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We examine the gauge dependence of lower bounds on the Higgs boson mass obtained from the requirement
that the electroweak vacuum be the global minimum of the effective potential. We study a simple model, the
spontaneously broken Abelian Higgs model coupled to a chiral quark doublet in a two-parameterRj,u gauge,
and demonstrate that the lower bounds on the Higgs boson mass obtained in this model are dependent on the
choice of gauge parameters. We discuss the significance of this result for calculations in the standard model.
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I. INTRODUCTION

In the absence of direct observation of the standard model
Higgs boson, considerable effort has been expended on the
study of its properties through indirect means. There has
been a series of papers deriving the lower bound on the
Higgs boson mass, based on considerations of the stability of
the electroweak vacuum~see@1# for a comprehensive review
of work through 1990!. In the strongest form of the vacuum
stability bound, it is assumed that the electroweak vacuum is
the absolute minimum of the effective potential (Veff@F#), at
least up to some ‘‘new physics’’ scale at which the effects of
unknown high-scale physics become significant and the low-
energy model is no longer appropriate. This places restric-
tions on the running quartic couplingl at the high scale.
After runningl down to the electroweak scale, this is con-
verted into a restriction on the Higgs pole mass.

In this paper we investigate the consequences of the
gauge dependence of the effective potential for these calcu-
lations. The gauge dependence of the effective potential was
pointed out in the early 1970s@2#. The effective potential is
the sum of one-particle irreducible~1PI! Green’s functions at
zero external momentum. In a gauge theory with massive
scalars these are off-shell quantities, and thus in general
gauge dependent. It is that known the value ofVeff@F# at any
of its extrema,F i , is gauge independent. However, the lo-
cations of these extrema along theF axis, theF i themselves,
are gauge dependent. In practice, the input condition has
been that the renormalization-group-~RG-! improved pertur-
bativeVeff(F) should not fall through zero for a variableF
less than some chosen maximum~‘‘cutoff’’ ! valueFmax. ~In
some studies, the’t Hooft dimensional regularization scalek
is identified with the variableF. Then it is kmax!. But the
condition Veff(Fmax)>0 is manifestly gauge dependent~the
arbitrarily chosenFmax is not a stationary point, so the value
of Veff at Fmax depends on the gauge!. Alternatively, one
could require that the derivativedVeff@F#/dF not go to zero
before Fmax, since @dVeff@F#/dF#F0

50 identifies F0 as a

stationary point. But the solutionF0 is also gauge dependent
@it is the vacuum expectation value~VEV! of a quantum field
which is not invariant under the transformations which have
been gauged, e.g., O(N)#. Thus the proposed conditionF0

greater than or equal to some arbitrarily fixedFmax is also
gauge dependent. The relation between the Higgs boson
mass and the scale of new physics, defined either as a value
of F at the extremum of the effective potential or a value of
F at which the effective potential achieves some fixed value,
relates a physical quantity to an unphysical quantity. It thus
cannot be expected to be gauge invariant.

The tree approximation toVeff is gauge invariant. If one
restricts the calculation to the replacement of the fixed quar-
tic scalar coupling by its RG running version in the tree
approximation forVeff and uses a gauge-invariant definition
of the modified minimal subtraction scheme~MS̄! running
masses and gauge-invariantb functions, the calculation
never encounters any gauge dependence~i.e., the gauge pa-
rameterj never appears!. However, if one attempts to im-
prove the estimate by including some information from the
one-loop contributions toVeff , the results are essentially in-
fected by the gauge dependence described above. We con-
clude that the original estimate cannot be improved. No
model-independent error estimate is possible in the context
of a calculation based on the effective potential. The reader
who is convinced by these simple considerations may skip
the lengthy calculations that follow and skip to Sec. V where
we discuss some possible formulations not involving the ef-
fective potential which are free of problems with gauge de-
pendence.

In this paper we demonstrate the gauge dependence of the
lower mass bound of the Higgs by explicit calculation in a
toy model. Our model consists of a spontaneously broken
Abelian Higgs theory coupled to a doublet of chiral fermions
~‘‘top’’ and ‘‘bottom’’ !, one of which obtains a mass through
the spontaneous symmetry breaking. For certain regions of
the parameter space this model will display the qualitative
features of the standard model necessary to study elec-
troweak vacuum stability. In Sec. II we outline the Lagrang-
ian for the model in a two-parameter gauge, theRj,u gauges.
We outline the one-loopMS renormalization of the theory
for m2.0 andm2,0 and give an explicit expression for the
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VEV of the Higgs field. In Sec. III we calculate the one-loop
effective potential in generalRj,u gauges and check that cal-
culating the location of the extremum of this effective poten-
tial gives the same VEV as the perturbation theory calcula-
tion in the broken symmetry phase. We then do the RG
improvement to sum the possibly large logarithms intro-
duced by the one-loop contribution to the effective potential.
In Sec. IV we discuss the connection between the RG-
improved effective potential and the electroweak vacuum in-
stability scale. We show explicitly that electroweak vacuum
instability scales defined by the location of some feature of
the effective potential along theF axis are gauge dependent
and will pass this gauge dependence into a mass bound on
the Higgs boson. In Sec. V we discuss possible alternative
methods for deriving lower bounds on the Higgs boson mass,
and in Sec. VI we summarize our conclusions.

II. THE MODEL

A. Lagrangian

The model which we study is the spontaneously broken
Abelian Higgs model coupled to a chiral fermion doublet.
Over some region of its parameter space this model displays
the same sort of vacuum instability due to heavy-fermion
loops as arises in the standard model. We stress that we do
not propose that a numerical lower bound on the standard-
model Higgs boson be calculated from this model. It is
merely a toy model for illustrating certain issues of principle
which we wish to present without the unnecessary complica-
tions of a nonabelian gauge theory. Note in particular that the
fact that a U~1! gauge theory is not asymptotically free poses
no difficulty as long as vacuum instability scales are well
below the Landau singularities of the couplings.

The Lagrangian is

L5Lcl
AH1Lcl

f 1Lgf1LFP, ~1!

Lcl
AH52

1

4
~]mB0n2]nB0m!21

1

2
~]mh0!21

1

2
~]mx0!2

1g0@~]mh0!x02~]mx0!h0#B0
m

1
1

2
g0

2B0mB0
m~h0

21x0
2!

2
1

2
m0

2~h0
21x0

2!2
l0

4
~h0

21x0
2!2, ~2!

Lcl
f 5 i t̄ 0L]” t0L1 i t̄ 0R]” t0R1 i b̄0L]”b0L1 i b̄0R]”b0R

1 ig0@ t̄0LB” 0b0L2b̄0LB” 0t0L#2yt0@ t̄0Lt0R1 t̄0Rt0L#h0

2yt0@ b̄0Lt0R1 t̄0Rb0L#x0 . ~3!

As usual, (h,x) is a doublet of real scalar fields.t andb
are fermion fields. Their left-handed projections (tL ,bL)
form a doublet under the local gauge transformation, while
their right-handed projections transform as a singlet. Sponta-
neous symmetry breaking along theh direction then gives a
tree-level (MS) mass to the Higgs scalar, the vector boson,

and thet fermion. The Goldstone bosonx receives in the
broken-symmetry phase no tree-level mass fromLcl , nor
doesb.

To study the gauge dependence of the mass bound that
results from this model, we choose to work in a two-
parameter gauge, theRj,u gauge. The gauge-fixing term is

Lgf52
1

2j0
~]mB0

m1j0u0g0x0!2 ~4!

and the corresponding Faddeev-Popov ghost term is

LFP52 c̄0]2c02j0u0g0
2c̄0c0h0 . ~5!

Special cases of this gauge include the Landau gauges~j50!,
’ t Hooft Rj gauges@3# @u5v, the tree-level Higgs~VEV!#
and Fermi gauges (u50).

The gauge-fixing term is chosen anticipating that the
spontaneous symmetry breaking will be in theh direction. In
the Rj gauges, the gauge-fixing term cancels the tree-level
]B2x mixing term generated in the renormalized classical
Lagrangian by the shift of theh field. This is especially
convenient for perturbative calculations in the broken-
symmetry phase. The gauge-fixing term explicitly breaks the
O~2! symmetry ofLcl

AH, giving thex a tree-level mass. The
ghost also receives a tree-level mass under SSB. Except in
the Fermi and Landau gauges, the ghost is not free.

B. MS renormalization

We renormalize the theory by rescaling the parameters
and fields of the Lagrangian by multiplicative renormaliza-
tion factorsZ:

g05Zgg, l05Zll, yt05Zyyt ,

m0
25Zm2m2, j05Zjj, u05Zuu. ~6!

Among the fields, members of an O~2! doublet receive a
common renormalization:

B0
m5ZB

1/2Bm, ~h0 ,x0!5Zf
1/2~h,x!,

~ tL0 ,bL0!5ZL
1/2~ tL ,bL!,

tR05Zt
1/2tR , bR05Zb

1/2bR , c05Zc
1/2c . ~7!

Writing

Z511~Z21!511dZ ~8!

and substituting Eqs.~6!, ~7!, and ~8! into the Lagrangian
generates the counterterms for the theory. Various Ward or
Becchi-Rouet-Stora-Tyutin~BRST! identities determine that
no counterterms are generated by the renormalization trans-
formations of the gauge-fixing and ghost Lagrangians.

The definition of the counterterms and the physical mean-
ing of the renormalized parameters depends on the renormal-
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ization scheme. Here we work inMS. The counterterms may
then be calculated in either the symmetric or broken symme-
try phase of the theory@4#.

The simplest case,u50 gauges in the symmetric phase
(m2.0), is ~aside from the fermions! simply scalar QED@in
O~2! rather than U~1! variables#. ThedZ’s are calculated by
cancelling the divergences of the two- and four-point 1PI
functions (G (n)). The relations betweenZg , ZB , andZj are
familiar from QED Ward identities. A particularly useful
feature arises from the relationZjZg

251. This implies that
jg2 is a renormalization-group invariant, although individu-
ally the two factors run. Thus, oncejg2 is fixed to some
initial value it remains unchanged under RG running. Sincej
appears only in the combinationjg2 in the effective poten-
tial, we may simply set the value ofjg2 and never consider
the running ofj alone.

In the more generalRj,u gauge complications arise as a
result of the new pieces of the gauge-fixing term which ex-
plicitly break the global O~2! symmetry of theLcl . In par-
ticular, the tree-level]B-x mixing induced by this gauge
fixing gives rise to a divergent Higgs one-point function~see
Fig. 1!. Thus the Higgs field acquires a divergent one-loop
VEV even form2.0. To perturb about the correct vacuum,
we make a shift of the field

h5h81dw ~9!

and choosedw such that

^0uh8u0&50. ~10!

Explicitly to one-loop order we find

dw52
jg2u

~4p!2 F2De1 ln
m2

k221G , ~11!

where

De5
2

42d
2gE1 ln4p ~12!

is the standardMS UV subtraction ind dimensions andk is
the renormalization scale. This shift generates one-loop
counterterms which in addition to eliminating the one-point
function of the shifted fieldh8 also renders finite the bosonic
three-point functions~which also arise as a result of]B-x

mixing!. For m2.0, dw→
u→0

0 and we return smoothly to the
limit of the usual symmetric phase described above.

Perturbation theory form2,0 is most straightforward in
the ’t Hooft Rj gauges (u5v). For m2,0 the symmetry is
spontaneously broken already at the tree level. To perturb
about the correct vacuum we shift the fieldh by the exact
VEV V. The exact VEV is determined as a function of the
parameters of the theory order by order in perturbation
theory by the requirement that the one-point function of the
shifted field Ĝ(1) vanish order by order in perturbation
theory:

h5ĥ1V⇒^0uĥu0&50, ~13!

V5v1dV. ~14!

The gauge-fixing term withu5v cancels the tree-level]B-x
term generated inLcl by the field shift, leavingdV to act as
a one-loop counterterm. The VEVV computed to one-loop
order is

V5v1
v

~4p!2 Fjg2De23lS ln
mh

2

k221D
2

1

2

g4

l S 3 ln
M2

k2 21D2
1

2
jg2S ln

jM2

k2 21D
12Nf

yt
4

l S ln
mt

2

k221D G . ~15!

In terms of the renormalized parameters of the theory,m2

(,0), l, g2, andyt
2 the masses and tree-level VEV in Eq.

~15! are

v5A2m2

l
, ~16!

mh
2522m2, ~17!

M5gv, ~18!

mt5ytv. ~19!

Note thatdV is explicitly gauge dependent and contains a
UV pole (De) @4–6#. The subtractions implied bydV and the
dZs eliminateĜ(1) and render all the otherĜn finite.

FIG. 1. Divergent Higgs one-point function form2.0 in the
Rj,u gauge.
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For generaluÞv there is again the complication of un-
cancelled tree-level]B-x mixing, but the procedure is the
same. Again requirinĝ0uh8u0&50 we calculate the correc-
tions to the VEV

dV52
jg2u

~4p!2 S 2De1 ln
jg2uv

k2 2
3

2D
2

v
~4p!2 F3lS ln

2lv2

k2 21D1
1

2

g4

l S 3 ln
g2v2

k2 21D
2

1

2
jg2S ln

jg2uv
k2 22D22Nf

yt
4

l S ln
mt

2

k221D G .
~20!

Note that foru5v this reproduces theRj gauge result~15!.
Difficulties arise in taking theu→0 ~Fermi gauge! limit. IR
divergences resulting from the massless Goldstone boson
spoil the calculation of the one-loop correction to the VEV.
Fermi gauges are in any case not especially well suited to
broken-symmetry phase calculations, since the]B-x mixing
from Lcl is not cancelled by the gauge-fixing term.Rj,u
gauges in general also contains]B-x mixing, but for the
gaugeu5v ~Rj gauges! the tree-level]B-x mixing term is
cancelled. Thus, the Fermi gauge is clearly a natural choice
for symmetric phase perturbative calculations, asRj gauges
are for the broken-symmetry phase calculation.

III. THE RENORMALIZATION-GROUP IMPROVED
EFFECTIVE POTENTIAL

A. One-loop effective potential

The quantity we will refer to as the effective potential,
Veff@f#, is the sum of 1PI diagrams with any number of ex-
ternal Higgs legs, each carrying zero external momentum:

Veff~F!52 (
n51

`
1

n!
FnG~n!~pi50!. ~21!

This is in fact not the effective potential, since it is not con-
vex and may be complex. We sidestep entirely the discussion
of convexity, referring the reader to the literature~e.g., @7#,
the Appendix of@1#! for the argument that this is indeed the
appropriate function to study. As mentioned previously, in a
theory with massive scalars the Green’s functions at zero
external momentum are in general gauge dependent, and as a
result so isVeff@f#.

The calculation of the one-loop effective potential is most
simply carried out via the tadpole method@8#. The main
complication is that one has to deal with mixed]B2x
propagators in any but Landau gauge. The full one-loop ex-
pression is

Veff@F#5
1

2
m2F21

l

4
F41

1

4

H4@F#

~4p!2 F ln
H2@F#

k2 2
3

2G1
3

4

B4@F#

~4p!2 F ln
B2@F#

k2 2
5

6G2
2

4

G4@F#

~4p!2 F ln
G2@F#

k2 2
3

2G
1

1

4

k1
4 @F#

~4p!2 F ln
k1

2 @F#

k2 2
3

2G1
1

4

k2
4 @F#

~4p!2 F ln
k2

2 @F#

k2 2
3

2G2Nf

Y4@F#

~4p!2 F ln
Y2@F#

k2 2
3

2G1jg2uF~m21lF2!

3F 2De

~4p!2G , ~22!

where

H2@F#5m213lF2, ~23!

B2@F#5g2F2, ~24!

G2@F#5jg2uF, ~25!

k6
2 @F#5

1

2
@m21lF212jg2uF#

6
1

2
A~m21lF2!@m21lF214jg2F~u2F!#,

~26!

Y2@F#5yt
2F2. ~27!

H, B, Y, and G denote contributions from Higgs, vector
boson, heavy fermion, and Faddeev-Popov ghost loops, re-
spectively. Thek6

2 terms arise from the]B-x sector. This
result agrees with that obtained in@9#, with the exception of
a difference in the nonlog piece of theB term1 and the pres-
ence of the UV pole. It is manifestly gauge dependent, and
the pole term exists forj,uÞ0.

The expression for theVeff can be checked by comparing
the expressions for the extrema to those obtained by direct
perturbative calculation. The extrema ofVeff are found by
solving

1We suspect that this is due to a neglected (d24)/e521 contri-
bution in the calculation of the gauge boson piece.
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F]Veff@F#

]F G
^F&

50. ~28!

Writing the extrema ofVeff in a loop expansion as

^F&5^F0&1^F1&1••• , ~29!

this becomes

0 5
one loopF]Veff

0 @F#

]F G
^F0&1^F1&

1F]Veff
1 @F#

]F G
^F0&

5F]Veff
0 @F#

]F G
^F0&

1F]2Veff
0 @F#

]F2 G
^F0&

^F1&1F]Veff
1 @F#

]F G
^F0&

. ~30!

Solving for the^F0& and ^F1& gives

^F0&5A2m2

l
[v, ~31!

^F1&52F]2Veff
0 @F#

]F2 G
^F0&

21 F]Veff
1 @F#

]F G
^F0&

52
1

2lv2 F]Veff
1 @F#

]F G
^F0&

52
jg2u

~4p!2 S 2De1 ln
jg2uv

k2 2
3

2D
2

v
~4p!2 F3lS ln

2lv2

k2 21D1
1

2

g4

l S 3 ln
g2v2

k2 21D2
1

2
jg2S ln

jg2uv
k2 22D22Nf

yt
4

l S ln
mt

2

k221D G ~32!

which agrees with the perturbative result. We can also see that the value ofVeff at the extremum is gauge invariant:

Veff@^F&# 5
one loop

Veff
0 @^F0&1^F1&#1Veff

1 @^F0&#5Veff
0 @^F0&#1F]Veff

0 @F#

]F G
^F0&

^F1&1Veff
1 @^F0&#5Veff

0 @^F0&#1Veff
1 @^F0&#

52
1

4
lv41

1

4

mh
4

~4p!2 F ln
m

2

k22
3

2
G1

3

4

mB
4

~4p!2 F ln
mB

2

k2 2
5

6G2Nf

mt
4

~4p!2 F ln
mt

2

k22
3

2G . ~33!

Upon substitutingF5^F0& into Eq.~22! the UV pole disappears, the Fadeev-Popov ghost term cancels thek6
2 terms, and the

resulting expression~33! is gauge independent, as expected.
Observe that in the large-field limitF@u, mVeff simplifies to

Veff@F#'
1

4
F4leff@F#, ~34!

where

leff@F#[l1Dl@F# ~35!

Dl5
9l2

~4p!2 F ln
3lF2

k2 2
3

2G1
3g4

~4p!2 F ln
g2F2

k2 2
5

6G2Nf

4yt
4

~4p!2 F ln
yt

2F2

k2 2
3

2G1
k̃1

4

~4p!2 F ln
k̃1

2 F2

k2 2
3

2G
1

k̃2
4

~4p!2 F ln
k̃2

2 F2

k2 2
3

2G ~36!

and

k̃6
2 5

1

2
$l6Al~l24jg2!%. ~37!

Sinceu is a gauge parameter, we are free to choose it as large or small as we wish. We use this freedom to assumeF
@u, neglectu and focus on thej dependence of the quantities of interest. Since theu dependence has been dropped, this is
just what we would get from a calculation in Fermi gauge~again also neglectingm2!. Sincek6

2 are complex conjugates~as are
k̃6

2 !, their combined contribution is real forl(l24jg2).0. However, the contribution from the Higgs loop becomes complex

7420 56WILL LOINAZ AND R. S. WILLEY



for l,0 if the runningl is used inside the one-loop effective potential, as would be the case in@10–12# had the Higgs loop
term been retained. This is also the case for thek6

2 terms whenl(l24jg2),0.
Taking the limitjg2/l!1, u!F elucidates the structure of the gauge-dependent pieces. In this limit,

G2@F#;0, ~38!

k1
2 @F#;lF2F12

jg2

l G2
~jg2!2

l
F21O„~jg2!3

…, ~39!

k2
2 @F#;jg2F21

~jg2!2

l
F21O„~jg2!3

…, ~40!

and

leff@F#[l1Dl, ~41!

Dl5
9l2

~4p!2 F ln
3lF2

k2 2
3

2G1
3g4

~4p!2 F ln
g2F2

k2 2
5

6G2Nf

4yt
4

~4p!2 F ln
yt

2F2

k2 2
3

2G1
l2

~4p!2 F ln
lF2

k2 2
3

2G
2

2jg2l

~4p!2 F ln
lF2

k2 21G1
~jg2!2

~4p!2 F ln
jg2

l
1

1

2G . ~42!

The k1
2 term carries the piece associated with the Goldstone

boson in Landau gauge. Thej-dependent terms are of course
absent in Landau gauge.

The disconcerting presence of a UV pole in the effective
potential is related to the renormalization issues discussed
previously. The effective potential in Eq.~22! is expressed as
a function of a field that has had itsZf factor removed only.
However, perturbative calculations indicated that an addi-
tional shift of the field is necessary to make the 1PI functions
~and thus alsoVeff! finite. A shift in the field by the pole
piece ofw is sufficient to remove the pole and leave aVeff
which is finite.

It should be noted that the effective potential with the pole
is perfectly well defined. A calculation of the extrema of
Veff@F# yields a one-loop VEV with a pole, but the values of
Veff at these extrema are finite and gauge independent. This
is to be expected, since the value ofVeff at extrema corre-
sponds to a physical vacuum energy. However, it is not con-
venient to work with a divergentVeff for purposes of study-
ing vacuum stability, and we will choose to work with the
expression for the effective potential in terms of the shifted
field, F85F2dwpole. We might also choose to shift the
field by the finite piece, so that the extremum ofVeff8 @F8# is at
F850. Such shifts will be unimportant in theF8@m,u
limit, however and we ignore them.

B. Renormalization-group improvement

To study Veff@F# for large F, we must use the
renormalization-group improved effective potential to sum
up large logs of the form ln(F/Fi). Using the invariance of
Veff@F# under changes inMS renormalization scalek and
dimensional analysis, we obtain an equation for the RG-
improvedVeff that will be valid at large fields. This has the
solution

Veff~sF i ,ĝi ,m i ,k!

5expF E
0

ln s 4

gf~x!11
dxG

3Veff@F i ,ĝ~s,ĝi !,ĵ~s,ĝi ,ĵ i !,m~s,m i !,k#,

~43!

where

gf52
k

f

df

dk
5

1

2

k

Zf

dZf

dk
. ~44!

Heres5F/F i , ĝ represents the set of couplingsyt , l, and
g, and ĵ represents the pair of gauge parametersj andu.

Note thatm2 andu do not appear in the large-field limit of
Veff @see Eqs.~34! and~35!#. We also observe that the gauge
parameter appears inVeff only in the combinationjg2, at
least at one loop. The dependence on the gauge parameters
then reduces to simply the dependence onjg2, which is RG
invariant. Thus we can write the RG-improved effective po-
tential for largeF as

Veff~sF i ,ĝi ,jg2,k!5
1

4
leff@F i ,ĝ~s,ĝi !,jg2,k#@F iz~s!#4,

~45!

where

z~s!5expF E
0

ln s 1

gf~x!11
dxG . ~46!

It has been shown that then-loop effective potential im-
proved byn11 loop RGE’s resums thenth-to-leading logs
@13,14#. This paper does not focus on the resummation of the
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logs, and we are content to sum the leading logs only. In-
deed, the issues are perhaps clearest in the region in which
relatively small field excursions are necessary and the RG
improvement is less important, as is discussed in the next
section. It is thus sufficient to consider the one-loop effective
potential with one-loopb and g functions. In this approxi-
mation it is consistent to neglect the running of the couplings
g, yt , andl in Veff

1 and use the one-loop running couplings
and fields inVeff

0 . In this approximationDl is independent of
s andVeff is

Veff~sF i ,ĝi ,jg2,k!5
1

4
@l~s,ĝi !1Dl~F i ,ĝi ,jg2,k!#

3@F iz~s!#4, ~47!

whereDl is defined in Eq.~42!. We note that if the running
l(s) were used in theVeff

1 the effective potential becomes
complex forl(s),0.

TheMS RG equations for the running couplingsg2(s,gi
2)

andyt
2(s,ĝi

2) can be solved analytically:

g2~s,gi
2!5

1

1/gi
22c2lns

, ~48!

wherebg25c2g4 and

yt
2~s,ĝi

2!5F S g2~s!

gi
2 D c4 /c2S 1

yi
22

c3

c21c4

1

gi
2D

1
c3

c21c4

1

g2~s!G21

, ~49!

whereby
t
25c3yt

42c4yt
2g2

•yti
2 and gi

2 are the initial (s51)

values of the couplings. ForNf51, c2510/3@1/(4p)2#, c3
511/(4p)2, and c456/(4p)2. Since this is a U~1! theory
and so not asymptotically free, the gauge coupling exhibits a
Landau pole ats5exp@1/gi

2c2#. yt
2(s,ĝi

2) also exhibits a sin-
gularity at

s5expF 1

gi
2c2

GexpF2
1

c2
H ~gi

2!2c4 /~c21c4!

3S 1

gi
22

c21c4

c3

1

yti
2 D c2 /~c21c4!J G . ~50!

However, this is not relevant to our analysis as long as the
singularities are far beyond the scale at which the elec-
troweak vacuum becomes unstable, and can be arranged
without difficulty @for the initial parameters we choose here,
the Landau pole ofg2(s) is ats510137 and the pole inyt

2(s)
is at s5531013#. The RG equation forl(s,ĝi

2) must be
solved numerically.

IV. THE MS ‘‘NEW PHYSICS’’ SCALE AND LOWER
BOUNDS ON THE HIGGS MASS

FROM VACUUM STABILITY

As in the standard model,bl of our model contains a
term due to fermion loops which tends to drivel(s) smaller

for increasings. For largeyt
2 ~i.e., for a heavy fermion!, this

term may dominatebl . At some critical field value ofs,
l(s) will become negative, and if this occurs for larges the
effective potential will quickly become much lower than the
electroweak minimum. If our theory were still complete at
this scale it would imply that the electroweak minimum is
not global minimum of the theory, contrary to our initial
assumption. If we insist that the electroweak vacuum be ab-
solutely stable, we are led to conclude that the theory is
incomplete at this scale. Contributions from new physics
must be significant at this energy scale and either ‘‘rescue’’
the effective potential or ruin the entire approach.

Previous studies have considered different criteria for in-
stability of the electroweak vacuum and corresponding speci-
fications of the instability scale. Several papers@15–17# have
takenl(smax)50 as specifying the vacuum instability scale,
the point at which the RG-improved tree-level effective po-
tential becomes negative. Recently Casas, Espinosa, and
Quiros @10–12# have included one-loop corrections to the
standard model effective potential~as well as two-loopb
functions!, primarily in an attempt to reduce the renormal-
ization scale ~k! dependence of the bounds. They con-
sider the condition leff(smax)50, where Veff(s,Fi)
'1/4leff(s)@Fiz(s)#4, and observe that this gives a bound on
the Higgs boson mass significantly different from~and pre-
sumably better than! that from l(smax)50, at least at low
cutoff scales. The distinction is illustrated in Fig. 2. There
leff(s,jg2,ĝi), l(s,ĝi), and Veff are plotted against lns. Ob-
serve thatVeff falls off sharply, but thatl falls through zero
beforeleff andVeff do.

The distinction between the conditionsl(s)50 and
leff(s)50 is equivalent to the distinction between the condi-
tions Veff

0 (s)50 and Veff
0 (s)1Veff

1 (s)50. l(s) and Veff
0 are

gauge independent, but the expression forleff(s) in Eqs.~36!
and ~37! contains explicit dependence on the gauge param-
eterj ~the dependence on the gauge parameteru has dropped
out in this approximation!. Thus whether the condition
leff(s)50 at some assignedsmax or the determination of the
instability scalesmax at whichleff(s) goes to zero is used as
the vacuum instability criterion, the result will have explicit
gauge~j! dependence if one goes beyond the RG improve-
ment of the tree-levelVeff .

To obtain a lower bound on the Higgs pole mass from one
of these stability conditions requires several steps. As input
data one needs the values ofgi and yti at some initial low
renormalization scalek i . In standard model studies these

FIG. 2. leff(s) ~dashed line!, l(s) ~solid line!, andVeff(s) ~bold
line! vs lns. gi

250.15, yti
250.5, l i50.2, jg2510. Veff has been

scaled down to fit the plot.
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would come from global fits to electroweak data~with some
error estimate! and introduce no gauge dependence. Then,
using the one-loop approximation to theb functions one has
the RG solutions for runningg andyt at any scale~for which
they remain perturbatively small!. For convenience one may
takek i equal toF i , the arbitrary electroweak scale at which
one specifies the approximate effective potential. One then
integrates the RG equation~RGE! for l(s) starting ats51
(F5F i), with some initial guess forl(s51). The initial
guess is then adjusted until the resultingl(smax) at the des-
ignated cutoff,Fmax5smaxFi , satisfies the high-scale bound-
ary condition, l(smax)52Dl. It is at this stage that the
gauge dependence enters, through the explicitj dependence
of Dl. The resulting criticall(s51) becomes the~gauge-
dependent! lower bound onl(k i) @l~k! is gauge indepen-
dent; theboundis gauge dependent#.

Alternately, one could start at the high scalesmax with the
input g(smax) andyt(smax) by running the original low scale
inputs up to the high scale and by imposing the gauge-

dependent boundary condition onl(s), l(smax)52Dl. The
RGE for l(s) is then run back down tos51. The result is
the same—a gauge-dependent lower bound onl(k i).

There are still some steps to get from a lower bound on
l(k i) to a bound on the Higgs pole mass, but none of them
introduce and new~possibly compensating! gauge depen-
dence~they do substantially reduce the dependence on the
arbitrarily chosen initial renormalization scalek i!. One re-
quires a numerical value forv(5A2m2/l) the gauge-
independent tree-level VEV. In the standard model,v2

51/&GF ~up to calculated electroweak perturbative correc-
tions!. The other ingredient is the relation between the Higgs
pole massmh* and the HiggsMS massmh

252lv2. This is
given by the zero of the inverse propagator atp25mh*

2. Off
shell, the inverse propagator is explicitlyj dependent, and it
is a nontrivial check of the calculation that allj dependence
cancels out on shell~note that by its definition as the tree-
level VEV and the renormalization conditions chosen, the
relationv25mh

2/2l gets no perturbative correction!:

mh*
25mh

21
lmh

2

~4p!2 F3 ln
mh

2

k2 1 ln
M2

k2 21213)p1I S mh
2

M2D G1
g2M2

~4p!2 F616I S mh
2

M2D G1
g2mh

2

~4p!2 F23 ln
M2

k2 1122I S mh
2

M2D G
1Nf

yt
2mh

2

~4p!2 F2 ln
mt

2

k2 12I S mt
2

mh
2D G28Nf

yt
2mt

2

~4p!2 F I S mt
2

mh
2D 11G , ~51!

where

I ~r !5E
0

1

ln@12ra~12a!#da. ~52!

In the one-loop corrections to the relation betweenmh
2 and

mh*
2 no distinction is made betweenmh

2 andmh*
2. Thus, the

gauge dependence of the lower bound onl(k i) obtained
from the stability condition propagates into the lower bound
on the Higgs mass.

If one were to proceed with a numerical calculation at this
point, one would find that for smalll a large value ofjg2

would be required to produce a significant change inDl
~e.g.,jg2;yt

2/l to match the fermion loop contribution!. A
two-loop analysis would then be necessary to assess whether
such a choice of gauge parameter led to a convergent pertur-
bative expansion. Regardless the conclusion, however, the
convergence of the perturbative expansion cannot be adopted
as a criterion for restricting the choice of gauge parameter.
There is no physical principle which restricts the range of
gauge parameters. Unlike the situation for the renormaliza-
tion scale dependence~in which the scale independence of
the all-orders effective potential can serve as motivation for a
choice of scale for then-loop truncation!, the all-orders ef-
fective potential is gauge dependent, and large values ofj for
which perturbative calculations are uncontrolled are just as
relevant~or irrelevant! as small values ofj.

Despite the above caveats, because the formulas for gen-
eral j are sufficiently complicated that thej dependence is
not transparent~even though manifest! we provide a numeri-
cal plot. In Fig. 3 we plotleff(s) for two values ofjg2.

We note also thatVeff contains additional gauge depen-
dence in the scale factorz(s). Since this is an overall expo-
nential multiplicative factor, however, it does not change the
point at whichVeff50.

The explicit effects of thej-dependent terms on the ‘‘new
physics’’ scale are easy to see in the region of parameters
space in whichl(s)'l i1bllns is a good approximation.
Solving the equation associated with the turnover ofVeff

0 ,

FIG. 3. leff(s,jg2,ĝi) vs lns for jg250 ~upper curve! and jg2

525 ~lower curve!. gi
250.15,yti

250.5, l i50.2.
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l~sl50!'l i1bllnsl5050 ~53!

gives

sl505expF2
l i

bl
G . ~54!

Considering instead the condition associated with the one-
loop effective potential

leff~sleff50!5l~s!1Dl'l i1bllnsleff501Dl50
~55!

gives

sleff505sl50expF2Dl

bl
G . ~56!

SeparatingDl into j-dependent andj-independent terms

Dl5Dlj501dljg2 ~57!

yields

sleff505sj50expF2dljg2

bl
G . ~58!

That is, the new physics scale can be expressed in terms of
the Landau gauge vacuum instability scale times some
gauge-dependent piece which is arbitrary. Thus, we see ex-
plicitly that a vacuum instability scale defined in this manner
is necessarily gauge dependent.

More generically, we might propose a vacuum instability
scalev for a gauge choicej as the value of theF at which
Veff@F# achieves some valuec ~c might be zero, as discussed
above, or the value ofVeff at one of its extrema, or some
other numerical value not dependent onj!:

†Veff@F,j#‡F5v~j,c!5c. ~59!

Any of these possible definitions correspond to different
choices ofc, but for anyc the solution to Eq.~59! v(j,c)
will be a function ofj.

V. ALTERNATIVE APPROACHES
TO THE CALCULATION OF LOWER MASS BOUNDS

ON THE HIGGS BOSON

The gauge dependence of a supposedly physical quantity
is a clear signal that one is computing the wrong quantity, in
this case the gauge-dependent effective potential. In this sec-
tion we briefly describe some existing and developing alter-
native gauge-invariant formulations in which one can give
meaningful estimates of the contribution of the gauge sector
to the dominant effect driven by the heavy-fermion contribu-
tion.

One such approach has already been proposed by one of
the authors@18#. That is to just directly solve the coupled
RGE’s for the ratio of the~gauge-independent! runningMS
Higgs boson and top-quark masses squared. Requiring that

this remain positive up to some cutoff ’t Hooft scale,kmax,
again provides a lower bound on the electroweak scale initial
value. One can include the contributions of the gauge cou-
plings with no gauge problems, since theb functions for the
gauge couplings are gauge independent. In this calculation,
the contribution of the electroweak gauge sector is the stan-
dard model to the result for a low scale cutoff is of order 3%,
while for a Planck scale cutoff the contribution is 7%. A
problem with this approach is that a negative runningMS
mass squared only implies the breakdown ofMS perturba-
tion theory, not necessarily a disaster of the magnitude of the
instability of the vacuum state in which we live. Another
problem~shared with the minimal, gauge-independent, effec-
tive potential approach! is that the connection between the
cutoff ’t Hooft scale,kmax and the masses of the ‘‘new phys-
ics’’ particles is not clear. A simple model in which they are
quite different has been given by Hung and Sher@19#.

Two new approaches to the formulation of a gauge-
invariant effective potential are being applied to this prob-
lem. The first is based on treating the gauge theory as a
~gauge-invariant! theory with constraints in the sense of
Dirac. The quantization according to Dirac enables the con-
struction of a gauge-invariant effective potential in terms of
the physical degrees of freedom of the theory@20#. This for-
mulation is applied to the scalar mass lower bound in these
words @21#.

The second approach is to define a gauge-invariant effec-
tive potential as a Legendre transform with respect to a
source coupled to a gauge-invariant composite operator@22#.
This formulation is applied to the scalar mass lower bound in
a forthcoming paper@23#.

The problem can also be formulated on a lattice@24#. The
Wilson action for the gauge fields is gauge invariant and no
gauge-fixing term is required. A series of simulations would
be run with successively smaller values of the input barel0
and one would look for a nonzero limit for the output ratio of
the Higgs boson to top-quark masses. There will again be the
problem of relating the~lattice! cutoff to a scale of new
physics.

VI. CONCLUSIONS

In general it is difficult to extract physical information
from the conventional~gauge-dependent! effective potential
of a gauge theory, and one might reasonably be skeptical
about the accepting the results of an effective potential cal-
culation as physical without some concrete demonstration to
that effect. One may argue that physical quantities are inde-
pendent of gauge, and thus one is free to simply use a con-
venient gauge. This is certainly true as long as the quantities
being calculated are indeed physical quantities in the field
theory. However abound on the Higgs pole mass isnot
obviously a physical quantity, and the fact that this quantity
is gauge dependent by explicit calculation with the conven-
tional ~gauge-dependent! effective potential tells us that we
are calculating the wrong thing. In this case, the expressions
for the pole masses of the particles may indeed be expressed
in terms of the renormalized couplings and mass parameter
and have no explicit gauge dependence order by order in
perturbation theory. The RG equations for the couplings are
also gauge independent. But the point at which the conven-
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tional effective potential attains some particular value is not,
and using that information to obtain numerical values of the
Higgs pole mass will inevitably introduce gauge dependence
into that number. The tree-levelVeff does not suffer from
gauge dependence, nor will estimates of the Higgs mass
based upon it. However, attempting to incorporate the one-
loop Veff to improve these estimates inescapably introduces
uncontrollable gauge dependence even as it reduces the
renormalization scale dependence. A gauge-invariant formu-
lation is necessary to establish that the contribution of the
gauge sector is a small correction to the dominant contribu-
tion driven by the heavy fermion. Presumably the issues
raised in this context are also applicable to other problems in
which one assigns physical meaning to features of theMS
effective potential of a model containing a gauge sector
~such as the location of minima!.
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APPENDIX A: MS RENORMALIZATION

1. MS counterterms

dZf5@2Nfyt
223g21jg2#F 2De

~4p!2G , ~A1!

dZl5F210l16g223
g4

l
24Nfyt

214Nf

yt
4

l GF 2De

~4p!2G ,
dZy5F2yt

2S 7

4
1Nf D1

3

2
g2GF 2De

~4p!2G ,
dZm25@3g224l22Nfyt

2#F 2De

~4p!2G ,
dZg52Fg2

6
~4Nf11!GF 2De

~4p!2G ,

dZB5Fg2

3
~4Nf11!GF 2De

~4p!2G ,

dZL5Fjg21
yt

2

2 GF 2De

~4p!2G ,

dZt5yt
2F 2De

~4p!2G ,
dZc50,

dZj5dZB ,

dZu52dZf .

2. b functions

The relevant one-loopMS b and g functions for the
theory are

bl5
1

16p2 ~20l2212lg216g428Nfyt
418Nflyt

2!,

~A2!

bg5
1

16p
g3S 4Nf11

3 D , ~A3!

byt5
1

16p2 F S 7

4
1Nf D2yt

323g2yt
2G , ~A4!

gf5
1

16p2 @2Nfyt
22g2~32j!#, ~A5!

where Nf is the number of copies of fermion doublet~all
assumed to have the same couplings!.
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