solid lines is very good on the left, i.e., for largerB and
deeper cavities. As in Fig. 2 dotted lines are profiles derived from
the Tolman solution. Lower panel: Density profiles of the above
configurations at 11z51000.

FIG. 4. Upper panel: As in Fig. 3 density profiles~solid lines! in
MDE voids for early caustics: 11z* 5500, but now for
n520,40,80 andB'80,35,17, respectively. Solid lines also display
the position of the singular shell at 11z510 and 1: the correspond-
ing growth factorsg are similar to those in Fig. 2. Dashed-dotted
vertical lines are not given as the approximation~3.26! is now
rather poor~because the initial cavity at 11z* 5500 is very shal-
low, i.e., far from the self-similar regime!. Dotted lines again for the
Tolman solution. Lower panel: Density profiles of the above con-
figurations at 11z51000.
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implied: in this case the bubbles expand overcomovingly
only until they touch each other,Y51, then stop their over-
comoving growth and expand comovingly thereafter. For
this reason, bothY<1 andY.1 are interesting. The second
occurrence is of course more likely for largerg.

We will make use of Eq.~3.21! to classify the possible
cases beginning withn'1: ~i! B<1, i.e., b<0.001 yields
cavities shallow even at the present and must be discarded;
~ii ! B'1000, i.e.,b'1 yields cavities deep at decoupling
and,a fortiori, at the present and an early caustic formation;
~iii ! 1!B!1000, i.e., 0.001!b!1 yields cavities shallow at
decoupling and sufficiently deep at the present and a later
caustic formation. We will begin with the description of the
latter intermediate case, owing to its greater simplicity.

A. Late caustics

We tipify this case by 11z* 510: in order to achieve this,
for n51,2,4, we need, respectively,B'40,17,8, roughly as
predicted by Eq.~3.23!. We display in the upper panel of
Fig. 2 the density profiles of the above three cases at 11z* :
leftmost solid lines. These density curves as well as the next
ones to be described are ideally completed by infinitely long
horizontal lines of height 1~seen only in some of the lower
panels! representing the unperturbed Hubble flow ahead of
the perturbation.

Physically the caustic is immediately replaced by a thin
shell, the real thickness of which is to be evaluated hydrody-
namically. Its exact@22# and approximate@23# positions at
the present time are given by solid and by dashed-dotted
lines. The agreement between the two improves the deeper
the cavity. Dotted curves refer to density profiles of the Tol-
man solution after the caustic formation: although they are
not valid in the outer region, in the inner region they agree
entirely with the solid lines. Thus, for models achieving
11z* 510, the total overcomoving growths are seen to
amount tog'2: this implies that, even if at decoupling the
bubbles occupied only a modest 10% of the available space,
they may well occupy a conspicuous 80% now. In the lower
panel we display the corresponding density profiles at decou-
pling needed to evaluate Sachs-Wolfe, Doppler, and adia-
batic effects.

B. Early caustics

We tipify this case by 11z* 5500, which may be
achieved with largeB and smalln ~cavities deep already at
decoupling! or vice versa smallB and largen ~cavities still
shallow at decoupling!.

1. Deep cavities

With n51,2,4, we need, respectively,B'2000,900,400,
again in rough agreement with Eq.~3.23!. In Fig. 3, upper
panels, we display with solid lines the density profiles of the
above three cases at 11z* ~leftmost curves! as well as the
positions reached by the singular shells at the redshift
11z510 and at the present time; the approximate positions
evaluated via Eq.~3.26! are shown by the vertical dashed-
dotted lines; dotted lines refer to the Tolman solution. In the
lower panels we give the corresponding profiles at decou-
pling.

The maximal growths are now found to amount tog'3
up to 11z510 and tog'4 up to the present. This case hints
at a new phenomenology that may take place with these
larger values ofg, thatY5g3X becomes unitybeforeof the
present. Hence shell collisions stop the overcomoving
growth and start a strictly comoving expansion: these shell
collisions may themselves be a mechanism of structure for-
mation or the origin of other interesting physics.

2. Shallow cavities

We display now some cases where 11z* 5500 is ob-
tained forn@1 and for values ofB correspondingly lower
than above: with n520,40,80 we need, respectively,
B'80,35,17, again in rough agreement with Eq.~3.23!. In
Fig. 4, as before lower panels display the density profiles at
decoupling: the central underdensity is smaller than in the
above cases (0.01,udDu,0.1), but the surrounding spike is
more pronounced; correspondingly shallow are the cavities
at 11z* 5500. Upper panels display with solid lines the
caustic formation and the evolution of the shell at
11z510,1; dashed-dotted vertical lines derived from Eq.
~3.26! are not given, because in these cases the approxima-
tion is poor~the asymptotic regime has not yet had the time
to set in!. These cases show overcomoving growths and den-
sity profiles comparable to those of Fig. 2.

IV. CMB CONSTRAINTS

The structures described above introduce naturally
anisotropies in the CMB, particularly when placed on top of
the last scattering surface~LSS!. We begin by deriving the
constraints for the case of an isolated bubble. We have ana-
lyzed in detail this problem in@25# and we refer there for a
full treatment of the matter; in this section we report the
results: the current whole-sky observations by COBE pro-
vide an upper limit of about 100h21 Mpc to the present
radius of the bubbles in both cases of early and late caustics.

A bubblelike perturbation on the LSS affects the CMB in
two ways: first through the Sachs-Wolfe effect~SW! and
secondly through the acoustic oscillations of the photon-
baryon plasma. On the contrary, the bubbles lying in front of
the LSS are generating only the Rees-Sciama effect~from
the temporal change in the gravitational potential! and are
neglected because their signal is very small@24,25#. We have
analyzed the CMB signature of bubbles capable to generate
late caustics~left panels in Fig. 5! and early ones~right pan-
els in Fig. 5!, in the sequel referred to as shallow and deep
respectively with relation to the central underdensity at de-
couplingdD .

The SW effect has been evaluated by integrating null geo-
desics backwards in time from the observation point to the
interaction with the bubble. The line-of-sight distortion natu-
rally depends on the angle between the photon direction and
the bubble center direction, on the density profile, and on the
position of the bubble center with respect to the LSS. A
similar approach can be found in@28#. For the width of the
latter as a function ofz we have taken the probability of last
scattering@29#. In the upper panels of Fig. 5, we display the
maximal line-of-sight distortion as a function ofz for a cen-
tral trajectory and for bubbles placed exactly on the LSS; the
photons last scatter atzLSS and cross the bubble toward the
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observation to the left-hand side, where the value of the line-
of-sight distortion at the observation point can be read. The
larger is B ~and equivalently the perturbation amplitude
udDu), the stronger is the overall distortion; for the shallow
cavities this dependence is linear. Varying the bubble’s ra-
dius the signal scales asR2 for shallow cavities, as expected
for linear perturbations@26#, and asR for the deep ones
~precisely, in this case it is of orderR/H21/10 @25#!. For
each case we display the maximal present radiusRmax ob-
tained by imposing that the CMB perturbation of a single
bubble does not exceed the anisotropy amplitude detected by
COBE. We have simulated the detection of the SW effect by
mapping all the possible trajectories and modulating the sig-
nal with a Gaussian window function withs53° @27#. The
maximum present radius has been found to be nearly 150h21

Mpc for shallow bubbles and 100h21 Mpc for deep ones.
Note that despite the strong difference ofdD , the values of
Rmax are similar in the two cases; this is due to the different
overcomoving growth, that compensates the more marked
difference in size at decoupling; in fact the values reported of
Rmax correspond at decoupling to about 75h21 Mpc for shal-
low bubbles and 25h21 Mpc for deep ones, that are the radii
chosen to perform the computations reported.

The adiabatic and Doppler effects derive from the fact
that the size of our bubbles is comparable to the sound hori-
zon at decoupling. In other words our perturbation involves
scales where the pressure gradient of the photon-baryon
plasma is comparable with gravitational forces. A general

treatment of this situation for linear perturbations is con-
tained in@30#: we adopted their formalism in@25# to evaluate
the effect in our case. The method consists in solving the
Boltzmann, Euler and continuity equations for thek mode of
dT/T using the Fourier transformed gravitational potential of
the perturbation as a source. These equations, solved in the
tight coupling approximation, account for pressure and
gravitational terms, for Silk damping and for the LSS finite
width. From thek spectrum ofdT/T we can obtain its an-
gular profile. For this analysis, we have approximated ana-
lytically @25# the density profiles of the lower panels of Figs.
2 and 3 and we have placed the bubble on the LSS. In the
lower panels of Fig. 5 we report the angular profile ofdT/T
due to adiabatic and Doppler effects: the central underden-
sity causes a decrease of the CMB temperature, the ampli-
tude of which increases withB as does the SW effect. The
shells themselves, instead, are not seen, because Silk damp-
ing is active on their small scales. Also, Silk damping re-
duces the amplitude ofdT/T of deep cavities below the cor-
responding values for shallow ones, because of the
difference in radii mentioned before. Finally, note that adia-
batic and Doppler effects are generally less important than
the SW one, so that it is the latter which gives the strongest
CMB perturbation and which has been used to find the maxi-
mal radii Rmax.

We consider now a distribution of bubbles on the LSS:
their global effect is to introduce power on the subdegree
scales. Precisely, the CMB correlation function fordT/T
seen on two directionsn,n8 separated by an angleu is de-
fined as

K dT

T
~n!•

dT

T
~n8!L 5(

l

2l 11

4p
Cl Pl~cosu!, ~4.1!

where the Legendre polynomialsPl map the amount of
anisotropies~given by theCl coefficients! at angleu.p/ l .
Thus, we have that the distinctive signature on the CMB of
bubbles of the maximal size derived above, is an excess
power onl>500@31#: this will have to be compared with the
data from the high resolution MAP and Planck missions of
the near future.

V. CONCLUSIONS

Under the pressure of the new observations@1,2# we pro-
pose a new cosmogony in which large scale voids~up to
hundreds of Mpc at present! originating as the primordial
bubbles of a first order phase transition, are the dominant
factors. By using a specific biparametric model for bubble
evolution in the MDE, we have shown the compatibility of
the new scenario with the CMB anisotropy known from
COBE’s data. On the other hand, a definite prediction for the
entire CMB angular spectrum to be compared with the forth-
coming high resolution experiments is being readied@31#.

In the old view—that standard CDM did not have enough
power to match the observations on the large scales–it was
shown @32,10# that primordial bubbles/voids are capable of
solving the problem, overcoming well-known@33# difficul-
ties. Now we underline a peculiar feature of theirs, that they
are also capable of generating caustics and therein galaxies at
any chosenz* , provided the parameters are adjusted suit-

FIG. 5. Upper panels: Sachs-Wolfe effects along central trajec-
tories for bubbles with their centers exactly on the LSS: photons
traveling to the observer atz50 to the left are first redshifted in the
central cavity and then partially blueshifted crossing the shell. The
left panel is for the late caustics~evaluated for a radius at decou-
pling of 75h21 Mpc!, the right panel is for the early caustics~evalu-
ated for a radius at decoupling of 20h21 Mpc!. In each case we
report the maximum radius at present allowed by COBE. Lower
panels: Adiabatic and Doppler effects induced by the density per-
turbations of the lower panels of Figs. 2 and 3; as above, left panel
for the late case, right panel for the early case.
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ably. In fact, as soon as the observations come up with a
value for the central underdensity at the present and the
theory with an indication for the epoch of reionizationz* ,
see, e.g.,@35#, thenB andn can be determined in sequence
as shown here. On the other hand, in our toy model@10# it is
possible to relate the microphysics of bubble nucleation to
astronomical observations@34# for instance about the void
depth, say, at decoupling and about the bubble spectrum. It
may also be underlined that, just in front of and behind the
caustic, gravitational instability itself is strongly enhanced
with respect to the ordinary growth law of perturbations~see
the Appendix and Fig. 6!.

In the light of recent debates on homogeneity vs fractality
@36#, it is worthwhile to point out that the present scenario is
compatible with fractality, but only up to a definite scale, of
the order of hundreds of Mpc, because homogeneity is re-
stored thereabove. Perhaps not coincidentally, this scale is
reminiscent of the redshift periodicities@37#.

In this cosmogony, the production of galaxies occurs on
the shells as described above and possibly as in conventional
scenarios from the zero-point fluctuations of the inflaton in
the interbubble space; the latter galaxies will gradually be
swept up by the overcomoving shells and will add to the
galaxies already there. The end result is a fractal distribution
with D'2. For Y,1 most shells will fully exploit all their
available overcomoving growth without ever interacting with
their neighbors. ForY>1, as the observations@1,2# suggest,
very commonly will a shell collide with a close neighbor; if
so this will happen either late or early, in relation to whether
or not the shell galaxies have had the possibility to develop
fully. In either case the dominant CDM components will
settle down on a plane after a few oscillations through each

other: the baryonic components instead will behave differ-
ently. In the latter case the collisions between baryonic pro-
toclouds will be higly dissipative and will often result in high
angular momentum systems~protospirals?! with spin vectors
oriented at random on the above plane. In the former case,
the shells’ protogalaxies will hardly collide with each other,
but will remain anyhow trapped by the cold dark matter wall
after a few oscillations through it. In either case, for galaxies
this amounts to annihilating their momentum perpendicular
to the wall and to letting them free to slide sideways@18#.
Visually, i.e., with regard to luminous matter, the communi-
cation between the two neighboring voids opens up and the
topology changes from bubbly to spongy. Finally, it is tempt-
ing to relate the observed bulk flows@38,39# to the flowing
of matter on the bubble collision planes. The present sce-
nario is therefore rich in astronomical implications which
warrant further investigation.

APPENDIX: GRAVITATIONAL INSTABILITY

It is interesting to study the self-gravitating linearized
growth of perturbations inside the condensing shell. The
master equation

S 1

a2

d

dt
a2

d

dt
24pGr D dr

r
50, ~A1!

can be applied to the shell interior ifa is the local scale
factor a}r21/3. By writing now for the shell interior

r5
1

6pGt2S t

t*
D 2b

, b.0, ~A2!

where t* is some reference epoch, Eq.~A1! can be cast in
the form

F t2
d2

dt2
1

4~12b!

3
t

d

dt
2

2

3S t

t*
D 2bGdr

r
50, ~A3!

which yields the sought growing mode@21#

dr

r
}tpI nFA2

3

1

bS t

t*
D bG ,

p5
1

2
1

2

3
~b21!, n5

p

b
, ~A4!

whereI n is the modified Bessel function of indexn.
Notice thatb51 in Eq. ~A2! implies thatr inside the

shell is constant while the external density is decreasing: in
fact, in that case from Eq.~A4! and@21# one recovers easily
Jeans’ exponential growth@see also~A5! below#; likewise
b.1 implies that the density in the shell is growing: quite
naturally then Eq.~A4! dictates anoverexponentialgrowth,
i.e., that gravitational instability is formally very efficient in
building structure in shrinking shells. We find in@21# the
limit for large t of Eq. ~A4!:

FIG. 6. Linear growth ofdr/r due to gravitational instability on
the shell: what is actually plotted here is (11z)(dr/r), which is
constant~say unity! in the surrounding background, vs 11z. Two
of the cases described previously in Fig. 2~late caustic, 11z* 510)
and in Fig. 3~early caustic, 11z* 5500) are studied: in both of
them, asz→z* , dr/r diverges.
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dr

r
}t ~b21!/6expFA2

3

1

bS t

t*
D bG . ~A5!

Formally asb grows to` during the caustic formation,
the process becomes, so to speak, infinitely efficient close to
the caustic itself. This can be seen directly with a numerical

integration of Eq.~A1!: in Fig. 6 we plot the results for the
n54 cases of Figs. 2 and 3. The chosen value for the co-
moving x is, for the sake of simplicity,xn5an

23/5n , as sug-
gested by Eq.~3.19!. We plot Z5(11z)(dr/r) vs (11z):
on approaching the caustic formation,Z, which is unity in
the surrounding background, diverges.
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