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During the collapse of a massive star’s stellar core Coulomb effects maintain the ions in a highly correlated
state. This has an important consequence: Neutrino-nucleus elastic scattering, which dominates the neutrino
opacity, is substantially reduced for low-energy neutrinos. This results from phase interference effects that
occur when the neutrino wavelength becomes larger than the interion spacing, and is analogous to a crystal
becoming transparent to x rays when the change in wave number from scattering is smaller than the reciprocal
lattice spacing. This reduction in the neutrino-nucleus elastic scattering cross section, referred to as ‘‘ion
screening,’’ has been calculated most recently by Horowitz. Using his correction, we investigate its effect on
stellar core collapse. Our numerical results show thatne downscattering with electrons is sufficiently rapid to
fill the low-energy neutrino window created by ion screening, but the window width is insufficient for ion
screening to have a significant effect on core deleptonization. In particular, inclusion of ion screening lowers
the trapped lepton fraction by only 0.015 in both our 15M ( and a 25M ( models. We confirm this with an
analytic model that elucidates ion screening’s essential effect. For the sake of comparison, we also investigate
the effect on core deleptonization of turning neutrino-nucleus elastic scattering off completely, and of turning
off all semileptonic neutral-current neutrino scattering. These latter neutrino opacity modifications have sub-
stantially greater effects on core deleptonization than the ion-screening correction.@S0556-2821~97!06922-1#

PACS number~s!: 97.60.Bw, 13.15.1g

I. INTRODUCTION

The destabilization and collapse of the core of an evolved
massive star initiates a complex and incompletely understood
chain of events that leads in some cases to the violent expul-
sion of its mantle and envelope in a supernova explosion,
and the rapid evolution of the remnant core to a neutron star
or a black hole~see Bethe@1# for a review, and Bruenn@2#,
Herantet al. @3#, Burrows, Hayes, and Fryxell@4#, Janka and
Müller @5#, and Mezzacappaet al. @6# for more recent sum-
maries!. The outwardly propagating shock~‘‘bounce
shock’’! launched at core rebound and perhaps rejuvenated
during a reheating episode ultimately generates the explo-
sion, if one occurs. However, the strength of the shock at
formation, and therefore much of the postshock core struc-
ture and dynamics, is governed by the core hydrodynamics
during infall, which is a sensitive function of the pressure
deficit @7#, i.e., the difference between the actual pressure
and the pressure required for hydrostatic equilibrium. Be-
cause the pressure during infall is dominated by leptons~e.g.,
electrons, and to a lesser extentne’s! until nuclear matter
densities are reached, the pressure deficit is determined by
the evolution of the lepton sea, viz.,~1! the conversion dur-
ing infall of the lepton sea from an initial composition of
pure electrons to an equilibrium mixture of electrons and
ne’s, and~2! the loss of leptons from the core by the escape
of ne’s ~‘‘deleptonization’’!. While the former is generic to
core collapse, the latter is a function of the neutrino opaci-
ties, or more specifically, the neutrino interaction cross sec-
tions on the various constituents of the core material, and a
function of the equation of state, which determines the abun-

dance distribution of the constituent electrons, protons, neu-
trons, nuclei, etc.

As a result of the steady decrease in the core entropy
during its thermonuclear evolution@8#, it is relatively cold at
destabilization—the dimensionless entropy per baryon,s
5S/nBk, is of order unity.~S and nB are the entropy and
baryon number per unit volume, respectively, andk is the
Boltzmann constant.! This has the consequence that most of
the core material is in the form of heavy nuclei. The presence
of heavy nuclei and the dearth of free nucleons results in the
isoenergetic coherent scattering ofne’s on nuclei~NAS! be-
ing the dominant neutrino opacity source, exceeding the next
most important sources@ne-neutron andne-electron elastic
scattering~NES!# by between one and two orders of magni-
tude. ~An exception to this occurs at lowne energies and
high densities, where NES~neutrino-electron scattering! can
become comparable to NAS~neutrino-nucleus isoenergetic
scattering! because of the high rate ofne ‘‘in’’ scattering
from higher energies. See below.! Table I summarizes the
relative magnitudes of the dominant opacity sources for most
conditions during core infall. The expressions for the inverse
mean free paths are taken from Bruenn@9#, except for
ne-electron scattering, which is taken from Tubbs and
Schramm@10#. The ratios are calculated using thermody-
namic conditions~s51.2, Ye50.33! typical of the infalling
core material atr.1012 g cm23. ~We mention thatn̄e’s,
nm’s, n̄m’s, nt’s, and n̄t’s are suppressed during infall, and
only appear after the matter in the outer core has been sub-
stantially heated by the bounce shock@11,12,9#.!

The largene opacity provided by NAS has a profound
effect on the evolution of the infalling core. At densities of
about 1012 g cm23, the ne mean free paths become short in
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comparison with the core scale height@9#, effectively trap-
ping the ne’s in the core for the remainder of core infall
@13–16#. This limits the drop in the lepton fractionYl ~num-
ber of leptons per baryon! from its initial value;0.46, char-
acteristic of iron, to;0.33 @9#. A value;0.18 would result
without the opacity contributions from neutral currents, and a
value ;0.02 would obtain if the core contrived to remain
transparent tone’s throughout its collapse. Also limited by
the small extent of core deleptonization is the inevitable gen-
eration of entropy that accompanies core deleptonization.
The entropy generation arises from the steep energy depen-
dence of both the electron capture rates and the neutrino
opacities, which favor the capture of high-energy electrons
and the escape from the core of low-energyne’s, with the
energy difference heating the matter. The result: The core
remains relatively cold during infall, and nuclei persist until
they merge to form nuclear matter at a transition density
r tr;1014 g cm23 ~Betheet al. @17#!. The consistency of this
scenario for core infall is assured by the continued presence
of nuclei, which guarantees that NAS remains the dominant
ne opacity source, and therefore that the opacity remains
high.

Because NAS involvesne scattering from constituents
~nucleons! with no change in the nucleon quantum states, the
superposition principle applies, viz., the resulting amplitude
is a sum over constituent amplitudes.~If the nucleon quan-
tum states are not changed, scattering on one nucleon is in-
distinguishable from scattering on another, and according to
basic quantum mechanics, the amplitudes for the two possi-
bilities add and interfere.! When these constituent amplitudes
are all in phase, the cross section, which goes as the square
of the amplitude, becomes large@18#. The magnitude of the
NAS cross section,sn1A , and its dominance during core

infall results from this application of the superposition prin-
ciple.

If sn1A
0 is the cross section that results when the ampli-

tudes for scattering from the constituent nucleons of a
nucleus are simply added up in phase, several important cor-
rections must be taken into account. They may be considered
in the static limit, i.e., the limit of zero neutrino-energy trans-
fer to the nuclei~see the Appendix for details!. @Becausee
!Mnucc

2 ~e is thene energy andMnuc is the nuclear mass!,
the energy transfer between thene and the nucleus is very
small.# The first correction arises when the correct phase
relationships of the amplitudes for scattering from the con-
stituent nucleons in the nucleus are taken into account, and
results in a multiplicative correction referred to as the
‘‘nuclear structure function’’ or ‘‘nuclear form factor.’’ At
high neutrino energies~i.e., neutrino energies for whichln

,Rnuc, whereln and Rnuc are thene wavelength and the
nuclear radius, respectively!, the nuclear form factor reduces
sn1A substantially belowsn1A

0 because of destructive inter-
ference@18,10,19,20#. This correction has been routinely ap-
plied tosn1A

0 in supernova simulations. We will refer to the
NAS cross section incorporating the nuclear form factor as
sn1A

1 .
The second correction tosn1A

0 has not been routinely
applied in supernova simulations, and arises when the sum-
mation over amplitudes is extended to other nuclei~ions!.
This again results in a multiplicative correction, which is
referred to as the ‘‘liquid structure function’’ or the ‘‘ion-ion
structure function.’’ When the positions of the ions are cor-
related~in the T→0 limit, they arrange themselves in a lat-
tice!, the ion-ion structure function reducessn1A substan-
tially below sn1A

0 at low neutrino energies~i.e., neutrino
energies for whichln.a, wherea is the interion spacing!,

TABLE I. Comparison of inverse mean free paths. Inverse mean free path ratios are computed forr
51012 g cm23, s51.2, andYe50.33. e is the neutrino energy~MeV!. G2 is the effective weak interac-
tion constant, which is equal to 5.18310244 MeV22 cm2. sin2 uW50.23~uW is the Weinberg angle!. gV is
the vector coupling constant, which is equal to 1,gA is the axial vector coupling constant, which is equal to
1.21. ni is the number density of particles of typei ~n, neutrons;p, protons; He, helium nuclei;A, heavy
nuclei; e, electrons!. Ee is the electron energy,F(Ee) electron occupancy.EF is the electron Fermi
energy.
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again because of destructive interference of the constituent
amplitudes—the constituent amplitudes in this case being the
scattering amplitudes from each ion.

The ion-ion structure function in the static approximation
is a function ofq̄5 p̄n82 p̄n , where p̄n8 and p̄n are the final
and initial neutrino momenta, respectively. We will denote
the ion-ion structure function multiplying the differential
cross sectiondsn1A

0 /dV ~or dsn1A
1 /dV! by Sion(q̄). Ex-

tracting the angular variables fromSion(q̄) and performing
the angular integrations leaves a corresponding ion-ion cor-
rection multiplyingsn1A

0 ~or sn1A
1 ! that depends on the neu-

trino energye, which we will denote bŷSion(e)&. The effect
of the ion-ion correction̂Sion(e)& on the deleptonization and
hydrodynamics of the core during infall is the subject of this
paper.

The dimensionless parameterG, which characterizes the
strength of the ion-ion correlation, is the ratio of the un-
shielded electrostatic potential energy between two neigh-
boring ions to the thermal energy, i.e.,

G5
~Ze!2

a

1

kT
, ~1!

wherea is the mean interion distance given by

a5S ~4p!

3
nionD 21/3

, ~2!

andnion is the number density of ions, all assumed to have
the same chargeZ. A glance at Fig. 1 shows that the typical
value ofG for a massive stellar core during infall is between
20 and 40, suggesting that the ions are highly correlated and
that the ion-ion structure function correction may be impor-
tant. After core bounce and initial shock propagation, the
situation changes. The bulk of the inner unshocked core is at
densities exceedingr tr , the nuclear matter transition density,
and is composed of nuclear matter withG;0.1. ~The ions in
this case are the individual protons.! The outer shocked core
is composed of hot nucleons withG;0.01. At most a very
thin cold layer of material remains at the outer edge of the

inner core, withr,r tr ; this layer is initially composed of
heavy nuclei, but is soon compressed by core contraction,
and undergoes the transition to nuclear matter. Hence, NAS,
and the ion-ion structure function correction, play an essen-
tial role in the evolution of the core only during infall.

Shortly after Freedman@18# pointed out the coherent as-
pect of NAS and its potential importance to the supernova
problem, Itoh@21# cautioned that ion-ion correlations should
be strong in the supernova core and that the ion-ion structure
function will be an important correction tosn1A

1 . He sug-
gested that the Debye-Hu¨ckel approximation to the Monte
Carlo results of Hansen@22# be used forSion(q̄), which is
valid for low neutrino energies~specifically, forqa/\,1.5,
whereq is the magnitude of the neutrino momentum trans-
fer!. The angular integrations are easily performed to obtain
^Sion(e)&. Unfortunately, the restrictionqa/\,1.5 is not sat-
isfied during core collapse. More recently, Ichimaru, Iy-
etomi, and Tanuka@23# have provided tabulations ofSion(q̄)
that can be inserted in angular integrations to obtain
^Sion(e)&.

The effect on the evolution of the core during infall of
including ^Sion(e)& in sn1A

1 was first discussed briefly by
Bowers and Wilson @12#. They found that including
^Sion(e)& greatly increases the core deleptonization. How-
ever, their equation of state at that time did not give the
correct nuclear abundance distribution@24#; consequently,
the accuracy of this result is not clear. The effect of including
^Sion(e)& was again briefly discussed by Bruenn@2#, who
used an expression constructed from Ichimaruet al.’s data.
Figure 4 in Bruenn@2# presents a comparison of the results
of core infall calculations with and without the inclusion of
^Sion(e)&, and indicates that the inclusion of^Sion(e)& leads
to a modest increase in the deleptonization of the core
@DYl520.02, whereDYl is the difference between the
trappedYl with and without the inclusion of̂Sion(e)&#. Re-
cently Horowitz @25# introduced a fitting formula for
^Sion(e)& based on his Monte Carlo calculations. Apparently
unaware of the comparison given in Bruenn@2#, he argued
that the substantial reduction insn1A

1 for low-energy neutri-

FIG. 1. The quantityG, defined in the text, at the core center for models S15s7b and S25s7b, as a function of the core-center density
during infall; theG core profile when the core center reaches 1014 g cm23.
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nos effected bŷSion(e)& would lead to a catastrophic delep-
tonization of the core during infall because higher-energy
ne’s would downscatter by NES into a low-energy,
ne-transparent ‘‘window’’ byne-electron scattering, and then
freely escape.

Because the effect on core infall of incorporating the fac-
tor ^Sion(e)& in sn1A

1 has been discussed only briefly in the
literature ~viz., Bowers and Wilson@12#, Bruenn @2#!, the
purpose of this paper is to address this issue in detail. Both
for the sake of comparison and to better understand the role
of coherent scattering and of all semileptonic neutral-current
scattering processes in core collapse, we present the results
that obtain if NAS is turned off completely, and the results
that obtain if all semileptonic neutral-current scattering pro-
cesses are turned off. In Sec. II we present comparisons of
core infall results with and without the inclusion of^Sion(e)&
in sn1A

1 , as computed by Horowitz@25#, and with other
modifications to the neutrino scattering rates. In Sec. III we
present a simple analytic model that reproduces the numeri-
cal results of Sec. III, and illustrates why the inclusion of
^Sion(e)& in sn1A

1 does not result in catastrophic core delep-
tonization. Our conclusions are given in Sec. IV. In the Ap-
pendix, we present a derivation of the NAS rate used in our
supernova code, which elucidates the origin of both the
nuclear form factor and the ion-ion structure function
^Sion(e)&.

II. NUMERICAL SIMULATIONS

To determine the effect on the infalling core’s delepton-
ization of incorporating the ion-ion structure function
^Sion(e)& in sn1A

1 , we have performed a number of numeri-
cal simulations with and without̂Sion(e)&, and with other
modifications to the neutrino opacities. The latter were in-
cluded to further elucidate the role of important neutrino
opacities in core deleptonization. The simulations were per-
formed with the supernova code described in Bruenn@9#
and Bruenn and Haxton@26#. The Lattimer-Swesty equa-
tion of state@27# was used when the following two condi-
tions were satisfied locally:~1! nB.1028 fm23 (r.1.67
3107 g cm23), wherenB is the number density of nucleons
~free and bound! per cubic Fermi, and~2! T.43109 K, i.e.,
when the temperature is high enough for matter to be in
nuclear statistical equilibrium~Thielemann, Nomoto, and
Hashimoto @28#!. The Baron-Copperstein-Kahana~BCK!
equation of state~Cooperstein@29#, Baron, Cooperstein, and
Kahana@30,31#! was used when the second condition was
satisfied, but not the first. If the second condition was not
satisfied, the nuclei were treated as ideal gas particles~with
excited states!, and a nine species nuclear reaction network
was used to follow the nuclear transmutations. Three-flavor
multigroup flux-limited diffusion was used for the neutrino
transport, with 20 energy zones spanning in geometric pro-
gression the neutrino energy range from 4 to 400 MeV. The
calculations were initiated from the 15M ( precollapse model
‘‘S15s7b,’’ representative of a small-core model, and the
25M ( precollapse model ‘‘S25s7b,’’ representative of a
large-core model, both provided by Woosley@32#. Some of
their characteristics are listed in Table II.

As listed in Table III, five simulations were performed for
each precollapse model. To describe these simulations, we

begin with a list in Table IV of the standard neutrino inter-
actions included in our supernova code. Simulations A incor-
porate all of these neutrino interactions and can be regarded
as ‘‘standard’’ simulationswithout the ion screening correc-
tion factor^Sion(e)& multiplying sn1A

1 . Simulations B can be
regarded as ‘‘standard’’ simulationswith the ion screening
factor included; therefore a comparison of simulations A and
B for a given precollapse model will show the effects on core
infall of including the ion screening correction^Sion(e)&. In
simulations C, we have included the inelasticn-A scattering
cross sections computed by Haxton and described in Bruenn
and Haxton@26#. If the effect of ^Sion(e)& is to create a
low-energy hole in the neutrino distribution, inelasticn-A
scattering will help to scatterne’s into this hole during infall,
with potentially important consequences for core delepton-
ization. The effect of̂ Sion(e)& is to reducesn1A

1 at low
neutrino energies, and simulations D show the consequences
of settingsn1A

1 to zero altogether. Finally, all semileptonic
neutral-current neutrino interactions are set to zero in simu-
lations E, almost taking us back to Colgate and White@33#
before neutral-current effects were incorporated in supernova
simulations.~Neutral-current effects give only a slight modi-
fication to the pure lepton interactions, such asn-e2 scatter-
ing, which is why in simulations E we are not taken back
completely to Colgate and White@33#.!

The effect of includinĝ Sion(e)& in sn1A
1 is to dramati-

cally reducesn1A
1 at low neutrino energies. This is shown in

Fig. 2, where, for selected central densities of simulations B,
^Sion(e)& at the core center is given as a function of neutrino
energy.^Sion(e)& causes a reduction insn1A

1 at the lowest
neutrino energy~4 MeV! of almost an order of magnitude for
r51011 g cm23 to well over two orders of magnitude for
densities between 1013 and 1014 g cm23.

The implications of this reduction for neutrino transport
during core infall can be ascertained by considering its effect
on the transport optical depth, defined by

t transport~e!5E
0

Rsurface dr

l transport~r ,e!
. ~3!

Herel transport(r ,e) relates in the diffusion approximation the
first angular moment of the neutrino distribution function
@which is proportional to the neutrino fluxF(e)# to the gra-
dient of the zeroth angular moment@which is proportional to
the neutrino energy densityu(e)# by the diffusionlike equa-
tion

F~r ,e!5
cl transport~r ,e!

3

]u~r ,e!

]r
. ~4!

TABLE II. Precollapse models. rcenter is the central density.
scenter is the central dimensionless entropy per nucleon.Ye center is
the central electron fraction.MFe is the mass of the ‘‘iron’’ core
~i.e., Ye appreciably less than 0.5!.

Model rcenter~g cm23! scenter Ye center MFe (M ()

S15s7b 9.053109 0.779 0.4224 1.287
S25s7b 3.133109 0.993 0.4300 1.785
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In our supernova code, the contribution of NAS to 1/l transport

is given by the coefficient ofc (1) in Eq. ~A45!.
The effect of^Sion(e)& on the transport optical depths at

selected densities is shown for model S25s7b in Figs. 3~a!–
3~d! by comparing the results of simulations A and B. Also
shown in these figures are the transport optical depths for
simulations D and E. When̂Sion(e)& is included, the total
transport optical depth from the core center to the surface
remains small until the central density exceeds 1012 g cm23,
providing a low-energy window for neutrinos to escape.
Note that at all central densities the reduction int transport
when^Sion(e)& is included is less than it would be ift transport
were simply multiplied bŷ Sion(e)&, i.e.,

t transport~e!@simulation B]

t transport~e!@simulation A#
.^Sion~e!&. ~5!

There are two reasons for this:~1! t transport is an integral
quantity, receiving contributions~in diminishing amounts! as
we integrate from the core center to the surface.^Sion(e)& is
an increasing function of decreasing density~e.g., see Fig.
2!; the value of ^Sion(e)& at the core center is therefore
smaller than its average value along the radial path from the
core center to the surface. For central densities between 1011

and 1012 g cm23, this is the principal reason for inequality
~5!. Turning NAS off altogether~simulation D! results in a
substantial additional reduction int transport for the above
range of central densities, becausesn1A is zero throughout
the core, rather than just very small near the core center.~2!
At high densities (1013– 1014 g cm23), the opacity due to

NES at the lowest neutrino energies is comparable to that of
NAS. This is because the contribution of NES to 1/l transport
goes as

1

l transport
U

n-e2

5
2p

c~2p\c!3 E
0

`

de8$F0,NES
in ~e,e8!c0~e8!

1F0,NES
out ~e,e8!@12c0~e8!#%, ~6!

wherec0(e) is the zeroth angular moment of the neutrino
distribution functions, andF0,NES

in (e,e8) and F0,NES
out (e,e8)

are the zeroth angular moments of the ‘‘in’’ and ‘‘out’’ scat-
tering kernels, respectively@9#. The very high rate ofne
‘‘in’’ scattering at the low end of thene energy spectrum
results in the large contribution of NES tot transport. @This
somewhat counterintuitive result can be understood by refer-
ring to Eq. ~4!. A large value forF0,NES

in tends to produce
both a larger magnitude and a greater isotropization of the
neutrino distribution. This increases the neutrino energy den-
sity u(r ,e) more than the fluxF(r ,e), and therefore tends to
decreasel transport, as defined by Eq.~4!, thereby increasing
t transport.# In fact, at high densities and lowne energies, NAS
no longer dominatest transport, and the effect ont transport of

FIG. 2. The angle-averaged ion screening correction^Sion(e)& at
the core center for selected central densities, as a function of neu-
trino energy, for models S15s7b and S25s7b.

TABLE III. Simulations.

Simulation Neutrino interactions modified

A: No ion screening sn1A as given by Eq.~A49!
i.e., without the inclusion of̂Sion(e)&

B: Ion screening~Horowitz! sn1A as given by Eq.~A51! with ^Sion(e)& given
by Horowitz @25#

C: Ion screening~Horowitz! and
n-nucleus inelastic scattering

Simulation B with the additional inclusion of
n-nucleus inelastic scattering as described in

Bruenn and Haxton@26#

D: No n-nucleus scattering sn1A is set to zero
E: No semileptonic neutral

current scattering
Scattering cross sections ofn’s with nucleons, free

or bound~i.e., interactions c–f in Table IV!,
are set to zero

TABLE IV. Neutrino interactions. n refers to a neutrino or
antineutrino of any flavor.

a: ne1n
e21p electron neutrino–free neutron absorption
b: n̄e1p
e11n electron antineutrino–free proton absorption
c: n1n
n1n neutrino–free neutron scattering
d: n1p
n1p neutrino–free proton scattering
e: n1a
n1a neutrino–a particle scattering
f: n1A
n1A neutrino–heavy nucleus scattering~NAS!

g: n1e2
n1e2 neutrino–electron scattering~NES!

h: n1e1
n1e1 neutrino–positron scattering
i: n1 n̄
e21e1 neutrino–antineutrino pair annihilation
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the reduction insn1A
1 due to ^Sion(e)& is correspondingly

diminished. Figures 3~a!–3~d! also show that a further reduc-
tion in t transportat lowne energies occurs when NAS is turned
off, and again when all semileptonic neutral-current scatter-
ing is turned off. These additional reductions int transportarise
not so much because of corresponding reductions in the low-
ne-energy coherent scattering and semileptonic neutral-
current scattering cross sections, but because of the impor-
tance of NES at lowne energies~and high densities!. Turn-
ing off NAS and then all semileptonic neutral-current
scattering reduces the opacities primarily at the intermediate
and highne energies~they are already small at lowne ener-
gies! and causes the core to undergo substantially more de-
leptonization during infall. With fewer electrons remaining
to contribute to NES at lowne energies,t transport is corre-
spondingly reduced there.

For various modifications to the neutrino opacities, Figs.
4~a!, 4~b!, 5~a!, and 5~b! show the consequences for core
deleptonization during the core collapse of models S15s7b
and S25s7b. Our main conclusion follows from a comparison
of simulations A and B, from which it is evident that the
effect of including^Sion(e)& is a rather mild reduction of the
trapped lepton fractionYl . This reduction inYl is about
0.015 for both models. Including then-A inelastic scattering
computed by Haxton@26# reduces the trappedYl by an ad-
ditional negligible amount. Substantial reductions inYl occur
if NAS is turned off completely, and particularly if all semi-
leptonic neutral-current scattering is turned off. This last re-
sult is the modern equivalent of the original Colgate and
White @33# calculation. It shows that modern neutrino trans-
port, with late 1960s neutrino physics, leads to a trapped
lepton fraction of 0.18 rather than a value close to zero as

FIG. 3. Thene transport optical depths along a radial path from the core center to the surface for model S25s7b, as computed in
simulations A, B, D, and E when the central density is~a! 1011 g cm23, ~b! 1012 g cm23, ~c! 1013 g cm23, and~d! 1014 g cm23.
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suggested by Colgate and White~@33#, p. 651!.
It might be suggested that the lack of extensive additional

deleptonization when ion screening corrections are included
results because the low-energy neutrino states, which are the
states most affected by ion screening, are simply not popu-
lated. Several neutrino processes are important in filling the
low-energy ne window during core collapse. Figures 6~a!
and 6~b! show ‘‘net’’ production ofne’s ~i.e., gains minus
losses! for the most importantne production processes, at
densities of 1011 and 1012 g cm23, respectively. With the ex-
ception at 1011 g cm23 at the lowest neutrino energies, NES

is the dominant process, followed byn-A inelastic scattering.
The net production of low-energyne’s by NES is sufficiently
rapid that the low-energy window is completely filled shortly
after the central density reaches 1012 g cm23. This is shown
for simulations A, B, and E by Figs. 7~a!–7~c!, respectively,
which show the angle-averaged neutrino occupation number
c (0) at selected densities during infall. At 1012 g cm23, c (0)

is somewhat reduced at low energies when^Sion(e)& is in-
cluded @simulation B, Fig. 7~b!# relative to its values when
^Sion(e)& is omitted@simulation A, Fig. 7~a!#, whereas at the

FIG. 4. The core-center lepton fraction as a function of central
density during infall, in each of the five simulations, for~a! model
S15s7b and~b! model S25s7b. FIG. 5. The lepton fraction profiles in each of the five simula-

tions when the central densities reach 1014 g cm23 for ~a! model
S15s7b and~b! model S25s7b.
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same central density,c (0) is substantially reduced when all
semileptonic neutral-current scattering is turned off@simula-
tion E, Fig. 7~c!#. However, by 1013 g cm23, the low-energy
ne states are completely filled in all simulations. Therefore
there must be another reason for the lack of additional de-
leptonization when ion screening corrections are included.
The fundamental reason, which will be elucidated in the next
section by our analytic model, is this: Even if all the neutrino
states below a low-energy threshold were populated and
these neutrinos were allowed to freely escape from the core,
there simply would not be enough states in this low-energy

window to result in a significant reduction in the core lepton
fraction.

Figures 8~a! and 8~b! show the entropy of the central
zones of models S15s7b and S25s7b, respectively, as a func-
tion of central density during collapse. The entropy produc-

FIG. 6. The netne production per state~i.e., gains minus losses!
at the core center, as a function ofne energy, resulting fromne

absorption and emission on free nucleons, elastic scattering on elec-
trons, and inelastic scattering on nuclei. These were computed in
simulation C for model S25s7b, when the central density reached
~a! 1011 g cm23, and~b! 1012 g cm23.

FIG. 7. The angle-averagedne occupation number at the core
center at select central densities, as a function ofne energy, for
model S25s7b in~a! simulation A,~b! simulation B, and~c! simu-
lation E.
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tion during core infall has been discussed by a number of
people~Arnett @34#, Epstein and Pethick@35#, Van Riper and
Lattimer @36#, Bludman, Lichtenstadt, and Hayden@37#,
Bruenn @9#!. No shocks are present, and the change in the
matter entropy is due almost entirely to weak interactions.
These, unlike the strong and electromagnetic interactions, are
not equilibrated during infall. The entropy production de-
pends on the number ofne’s produced per baryon, and in-
creases as the energy of thene’s emitted from the core de-
creases†see, e.g., Bruenn@9#, Eqs. ~3.13!–~3.15!‡. The
sensitive dependence of the free-proton abundance on the

entropy means that the core entropy change during infall has
an important effect on core deleptonization if this entropy
change occurs before neutrino trapping. Entropy generation
and deleptonization are linked in a positive feedback loop:
Entropy generation increases the free-proton fraction, which
increases the electron capture rate, which increases the core
deleptonization, which, completing the loop, produces more
entropy. This positive feedback loop is quenched once the
neutrinos become trapped. The transport optical depths
shown in Figs. 3~a!–3~d! demonstrate that, before core
bounce, these optical depths become large for all neutrino
energies and for all simulations. Therefore neutrinos of all
energies become trapped before core bounce, even those in
simulations E in which all semileptonic neutral-current scat-
tering is turned off. The trapping and equilibration of neutri-
nos with matter at high densities is evident for all simula-
tions in Figs. 8~a! and 8~b!, as the entropy versus density
curves level off at high densities.

Comparisons of the entropy trajectories given by simula-
tions B ~or C! with those given by A show that the inclusion
of ^Sion(e)& leads to considerably increased entropy produc-
tion during infall, despite the rather mild increase in core
deleptonization. This is because the inclusion of^Sion(e)&
increases the tendency for low-energyne’s to escape. The
result is a lowering of the mean energy of the emittedne’s
from 9.47 to 9.11 MeV for model S15s7b, whenrcenter
51012 g cm23, and at a similar epoch, from 9.33 to 9.28
MeV for model S25s7b. On the other hand, for simulations
D and E, the mean energy of the emittedne’s for model
S15s7b increases to 11.27 and 11.34 MeV, respectively, and
for model S25s7b to 10.72 and 10.81 MeV, respectively. The
increased entropy production exhibited by these latter simu-
lations is due entirely to increased core deleptonization.

The consequence for core hydrodynamics of including
^Sion(e)& is shown in Table V, where the quantityM shock is
given for each simulation. HereM shock is the mass enclosed
by the bounce shock when it forms. The location at which it
first forms is defined as the radius at which the dimensionless
matter entropy per baryon first achieves a value of 3. The
larger the value ofM shock, the greater the strength of the
shock, and the less ironlike material it must encounter and
dissociate before it propagates out through the rest of the
core. The value ofM shockis therefore an indicator of how far
out the shock will propagate before stalling. It is seen from
Table V that includinĝ Sion(e)& reducesM shockby 2.3% and
5.7% for models S15s7b and S25s7b, respectively. The in-
clusion of inelastic neutrino-nucleus scattering reduces
M shockfurther by;1%. Substantial reductions inM shockoc-
cur only when neutrino-nucleus elastic scattering is turned
off, and particularly when semileptonic neutral currents are
turned off.

We summarize this section by noting that the inclusion of
^Sion(e)& in the neutrino-nucleus scattering opacity has a
mild, rather than a dramatic, effect on core hydrodynamics.
Why the core does not deleptonize more when^Sion(e)& is
included, with greater consequences for the subsequent core
hydrodynamics, is not becausene’s are not rapidly down-
scattered into the low-energy window created by^Sion(e)&; it
is because the low-energy window affected by^Sion(e)& is
too narrow. We will demonstrate this in the next section by
introducing a simple model.

FIG. 8. The core-center dimensionless entropy as a function of
central density during infall, in each of the five simulations, for~a!
model S15s7b and~b! model S25s7b.
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III. ANALYTIC MODEL

To elucidate the effect ion screening corrections have on
the deleptonization of a stellar core during infall, we develop
a simple analytic model. We begin by deriving a general
expression for the change in the mean core lepton fraction
^Yl(t)& within a fixed radiusR at timet as a result of includ-
ing ion screening corrections.^Yl(t)& is given by

^Yl~ t !&[
Nl~ t !

NB~ t !
5

Nl i
1E

0

t

Ṅl~ t8!dt8

NBi
1E

0

t

ṄB~ t8!dt8

, ~7!

whereNl(t) and NB(t) are the lepton and baryon numbers
inside R at time t; Nl i

and NBi
are the initial lepton and

baryon numbers insideR, and Ṅl(t8) and ṄB(t8) are the
rates of inflow throughR of leptons and baryons. We decom-
pose Ṅl(t8) to Ṅl

~in!(t8)2Ṅl
~out!(t8)2Ṅl ~ion-ion!

~out! (t8), where
Ṅl

~in!(t8) is the rate at which leptons are advected inward
through R with the matter,Ṅl

~out!(t8) is the rate at which
neutrino transport without ion screening causes leptons~i.e.,
ne’s minus n̄e’s! to flow out of R, and Ṅl ~ion-ion!

~out! (t8) is the
additional rate of lepton flow out ofR when ion screening is
included. To simplify the analysis, we assume that the hy-
drodynamics is the same with or without ion screening.~This
is justified a posteriori by the small effect ion screening
corrections will be shown to have on core deleptonization.!
Use of the above decomposition in Eq.~7! gives

^Yl~ t !&5

Nl i
1E

0

t

@Ṅl
~in!~ t8!2Ṅl

~out!~ t8!2Ṅl ion-ion
~out! ~ t8!#dt8

NBi
1E

0

t

ṄB~ t8!dt8

.

~8!

From Eq. ~8! it is clear that the additional deleptonization
due to ion screening is given by

^DYl~ t !&5

2E
0

t

Ṅl ion-ion
~out! ~ t8!dt8

NBi
1E

0

t

NB~ t8!dt8

. ~9!

Equation~9! can be written in a form that is useful for
approximation. We note first that, if timet850 corresponds
to the initiation of core collapse andt85t to core bounce,
and if R is chosen to be fixed~time independent! at the mean
ne-sphere radiusRne

during core collapse, the mean density

^r& inside Rne
increases from;1010 g cm23 at t50 to

;1014 g cm23 at timet. BecauseRne
is fixed,NB scales with

^r&; thereforeNBi
!NB(t)5NBi

1*0
t ṄB(t8)dt8, and NBi

is

negligible in comparison with*0
t ṄB(t8)dt8, and will be

dropped. We next replace the ratio of the integrals in Eq.~9!
by the ratio of the time-averaged values of the integrands.
The result is

^DYl~ t !&.

2E
0

t

Ṅl ion-ion
~out! ~ t8!dt8

E
0

t

ṄB~ t8!dt8

5
2^Ṅl ion-ion

~out! &

^ṄB&
. ~10!

An approximation for̂ DYl(t)& will now be obtained by de-
riving numerical estimates of̂Ṅl ~ion-ion!

~out! & and ^ṄB&.
An estimate of̂ ṄB& can be obtained by considering the

inflow of baryons throughRne
, i.e.,

^ṄB&5
r~Rne

!

mB
v4pRne

2 5
r~Rne

!

mB

1

2
A2Gm~Rne

!

Rne

4pRne

2

51.131045@m~Rne
!/M (#1/2Rne50

21/24pRne

2 , ~11!

where we have usedr(Rne
)5531011 g cm23, and half the

free-fall velocity for v, in accordance with the results of
similarity solutions for the infall of the outer core@7#. During
core infall, the ne sphere forms at a mean radiusRne

.50 km and a mean densityr(Rne
).531011 g cm23. This

radius and density appear to be insensitive to both the pre-
collapse model and the time during infall@38#.

To estimatê Ṅl ~ion-ion!
~out! &, we note that ion screening’s ef-

fect is to greatly reduce thene-nucleus scattering cross sec-
tion for low-energyne’s. We therefore make the assumption
that the consequence of including ion screening is to allow
all thene’s with ene

,enemax to rapidly escape from the core.

To estimateenemax, we note that the mainne opacity source
during infall is NAS, which corresponds to the transport
mean free path derived by Brown, Bethe, and Baym@39#;

l t5
15.2

ene10
2 r12AC2^Sion~e!&

km, ~12!

whereene105ene
/(10 MeV). The mean density below thene

sphere,r12, is given by

r1253.8
m~Rne

!/M (

Rne50
3 , ~13!

where r125r/(1012 g cm23), Rne505Rne
/(50 km), and

m(Rne
) is the time-dependent mass enclosed withinRne

. C2

is the weak coupling strength, which forA5120 and Z

TABLE V. Mass enclosed by shock.

Simulation M shock,
S15s7b

M shock,
S25s7b

A: No ion screening 0.6008 0.6425
B: Ion screening~Horowitz! 0.5868 0.6061
C: Ion screening~Horowitz! and
n-nucleus inelastic scattering

0.5804 0.5988

D: No n-nucleus scattering 0.4412 0.4480
E: No semileptonic neutral
current scattering

0.3506 0.3565
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540 is 0.0756~A andZ of the typical heavy nucleus increase
slowly towards the center withA;120 andZ;40 as repre-
sentative means@27#!. ^Sion(e)& is the angle-averaged ion
screening correction to thene-nucleus scattering cross sec-
tion, and is approximated by Horowitz@25# using the follow-
ing function ofj andG:

^Sion~e!&5
1

11expS 2(
i 50

6

b i~G!j D , ~14!

wherej is the ratio of the mean ion-ion separationa to thene
Compton wavelength, i.e.,

j5a
ene

\c
, ~15!

where a is given by Eq.~2!. G is the ratio of the ion-ion
Coulomb potential to the thermal energy, and is given by Eq.
~1!, and theb i are specified functions ofG, obtained by
least-squares fits of̂Sion(e)& to Monte Carlo data. A glance
at Fig. 9 shows that̂Sion(e)& is a very sensitive function of
j, with ^Sion(e)&!1 for j&1, if G*10.

To determineene max, we expressene 10 in Eq. ~12! in

terms ofj and the meanr andA below Rne
, and determine

the value ofj below whichne’s can freely escape from the
core.~The escape criterion will be expressed in terms ofl t.!
Solving Eq. ~15! for ene

, and using Eqs.~2! and ~13!, we
obtain

ene 1050.544S r12

A120
D 1/3

j50.85
1

Rne50
S m~Rne

!/M (

A120
D 1/3

j,

~16!

whereA1205A/120. Using Eq.~16! in Eq. ~12! gives

l t5
0.607Rne50

5

@m~Rne
!/M (#5/3A120j

2^Sion~e!&
km. ~17!

We now assert that neutrinos will rapidly escape from the
core if

l t*zRne
, ~18!

wherez is of order unity. Inequality~18! will be satisfied for
j,jmax, wherejmax is obtained by treating inequality~18!
as an equality. The ion screening correction^Sion(e)& de-
pends onj andG, defined in Eqs.~15! and~1!, respectively.
We observe from Fig. 1 that the quantityG increases with
increasing density during core infall, with a typical value
being ;35. ChoosingG535, the solution of Eq.~18! for
jmax, with Rne5051, m(Rne

)/M (50.7, A12051, givesjmax

50.933 and 1.486 for representative values ofz of 1 and
1/10, respectively. From Eq.~16!, values of 0.933 and 1.486
for jmax give ene max57.0 and 11.2 MeV, respectively.

If we assume that the effect of ion screening is to allow all
ne’s with ene

,ene max to freely escape, and assume further

that ne downscattering on electrons is sufficiently rapid to
completely populate thesene states belowRne

, the radiation

of ne’s with ene
,ene max will occur at the blackbody rate;

i.e., their number flux will be equal to (c/4)nne
, with the

number density ofne’s with ene
,ene max given by the com-

pletely degenerate maximum,nne
5(4p/3)@ene max

3 /(hc)3#.

This provides an upper bound for^Ṅl ion-ion
~out! &, given by

^Ṅl ion-ion
~out! &5

c

4
nne

4pRne

2 5
c

4

4p

3

enemax
3

~hc!3 4pRne

2

51.6431043S ene max

10 MeV
D 3

4pRne

2

5H 5.62310424pRne

2 , z51

2.30310434pRne

2 , z5 1
2

. ~19!

Using Eqs.~19! and~11! in Eq. ~10! and takingRne5051 and

m(Rne
)/M (50.7 gives

^DYl~ t !&.H 20.0061, z51

20.025, z5
1

10
. ~20!

These two values bound our numerical results presented in
the preceding section.

FIG. 9. The angle-averaged ion screening correction^Sion(e)&
as a function ofj, the ratio of thene Compton wavelength to the
mean ion-ion separation, andG, the ratio of the ion-ion Coulomb
potential energy to the ion thermal energy.
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IV. SUMMARY AND CONCLUSIONS

On the basis of detailed numerical simulations of core
infall presented in Sec. II and the simplified analytic model
constructed in Sec. III, we draw the following conclusions.

~1! ^Sion(e)& does in fact cause a drastic reduction in the
NAS cross section,sn1A(e), for low neutrino energies@i.e.,
for j,1, cf., Eq.~15! and Figs. 2 and 9#.

~2! The low-energy window created by the reduction in
t transport(e) from ion screening is efficiently filled byne’s
downscattered by NES. Byr51012 g cm23, there is very
little difference between the population ofne’s at the lowest
energies, with or without the inclusion of^Sion(e)&, and in
both cases, the occupation of states is close to unity.

~3! The additional deleptonization resulting from the in-
clusion of ^Sion(e)& is relatively small. We obtain a reduc-
tion in the trapped lepton fractionYl of about 0.015 for both
the 15M ( and the 25M ( models.

~4! A simple analytic model demonstrates that the unex-
pectedly small additional deleptonization that results when
^Sion(e)& is included is a consequence of the restricted phase
space in the low-energy window; i.e., ift transport(e) is set to
zero in the low-energy window, and NES is assumed suffi-
ciently rapid to completely populate it withne’s, the delep-
tonization that results is small and in accord with the delep-
tonization obtained in our detailed numerical simulations.

~5! The inclusion of^Sion(e)& reduces the mass initially
enclosed by the bounce shock when it first forms, by 2.3%
and 5.7% for the 15M ( and 25M ( models, respectively.
This weakens the bounce shock and causes it to stagnate at
smaller radii, but the effect is insignificant.
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APPENDIX

We present here a derivation of the neutrino-nucleus elas-
tic scattering cross section as it appears in our supernova
code. The purpose is to include many of the details omitted
from previous work, to make clear the approximations made
in the final expression used in our supernova code, and to
elucidate the origin and physical significance of both the
nuclear and the ion static structure functions. Previous work
begins with the recognition by Freedman@18# that the am-
plitudes for neutrino scattering on the nucleons in a nucleus
should combine coherently. He calculated the cross section
for neutrino scattering on spinless,Z5A nuclei ~for which
only the isoscalar, vector current contributes!, and suggested
its importance to the neutrino transport attending stellar col-
lapse. Tubbs and Schramm@10# extended the neutrino-
nucleus elastic scattering cross section to spinless,ZÞA nu-
clei by adding the isovector, vector contribution to the

nuclear current. Both of the above cross sections included a
nuclear form factor correction that reduces the cross section
at high neutrino energies. Scattering kernels for neutrino
transport codes based on the above formalism were com-
puted by Yueh and Buchler@19# and Bruenn@9#. A clear
discussion of coherent nuclear scattering and the nuclear
form factor is given in Freedman, Schramm, and Tubbs@20#.

We assume a medium occupying a volumeV and consist-
ing of Nnuc identical nuclei of chargeZ and mass numberA,
immersed in a uniform electron sea. The transition rate for
neutrino-nucleus scattering from a definite initial to a definite
final state can be written in the low-energy~low-neutrino-
energy! limit as an effective current-current interaction given
by

wf i5
2p

\
d~Enuc f2Enuci1En f2En i !uM u2, ~A1!

where

M5
GLm

&
K C fU(

n51

Nnuc

(
j 51

A

Ĵnucm
jn exp@~ i /\!q̄• r̄ jn#UC i L , ~A2!

C is the state of the medium,Ĵnucm
jn is the nuclear neutral

current operator for thej th nucleon of thenth nucleus,Lm is
the lepton matrix element, given by

Lm[^n f uL̂mun i&5
c2

VAEn fEn i

ūne
~ p̄n f !g

m~12g5!une
~ p̄n i !,

~A3!

and G is the effective weak coupling constant~G58.99
310244 MeV cm3 @40#!. The spatial dependence,
exp (iq̄•r̄ jn) , of the neutrino plane wave states has been fac-
tored out ofLm and appears explicitly in Eq.~A2!. The quan-
tity q̄5 p̄n i2 p̄n f is the momentum transfer from the neutrino
to the medium, and is ac-number. The quantityr̄ jn in Eq.
~A2! and in what follows is an operator.

To constructĴnucm
jn , we use the impulse approximation

~Commins and Bucksbaum@41#!, and treat the nucleus as a
collection of free independent nucleons. This justifies writing
Ĵnucm as a sum of single nucleon operators, with each term,
Ĵnucm

jn , given by†e.g., Weinberg@42#, Eq. ~2.20!‡

Ĵnucm
jn 5 Ĵ3m

jn 2sin2 uWĴEMm
jn , ~A4!

where Ĵ3 m is the third component of the isovector current
operator ofb decay, andĴEMm is the electric current opera-
tor. In the low-energy limit,Ĵnucm

jn is given by

Ĵnuc m
jn 5gm

jn@CV0I jn1 1
2 CV1t3

jn2g5
jn~CA0I jn1 1

2 CA1t3
jn!#,

~A5!

where I jn and t3
jn are the identity and third component of

isospin operators in the neutron-proton isospin space. The
form factorsCV0 , CV1 , CA0 , CA1 in theq50 (q5uq̄u) limit
are given in the standard model by

CV052sin2uW , CV15gV22 sin2uW , CA050,

CA15gA , ~A6!
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with gV51, gA51.23, and sin2uW50.23. Thej summation in
Eq. ~A2! is over all nucleons in a given nucleus, and then
summation is over theNnuc nuclei in the scattering medium.

Analogous to the adiabatic or Born-Oppenheimer ap-
proximation used in condensed matter physics~e.g., Seitz
@43#!, we will assume that the nuclei are sufficiently far apart
that the nucleons in a given nucleus are not significantly
affected by the presence of other nuclei. We therefore as-
sume that the state of the scattering medium can be decom-
posed into a product of states describing each nucleus and a

state describing the spatial correlations among the nuclei,
i.e.,

C~ r̄ 11,...,r̄ ANnuc
!5c~R̄1 ,...,R̄Nnuc

!f1~ r̄ 118 ,...,r̄ A18 !•••fNnuc

3~ r̄ 1Nnuc
8 ,...,r̄ ANnuc

8 !, ~A7!

whereR̄n locates the center of mass of thenth nucleus, and
r̄ jn8 5 r̄ jn2R̄n locates the position of thej th nucleon of the
nth nucleus relative to the latter’s center of mass. Substitut-
ing Eq. ~A7! into Eq. ~A2! gives

M5
GLm

&
(
n51

Nnuc

^c f uexp@~ i /\!q̄•R̄n#uc i&K f f 1•••f f NnucU(j 51

A

Ĵnucm
jn exp@~ i /\!q̄• r̄ jn8 #Uf i1•••f iNnucL

5
GLm

&
(
n51

Nnuc

^c f uexp@~ i /\!q̄•R̄n#uc i&K f f nU(
j 51

A

Ĵnucm
jn exp@~ i /\!q̄• r̄ jn8 #Uf inL

5
GLm

&
K c fU(

n51

Nnuc

exp@~ i /\!q̄•R̄n#Uc i L K f fU(
j 51

A

Ĵnucm
j exp@~ i /\!q̄• r̄ j8#Uf i L , ~A8!

where in the last step we have assumed thatf f 15f f 25•••
5f f N5f f andf i15f i25•••5f iN5f i , i.e., that all nuclei
are identical, and we have dropped the subscriptsn because
the expectation value of the operator should be independent
of which nucleus is being considered.

We now take the implied sum over the neutrino spins in
the modulus squared to get

(
spins

LaL* b5
2c2

V2En fEn i
@pn f

a pn i
b 2gab~pn f•pn i !1pn f

b pn i
a

2 ipn f spn i te
satb#. ~A9!

Denoting ^f f u( j 51
A Ĵnucm

j exp@(i/\)q̄•r̄ j8#ufi& by ^Jnucm&, we
perform the inner product of the lepton currentsLaL* b and
the nuclear currentŝJnuca&^Jnucb&* , and then take the av-
erage over the angle appearing in the spatial component of
the inner product, which is equivalent to averaging over the
nuclear spin projection; we obtain

wf i5
2p

\
d~Enuc f2Enuci1En f2En i !

G2

V2

3$u^Jnuc
0 &u2@11p̂n f•p̂n i #1u^J̄nuc&u2@12 1

3 p̂n f•p̂n i #%

3ZK c fU(
n51

Nnuc

exp@~ i /\!q̄•R̄n#Uc i L Z2, ~A10!

whereJnuc
0 andJ̄nuc are the time and space components of the

nuclear 4-current, andp̂n f and p̂n i are unit vectors in the
direction of the final and initial neutrino momenta, respec-
tively; i.e., p̂n f5cp̄n f /En f and p̂n i5cp̄n i /En i . Note that the
cross terms in Eq.~A10! vanish as a result of the spin pro-
jection averaging.

The nonrelativistic approximation is appropriate for
nucleons in the nucleus. In this approximation, the small
components of the nucleon spinors, which areO(v/c), are
neglected; the spinor operators in Eq.~A4! assume the limits
g0→I , g0g5→0, g i→0, and g ig5→s i . Then ^Jnuc

0 & and
^ J̄nuc& become

^Jnuc
0 &5K f fU(

j 51

A

~CV0I j1 1
2 CV1t3

j !exp@~i/\!q̄•r̄ j8#UfiL,

~A11!

and

^J̄nuc&52Kf fU(
j 51

A

~CA0I j1 1
2 CA1t3

j !s̄ exp@~i/\!q̄•r̄ j8#Ufi L .

~A12!

To evaluateu^Jnuc
0 &u2 and u^J̄nuc&u2 in Eq. ~A10!, we as-

sume that the scattering is elastic, i.e., that the nuclear state
uf i& does not change as a result of the scattering. The nuclear
recoil will be incorporated inuc f&. Consider first Eq.~A11!
for ^Jnuc

0 &. We rewrite this equation in terms of the proton
and neutron ‘‘projection’’ operatorsjp

j 5 1
2 (I j1t3

j ) and jn
j

5 1
2 (I j2t3

j )—i.e., jp(n)
j uf i&5uf i& for protons ~neutrons!,

and zero otherwise—to get

^Jnuc
0 &5K f iU(

j 51

A

~CVpjp
j 1CVnjn

j !exp@~ i /\!q̄• r̄ j8#Uf i L
5CVpK f iU (

protons
exp@~ i /\!q̄• r̄ j8#Uf i L

1CVnK f iU (
neutrons

exp@~ i /\!q̄• r̄ j8#Uf i L
5CVpZFp~ q̄!1CVnNFn~ q̄!, ~A13!
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whereCVp5CV01 1
2 CV1 andCVn5CV02 1

2 CV1 , and where

ZFp~ q̄!5K f iU (
protons

exp@~ i /\!q̄• r̄ j8#Uf i L ,

NFn~ q̄!5K f iU (
neutrons

exp@~ i /\!q̄• r̄ j8#Uf i L . ~A14!

Fp(q̄) andFn(q̄) are the proton and neutron form factors for
the composite nuclear target. Both are simply the superposi-
tion of unit amplitudes with phase factors that account for
the relative phases of the scattering from the individual pro-
tons and neutrons in the nucleus, each at a different coordi-
nater̄ j8 . Expressions for the form factors in terms of nuclear
parameters can be obtained by considering their Fourier
transforms. Thus

1

~2p\!3 E d3q̄ exp@2~ i /\!q̄• r̄ #Fp~ q̄!

5
1

Z~2p\!3 E d3q̄ exp@2~ i /\!q̄• r̄ #

3K f i
pU (

protons
exp@~ i\!q̄• r̄ j8#Uf i

pL
5

1

Z K f i
pU (

protons
d3~ r̄ 2 r̄ j8!Uf i

pL 5rp~ r̄ !, ~A15!

whererp( r̄ ) is the normalized proton density in the nucleus.
It therefore follows thatFp(q̄) is the Fourier transform of
rp( r̄ ). By the same argument,Fn(q̄) is the Fourier transform
of rn( r̄ ), the normalized neutron density in the nucleus. We
will assume that

Fp~ q̄!5Fn~ q̄!5F~ q̄!. ~A16!

While the best fit to the proton distribution, based on elec-
tron scattering data, is the two-parameter ‘‘Fermi-Dirac’’
distribution~Hofstadter@44#!, an approximation forr( r̄ ) that
correctly reproduces the nuclear mean square radius and per-
mits closed form expressions for the final scattering rates is
the Gaussian

r~ r̄ !5
1

~ 2
3 p^r 2&!3/2

exp@2~3/2!~r 2/^r 2&!# ~A17!

for which

F~ q̄!5exp~2buq̄u2!, ~A18!

where b5(1/\2)(r 2/6), and uq̄u252pn f•pn i52(en
2/c2)(1

2cosu), whereu5cos21 p̂n f•p̂n i is the scattering angle~i.e.,
the angle of the final neutrino momentum relative to the
initial neutrino momentum!. The result for̂ Jnuc

0 & from Eqs.
~A13! and ~A18! is

^Jnuc
0 &5S CV0A1CV1

Z2N

2 Dexp@22b~en
2/c2!~12cosu!#.

~A19!

Now consider̂ J̄nuc& given by Eq.~A12!. This part of the
matrix element is usually neglected in comparison with
^Jnuc

0 &. The basic reason is that spin is the additive quantum
number for axial vector coupling, and the final cross section
is proportional toJ(J11), whereJ is the nuclear spin of the
target. This is unlike the vector coupling case, where baryon
number is the additive quantum number. SinceJ(J11)
!A2, coherent effects are minimal for axial vector coupling.
Additionally, the coefficientCA0 is zero in the standard
model, andCA1 will vanish for J50 ~ground state! nuclei.
For these reasons we have set the contribution of^J̄nuc& to
the neutrino-nucleus scattering rate to zero in our supernova
code.

Using Eq.~A19! in Eq. ~A10!, and settinĝ J̄nuc& to zero,
we obtain

wf i5
2p

\
d~Enuc f2Enuci1En f2En i !

C2

V2 ~11cosu!

3exp@24b~En
2/c2!~12cosu!#

3ZK c fU(
n51

Nnuc

exp@~ i /\!q̄•R̄n#Uc i L Z2, ~A20!

where

C25G2A2UCV01CV1

Z2N

2A U2

. ~A21!

The effect of the nuclear form factor

F2~q!5exp@24b~En
2/c2!~12cosu!# ~A22!

in Eq. ~A20! is to reduce the transition rate at high neutrino
energies. This reduction will occur, for a given scattering
angleu, when the amplitudes for scattering from the various
nucleons in a nucleus interfere destructively with each other.
~This occurs at high enough neutrino energy, when the neu-
trino wavelength becomes comparable to the nuclear radius.
Complete destructive interference occurs when the path dif-
ference between neutrino scattering on two separate nucleons
is one-half the neutrino wavelength.! To estimate this effect,
take the nuclear radius to beR51.07A1/3 fm. Note that the
mean scattering angle in the absence of the correction fac-
tors, Eq.~A22! and the term in Eq.~A20! that corresponds to
Eq. ~A24!, is u53p/8. For this scattering angle and forA
556, we find that the nuclear form factor reduces the tran-
sition rate by a factore21 when En583 MeV, and forA
5100, by the same factor whenEn568 MeV. These neu-
trino energies are too high for the neutrino opacities to be
affected near the neutrinosphere, but during core infall thene
chemical potential reaches 68 MeV atr.231013 g cm23;
therefore the nuclear form factors will reduce the neutrino
opacities at these higher densities, and therefore increase the
rate of neutrino transport in the dense inner part of the core.

The neutrino-nucleus scattering source terms in the super-
nova code are functions ofRn-A , the neutrino-nucleus scat-
tering kernel. The latter is the scattering rate for a given
initial and final neutrino state, and is obtained by summing
and averagingwf i over final and initial nuclear states, respec-
tively, i.e.,
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Rn-A5 (
nuci

(
nuc f

Pnuc iwf i

[
2p

\
C2~11cosu!exp@24b~En

2/c2!~12cosu!#

3
Nnuc

V2 Sion~DEn ,q̄!, ~A23!

where DEn5En f2En i is the energy transferred from the
neutrino to the medium. HerePnuci is the probability of a
given initial state, and the average is taken over the canonical
ensemble at temperatureT. Note that(nuci , f are symbolic
sums taken over all initial and final statesc i , f of the corre-
lated nuclei centers of mass.Sion(DEn ,q̄) is referred to as
the ‘‘dynamic structure function’’ or ‘‘dynamic form factor’’
of the medium~e.g., Van Hove@45#, Pines and Nozie`res
@46#, Hansen and McDonald@47#!, and is given by

Sion~DEn ,q̄!

5
1

Nnuc
(
nuc i

(
nuc f

Pnuc iZK c fU(
n51

Nnuc

exp@~ i /\!q̄•R̄n#Uc i L Z2
3d~Enuc f2Enuc i2DEn!. ~A24!

An important simplification can be made considering the
fact that the recoil energy of the nucleus is very small. In
particular, thed function in Eq.~A24! can be written as

d~Enuc f2Enuc i2DEn!5dS q̄• P̄nuc

Mnuc
1

uq̄u2

2Mnuc
2DEnD

.dS q̄• P̄nuc

Mnuc
2DEnD , ~A25!

where we have used the fact thatuP̄nucuc.A3Mnucc
2kT

.uq̄uc;En unlessEFermi/kT.55, whereEFermi is the elec-
tron Fermi energy. During collapse,EFermi/kT,20. Since
uq̄uc<2En i , we have

q̄• P̄nuc

Mnuc
5q̄•V̄nuc<2En i

V̄nuc

c
!En i . ~A26!

It follows from Eqs.~A26! and~A25! thatDEn!En i for any
scattering angle. Hence, a good approximation is to assume
that DEn50 for all scatterings and write

Sion~DEn ,q̄![d~DEn!Sion~ q̄!, ~A27!

where

Sion~ q̄![E
2`

`

dDEnSion~DEn ,q̄!. ~A28!

HereSion(q̄) is referred to as the ‘‘static structure function’’
or ‘‘static form factor’’ of the medium@‘‘static,’’ as will be
seen below, because the times in the arguments ofR̄m andR̄n
in Eq. ~A30! become equal#. In the context of stellar core
collapse,Sion(q̄) is referred to as the ‘‘ion screening factor’’
or ‘‘ion screening correction.’’ With Eq.~A27!, Eq. ~A23!
becomes

Rn-A5
2p

\
C2~11cosu!exp@24b~En

2/c2!~12cosu!#

3
Nnuc

V2 d~En f2En f !Sion~ q̄!. ~A29!

To further explore the properties ofSion(q̄), we transform
Eq. ~A24! into a more convenient form by inserting the Fou-
rier representation of thed function to get

Sion~DEn ,q̄!5
1

Nnuc
(
nuc i

(
nuc f

Pnuc i

1

2p\ E
2`

`

dt expS i

\
~Enuc f2Enuc i2DEn!t DU K c fU(

n51

Nnuc

expS i

\
q̄•R̄nDUc i L U2

5
1

Nnuc
(
nuc i

(
nuc f

Pnuc i

1

2p\ E
2`

`

dt exp@~2 i /\!tDEn#K c iU(
n51

Nnuc

exp@~2 i\!q̄•R̄n#Uc f L
3K c fUexp@~ i /\!Ĥt# (

m51

Nnuc

exp@~ i /\!q̄•R̄m# exp@2~ i /\!Ĥt#Uc i L
5

1

Nnuc
(
nuc i

Pnuc i (
n51

Nnuc

(
m51

Nnuc 1

2p\ E
2`

`

dt exp@~2 i /\!tDEn#^c i uexp@2~ i /\!q̄•R̄n~0!#exp@~ i /\!q̄•R̄m~ t !#uc i&

[
1

Nnuc
(
n51

Nnuc

(
m51

Nnuc 1

2p\ E
2`

`

dt exp@~2 i /\!tDEn#^exp@2~ i /\!q̄•R̄n~0!#exp@~ i /\!q̄2R̄m~ t !#&, ~A30!

whereĤ is the Hamiltonian for the correlated nuclei centers of mass, and where, using the time-translation property ofĤ, we
have definedR̄n(0)5R̄n , R̄m(t)5exp@(i/\)Ĥt#R̄mexp@2(i/\)Ĥt#. The sum over final states has been performed by exploiting
the closure property (Suc f&^c f u51) of a complete set of quantum statesuc f&, and we have denoted the combination of
quantum and canonical statistical averaging by^ &. We then use Eq.~A30! for Sion(DEn ,q̄) and carry out the integration over
DEn :
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Sion~ q̄!5E
2`

`

dDEnSion~DEn ,q̄!

5
1

Nnuc
(
n51

Nnuc

(
m51

Nnuc E
2`

`

dtd~ t !

3^exp@2~ i /\!q̄•R̄n~0!#exp@~ i /\!q̄•R̄m~ t !#&

5
1

Nnuc
(
n51

Nnuc

(
m51

Nnuc

^exp@2~ i /\!q̄•R̄n#

3exp@~ i /\!q̄•R̄m#&

5
1

Nnuc
(
n51

Nnuc

(
m51

Nnuc

^exp@2~ i /\!q̄•R̄n#

3exp@~ i /\!q̄•R̄m#&. ~A31!

Because the position operatorsR̄n and R̄m are now at equal
times, they commute, and further instructive transformations
of Sion(q̄) are possible:

Sion~ q̄!5
1

Nnuc
(
n51

Nnuc

(
m51

Nnuc

^exp@

2~ i /\!q̄•R̄n# exp@~ i /\!q̄•R̄m#&

511
1

Nnuc
(

nÞm

Nnuc K E E d3r̄ d3r̄ 8

3exp@2~ i /\!q̄•~ r̄ 2 r̄ 8!#d~ r̄ 2R̄n!d~ r̄ 82R̄m!L
[11

1

Nnuc

Nnuc~Nnuc21!

V2 E E d3r̄ d3r̄ 8

3exp@2~ i /\!q̄•~ r̄ 2 r̄ 8!#g~ r̄ 2 r̄ 8!

'11nnucE d3r̄ exp@2~ i /\!q̄• r̄ #g~ r̄ !

511nnuc~2p\!3d3~ q̄!1nnucE d3R̄

3exp@2~ i /\!q̄•R̄#@g~R̄!21#, ~A32!

wherennuc5Nnuc/V is the number density of nuclei. In the
fourth equality we have assumed thatNnuc21'Nnuc. To
establish the last equality unity has been added and sub-
tracted to the integrand, and the unimportant scattering term
at q̄50̄ has been factored out. We will ignore this term in
what follows. The quantityg(R̄) is the pair distribution func-
tion, defined as

g~R̄1 ,R̄2!5V2^R̄18 ,R̄28ud
3~R̄12R̄18!d3~R̄22R̄28!uR̄18 ,R̄28&

5g~R̄12R̄2! ~A33!

@47#, where the last equality in Eq.~A32! holds for a trans-
lationally invariant system.

The pair distribution function gives the probability of
finding another nucleus at a positionR̄ from a given nucleus
relative to that probability if the positions of the nuclei were
completely uncorrelated. If the positions of the nuclei are
completely uncorrelated,g(R)51, and the expression given
in the last line of Eq.~A31! shows thatSion51. In this case,
ion screening has no effect. In the extreme opposite case,
which occurs whenT50, the canonical ensemble consists of
just the ground state, in which the nuclei are arranged in a
rigid lattice. If in addition the scattering leaves the nuclei in
the ground state, i.e.,uc f&5uc i&, thenSion as given by Eq.
~A24! becomes identical in form to the square of the proton
and neutron nuclear form factors, given by Eq.~A13!. In this
case,Sion will be directly related to the Fourier transform of
the distribution of nuclei, and the neutrino scattering will be
analogous to the Bragg scattering of x rays in a crystal. In
particular, the scattering will be zero if the neutrino momen-
tum is below a minimum value corresponding to a wave-
length greater than twice the spacing between adjacent
planes of the lattice. In the intermediate ‘‘liquid’’ case,
g(R̄)5g(uR̄u), i.e., the pair distribution will be isotropic, and
its magnitude will be characterized by a peak at the nearest
neighbor distancea, with g(uR̄u)→0 as uR̄u→0 and
g(uR̄u)→1 as uR̄u→`. In this case,Sion must be computed
numerically, but has a similar appearance, with a peak at a
value of uq̄u approximately equal to 2p/a ~e.g., Hansen and
McDonald @47#, Fig. 11!, and small whenuq̄u→0.

We now use Eq.~A29! to obtain the source terms needed
for our supernova code. Assuming spherical symmetry, let
f 5 f (t,r ,En ,m) be the neutrino occupation number, i.e., the
number of neutrinos per state, wheret is the time,r is the
radial distance from the core center,En is the neutrino en-
ergy, andm is the cosine of the angle of the neutrino propa-
gation direction with respect to the outward radial direction.
Then

dnn5 f ~ t,r ,En ,m!
2pdVEn

2dEndm

~2p\c!3 , ~A34!

where dnn is the number of neutrinos at (t,r ,En ,m) in
dVdEndm. The neutrino transport equation equates the rate
of change off to appropriate flow and source terms. The
contribution of neutrino-nucleus scattering to the transport
equation is obtained by computingBn-A , which is the rate at
which neutrinos are scattered into the state at (r ,En in ,m in)
minus the rate at which neutrinos are scattered out of that
state. Factoring out thed function fromRn-A in Eq. ~A29! by
writing

Rn-A5d~En f2En i !Rn-A8 , ~A35!

the equation forBn-A(t,r ,En in ,m in) is given by
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Bn-A5@12 f in#
V

~2p\c!3 E
0

`

En out
2 dEn outE

21

1

dmout

3E
0

2p

dfoutf outd~En out2En in!Rn-A8

2 f in

V

~2p\c!3 E
0

`

En out
2 dEn outE

21

1

dmout

3E
0

2p

dfout@12 f out#d~En out2En!Rn-A8

5
VEn in

2

~2p\c!3 E
21

1

dmoutE
0

2p

dfoutRn-A8 @ f out2 f in#,

~A36!

where f in5 f (t,r ,En in ,m in), f out5 f (t,r ,En out,mout), and
Rn-A8 5Rn-A8 (t,r ,En in ,cosu), with

cosu5m inmout1A~12m in
2 !~12mout

2 !cos~fout2f in!.
~A37!

In the multigroup flux-limited diffusion ~MGFLD!
scheme, which is the scheme implemented in our supernova
code, we solve for the zeroth (c (0)) and first (c (1)) moments
of the neutrino distribution functionf ; thenth moment,c (n),
is defined by

c~n![
1

2 E
21

1

mndm f , ~A38!

where, in accordance with our assumption of spherical sym-
metry, azimuthal symmetry about the radial direction has
been assumed. The MGFLD equations forc (0) andc (1) are

1

c

]c~0!

]t
1

1

r 2

]~r 2c~1!!

]r
1velocity terms5RHS~0!

~A39!

and

c~1!52
l t

3
F

]c~0!

]r
, ~A40!

where the diffusion coefficientl t is given by

l t[
c~0!

RHS~0!2rhs~1! ~A41!

where RHS5Bn-A1other processes, and where

RHS~n![
1

2 E
21

1

mndmRHS, ~A42!

rhs~1!5RHS~1!c~0!/c~1!, andF is the ‘‘flux limiter,’’ a param-
eter constructed to keep the flux from becoming unphysically
large whenl t becomes large. Therefore it is the zeroth and
first angular moments ofBn-A that are needed, which we
denote byBn-A

(0) andBn-A
(1) , respectively.

To obtain closed form expressions for these angular mo-
ments, we expandRn-A8 in the first two terms of a Legendre
series:

Rn-A8 ~ t,r ,En ,cosu!5
1

2
F0n-A~ t,r ,En!

1
3

2
F1n-A~ t,r ,En!cosu. ~A43!

Then, using Eqs.~A43! and ~A37! in Eq. ~A36!, we obtain

Bn-A
~0! [

1

2 E
21

1

dm inBn-A50, ~A44!

Bn-A
~1! [

1

2 E
21

1

m indm inBn-A

52p
VEn in

2

~2p\c!3 @F1n-A2F0n-A#c~1!. ~A45!

Equation ~A44! states that neutrino-nucleus isoenergetic
scattering gives no contribution to the source ofc (0). This is
because neutrino-nucleus isoenergetic scattering redistributes
the neutrinos in angle only, and therefore gives zero contri-
bution in the angle average. The negative of the coefficient
of c (1) in Eq. ~A45! is the neutrino-nucleus isoenergetic
scattering contribution to the inverse transport mean free
path, which is used in the MGFLD scheme to relatec (1) to
the radial gradient ofc (0) @e.g., Bruenn@9#, Eqs.~A26! and
~A41!#.

To obtain explicit expressions forF0n-A and F1n-A , we
observe that the expression for^Sion& provided by Horowitz
is defined by

^Sion&5
3

4 E
21

1

d cosu~11cosu!~12cosu!Sion~ q̄!.

~A46!

The factor (12cosu) is the appropriate ‘‘transport’’ angular
weighting factor. To derive an expression forF0n-A
2F1n-A , first ignore the nuclear form factor@Eq. ~A22!#,
which is valid at low neutrino energies. ThereforeRn-A8 , as
given by Eqs.~A35! and ~A29!, becomes

Rn-A8 5
2p

\
nnuc

G2

V
A2UCV01CV1

Z2N

2A U2

~11cosu!Sion .

~A47!

Then, using Eqs.~A46! and ~A47! and the definitions of
F0n-A andF1n-A , we obtain

F0n-A
low 2F1n-A

low [E
21

1

d cosu~12cosu!Rn-A8

5
2p

\
nnuc

G2

V
A2UCV01CV1

Z2N

2A U2 4

3
^Sion&,

~A48!

where the superscript ‘‘low’’ is a reminder that this expres-
sion forF0n-A2F1n-A is valid only at low neutrino energies.
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For high neutrino energies we must include the nuclear
form factor. In this case, setSion equal to 1 in Eq.~A23!,
which is a valid approximation at high neutrino energies;
integrate over angle; and use Eq.~A35! to get the expres-
sions given in Bruenn@9# ~with N andZ interchanged!, viz.,

F0n-A
high 2F1n-A

high

5
2p

\
nnuc

G2

V
A2UCV01CV1

Z2N

2A U2F2y211e22y

y2

2
223y12y22~21y!e22y

y3 G , ~A49!

where

y54b
En

2

c2 5
2

3

3
5 ~1.07A!2/3En

2

~\c!2 . ~A50!

Here the superscript ‘‘high’’ is a reminder that this expres-
sion for F0n-A2F1n-A is valid only at high neutrino ener-
gies.

To obtain an expression forF1n-A2F0n-A appropriate for
any neutrino energy, note that the expression involvingy in

the brackets of Eq.~A49! tends to4
3 asy→0, and is within

10% of 4
3 when y50.1, i.e., whenEn524.1/A56

2/3 MeV,
where A565A/56. Thus, forEn,24.1/A56

2/3, Eq. ~A49! for
F0n-A2F1n-A is effectively the same as its corresponding
expression for low neutrino energies, Eq.~A48!, without the
ion screening correction̂Sion&. Moreover, according to Fig.
2, for r,1013 g cm23 the screening correction̂Sion& is close
to unity for En*24.1/A56

2/3. Therefore a good approximation
for F0n-A2F1n-A at all neutrino energies would simply be
given by Eq.~A49! multiplied by ^Sion&, i.e.,

F0n-A2F1n-A5
2p

\
nnuc

G2

V
A2UCV01CV1

Z2N

2A U2

3F2y211e22y

y2

2
223y12y22~21y!e22y

y3 G^Sion&.

~A51!

This is the expression used for neutrino-nucleus isoenergetic
scattering in our supernova code.
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