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We report the results of a theoretical and experimental study of a spherical gravitational wave antenna. We
develop a number of techniques to deconvolve the data from a set of resonant transducers attached to the
surface of a sphere to monitor the sphere’s five quadrupole modes. We show that by observing these modes,
one can measure the five tensorial components of a gravitational wave. The inverse problem can then be solved
and the direction of a gravitational wave can be determined. Asymmetries such as the nondegeneracy of the
quadrupole modes and mistuning of the transducers are included in the model and their effects on the data
analysis is studied. We develop a technique to compensate for these imperfections by measuring the response
of the resonant transducers to the normal modes. These techniques were demonstrated on a room-temperature
prototype antenna with which we verified that it is possible to determine the location of an impulse excitation
applied to the prototype’s surface from the transducer outputs.@S0556-2821~97!06224-3#

PACS number~s!: 04.80.Nn, 95.55.Ym

I. INTRODUCTION

Techniques to detect directly gravitational waves have
been under study for more than 25 years@1#. Two different
methods are aggressively being pursued today: large laser
interferometers, such as the proposed Laser Interferometric
Gravitational Wave Observatory~LIGO! @2#, and cryogenic
resonant mass antennas, such as the operating ALLEGRO
@3# and NAUTILUS @4# detectors. While most past work on
resonant antennas has been with the original Weber bar type
@5#, large spherical antennas have recently been proposed
and become of interest@6#.

Several characteristics of a spherical antenna make it a
unique and interesting instrument. First, it is omnidirectional,
capable of detecting gravitational waves from all directions
and polarizations. In addition, only a single spherical antenna
is necessary for determining the direction of an incident
gravitational wave. A sphere has a larger cross section than
an equivalent bar@7#. A sphere can measure all the tensorial
components of a gravitational wave, thus it is capable of
testing different metric theories of gravity@8#. Finally, al-
most all of the more than 25 years of experience gained on
bar antennas~cryogenics, resonant transducers, suspen-
sion, . . . ! can be applied to a spherical antenna.

We begin this paper by reviewing the interaction between
an elastic sphere and a gravitational wave. We start in Sec. II
by describing how the gravitational field can be decomposed
into five quadrupole components that will have a one-to-one
correspondence with the quadrupole modes of a sphere as
described in Sec. III.

When we first began this problem@9,10#, we developed a
model for a spherical antenna with six resonant mass motion
sensors attached to the sphere surface at special locations.
This model was limited because it put relatively strong con-
straints on the motion sensors. In order to further investigate
the behavior of a more realistic antenna, it was necessary to

generalize the model. In Sec. IV we develop a more general
description of the detector by keeping the number, tuning,
and arrangement of the motion sensors arbitrary. Section V
shows how the response of the motion sensors can be used to
observe the five quadrupole modes of the sphere and in Sec.
VI we describe how this information can be used to deter-
mine the direction of an external excitation, including that
from a gravitational wave.

In Sec. VII we show how the general equations of motion
can be greatly simplified if a special arrangement of motion
sensors is used. This system was the basis for our original
model which we called a truncated icosahedral gravitational
wave antenna~TIGA! @9#. The arrangement of resonators
was similarly called the truncated icosahedral~TI! arrange-
ment @10#.

Other arrangements of transducers have been suggested
@11,12#, however, we feel the TI arrangement is advanta-
geous not only because it simplifies the equations of motion,
but because it maintains equal sensitivity to gravitational
waves from all directions and polarizations. We have also
found that it facilitates in the interpretation of the signal from
the motion sensors. In addition, it has been shown that in the
presence of noise the use of six resonant transducers in the
TI arrangement, compared to that of one for bar antenna, do
not reduce the overall sensitivity of the antenna@9,13# and
that the arrangement is fairly robust to the failure of a single
motion sensor@14,15#.

In an actual antenna, it may be difficult to achieve a per-
fect TI arrangement. The motion sensors can be misplaced,
mistuned, etc. To account for this, we develop a measure-
ment technique in Sec. VIII that takes into account any small
deviations from the ideal arrangement. The results of a nu-
merical simulation are also presented that show this tech-
nique to be accurate within reasonable levels of precision set
for the detector components.

We begin discussion of experiments performed on a pro-
totype spherical antenna in Sec. IX. The results of the pro-
totype without resonators attached is reviewed in Sec. X. The
behavior of the prototype with resonant transducers attached
is presented in Sec. XI. To demonstrate the validity of the
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TIGA techniques in a single test, we show that from the
response of the motion sensors, we can determine the loca-
tion of an impulse excitation applied to the prototype’s sur-
face. This same procedure can be applied to determine the
direction of a gravitational wave as discussed in Sec. VI.

II. QUADRUPOLE DECOMPOSITION
OF THE GRAVITATIONAL FIELD

A gravitational wave is a traveling time-dependent devia-
tion of the metric tensor, denoted byhmn . We follow a com-
mon textbook development for the metric deviation of a
gravitational wave, which finds that only the spatial compo-
nents,hi j , are nonzero, and further can be taken to be trans-
verse and traceless@1#. The tensor is simplified if we initially
write it in the ‘‘wave-frame,’’ denoted by primed coordinates
and indices. It is a coordinate frame with origin at the center
of mass of the detector, and thez8 axis aligned with the
propagation direction of the wave. Since we restrict our-
selves to detectors much smaller than the gravitational wave-
length, only the time dependence ofhi 8 j 8 will have signifi-
cant physical effects. Thus, the most general possible form
for the spatial components of the metric deviation in the
wave-frame can be written as

hi 8 j 8~ t !5F h18 ~ t ! h38 ~ t ! 0

h38 ~ t ! 2h18 ~ t ! 0

0 0 0
G , ~1!

whereh18 (t) andh38 (t) are the time-dependent gravitational
wave amplitudes for the two allowed states of linear polar-
ization, and are called the plus and cross amplitudes.

The detector is more easily described in the ‘‘lab-frame,’’
denoted by unprimed coordinates and indices, with origin
also at the center of mass of the detector, andz axis aligned
with the local vertical. In this frame, the primary physical
effect of a passing gravitational wave is to produce a time
dependent ‘‘tidal’’ force densityf GW(x,t) on material at co-
ordinate locationxi with mass densityr, which is related to
the metric perturbation by

f i
GW~x,t !5

1

2
r(

j

]2hi j ~ t !

]t2
xj . ~2!

We notice that this force can be written as the gradient of a
time-dependent scalar potential:

f i
GW~x,t !5¹ iF~x,t !5¹ i S (

j ,k

1

4
rxj ḧjk~ t !xkD . ~3!

This scalar potential is a quadratic form in the spatial
coordinates. It is natural to look for an alternate expression
that separates the coordinate dependence into radial and an-
gular parts. Because the tensorhi j is traceless, the angular
expansion can be done completely with the five ordinary
spherical harmonics of order 2, which we denote by
Ym(u,f) or Ym . We call the resulting time dependent ex-
pansion coefficients, denoted byhm(t), the ‘‘spherical gravi-
tational amplitudes.’’ They are a complete and orthogonal
representation of the Cartesian metric deviation tensorhi j (t).

They depend only on the two wave-frame amplitudes and the
direction of propagation, and are defined by

F~x,t !5Ap

15
rr 2(

m
ḧm~ t !Ym . ~4!

The spherical harmonicsYm can be any linear combina-
tion or rotation of the standard spherical harmonics of order
2, as long as the orthogonality between them is maintained.
The advantage of not using the standard spherical harmonics
will become apparent later, but for an example of an alterna-
tive set and their relation to a lab frame see Ref.@10#.

The five orthogonal spherical amplitudeshm are a com-
plete set of measurable quantities of the local gravitational
field. Once a proper relation to the lab coordinate system is
defined, the determination of the source direction follows
immediately by inversion of this relationship@16#.

By examining Eq.~3! closely, we note that because the
potential is a quadratic, it is the equation of an ellipsoid.
Therefore, we can picture a gravitational wave as a time-
dependent ellipsoidal deformation of the local coordinates.
While this may seem obvious, we note it here as this is a
very useful visual tool for understanding the interaction be-
tween a gravitational wave and the detector. We discuss this
idea in more detail below to show the connection with other
quadratic quantities.

III. THE UNCOUPLED SPHERE

The mechanics of a general antenna can be described by
ordinary elastic theory. Forces acting on the body will cause
a deformation described by the displacement vectoru(x,t),
wherex is the equilibrium position of a mass element. The
equations of motion are then

r
]2u

]t2
5~l1m!¹~¹•u!1m¹2u1( f, ~5!

where the Lame´ coefficientsl andm specify the elastic stiff-
ness of the material and(f represents the sum of external
force densities acting on the body@17#.

In this paper, we include two forces in(f. First, the signal
or gravitational force densityfGW from Eq. ~2!. Second, if
objects are attached to the antenna, there will exist a reaction
force between the object and the surface of the antenna. Thus
we choose to express the coupling to other objects, such as
secondary resonators, as if they were external forces in Eq.
~5!. This device lets us partition the equations of motion in a
convenient way.

A solution to the differential equation~5! can be found by
the standard eigenfunction expansion. This allows a separa-
tion of the spatial and time dependence of the displacement
vector

u~xi ,t !5(
m

am~ t !Cm~xi !. ~6!

Each spatial eigenfunction,Cm(x), is the time independent
part of the solution for unforced harmonic oscillation at the
eigenfrequencyvm , and is found by solving
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2rvm
2 Cm 5 ~l1m!¹~¹•Cm! 1 m¹2Cm , ~7!

subject to the time-stationary boundary conditions, which for
a sphere require that the total force per unit area at the sur-
face vanish in the direction normal to the surface. The quan-
tity am(t) is the time-dependent mode amplitude. The mode
index,m, enumerates the discrete set of modes, which obey
the usual orthogonality property

E
V

Cm~x!•Cn~x!d3x5Nmdmn . ~8!

The normalization constantNm is arbitrary, however, in the
case of a sphere of radiusR we define it to be

Nm[ 4
3 pR3. ~9!

Combining the equations above, and using orthogonality
to eliminate the summation, we find the standard result, one
forced harmonic oscillator equation for each mode ampli-
tude,

äm~ t !1vm
2 am~ t !5

1

rNm
E Cm~x!•( f~x,t !d3x. ~10!

The mode amplitudes are a complete set of collective coor-
dinates for the description of the antenna motion. All the
interactions with the outside world, including gravitation,
can be included as separate terms in the ‘‘effective force’’ on
each mode. An efficient approximation scheme will use only
those modes needed for an accurate description of the an-
tenna. Only a few of the ‘‘overlap integrals’’ withfGW in Eq.
~10! are large, therefore, only a few of the mode amplitudes
are strongly coupled to gravitational waves.

Let us consider the case of a perfectly homogeneous and
isotropic sphere uncoupled from the outside world. This
should give a reasonable approximation to the behavior of a
sphere where all the external forces are small. The eigen-
functions for this case were found over a hundred years ago
@18,19#, however, more elegant derivations, using modern
notation are available@7,20#.

The eigenfunctions of a sphere can be described in terms
of spherical harmonicsYl m(u,f). Looking at the overlap
integral in Eq.~10!, we see that we need only consider odd-
parity modes. For a sphere of radiusR the eigenfunctions are
written:

Cl m5@a l ~r ! r̂1b l ~r !R¹#Yl m~u,f!, l even. ~11!

The radial eigenfunctionsa l (r ) and b l (r ) determine the
motion in the radial and tangential directions, respectively.
There are five quadrupole modes of vibration which strongly
couple to the force density of a gravitational wave, and are
all degenerate, having the same angular eigenfrequencyvo .
They are distinguished only by their angular dependence. For
the remainder of this discussion, we only consider the quad-
rupole (l 52) modes so we drop thel in our notation.

The radial eigenfunctions are given by Ashby and
Dreitlein @20#:

a~r !5cR
]

]r
j 2~qr !16dR

1

r
j 2~kr !, ~12!

b~r !5c j2~qr !1d
]

]r
@r j 2~kr !#, ~13!

where j 2 is the spherical Bessel function of order 2. The
longitudinal and transverse wave vectors are given by
q25rvo

2/(l12m) and k25rvo
2/m, respectively. The

boundary conditions

c
d

drS j 2~qr !

r D1dS 5

r 2
2

k2

2
2

1

r

d

dr D j 2~kr !U
r 5R

50,

~14!

cS 6

r 2
2

k2

2
2

2

r

d

dr D j 2~qr !16d
d

dr S j 2~kr !

r D U
r 5R

50,

~15!

determine the uncoupled mode frequencyvo . Inclusion of
the normalization condition equation~9! determines the con-
stantsc and d. These coefficients specify the shape of the
eigenfunctions and are all weakly dependent on Poisson’s
ratio @7,10#.

The gravitational effective force for modem of the
sphere,Fm

S , from Eq. ~10! is

Fm
S[E

Vo

Cm•fGW d3x. ~16!

Solving the integrals, using Eqs.~3! and ~11!, we find

Fm
S~ t !5A4p

15
rḧm~ t !R4@c j2~qR!13d j2~kR!#

5
1

2
ḧm~ t !mSxR. ~17!

Thus we find that each spherical component of the gravita-
tional field determines uniquely the effective force on the
corresponding mode of a sphere, and they are all identical in
magnitude. We can interpret the effective forceFm

S in each
mode as the product of: the physical mass of the spheremS ,
an effective lengthxR, and the gravitational acceleration
1
2 ḧm . The factorx is a weak function of Poisson’s ratio@10#.

We now see why it was convenient to write the gravita-
tional wave amplitudes in terms of spherical harmonics: we
have a clear way to make the connection between the gravi-
tational strainhm , the force they apply to the sphere modes
Fm , and the amplitudes of the sphere’s quadrupole modes
am . There is a one-to-one correspondence between these
three quantities when the same set of spherical harmonics are
used. Once we know any of these quantities, we can imme-
diately infer the other two. Later in this paper we will add
one more quantity to this list, ‘‘mode channels’’ which are
constructed from the observables of the antenna to have a
one-to-one correspondence with the above quantities.

As in the case of the quadratic form of the gravitational
field discussed above, the spherical harmonicsYm can be any
linear combination or rotation of the standard spherical har-
monics of order 2, as long as orthogonality between them is
maintained. The advantage here is that if the five quadrupole
modes are not degenerate, but have ‘‘fixed’’ themselves in a
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particular orientation, one can choose an appropriate set of
spherical harmonics that match the actual orientation of the
quadrupole modes relative to the lab frame. This basis set
can then be used to describe the gravitational field to main-
tain the one-to-one connection between the spherical ampli-
tudes and the five quadrupole modes of the sphere.

Also analogous to the spherical amplitudes, the deforma-
tion of the sphere due to the excitation of a quadrupole nor-
mal mode can be described by the quadratic equation of an
ellipsoidal surface. We recall that the geometry of an ellip-
soid can be visualized by the principal axis theorem. It shows
that the general ellipsoid has three orthogonal axes that
pierce the surface at three principal radii, two of which are
extremal points on the surface. The orientation of the axes
are described by three parameters, such as Euler angles. The
shape is described by the relative size of the principal radii.
If we call dr1, dr2, anddr3 the deviation of these radii from
their average, then a true sphere hasdr15dr25dr350, an
oblate ~or prolate! ellipsoid hasdr25dr3522dr1, and a
triaxial ellipsoid hasdr1.dr2.dr3. Thus six parameters
completely describe the geometry. However, there is one re-
striction on the ellipsoids describing the quadrupole modes:
they are isovolumetric with the sphere, which requires
dr11dr21dr350, so that five parameters suffice. Since the
superposition of any ellipsoid is another ellipsoid, the eigen-
functionsY1 . . . Y5 form a complete and orthogonal basis set
for a five-dimensional abstract vector space that describes all
possible isovolumetric ellipsoids and all possible quadrupo-
lar vibrations of the sphere.

IV. SPHERE COUPLED TO AN ARBITRARY NUMBER
OF RESONATORS

We have just shown that measurement of the quadrupole
modes of a sphere measures all of the tensorial components
of the gravitational field, but a simple spherical resonator is
not a practical detector. One requirement for practicality is a
set of secondary modes or mechanical resonators. All current
bar antennas use resonators that interact only with the vector
component of antenna motion normal to the surface on
which they are mounted, thus it seems natural to restrict our
consideration to resonators of this type.

We choose here to describe the sphere’s quadrupole
modes in the coupled system using the eigenfunctions de-
rived above for the uncoupled sphere. Lobo and Serrano
showed this approximation to be valid when the ratio of the
mass of the sphere to the mass of a resonator is much less
than one@11#. This approximation allows us to use a much
more simple mathematical framework, without loss of gen-
erality, as all the proposed detectors@6# satisfy this require-
ment.

We look now atJ number of resonators attached to the
sphere surface at arbitrary angular positions (u j ,f j ). The
values of the relative radial displacements of the sphere sur-
face at the resonator locations can be grouped together into a
‘‘pattern vector’’ for a particular mode. These column vec-
tors in turn may be collected together to form a ‘‘pattern
matrix’’ Bm j defined by

Bm j[
1

a
r̂•Cm~u j ,f j !, ~18!

wherea is the radial eigenfunction given by Eq.~12! evalu-
ated at the surface of the sphere. From Eq.~11! we find

Bm j5Ym~u j ,f j !. ~19!

Because the eigenfunctions are invariant to reflection
through the origin, we may restrict the location of resonators
to one hemisphere, without loss of generality.

By mechanical resonator we mean a small elastic system
that has one of its own normal modes tuned to be resonant
with the frequency of the antenna. The antenna surface mo-
tion excites this mode, and there is resonant transfer of mo-
mentum between the resonator and the antenna. Hence it acts
as a resonant mechanical transformer, turning small motions
of the large antenna into large motions of the small resona-
tor. Each resonatorj is constructed to obey a one-
dimensional harmonic oscillator equation:

mj
rq̈j~ t !1mj

r(
m

aBm jäm~ t !1kj
rqj~ t !5F j

r~ t !. ~20!

The displacement of a resonator, relative to the sphere sur-
face, is denoted byqj . Any random or noise forces that act
between the small resonator and the sphere are included in
F j

r . Under ideal circumstances we would assume that the
resonators are identical, such that the massmj

r and spring
constantkj

r of each are tuned to match the frequency of the
degenerate five sphere modes, however, at this point we wish
to keep the equations general so wedo not put any restric-
tions on these parameters.

Combining the above, we find the coupled equations of
motion for the sphere modes are

mm
s äm~ t !1km

s am~ t !2(
j

aBm jkj
rqj~ t !

52(
j

aBm jF j
r~ t !1Fm

s ~ t !. ~21!

Again, under ideal circumstances we would assume that the
five quadrupole modes of the sphere are degenerate so that
the massmm

s and spring constantkm
s of each mode are iden-

tical, however, at this point we wish to keep the equations
general so wedo not put any restrictions on these param-
eters.

It is convenient to combine Eqs.~20! and ~21! into a
matrix notation. We denote matrices by a double underscore
and column vectors by a single underscore. We begin by
defining the following diagonal matrices:

M jm
s [d jmmm

s ,

M jm
r [d jmmj

r ,

K jm
s [d jmkm

s ,

K jm
r [d jmkj

r .

The complete set of coupled equations of motion can now be
written:
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F Ms 0

aMrBT MrGF ä~ t !

q̈~ t !
G1FKs 2aB Kr

0 Kr GFa~ t !

q~ t !G
5F I 2aB

0 I GFFs~ t !

Fr~ t !G . ~22!

The column vectora has five components, one for each
sphere mode, and the column vectorq has J components,
one for each resonator. The dimensions of the constant ma-
trices can be inferred from these two column vectors. The
matrix 0 is defined to have all elements equal to zero, andI
is the identity matrix.

These equations should give a good account of the me-
chanics of the system for arbitrary numbers and locations of
resonators. We do not include terms which represent the
‘‘dissipation’’ part of friction, which can be shown to be
negligible for the calculations we do here, however, we do
include the ‘‘fluctuation’’ part of friction, within the random
driving forces inFs andFr .

We also do not include any deviations to the shape of the
quadrupole modes. One possible cause for changes in shape
is the attachment of the resonators. This would obviously
become a problem if very large resonators were used. How-
ever, as shown by Lobo and Serrano@11#, if we limit our-
selves to resonators with mass less than 1% of the sphere
mass this effect becomes negligible. A second possible cause
for a change in mode shape is a hole drilled through the
sphere for suspension. However, finite element analysis of a
sphere with a hole@21# as well as experiments@22,23# have
shown the mode shapes to be changed by less than 1% due to
the suspension hole.

It is clear that Eq.~22! represents a set of elastically
coupled harmonic oscillators with driving forces. The appar-
ent peculiarities~off-diagonal terms in the mass matrix and
asymmetry in the elastic matrix! are simply artifacts of use of
the noninertial coordinatesq. However, we can greatly sim-
plify these equations by transforming to a normal coordinate
system. We begin by noting that Eq.~22! is of the form

M g ÿ~ t !1K g y~ t !5RF~ t !, ~23!

where we have defined

M[F Ms 0

aMrBT Mr G , ~24!

K[FKs 2aB Kr

0 Kr G , ~25!

R[F I 2aB

0 I G , ~26!

and for convenience we have transformed to mass weighted
coordinatesy with the matrixg,

gkm[dkm

1

Amm
s

, gk15 j 15[dk j

1

Amj
r
. ~27!

We can rewrite Eq.~23! as:

ÿ~ t !1X y~ t !5g21M 21RF~ t !, ~28!

where we have defined

X[g21M 21K g. ~29!

We may diagonalize X using the transformation
D5U21X U. We now define our normal coordinates as
h(t)[U21 y(t). For convenience, we also define a transfor-
mation matrixV[g U. Substituting these into Eq.~28! and
multiplying the entire expression byU21, we find

ḧ~ t !1D h~ t !5V21M 21RF~ t !. ~30!

The problem has now been reduced to 51J decoupled
harmonic oscillator equations. To solve them we begin by
taking the Fourier transform of Eq.~30!

G21~v!h~v!5V21M 21RF~v!, ~31!

where we have defined

G21~v![D2v2I . ~32!

BecauseD is diagonal,G21(v) is also diagonal, so its in-
verse is just the diagonal elements inverted. We can now
easily solve for the normal coordinates:

h~v!5G~v!V21M 21RF~v!. ~33!

To return to the original coordinates we reverse the transfor-
mations:

Fa~v!

q~v!
G5g y~v! ~34!

5V h~v! ~35!

5V G~v!V21M 21RF~v!. ~36!

Note that Eq.~35! provides a convenient way to transform to
normal modes where the frequency response is simple. The
matrix V is always invertible as we know the inverse ofU
and g exist, thus making it possible to transform in both
directions. This transformation will be important in the final
analysis of the detector discussed below.

V. MODE CHANNELS

In our original TIGA model@9#, we showed it was pos-
sible to combine the observable resonator displacementsq(t)
into a quantity which we called ‘‘mode channels’’ because
they have a one-to-one correspondence with the quadrupole
modes of a sphere, and thus the spherical amplitudes of a
gravitational wave. It is desirable at this point to develop a
general expression for the equivalent of mode channels for
any number and arrangement of radial resonant transducers.

We begin by taking the Fourier transform of Eqs.~20! and
~21!:

@Kr2v2Mr #q~v!2av2MrBTa~v!5Fr~v!, ~37!
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@Ks2v2Ms#a~v!2aB Krq~v!52aB Fr~v!1Fs~v!.
~38!

For the moment, we are only interested in the force of the
gravitational wave acting on the sphere, so we will assume to
have a high signal-to-noise ratio, thus we can ignore the
external forces on the resonators and setFr(v)50. We can
now solve forFs(v) in terms ofq(v)

Fs~v!5F 1

av2
Ks~B MrBT!21B Kr

2
1

a
Ks~B MrBT!21B Mr2

1

a
Ms~B MrBT!21B Kr

1
v2

a
Ms~B MrBT!21B Mr2aB Kr Gq~v!. ~39!

Equation~39! gives us the means, using the observable
resonator displacementsq, to infer the force on the quadru-
pole modes applied by a gravitational wave. However, the
complicated frequency response will make its implementa-
tion difficult because all the parameters on the right-hand
side must be known. While it may be possible to determine
all of these parameters~see the Appendix for an example!,
we would prefer a technique that is not so strongly depen-
dent upon measuring these. In addition, we would prefer an
arrangement where the frequency response can be simplified.

In the following sections we propose an alternative tech-
nique that does not require one to know all the parameters of
the detector to high accuracy. Using a special symmetric
arrangement of resonators, the above equations can be sim-
plified. Along with a special procedure, possibly unique to
this arrangement, we can obtain all the information about the
external forces without knowing all the parameters of the
system to high accuracy.

VI. DIRECTION FINDING TECHNIQUE

A. General technique

It is very desirable to demonstrate a general algorithm for
finding the location of an arbitrary excitation solely from the
mode channel amplitudes. We were able to find and success-
fully test such an algorithm, one suggested by the ellipsoidal
picture for the shape of the modes discussed above.

The measured amplitudes of the quadrupole modes di-
rectly tell us the relative amounts of each of the five basis
ellipsoids that must be superimposed to get the net ellipsoi-
dal deformation. We denote the five ellipsoidal amplitudes
by hm , and call them the vibration amplitudes in the
‘‘spherical representation.’’

We can also define a matrix of the quadratic formhi j
whose elements form a complete set of amplitudes in what
we call the ‘‘Cartesian representation.’’ The connection be-
tween representations is easily found to be

hi j ~ t !5F hxx hxy hxz

hyx hyy hyz

hzx hzy hzz

G

53
h12

1

A3
h5 h2 h4

h2 2h12
1

A3
h5 h3

h4 h3
2

A3
h5

4 . ~40!

The connection between this representation and the geometry
of ellipsoids comes again from the principal axes theorem,
which states that the three eigenvectors of the matrixhi j are
parallel to the three principal axes, and the radial deviations
dri are the corresponding eigenvalues ofhi j .

An excitation can be classified by the shape and orienta-
tion of the ellipsoid it produces. Once this shape is realized,
one needs only solve for the eigenvalues and eigenvectors of
the matrix hi j to determine the direction of the excitation.
The exact interpretation of the eigenvalues and eigenvectors
will of course depend upon the expected ellipsoidal deforma-
tion.

B. Inferring a gravitational wave’s direction

The method described in the previous section can be used
to determine the direction of an incident gravitational wave.
As shown in Sec. II, the gravitational field can also be rep-
resented by an ellipsoid derived from the electric compo-
nents of the Riemann tensor@24,25#. It describes the relative
acceleration of gravity that causes an ellipsoidal deformation
of an initially spherical group of free test particles. In a con-
ventional gauge, that ellipsoid is also described by the nine
spatial components of the gravitational strain tensorhi j in
Cartesian coordinates. It can easily be shown that this tensor
is in exact one-to-one correspondence to the Cartesian am-
plitudes of vibration of the sphere, so in this paper we have
used the same symbolhi j for both.

Now, the direction problem in gravitation requires only
knowledge of what sort of ellipsoid is produced by a gravi-
tational wave. By examining the conventional description of
the strain tensor of a wave according to general relativity
@26#, we find that one principal axis of the ellipsoid is
aligned with the direction of propagation, and that the corre-
sponding radial deviation is zero. Therefore, we need only
determine the wave’s ellipsoid, and then we know the eigen-
vector of the zero eigenvalue points at the source.~This po-
sition determination is unique only within a hemisphere;
sources in diametrically opposite directions are indistin-
guishable.!

Note that this method does not require intensive calcula-
tions, such as those used to compute the maximum likeli-
hood estimates performed by Zhou and Michelson@12#;
however, its effectiveness in the presence of noise still needs
to be evaluated.

C. Inferring the direction of a radial impulse

Since a laboratory source of gravitational waves does not
exist, we need an alternative type of excitation for testing
this technique. We find that a radial impulse to the surface of
a sphere is a good substitute.
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We present here a simple picture of the antenna’s re-
sponse to a radial impulse. Suppose a sphere has a degener-
ate quadrupole mode multiplet, so we are free to choose a
basis set witharbitrary orientation to describe it. If we
choose an orientation with thez8 axis of the mode frame to
be along the direction of the impulse, then only asingle
mode (Y5) in that frame will be excited~all of the other
modes have a vanishing radial component of their eigenfunc-
tions at this location, which makes their ‘‘overlap’’ integral
with the impulse vanish!. The corresponding ellipsoid pro-
duced is an oblate spheroid which has maximum radial de-
viation at the location of the impulse, and two half-size radial
deviations of opposite sign in the orthogonal directions.
Therefore, the location of the impulse is given by the eigen-
vector with the largest eigenvalue. This also provides a
check for the assumed shape~in a measurement with a high
signal-to-noise ratio! as the other two eigenvalues should be
equal to each other, but half the size and opposite in sign of
the first.

VII. THE IDEAL TRUNCATED ICOSAHEDRAL
ARRANGEMENT

A. Symmetry

When we began this problem@9#, we introduced a special
arrangement of six resonators which we termed a truncated
icosahedral gravitational wave antenna~TIGA! shown in
Fig. 1. We proposed using a truncated icosahedron as an
approximation to a sphere, however, the only requirement
for the truncated icosahedral~TI! arrangement was that the
resonant transducers be placed at positions on the surface of
a sphere at the center of six nonantipodal pentagon faces of
an imaginary truncated icosahedron~or dodecahedron! con-
centric to the sphere.

The original TIGA model@10# assumed perfect symmetry
of the sphere as well as the tuning and placement of the
resonant transducers. While the effects of deviations from

perfect symmetry on a sphere’s uncoupled quadrupole modes
have been studied@11,22,23#, we still need to investigate the
effect of asymmetries on our ability to interpret properly the
signals from resonant motion sensors. This is why we have
kept the equations general until now. It is possible to inves-
tigate alternative arrangements of radial resonators, such as
the one proposed by Lobo and Serrano@11#, with the above
framework, however, we will limit ourselves here to the TI
arrangement for reasons stated in the Introduction.

The symmetry of a TI greatly simplifies various aspects of
the problem; not only in the calculations that follow, but also
in the construction of such a device. A TI has 32 flat surfaces
suitable for mounting transducers, calibrators, balancing
weights, and suspension attachments. In addition, the sym-
metry makes machining the solid TI relatively simple@21#.
However, as stated above, the only requirement is on the
placement of the resonators, not on the shape of the ‘‘spheri-
cal’’ mass.

The high symmetry of the TI arrangement becomes ap-
parent when you examine its pattern matrixB. Each pattern
vector is orthogonal to the others, and each has the same
magnitude,A3/2p, or in other words:

B BT5
3

2p
I . ~41!

This property causes the cross terms between sphere modes
in the normal mode eigenfunctions to vanish. In addition to
the orthogonality, the sum of the components of each pattern
vector vanishes:

B 150. ~42!

The 631 column vector1 is defined to have all elements
equal to unity, while the 531 column vector0 has all ele-
ments equal to zero.

B. Eigenfunction solution

The symmetry of the pattern matrix also suggested that
there might be an analytic solution for the collection of
eigenvectorsU and the eigenvalue matrixD of Eq. ~30!.
Examination of the numerical results suggested a likely form
for U, and substitution in the equations verified that it was a
solution and determined the values of the constants. The de-
tails of this solution can be found elsewhere@10,21#.

It is convenient to divide the resulting set of eigenvectors,
U, into three groups. The first two groups each contain five
column eigenvectors and we denote them byU1 andU2 :

U65n6F I

c6BTG . ~43!

The physical interpretation of these is simple: each coupled
eigenmode ‘‘mimics’’ the motion of one of the uncoupled
sphere eigenmodes. In other words, each coupled resonator’s
radial motion is proportional to the uncoupled sphere eigen-
functions at that resonator’s location. This amplified version
of a mode’s pattern vector is either in-phase and down-
shifted in frequency, or anti-phase and up-shifted in fre-
quency. The frequency shifts are all identical, so that the
quintuplet of degenerate bare sphere-modes has bifurcated

FIG. 1. The truncated icosahedral gravitational wave antenna
~TIGA! with transducer locations indicated. The transducers lie at
two polar angles,u537.3773° and 79.1876°. Their azimuthal
angles are multiples of 60°.
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into up-shifted and down-shifted degenerate quintuplets of
modes. The amount of frequency shifting is given by the
eigenvalues ofU, which are the diagonal elements of the
matrix D. The identity matrix in Eq.~43! is an indication that
energy will not be transferred from one sphere mode to an-
other. The6 notation has been used on the dimensionless
constantsn6 andc6 as well to refer to the up (1) or down
(2) shifting of the frequencies,

n6
2 5

1

11~3/2p!c6
2 ~44!

c652
1

2S aAmr

ms
6Aa2

mr

ms
1

8p

3 D . ~45!

The remaining single eigenvector is

Uo5
1

6 F0

1G . ~46!

This mode is at the original sphere frequency and does not
strongly interact with a gravitational wave. All the resonators
move in unison and the sphere modes do not move at all.

C. Ideal mode channels

Now let us see what the mode channels look like for the
ideal TI arrangement:

Ms5msI ,

Mr5mrI ,

Ks5ksI ,

Kr5krI ,

thus

Fs~v!5S 2p

3av2mr
~ks2v2ms!~kr2v2mr !2akr D B q~v!.

~47!

What is striking about Eq.~47! is that all the complicated
frequency dependence has been separated from the matrices
and a simple linear combination of the resonator responses
can be made to obtain all the information about the external
forces. We, therefore, define a quantityg which does not
contain the complicated frequency dependence, but still
maintains the one-to-one correspondence with the quadru-
pole components of the external force acting on the sphere:

g[B q. ~48!

The components of the mode channelsgm can be used as a
substitute for the amplitudeshm in order to solve for the
directional information of an excitation, such as a gravita-
tional wave. A practical application of this technique for an
impulse excitation to the surface of a prototype antenna will
be described later in Sec. X.

D. Resonator ellipsoids

From the equations of motion of an ideal TIGA, we found
that the eigenfunctions of the coupled modes were such that
the motion of the resonators mimicked the ellipsoidal defor-
mation of the sphere’s surface either in phase or anti-phase.
We, therefore, can picture the collective motion of the six
resonators to describe six ‘‘resonator ellipsoids,’’ five of
which are mimicking the ‘‘quadrupole ellipsoids’’ of the
sphere. The sixth resonator ellipsoid is just a sphere, where
the six resonators are moving in unison with equal amplitude
and phase, and the sphere surface does not move at all, as
described by Eq.~46!.

Each individual resonator now represents a superposition
of the point radial deformation of the six resonator ellipsoids
at a particular position. The transformation between point
radial deformationsq and ellipsoidal amplitudesg is given
by the pattern matrixB defined by the positions of the reso-
nators and the orientation of the five quadrupole ellipsoids
relative to a fixed lab frame:

g5B q. ~49!

Note that Eq.~49! is identical to Eq.~48! for transforming to
mode channels. Through this discovery we realize that in the
case of the TI arrangement, we can think of mode channels
as the result of a linear coordinate transformation from reso-
nator displacements to ellipsoidal deformations. This rela-
tionship isnot general. In other arrangements of resonators,
the equivalent resonator ellipsoids do not, in general, mimic
the quadrupole ellipsoids, thus are not the same as mode
channels. To produce mode channels for other arrangements,
one would have to introduce the complicated frequency re-
sponse described by Eq.~39!.

VIII. A NEARLY TRUNCATED ICOSAHEDRAL
ARRANGEMENT

We have seen how simple things become when the TI
arrangement is used, but what happens if the system is not
ideal? Using a numerical model, described below, we inves-
tigated the effects on the eigenfunctions due to perturbations
of the system parameters. We found that small deviations of
the various parameters~of the order 1%! from the ideal TI
case did not significantly change the resonator ellipsoids. We
therefore will discuss a situation where the tolerance on the
parameters is relaxed to be of the order a few percent. In an
actual experiment this is a rather poor level of precision; one
expects to be able to do much better.

A. Normal mode coordinates

While all the signal information is contained in the reso-
nator ellipsoids, it is useful to be able to transform the data to
normal mode coordinates using Eq.~35! where the frequency
response is simple. While not important for transforming be-
tween point radial coordinates to ellipsoidal coordinates, the
symmetry breaking can be significant when transforming to
normal mode coordinates.

To overcome this, we developed anin situ measurement
technique@27# to determine the transformation matrixV. The
transformation matrix can be measured by applying a con-
tinuous sinusoidal force anywhere on the sphere’s surface at
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the frequency of one of the normal modes.~Note that this
technique requires the normal modes to benondegenerate,
thus it is actually preferable to have a small amount of sym-
metry breaking.! The frequency response of the resonators
will be simple because they are being driven at a single fre-
quency. From Eq.~35! we see that the amplitude and phase
of their response make up a single column ofV. By exciting
each normal mode in turn, the completeV matrix can be
measured. The only assumption made in calculatingV is that
the resonators are ‘‘close’’ to the TI arrangement so that an
ideal pattern matrixB can be used and the quadrupole ellip-
soids can be replaced by Eq.~49!.

OnceV is measured the antenna can be operated to ob-
serve gravitational waves. The response of the resonators can
be recorded and transformed to normal mode coordinates:

h5V21F FB q2

q2
G1F2B q1

q1
G G . ~50!

Note that the resonator response must be bandpass filtered to
separate the in-phase (2) and anti-phase (1) resonator el-
lipsoids. Since the frequency response of the normal modes
is simple, they can easily be fit for various parameters such
as phase and amplitude. This information can then be trans-
formed to mode channels using using Eq.~35!. From the
mode channels the direction and amplitude information of a
possible gravitational wave event can be calculated as de-
scribed above.

B. Numerical simulation of errors

1. Parameters

Now that we have written down the solutions to the equa-
tions of motion we can look at what are the parameters of the
system and how uncertainties and deviations of them will
affect a measurement. Table I summerizes the parameters
used to simulate a TIGA.

The anglesbm and gm describe the orientation of the
quadrupole modes relative to a fixed lab frame, and will be
discussed further below. The parameterse j

r , e j
u , ande j

w are a
measure of the coupling of the transducers to the radial and
transverse motion of the sphere surface. In the above model

we assumede j
r51 ande j

u5e j
w50 because we felt their in-

clusion was unnecessary as transducers are currently avail-
able that do not strongly couple to transverse motion. How-
ever, it is useful to test this assumption and determine how
strong a requirement should be set for the actual instrument.
We include them here by replacing the pattern matrix defined
by Eq. ~18! with

Bm j[
1

a
~e j

r r̂1e j
uû1e j

wŵ!•Cm~u j ,f j !. ~51!

This should give a good approximation of the effects of
transverse coupling, without the need of changing the model
of the resonators from one-dimensional harmonic oscillators.
We considered these parameters as independent from each
other. One might relate them with a parameter such as the
angle between the transducer axis and the normal to the
sphere surface, however, we do not do this because for an
actual resonant transducer there are several other mecha-
nisms that can lead to transverse coupling, thus keeping
these parameters independent seems reasonable.

Some of the above parameters can potentially be mea-
sured directly, such as the masses, however, we include them
here for generality. In addition, the five quadrupole mode
massesmm

s would normally be set equal to each other and to
the physical mass of the sphere; however, again for general-
ity we kept it as a parameter. In the Appendix we describe a
procedure to measure most of these parameters, however the
resonator ellipsoid method described above makes this un-
necessary.

2. Simulation results

The transformation matrixV can be measured to very
high accuracies, but our assumption that the resonator ellip-
soids still mimic the sphere ellipsoids will have some error
associated with it. This error will propagate through the
analysis and into the results of a measurement. We, there-
fore, studied the effects of small perturbations to the above
parameters on our ability to determine accurately the direc-
tion of an excitation.

We developed a Monte Carlo type simulation where we
added a small random perturbation~uniform distribution! to
the above parameters within a specified tolerance. We then
simulated an excitation and calculated the direction using the
resonator ellipsoid method. The direction calculation as-
sumed the ideal case: it was not given knowledge of the true
values of the parameters.

As shown in Fig. 2, the results of the numerical simula-
tion indicate that a direction calculation becomes unreliable
only after the tolerance of all the parameters exceeds about
3%. This is certainly an obtainable level of precision. Figure
3 shows the solid angle estimation errorDV @28# for several
tolerances. We also varied the location of the excitation, but
found no significant difference in the results. Note that these
are systematic errors due to the analyses technique, not ran-
dom errors as the figures might imply.

To put these results into perspective, we compared these
systematic errors to the random error due to a finite signal-
to-noise ratio as calculated by Zhou and Michelson@12#. We
find that one would need a signal-to-noise ratio of about
1000 in energy before our systematic errors become signifi-

TABLE I. The parameters used for the numerical simulation of
a TIGA.

63kj
r resonator spring constants

53km
s sphere mode spring constants

63f j resonator positions
63u j resonator positions
53bm sphere mode orientations
53gm sphere mode orientations
63mj

r resonator masses
53mm

s quadrupole mode masses
63e j

r resonator radial couplings
63e j

u resonator transverse couplings
63e j

w resonator transverse couplings

62 total parameters
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cant~choosing a tolerance of 2%!. While one might hope to
observe sources at this level, the most optimistic predictions
lead to considerably smaller signal-to-noise ratios@29#. We,
therefore, feel that the systematic errors are sufficiently low
that there is no need to develop an alternative technique that
requires precise knowledge of the parameters.

Looking at the individual contribution to the errors from
each parameter, we determined which were most dominant.
We found that the most significant errors came from the
resonator positionsf j andu j . All the other parameters had
associated errors at least one order of magnitude inDV

lower than those from the resonator positions for reasonable
tolerance levels. This included the errors associated with the
coupling parameterse j

r , e j
u , ande j

w , thus justifying our ear-
lier decision to omit them from the model.

Perturbations to the sphere mode orientationsbm andgm

did not lead toany errors. We expected that simple linear
combination of the quadrupole modes do not lead to any
error, however, what is surprising is that a direction calcula-
tion’s ignorance of the true orientation in a nondegenerate
system does not lead to any errors. This is important as it
tells us that it is unnecessary to measure the mode orientation
before equipping the sphere with resonant transducers~as
was done on the prototype TIGA for other reasons discussed
below!. While these parameters may not completely describe
the effects of deviations of the quadrupole modes from an
ideal sphere, we found from measurements@22# that they are
the dominant effect of symmetry breaking. The fact that they
do not contributeat all to the errors on a measurement also
frees us from putting strong constraints on the spherical
mass. This allows us, for example, to put a hole through the
center of the sphere for suspension purposes, or use a TI~or
some other ‘‘spherical’’ shape! instead of a sphere.

IX. THE LSU PROTOTYPE TIGA

The above model outlines a clear algorithm for obtaining
the gravitational amplitudes from a spherical antenna. How-
ever, like most models, we must evaluate its worth with an
actual experiment. We therefore constructed a room tempera-
ture prototype TIGA. In the following sections we describe
how the prototype was used to: first, verify that a TI has the
same mode structure as a sphere; second, determine the ef-
fects of asymmetries on the sphere modes, such as a hole
drilled through the center for suspension; third, verify the
mode channel and ellipsoidal theories; and finally, verify the
direction finding algorithms.

The prototype TI was machined from a bar of aluminum
alloy 6063 that had previously been used as a cylindrical
gravitational wave detector and was known to have good
mechanical properties. Some key dimensions of the TI are
shown in Fig. 4. The prototype had a center-of-mass suspen-
sion. A hole was bored along a diameter that started from the
center of a hexagon face. The hole changed diameter just
above the center of mass, and a thin titanium suspension rod,
which widened to a cone at one end to mate with the hole’s
change in diameter, was inserted from the large diameter
side.

The prototype was first suspended and tested without me-
chanical resonators attached. This testing gave many insights
into the differences between an ideal sphere and a real one.
The results of this testing were summarized elsewhere@22#,
but we include here some of the important results that are
needed to describe the coupled system.

Once the uncoupled tests were completed, resonant trans-
ducers were attached, and the coupled system was studied.
Preliminary results of these tests were also summarized else-
where @27,30#, but we report here the completed work in
detail.

While we have attempted to report here as many of the
important aspects of the experiment as possible, we have

FIG. 2. The results of a numerical simulation of the systematic
error on a source direction measurement due to a finite tolerance on
the system parameters. The simulated wave is linearly polarized
with direction u51 rad,f52 rad. Each point represents a single
direction measurement with the system parameters varied within the
specified tolerance.

FIG. 3. The solid angle direction estimation error as a function
of the tolerance on the system parameters. Eachx represents the
results of a 200 trial simulation for a single source direction with all
the system parameters varied within the corresponding tolerance.
Changing the source direction produced similar results.
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omitted many of the specifics of this particular apparatus; for
those details we refer the reader to Ref.@21#.

X. THE UNCOUPLED PROTOTYPE

A. Normal mode frequencies

The measured frequency spectrum of the uncoupled TI is
shown in Ref.@22#. We were able to identify most of the
predominant modes using solutions to the elastic equations
of a sphere@31# and a finite element model of a TI@21#. We
found the degeneracy of all multiplets to be lifted by a small
amount: 1% or less in frequency. We were able to match the
measured frequencies of most of the multiplets to the theory
for a sphere to better than 1%.

The modes of most interest for gravitational wave detec-
tion are the five members of the lowest quadrupole mode
multiplet near 3235 Hz. For a homogeneous isotropic sphere,
those modes are exactly degenerate. We found that this quin-
tuplet was split into two doublets and a singlet, spread over a
range of 0.8% in frequency, as shown in Fig. 5. Additional
data ~not shown!, confirmed that the two peaks labeled as
doublets are each composed of two modes split by about 1
Hz.

Upon reflection, we realized that the suspension hole
bored through the TI must be the primary cause for the split-

ting of the quintuplet. It breaks the spherical symmetry, but
preserves cylindrical symmetry about the hole axis. The spe-
cific identification of the multiplets shown in Fig. 5 was sur-
mised on physical grounds, and confirmed by measurements
described below. We have not attempted to calculate the
magnitude of the splitting caused by the hole, so we cannot
make a comparison with the data, however, this effect has
subsequently been confirmed by others@23#.

B. Monopole mode calibration

This experiment dealt with high signal-to-noise ratios, and
absolute energy calibration was unnecessary. However, it
was important to know the relative sensitivity of the motion
sensors and correct for any differences. The monopole, or
breathing, mode of a sphere~which for this TI had a fre-
quency near 6880 Hz! is a spherically symmetric radial ex-
pansion and contraction of the surface. The TI had no other
modes close in frequency to the monopole mode. This made
it ideal to measure the relative sensitivity of the motion sen-
sors.

We excited vibrations of the TI with radial impulses from
a hammer at various locations on the surface. We found that
the responses of the six motion sensors, at the monopole
frequency, were identical in phase, and independent of the
position of the impulse, but differed systematically in ampli-
tude by up to 10%. These amplitude differences were due to
the quality of the attachment of the motion sensors as well as
gain differences in the electronics chain. These measured
gain deviations were then used to correct the amplitudes in
all the subsequent measurements. This method proved to be
very convenient as the motion sensors did not have to be
removed or remounted, which was found to change their
sensitivity.

C. Simple mode channels

We observed the quadrupole mode multiplet by sampling
the motion of the TI at six discrete positions, using small,
nonresonant, accelerometers waxed to the surface in the TI
arrangement as shown in Fig. 1. According to the standard
normal mode picture of vibrational mechanics, the free mo-
tion at these points, or any point on the surface, can be

FIG. 4. Schematic of the prototype truncated icosahedron.

FIG. 5. The fine structure of the power spectrum of an impulse
excitation of the TI’s first quadrupole mode multiplet. The five
degenerate modes of an isotropic homogeneous sphere were split
into two close doublets and a singlet. Each mode is identified with
its corresponding spherical harmonic.
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viewed as the combination, or superposition, of the response
of the normal modes. Thus each motion sensor will record a
different linear superposition of the responses of all the
modes.

A hammer was used to excite impulsively vibrations of
the sphere. Narrow-band filtering was used to isolate the
quadrupole modes. The measured response of each motion
sensor is shown in Ref.@22#. As expected, the nondegen-
eracy of the modes caused the individual sensor outputs to
display the various modes beating against each other, making
it difficult to make adirect estimate of the amplitude of each
normal mode.

We showed above that the desired mode amplitudes could
be separated out by combining the outputs of all the sensors
in special linear combinations, whose coefficients were
grouped together into the pattern matrixB. We called these
combinations ‘‘mode channels’’ to indicate they had a one-
to-one correspondence with the quadrupole normal mode
amplitudes of the sphere. For the case of the uncoupled pro-
totype, we do not need to included the measurement of the
matrix V to convert to normal modes, as the uncoupled
sphere quadrupole modesare the normal modes, thus their
frequency response is simple. In addition, for the case ofthis
prototype, we could not use this procedure because several of
the modes were nearly degenerate, thus exciting them indi-
vidually with a simple sine-wave excitation was impossible.

To obtain nearly perfect mode channels, we rotated the
spherical harmonics that determined the pattern matrix, until
we found the best fit to a single frequency in each mode

channel. We chose to use they convention for the Euler
angles@32# to perform the rotations. The rotationa about the
z axis was not used because it had little effect on the fit. The
b rotation about the newy axis mixed mode 5 with the other
four modes, while maintaining orthogonality. Theg rotation
about the newz axis mixed the new modes 1 with 2, and 3
with 4, but not 1 with 3 or 4, etc. Therefore, these rotation
angles could be different for the two pairs and still maintain
orthogonality. Mode 5 was unaffected by anyg rotation. The
best fit values for the rotation angles from the lab coordinate
system shown in Fig. 1 wereg12520.1, g34527.2, and
b51.0.

Each mode channel was well separated from the others
and behaved as expected, an exponentially decaying sine
wave. By examining the power spectrum, we determined that
the residual amplitude of the ‘‘wrong’’ modes present in a
channel was less than 2%. This small residual admixture
may, or may not, be due to imprecise positioning of the
accelerometers.

D. Simple impulse test

As a final test of the uncoupled system, we applied sev-
eral radial impulses to the center of nine different faces of
the TI, and then calculated the locations from the algorithm
described above. The results of this comparison are shown in
Ref. @22#. The locations calculated from the data were very
consistent; with three hits at each location, the overall stan-
dard deviation from the mean was;0.4°. The calculated
locations were all within;3% of the values expected from

FIG. 6. Schematic of the resonant transducer.

FIG. 7. Frequency measurements of the coupled modes for each
addition of a resonator. The solid lines are the measured values and
the dotted lines are the calculated. The lines that are double in
height represent degenerate doublets.
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the measured geometric position of the impulse hammer. The
deviation from the expected values is apparently a systematic
error, perhaps from imprecise placement of the accelerom-
eters or the impulse hammer. Below we describe the results
of a similar test, but with the accelerometers replaced by
resonant transducers.

E. Insights from the uncoupled prototype

Experiments on the uncoupled prototype showed that the
departures from perfect spherical behavior and symmetry
were not large. The quadrupole modes were no longer de-
generate, but the source of their frequency splitting is under-
stood. The eigenfunctions of the uncoupled TI were found to
be unchanged in shape from those of a perfect sphere by an
amount less than 2%; the main effect of the symmetry break-
ing was to fix them in a particular orientation. The simple
impulse test confirmed the practicality of the direction find-
ing technique. From these results, we conclude that a TI
represents a good approximation for a sphere and is suffi-
cient for use as an omnidirectional gravitational wave an-
tenna. Knowing these results, we were confident enough to
instrument the prototype TI with resonant transducers to
fully test the TIGA theory.

XI. THE PROTOTYPE WITH RESONANT TRANSDUCERS

A. Transducer design and attachment

Section IV lists the rudimentary requirements for a reso-
nator, but practical considerations require a more extensive
list. First, the ‘‘transducer mode’’ must be reasonably easy to
tune to the quadrupole frequency. Second, the transducer
mode must be purely radial, so that it couples strongly only
to the radial motion of the quadrupole modes. Third, there
should not be any other modes of the resonator nearby in
frequency. Fourth, there must be a practical method of at-
tachment with sufficient mechanical Q.

The design we adopted for the prototype, shown in Fig. 6,
approximates a lumped mass and a spring. The lumped mass,
or ‘‘head,’’ is attached to a thin stem, or ‘‘neck.’’ The neck
is fixed to a base which is then attached to the surface of the
prototype. These three parts were machined from a single
piece of aluminum. The transducer mode is such that radial
motion of the head compresses and extends the neck against
the base. While the neck is relatively rigid in the radial di-
rection, it is relatively flexible in the transverse directions,
which decouples the transducer mode from transverse mo-
tions. While designing the resonator, the length and diameter
of the neck can be adjusted to move the rocking and torsional
modes of the resonator well below the transducer mode fre-
quency.

FIG. 8. A typical response of the six resonators to a continuous
wave excitation applied to the surface of the prototype TI. The
excitation for this case was at the frequency of the fifth normal
mode. The outputs of the six resonant transducers was demodulated
using six separate lock-in amplifiers using the same reference fre-
quency at 3235 Hz~for clarity, only the in-phase is plotted!.

FIG. 9. The response of the 11 normal modes to a continuous
wave excitation at the frequency of the fifth normal mode calculated
from the data shown in Fig. 8. As expected, only the fifth normal
mode shows a large response.
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A piezoelectric strain gauge was epoxied to the neck of
each resonator. The strain induced in the crystal will be pro-
portional to the change in length of the neck, thus providing
an efficient way of observing the motion of the resonators.
The output of the strain gauges were first demodulated to
low frequency using six separate lock-in amplifiers, using the
same reference, and then recorded on a high speed data ac-
quisition system. The resonators and measurement system
are described in detail in Ref.@21#.

We used finite element analysis to fix the final parameters
of the resonator. The final tuning of the resonators was done
while attached to the TI. The equations of motion for this
system are given in Sec. IV taking the number of resonators
equal to one. We measured the coupled mode frequencies of
the prototype and one resonator and compared them to the
eigenvalue solution of Eq.~22! to determine the spring con-
stant of the small resonator. We had two practical options for
tuning the resonator: reduce the mass of the head, or lower
the spring constant by reducing the diameter of the neck.

We attached the resonators to the prototype with epoxy.
While this method may not lead to the best mechanical Q,
we found it was sufficient. The coupled modes had a Q of

about 103 in vacuum while the uncoupled sphere modes had
a Q of about 104. We suspect this difference is due to the
method of attachment. In air the coupled modes had a very
poor Q, thus we felt it was necessary to perform all test of
the coupled system under vacuum.

The resonators were attached to the prototype one at a
time, and the frequencies of the coupled modes were mea-
sured after each change. The calculated and measured quad-
rupole mode frequencies were fairly consistent with each
other. The nondegeneracy of the prototype’s quadrupole
modes did not introduce much deviation from a perfectly
degenerate system. It was also found that neither the toroidal
modes nor the monopole mode of the sphere were shifted by
more than 1 Hz when the resonators were added. Figure 7
shows the results of the frequency measurements of the
coupled modes for each addition of a resonator. The results
are compared with what is expected from the eigenvalue so-
lution of Eq. ~22! beginning with the measured uncoupled
eigenfrequencies. The two sets are consistent within 0.2%.
While we consider this very good agreement, Lobo and Ser-
rano found slightly better agreement~possibly due to better
numerical precision! with this data, by applying the equa-
tions of motion in an equivalent, but different form@11#.

FIG. 10. A typical response of the six resonant transducers to an
impulsive excitation applied to the surface of the prototype TI at
time t50. The outputs of the six resonant transducers were de-
modulated using six separate lock-in amplifiers using the same ref-
erence frequency at 3235 Hz~for clarity, only the in-phase is plot-
ted!. The irregular response indicates that several normal modes
contribute to the motion.

FIG. 11. The response of the 11 normal modes to an impulse
excitation applied to the surface of the prototype TI at timet50,
calculated by a linear combination of the data shown in Fig. 10. The
regular response indicates that each channel corresponds to a single
normal mode.
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B. Transformation to normal modes

With the six resonators attached, we were ready to ob-
serve the sphere modes using the resonator ellipsoid tech-
nique. The first step was to measure the transfer functionV.
We attached a simple nonresonant piezoelectric shaker to the
surface of the prototype. The frequencies of the 11 normal
modes were accurately measured by driving the shaker with
a single frequency sine wave, adjusting the frequency until a
maximum response of a single normal mode was observed.
With this system in equilibrium, we recorded the response of
the six resonators to the continuous wave excitation. The
frequency of the excitation was then changed to measure the
next normal mode frequency and the above steps repeated.

As shown in Fig. 8, the frequency response of the reso-
nators was simple because we were driving at a single fre-
quency. The amplitudes of their response made up a single
column of V. By exciting each normal mode in turn, the
complete transformation matrix was measured. We repeated
this measurement for several different locations of the
shaker, all of which gave consistent results.

Shown in Fig. 9 are the results of using the measured
transformation matrixV to calculate the response of the nor-
mal modes to the normal mode excitation of Fig. 8. For this
case the TI was driven with a continuous wave excitation at
the frequency of the fifth normal mode. As shown in the
figure, only the fifth normal mode was excited, as expected.
Again, this experiment had high signal-to-noise ratios, thus
the essentially flat lines of the nonexcited modes actually
represent a ‘‘leakage’’ level of about 5% in amplitude.

C. Impulse direction test

To combine the entire TIGA technique into a single test,
we applied an impulse excitation to the surface of the proto-
type TIGA to determine if the location of the impulse can be
measured from the response of the resonators. An impulsive

force was applied to the surface of the TI by sending a short
electrical pulse to a nonresonant piezoelectric shaker at-
tached to the surface.

Shown in Fig. 10 is a typical response of the six transduc-
ers to an impulsive excitation. Following the technique de-
scribed above, this data can be transformed to normal coor-
dinates using the matrixV. The results of this transformation
to the data of Fig. 10 is shown in Fig. 11. As expected, the
data separated into 11 channels, each containing a single
frequency representing the response of a single normal
mode. Since each channel contains only a single frequency,
it is relatively easy to fit them for their phase and amplitude
at the time of excitation. Once these quantities are found, we
can transform them to mode channels and compute the loca-
tion of the impulse as described above.

The results of this analysis for the various impulse loca-
tions are shown in Fig. 12. The locations calculated from the
data were very consistent; with several impulses at each lo-
cation, the overall standard deviation from the mean was
0.1°. On average, the calculated locations were all within
2.7° of the values expected from the geometrically measured
position of the center of the shaker.

The deviation from the expected values can be accounted
for by the accuracy of the excitation method. The shaker
used to apply the impulsive force did not actually apply a
‘‘point’’ impulse, but rather one that was distributed over a
ring about the circumference of the shaker. By systematically
repositioning the shaker, we determined that the ‘‘true’’ lo-
cation of the impulse was anywhere within 2.5° of the geo-
metric center of the shaker. A more precise way of exciting
the prototype would have been preferred, however, we found
this method to be adequate to verify the principle of the
technique.

XII. SUMMARY

Experiments on the prototype TIGA showed that the de-
partures from ideal behavior were not large. In every case,
ways could be found to handle the asymmetries without ma-
jor difficulty, and to some extent they actually simplify the
problem. A technique for determining the location of an ex-
ternal excitation, including that of a gravitational wave, from
the motion sensor data was developed which, except for
some bandpass filtering, is simply linear algebra. This makes
its implementation simple in an automated data analysis sys-
tem. Thein situ measurement technique takes into account
most deviations from perfect symmetry and the resulting
transformation matrices enable the data to be transformed to
a space where the frequency complications can be easily
handled. The algorithm was tested on the prototype TIGA
and was found to be consistent with the measured results
within the accuracy of the experiment. Since all the tech-
niques described can be appliedin situ, they are directly
applicable for use on a real spherical antenna searching for
gravitational waves.
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APPENDIX: RESONATOR CHANNELS

To measure all the parameters of a spherical antennain
situ without introducing any new parameters we could do the
following. Excite one of the resonators with an external force
and measure the response of all the resonators. If we were to
excite at some other location, this would introduce new un-
known parameters such as the location of the excitor.

We assume that we have a high signal-to-noise ratio so
that we can ignore any external forces acting directly on the
sphere modes. We therefore can set the forcesFs50. We
now write Eqs.~37! and ~38! as

@Kr2v2Mr #q~v!2av2MrBTa~v!5Fr~v!, ~A1!

@Ks2v2Ms#a~v!2aB Krq~v!52aBFr~v!. ~A2!

Solving for Fr(v) in terms of the observableq(v), we find

Fr~v!5@ I 2a2v2MrBT
„Hs~v!…21B#21@Hr~v!

2a2v2MrBT
„Hs~v!…21B Kr ]q~v!,

~A3!

where we have defined

Hs~v![Ks2v2Ms, ~A4!

Hr~v![Kr2v2Mr . ~A5!

For the case of an ideal TIGA, Eq.~A3! can be further sim-
plified:

Fr~v!5
~ks2v2ms!~kr2v2mr !2~3/2p!a2v2mrkr

~ks2v2ms!2~3/2p!a2v2mr

q~v!.

~A6!

One can imagine performing this experiment and then fit-
ting the resulting data for the various parameters. However,
during initial attempts to implement this technique, we found
the level of parameter fitting was complicated, even for ad-
vanced techniques such as simulated annealing, perhaps be-
cause global minimums did not exist. While it may be pos-
sible to fit accurately for these parameters, we preferred to
avoid such a task by developing and implementing the
method of resonator ellipsoids discussed above.
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