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Gauge dependence of lower bounds on the Higgs boson mass derived
from electroweak vacuum stability constraints
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We examine the gauge dependence of lower bounds on the Higgs boson mass obtained from the requirement
that the electroweak vacuum be the global minimum of the effective potential. We study a simple model, the
spontaneously broken Abelian Higgs model coupled to a chiral quark doublet in a two-par&ng@auge,
and demonstrate that the lower bounds on the Higgs boson mass obtained in this model are dependent on the
choice of gauge parameters. We discuss the significance of this result for calculations in the standard model.
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[. INTRODUCTION stationary point. But the solutio® is also gauge dependent
[it is the vacuum expectation val¢&EV) of a quantum field
In the absence of direct observation of the standard modethich is not invariant under the transformations which have
Higgs boson, considerable effort has been expended on thgen gauged, e.g., §f]. Thus the proposed conditioh,
study of its properties through indirect means. There hagreater than or equal to some arbitrarily fixéxl,., is also
been a series of papers deriving the lower bound on thgauge dependent. The relation between the Higgs boson
Higgs boson mass, based on considerations of the stability shass and the scale of new physics, defined either as a value
the electroweak vacuufsee[1] for a comprehensive review of @ at the extremum of the effective potential or a value of
of work through 1990 In the strongest form of the vacuum & at which the effective potential achieves some fixed value,
stability bound, it is assumed that the electroweak vacuum iselates a physical quantity to an unphysical quantity. It thus
the absolute minimum of the effective potentigl ([ ®]), at  cannot be expected to be gauge invariant.
least up to some “new physics” scale at which the effects of The tree approximation t¥.4 is gauge invariant. If one
unknown high-scale physics become significant and the lowrestricts the calculation to the replacement of the fixed quar-
energy model is no longer appropriate. This places restrictic scalar coupling by its RG running version in the tree
tions on the running quartic coupling at the high scale. approximation folV; and uses a gauge-invariant definition

After running A down to the electroweak scale, this is con- of the modified minimal subtraction schenielS) running
verted into a restriction on the Higgs pole mass. masses and gauge-invariagt functions, the calculation
In this paper we investigate the consequences of th@ever encounters any gauge dependdneg the gauge pa-
gauge dependence of the effective potential for these calcwameteré never appeajs However, if one attempts to im-
lations. The gauge dependence of the effective potential wasrove the estimate by including some information from the
pointed out in the early 197(2]. The effective potential is one-loop contributions t&%, the results are essentially in-
the sum of one-particle irreducib(&@Pl) Green’s functions at fected by the gauge dependence described above. We con-
zero external momentum. In a gauge theory with massivelude that the original estimate cannot be improved. No
scalars these are off-shell quantities, and thus in generahodel-independent error estimate is possible in the context
gauge dependent. It is that known the valu&/gf{®] at any  of a calculation based on the effective potential. The reader
of its extrema,®;, is gauge independent. However, the lo- who is convinced by these simple considerations may skip
cations of these extrema along tfeaxis, thed; themselves, the lengthy calculations that follow and skip to Sec. V where
are gauge dependent. In practice, the input condition hawe discuss some possible formulations not involving the ef-
been that the renormalization-grouf®G-) improved pertur-  fective potential which are free of problems with gauge de-
bative V¢#(®) should not fall through zero for a variabfe  pendence.
less than some chosen maximgtoutoff” ) value® 5. (In In this paper we demonstrate the gauge dependence of the
some studies, the't Hooft dimensional regularization seale lower mass bound of the Higgs by explicit calculation in a
is identified with the variableb. Then it is x.,5). But the  toy model. Our model consists of a spontaneously broken
condition V(P ma0=0 is manifestly gauge dependefthe  Abelian Higgs theory coupled to a doublet of chiral fermions
arbitrarily chosenbd ,,, is not a stationary point, so the value (“top” and “bottom” ), one of which obtains a mass through
of Vg at @, depends on the gaugeAlternatively, one the spontaneous symmetry breaking. For certain regions of
could require that the derivativiiVo{®]/dd not go to zero the parameter space this model will display the qualitative
before ®yay, since[dVe@)/dP]y =0 identifies P, as a features of the standard model necessary to study elec-
troweak vacuum stability. In Sec. Il we outline the Lagrang-
ian for the model in a two-parameter gauge, Byg, gauges.
*Electronic address: loinaz@vt.edu We outline the one-loopMS renormalization of the theory
"Electronic address: willey@vms.cis.pitt.edu for u2>0 andu?<0 and give an explicit expression for the
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VEV of the Higgs field. In Sec. Il we calculate the one-loop and thet fermion. The Goldstone bosop receives in the
effective potential in gener&, , gauges and check that cal- broken-symmetry phase no tree-level mass frég, nor
culating the location of the extremum of this effective poten-doesb.

tial gives the same VEV as the perturbation theory calcula- To study the gauge dependence of the mass bound that
tion in the broken symmetry phase. We then do the RGesults from this model, we choose to work in a two-
improvement to sum the possibly large logarithms intro-parameter gauge, tt; , gauge. The gauge-fixing term is
duced by the one-loop contribution to the effective potential.

In Sec. IV we discuss the connection between the RG- 1

improved effective potential and the electroweak vacuum in- Lg=— 57 (9,BE+ &UoYoxo)? 4
stability scale. We show explicitly that electroweak vacuum 2&0

instability scales defined by the location of some feature of . .
the effective potential along th@ axis are gauge dependent and the corresponding Faddeev-Popov ghost term is
and will pass this gauge dependence into a mass bound on

the Higgs boson. In Sec. V we discuss possible alternative Lrp= —c_oazco—gouoggacoho. (5
methods for deriving lower bounds on the Higgs boson mass, _ _
and in Sec. VI we summarize our conclusions. Special cases of this gauge include the Landau gadge3),

't Hooft R, gauged 3] [u=v, the tree-level Higg¢VEV)]
and Fermi gaugesu=0).
Il. THE MODEL The gauge-fixing term is chosen anticipating that the
A. Lagrangian spontaneous symmetry breaking will be in théirection. In
the R, gauges, the gauge-fixing term cancels the tree-level

The quel which we study Is the s_pontanepusly broken&B_X mixing term generated in the renormalized classical
Abelian Higgs model coupled to a chiral fermion doublet. Lagrangian by the shift of thé field. This is especially
Over some region of its parameter space this model displayg

h ¢ of instability due to h formi onvenient for perturbative calculations in the broken-
€ Same sort of vacuum Instability due 1o heavy-termion mmetry phase. The gauge-fixing term explicitly breaks the
loops as arises in the standard model. We stress that we @l

AH s
not propose that a numerical lower bound on the standard- (2) symmetry ofZg", giving they a tree-level mass. The
model Higgs boson be calculated from this model. It is

ghost also receives a tree-level mass under SSB. Except in
merely a toy model for illustrating certain issues of principle

the Fermi and Landau gauges, the ghost is not free.
which we wish to present without the unnecessary complica- — o
tions of a nonabelian gauge theory. Note in particular that the B. MS renormalization
fact that a Y1) gauge theory is not asymptotically free poses We renormalize the theory by rescaling the parameters

no difficulty as long as vacuum instability scales are welland fields of the Lagrangian by multiplicative renormaliza-
below the Landau singularities of the couplings. tion factorsZ:
The Lagrangian is

L=+ Ll Lyt Lep, (1) 90=2¢9, Ao=2Z\\, Yio=ZyVi,
a1 , 1 , 1 , Ho=Z,2p%  0=Ze&, Uo=Z,u. ®)
‘Ccl == Z (aMBOV_ aVBO/.L) + E (ap,hO) + E (aluXO) . .
Among the fields, members of an(2) doublet receive a
+ 9ol (7,.h0) o~ (7,.x0)o]BE common renormalization:

1 _ 5112 _ 12
+ 5 95Bo,BE(hG+ x5) B§=25B, (ho.xo)=Zyh.x),

1 No (tuo.bLo)=Z(t, by),
= 5 mo(hg+x0)— 7 (N5 +xo)%, 2 oo T
L o _ _ tro=Z{r, bro=Zy’br. co=Z¢%c. (7)
Ll=ito btoL +itordtorTiboLdbo, +ibordbor N
— — _ o Writing
+igol toLBoboL — oL Botor 1= Yiol tor tor* tortor 1No
T T Z=1+(Z—-1)=1+6Z 8
— Yol bortor* torPoL X0+ ©) ( ) ®)

and substituting Eqs6), (7), and (8) into the Lagrangian
As usual, fi,x) is a doublet of real scalar fieldsandb  generates the counterterms for the theory. Various Ward or
are fermion fields. Their left-handed projectiong 0,)  Becchi-Rouet-Stora-TyutifBRST) identities determine that
form a doublet under the local gauge transformation, whileno counterterms are generated by the renormalization trans-
their right-handed projections transform as a singlet. Spont&ormations of the gauge-fixing and ghost Lagrangians.
neous symmetry breaking along thedirection then gives a The definition of the counterterms and the physical mean-
tree-level MS) mass to the Higgs scalar, the vector bosonjng of the renormalized parameters depends on the renormal-
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2
Aezm— yE+In477 (12)

\ is the standard1S UV subtraction ind dimensions and is
the renormalization scale. This shift generates one-loop
I counterterms which in addition to eliminating the one-point
function of the shifted fieldh’ also renders finite the bosonic
/ three-point functiongwhich also arise as a result éB- y

u—0

- mixing). For u?>0, Sw — 0 and we return smoothly to the
limit of the usual symmetric phase described above.

Perturbation theory fo?<0 is most straightforward in
the 't Hooft R, gauges (=v). For £2<0 the symmetry is
spontaneously broken already at the tree level. To perturb
about the correct vacuum we shift the fidddby the exact
VEV V. The exact VEV is determined as a function of the
parameters of the theory order by order in perturbation
theory by the requirement that the one-point function of the
shifted field I';y vanish order by order in perturbation
theory:

FIG. 1. Divergent Higgs one-point function fr?>0 in the
R . gauge.

ization scheme. Here we work MS. The counterterms may h=h-+V=(0|h|0)=0, 13
then be calculated in either the symmetric or broken symme-
try phase of the theorj4].

The simplest casa)j=0 gauges in the symmetric phase
(u?>0), is (aside from the fermionsimply scalar QEQ}in
O(2) rather than 1) variableg. The §Z's are calculated by
cancelling the divergences of the two- and four-point 1P
functions (). The relations betweefy, Zg, andZ, are

V=v+4V. (14)

The gauge-fixing term withi=v cancels the tree-levéB-
tterm generated i, by the field shift, leavingsV to act as
a one-loop counterterm. The VEV computed to one-loop

familiar from QED Ward identities. A particularly useful ©rder is
feature arises from the relatiolﬁgzé=1. This implies that
£g2 is a renormalization-group invariant, although individu- v mﬁ
ally the two factors run. Thus, oncgg? is fixed to some V=v+ (4m)? [fngs—?ﬁ\('n 7—1)
initial value it remains unchanged under RG running. Sifice
appears only in the combinatigfg? in the effective poten- 1¢* M 2 Ve
tial, we may simply set the value @B and never consider o (3 In—— 1) 3 592( In —5—— 1)
. K K
the running ofé alone.
In the more generaR, , gauge complications arise as a yf mtz
result of the new pieces of the gauge-fixing term which ex- +2N;¢ N (In pra 1” (15

plicitly break the global @) symmetry of thel,. In par-
ticular, the tree-levebB-y mixing induced by this gauge i
fixing gives rise to a divergent Higgs one-point functisee N terms 0‘; the regormallzed parameters of the thepﬁ/,
Fig. 1). Thus the Higgs field acquires a divergent one-loop(<0), A, g%, andy; the masses and tree-level VEV in Eq.
VEV even for x2>0. To perturb about the correct vacuum, (15 are

we make a shift of the field

—p
h=h'+ éw 9) V= N (16)
and chooseSw such that ) )
(0lh’|0)y=0. (10
M=gv, (18
Explicitly to one-loop order we find
mt:ytv- (19)
_ &dPu | p?
ow=— (47)2 —Actin Tz, 1D Note thatsv is explicitly gauge dependent and contains a

UV pole (A,) [4-6]. The subtractions implied b§V and the
where oZs eliminatel’;y and render all the othdr, finite.
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For generalu#v there is again the complication of un- ll. THE RENORMALIZATION-GROUP IMPROVED
cancelled tree-levedB-x mixing, but the procedure is the EFFECTIVE POTENTIAL

same. Again requiring0|h’|0)=0 we calculate the correc-

. A. -l ffecti ial
tions 1o the VEV One-loop effective potentia

2y
SV=— (igT)z ( —A_+In —Z 3 Verl &1, is the sum of 1P| diagrams with any number of ex-

£92uv 3) The quantity we will refer to as the effective potential,
ternal Higgs legs, each carrying zero external momentum:

v 2\v? 1g* g%v?
—W[S)\(In—’(r—l)+§r(3ln7—l) i 1 )
. . Ve ®)= =3 7 OT(p=0). (2D
—Eggz<ln = —2)—2ny(ln?—1”.

(20) This is in fact not the effective potential, since it is not con-
vex and may be complex. We sidestep entirely the discussion
Difficulti se in taking th 0 (Fermi imit. IR of convexity, referring the reader to the literatueeg.,[7],
d'l ICUTEs arise |r|1t_a '?g Q:h_’ ( errlnl gaégfdm:' : b the Appendix of(1]) for the argument that this is indeed the
lvergences resulling from the massiess ‘>oldstone osoél)propriate function to study. As mentioned previously, in a
spoil the calculation of the one-loop correction to the VEV. . : ) .
Bheory with massive scalars the Green'’s functions at zero

Fermi gauges are in any case not especially well suited texternal momentum are in general gauge dependent, and as a
broken-symmetry phase calculations, sincedBey mixing It 50 ISV 9 gaug P ’
from L is not cancelled by the gauge-fixing term, resutt so 1 e“f[.‘M' . -

’ The calculation of the one-loop effective potential is most

gauges in general also contaifnB-y mixing, but for the i X ; )
gaugeu=v (R, gaugesthe tree-levelyB-y mixing term is simply carried out via the tadpole meth¢f]. The main

cancelled. Thus, the Fermi gauge is clearly a natural choice®mplication is that one has to deal with mixe@—x
for symmetric phase perturbative calculationsRagyauges ~Propagators in any but Landau gauge. The full one-loop ex-
are for the broken-symmetry phase calculation. pression Is

Note that foru=v this reproduces thR; gauge result15).

4 2 4 2 4 )
veﬁ[q>]=%u2¢>2+5q>4+1“[q’][ H1D) 3%35[(1’]{ BICDJ_S} 2G[d>][ G[@]_g}

4 4 (47)? K2 2| 4 (4m)? K2 6| 4 (4m)? K2 2
4 2 4 2 4 2
e
-A
se= @
|
where Y[ D]=y2d?2. (27)
HYd]=pu2+ 3\ D2, (233 H. B, Y, andG denote contributions from Higgs, vector

boson, heavy fermion, and Faddeev-Popov ghost loops, re-

spectively. Thek?: terms arise from the&B-y sector. This

B d]=g?d?, (24)  result agrees with that obtained i8], with the exception of

a difference in the nonlog piece of tiBeterm' and the pres-
5 5 ence of the UV pole. It is manifestly gauge dependent, and

GIP]=¢&g°ud, (25 the pole term exists fog,u+0.
The expression for th¥ 4 can be checked by comparing

the expressions for the extrema to those obtained by direct

K2[D]= E [ W2+ A D2+ 2£g2ud] perturbative calculation. The extrema ¥{; are found by

- 2 solving

1
*3 V(P NP2 [ w? + N D +4£g°D (u—D)],
IWe suspect that this is due to a neglectde-@)/e=—1 contri-
(26) bution in the calculation of the gauge boson piece.
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OVei D OY=(D)+ (D )+, 29
A% 8 (@)= (@) +(1) 29
(@)
Writing the extrema oW in a loop expansion as this becomes
one looff Vg @] Nt ] Nl ©] P*Verl @] Nl ]
R ID RS D2 (P)+ g - 89
(D) +(Pq) (Dg) (Pg) (Do) (DPg)
Solving for the(®,) and(d;) gives
[ u?
(Po)=\— =0, (31
@ PV PI| " [Verl @] 1 [aVed @] £g°u ( A o E9°0 3)
V=" 2 = o 2| " e | T 22| TRt —m——3
dd (@) P (0g) 2\v P () (4m) K 2
v 2\0? 1g* g%v? o &9Puy yi [ m?
_W 3)\(|n7—1)+zr 3In7—1 —zfg In P -2 —ZNfr |n7—1 (32)

which agrees with the perturbative result. We can also see that the valig af the extremum is gauge invariant:

one loop o . o (?ngf[q)] . 0 L
Vel (P)] = Ve (Po) +(P1) ]+ Ve (Po) 1= Verl (Po) ]+ 9D (P1) + Vel (Po)]= Vel (Poy ]+ Verl (o) ]
(®g)
_141mﬁ{m233m§ m3 5 m; m? 3
SNt Gz e gt a a2 | e s Nz | e ) 33

Upon substitutingb =(®,) into Eq.(22) the UV pole disappears, the Fadeev-Popov ghost term cancdd§ tteems, and the
resulting expressiof33) is gauge independent, as expected.
Observe that in the large-field limib>u, uV4 simplifies to

1
Ve @]~ 4 q)4)\eff[q)]a (34
where
Nei PI=N+AND] (35
N2 [ 3nd2 3] 3¢ [ g2d2 5 ayt [ oy2@2 3] K o2 3
AN= 5 [In 5 =+ 5 [ 1IN —5—— —=| =N 5 —— |+ 5 [ IN — =
(4) K 2| (4m) K 6 (4) K 2| (4m) K 2
K* Ko?2 3
+(477)2 In K2 E (36)
and
~ 1
ke =5 (N2 (v —4ég%)} (37

Sinceu is a gauge parameter, we are free to choose it as large or small as we wish. We use this freedom tédassume
>u, neglectu and focus on th& dependence of the quantities of interest. Sinceutliiependence has been dropped, this is
just what we would get from a calculation in Fermi gauggain also neglecting?). Sincek are complex conjugatdas are
ki), their combined contribution is real far(\ —4£g?)>0. However, the contribution from the Higgs loop becomes complex
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for A<0 if the running\ is used inside the one-loop effective potential, as would be the cd4€+12 had the Higgs loop
term been retained. This is also the case forlﬁ_neterms when\ (A —4£g?) <O0.

Taking the limitég?/A <1, u<® elucidates the structure of the gauge-dependent pieces. In this limit,

G[®]~0, (38)
2\2
ki[d>]~>\q>2[1—§%}— (&9 D2+ 0((£92)3), (39)
2\2
o] eo2+ SO 02 o( g2y, (40)
and
Ne PI=N+AN, (41
oA? P2 3] 3¢* g’®? 5 4y} y2d? 3 A2 A P2 3
A)\: 2|n 2 =+ 2| 7 ~| — Ny 2| 2__+ 2|n 7 ~
(4) K 2| (4w) K 6 (4) K 2| (4m) K 2
2 2)\ )\CDZ 2\2 2 1
(4w (4) 2
|
Thek? term carries the piece associated with the Goldstone V(5P ,0i i 1K)
boson in Landau gauge. Tigedependent terms are of course
absent in Landau gauge. — ox f'” s 4 dx
The disconcerting presence of a UV pole in the effective 0 Ys(X)+1
potential is related to the renormalization issues discussed A A
previously. The effective potential in E(2) is expressed as XVer Pi,9(s,0:),6(s,0;, &), m(S, 1), k],
a function of a field that has had i, factor removed only. (43)

However, perturbative calculations indicated that an addi-
tional shift of the field is necessary to make the 1PI functionsvhere
(and thus alsd/) finite. A shift in the field by the pole
piece ofw is sufficient to remove the pole and leavevg _ kd¢ 1k dZ, 44
which is finite. 6T T pde 2Z, dr

It should be noted that the effective potential with the pole
is perfectly well defined. A calculation of the extrema of Heres=®/®;, g represents the set of couplings, A, and

V.« ®] yields a one-loop VEV with a pole, but the values of g, andg represents the pair of gauge parameteandu.

Vi at these extrema are finite and gauge independent. This Note thatu? andu do not appear in the large-field limit of
is to be expected, since the value \bf; at extrema corre- Vi [See Eqs(34) and(35)]. We also observe that the gauge
sponds to a physical vacuum energy. However, it is not conparameter appears Mgk only in the combinatior¢g?, at
venient to work with a divergent . for purposes of study- least at one loop. The dependence on the gauge parameters
ing vacuum stability, and we will choose to work with the then reduces to simply the dependencetgf, which is RG
expression for the effective potential in terms of the shiftedinvariant. Thus we can write the RG-improved effective po-
field, ®'=®d— 6w,qe. We might also choose to shift the tential for large® as
field by the finite piece, so that the extremum\f{P'] is at 1
d_b’_=0. Such shifts Wi_II be unimportant in thé’'s>u,u Ver(SO; 81,692 K) = = Nl @;,8(5,81), 92, kI[P, L(S)]%
limit, however and we ignore them. 4

(45)
B.R lization- i t
enormalization-group Improvemen where
To study Vgi[®] for large &, we must use the
renormalization-group improved effective potential to sum _ Ins 1
up large logs of the form I4¢/®;). Using the invariance of {(s)=ex Yo+ 1 dx (46)

Vi @] under changes itMS renormalization scale and

dimensional analysis, we obtain an equation for the RG- It has been shown that theloop effective potential im-
improvedV that will be valid at large fields. This has the proved byn+1 loop RGE'’s resums theth-to-leading logs
solution [13,14. This paper does not focus on the resummation of the
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logs, and we are content to sum the leading logs only. In
deed, the issues are perhaps clearest in the region in whic
relatively small field excursions are necessary and the R(
improvement is less important, as is discussed in the ne»
section. It is thus sufficient to consider the one-loop effective
potential with one-loop3 and vy functions. In this approxi-

mation it is consistent to neglect the running of the couplings

g, Yi, and\ in V1, and use the one-loop running couplings
and fields invgff. In this approximatioA\ is independent of
s andVy is

. 1 N .
Veff(sq)i o] !ggziK): Z [)\(S!gi)+A)\((I)i qof !gger)]

X[®;4(s)]%, (47)

whereAN is defined in Eq(42). We note that if the running
\(s) were used in the/éff the effective potential becomes
complex for\ (s) <O.

The MS RG equations for the running couplingé(s,giz)
andy?(s,g?) can be solved analytically:

G(5.07) = ———— (48)
C g7 —cylns’
where B 2=c,g* and
2 cylc
o o 9(5))42(1 C3 1)
S, S)= —_— S —
yisgi) ( g yi CatCsgl
L —2—1 }1 (49)
CotCs 9°(s)|

Whereﬂy§=c3yf—c4yfg2~yﬁ andg? are the initial 6=1)

values of the couplings. Fa¥;=1, c,=10/9 1/(47)?], c4
=11/(4m)?, andc,=6/(4m)2. Since this is a \dl) theory
and so not asymptotically free, the gauge coupling exhibits
Landau pole as=exg 1/g°c,]. y?(s,g?) also exhibits a sin-

gularity at
s=ex ex
gic C2
Crtcy 1

2
i
1 Cy/(Cr+tcey)

2
2 2
Yii
However, this is not relevant to our analysis as long as th

1 [ (giz)—c4/(c2+c4)

(50

2
gi C3

singularities are far beyond the scale at which the elec-

troweak vacuum becomes unstable, and can be arrang
without difficulty [for the initial parameters we choose here,
the Landau pole of?(s) is ats=10"" and the pole iry(s)

is at s=5x10%]. The RG equation foi(s,d?) must be
solved numerically.

IV. THE MS “NEW PHYSICS” SCALE AND LOWER
BOUNDS ON THE HIGGS MASS
FROM VACUUM STABILITY

As in the standard mode)3, of our model contains a
term due to fermion loops which tends to drivés) smaller

log s

Ftl

FIG. 2. N ¢ii(S) (dashed ling \(s) (solid line), andVx(s) (bold
line) vs Ins. g?=0.15,y2=0.5, \;=0.2, £g?=10. V4 has been
scaled down to fit the plot.

for increasings. For Iargeyt2 (i.e., for a heavy fermion this
term may dominates, . At some critical field value oF,

N\ (s) will become negative, and if this occurs for larg¢he
effective potential will quickly become much lower than the
electroweak minimum. If our theory were still complete at
this scale it would imply that the electroweak minimum is
not global minimum of the theory, contrary to our initial
assumption. If we insist that the electroweak vacuum be ab-
solutely stable, we are led to conclude that the theory is
incomplete at this scale. Contributions from new physics
must be significant at this energy scale and either “rescue”
the effective potential or ruin the entire approach.

Previous studies have considered different criteria for in-
stability of the electroweak vacuum and corresponding speci-
fications of the instability scale. Several pape5s—17 have
taken\ (Sma0 =0 as specifying the vacuum instability scale,
the point at which the RG-improved tree-level effective po-
tential becomes negative. Recently Casas, Espinosa, and
Quiros [10—-12 have included one-loop corrections to the
standard model effective potentiéds well as two-loops
functiong, primarily in an attempt to reduce the renormal-
zation scale(x) dependence of the bounds. They con-
sider the condition \g(Snaw=0, wWhere V4(s,®;)
~ 118\ 1(9)[P;£(9)]%, and observe that this gives a bound on
the Higgs boson mass significantly different fr¢gemd pre-
sumably better thgnthat from \(s,,,,0=0, at least at low
cutoff scales. The distinction is illustrated in Fig. 2. There
Nert(S,£9%.01), N(s,3;), and V¢ are plotted against & Ob-
serve thatVy; falls off sharply, but thah falls through zero
beforel ¢ and Vg do.

The distinction between the conditions(s)=0 and
M eif(S)=0 is equivalent to the distinction between the condi-
fions V2(9=0 and V2()+Vi(9)=0. A(s) and VO are
gauge independent, but the expression\gi(s) in Eqgs.(36)
and (37) contains explicit dependence on the gauge param-
eter¢ (the dependence on the gauge parameteas dropped
out in this approximation Thus whether the condition
Neif(S)=0 at some assignes},,, or the determination of the
instability scales;,,x at which\ o+(S) goes to zero is used as
the vacuum instability criterion, the result will have explicit
gauge(¢) dependence if one goes beyond the RG improve-
ment of the tree-leveV .

To obtain a lower bound on the Higgs pole mass from one
of these stability conditions requires several steps. As input
data one needs the valuesgfandy;; at some initial low
renormalization scalec;. In standard model studies these
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would come from global fits to electroweak dawith some  dependent boundary condition arfs), A (Sma)=—AN. The
error estimate and introduce no gauge dependence. ThengRgg for \(s) is then run back down te=1. The result is
using the one-loop approximation to tggfunctions one has the same—a gauge-dependent lower bound x).
the RG solutions for running andy; at any scaléfor which There are still some steps to get from a lower bound on
they remain perturbatively smallFor convenience one may X\ (k;) to a bound on the Higgs pole mass, but none of them
take k; equal to®; , the arbitrary electroweak scale at which introduce and new(possibly compensatinggauge depen-
one specifies the approximate effective potential. One thedence(they do substantially reduce the dependence on the
integrates the RG equatidRGE) for A(s) starting ats=1 arbitrarily chosen initial renormalization scakg). One re-
(& =®;), with some initial guess fokh(s=1). The initial quires a numerical value fov (=~ w?/\) the gauge-
guess is then adjusted until the resultings,,s,) at the des- independent tree-level VEV. In the standard modet,
ignated cutoff® .,—=SmaPi, Satisfies the high-scale bound- =1/2Gg (up to calculated electroweak perturbative correc-
ary condition, A(Sma)=—A\. It is at this stage that the tions). The other ingredient is the relation between the Higgs
gauge dependence enters, through the explidépendence pole massm# and the HiggsMS massmi=2\v2. This is
of AN. The resulting critical\(s=1) becomes thégauge- given by the zero of the inverse propagatopat mﬁz. Off
dependentlower bound on\(k;) [A(x) is gauge indepen- shell, the inverse propagator is expliciydependent, and it
dent; theboundis gauge dependent is a nontrivial check of the calculation that gldependence
Alternately, one could start at the high scajg,with the  cancels out on shellnote that by its definition as the tree-
input g(Smay andy;(Smax BY running the original low scale level VEV and the renormalization conditions chosen, the
inputs up to the high scale and by imposing the gaugerelationv2=m§/2)\ gets no perturbative correctipn

c2_ o, A 31 m | M 12+ 3vV37+| mh |, gt 6+6l m g°m 31 M 1-2I m
My " =Mt gz [ 3N @ Tin "z 12833l ga ) |+ oz |8+ ol iz |+ a2 | 3N T2l w2
2.2 2 2 2.2 2
YiMy m; m; yimg m;
N 2In—=+2I{ —=||—8Nt —= | || —= | +1], 51
f(471')2[ K2 mﬁ” f(47'r)2 (mﬁ (52)
|
where Despite the above caveats, because the formulas for gen-

eral ¢ are sufficiently complicated that thedependence is

1 not transparenteven though manifestve provide a numeri-

|(r):J IN[1-ra(l—a)]de. (52) cal plot. In Fig. 3 we plot .«(s) for two values of¢g?.

0 We note also thaV contains additional gauge depen-
dence in the scale factd(s). Since this is an overall expo-
nential multiplicative factor, however, it does not change the
point at whichV4=0.

The explicit effects of th&-dependent terms on the “new
dphysics” scale are easy to see in the region of parameters
space in whichA(s)~\;+ B,Ins is a good approximation.
Solving the equation associated with the turnovek/&;,

In the one-loop corrections to the relation betweshand
m; 2 no distinction is made between? andm?* 2. Thus, the
gauge dependence of the lower bound Xanc;) obtained
from the stability condition propagates into the lower boun
on the Higgs mass.

If one were to proceed with a numerical calculation at this
point, one would find that for smaN a large value ofg?
would be required to produce a significant changeAin
(e.g.,§g2~yt2/)\ to match the fermion loop contributipnA
two-loop analysis would then be necessary to assess wheth 0.2

Aeff

such a choice of gauge parameter led to a convergent pert. o 15 £a? - o
bative expansion. Regardless the conclusion, however, tt ) g7
convergence of the perturbative expansion cannot be adopt: 0.1 £g% = 25

as a criterion for restricting the choice of gauge parametel

There is no physical principle which restricts the range of  0.05
gauge parameters. Unlike the situation for the renormaliza log s
tion scale dependend@ which the scale independence of 2 4 6 8 10 12 \

the all-orders effective potential can serve as motivation for¢ -o0.05

choice of scale for the-loop truncatiof, the all-orders ef-

fective potential is gauge dependent, and large valuégaf

which perturbative calculations are uncontrolled are just as FIG. 3. Ag(s,é9%.0) vs Ins for £g2=0 (upper curvg and £g2
relevant(or irrelevanj as small values of. =25 (lower curvé. g?=0.15,y2=0.5,\;=0.2.
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N(Sy=g)=\;t B,Ins, =0 (53  this remain positive up to some cutoff 't Hooft scaleyy,
. again provides a lower bound on the electroweak scale initial
gives value. One can include the contributions of the gauge cou-
plings with no gauge problems, since tAdunctions for the
F{ )\i} gauge couplings are gauge independent. In this calculation,
S)\:0=ex - E .

(54 the contribution of the electroweak gauge sector is the stan-
dard model to the result for a low scale cutoff is of order 3%,
Considering instead the condition associated with the onewhile for a Planck scale cutoff the contribution is 7%. A

loop effective potential problem with this approach is that a negative runnM_S
mass squared only implies the breakdownM$ perturba-
Nef(Sy . —0) =N(S)+AN=\;+B\Ins, _o+AN=0 tion theory, not necessarily a disaster of the magnitude of the
eff eff

(55) instability of the vacuum state in which we live. Another
problem(shared with the minimal, gauge-independent, effec-
gives tive potential approaghis that the connection between the
cutoff 't Hooft scale,x . and the masses of the “new phys-
— A\ ics” particles is not clear. A simple model in which they are
Sxeﬁ=023x=oeXF{ 3 } (56)  quite different has been given by Hung and SH9].
A

Two new approaches to the formulation of a gauge-
SeparatingA\ into é&-dependent ang-independent terms

invariant effective potential are being applied to this prob-
lem. The first is based on treating the gauge theory as a
(gauge-invariant theory with constraints in the sense of
AN=AN;-oF SN2 (57) Dirac. The quantization according to Dirac enables the con-
struction of a gauge-invariant effective potential in terms of
the physical degrees of freedom of the thef®§]. This for-
mulation is applied to the scalar mass lower bound in these
— ONgg2 words[21].
S}‘eff_ozsg_oexl{ B } The second approach is to define a gauge-invariant effec-
tive potential as a Legendre transform with respect to a
That is, the new physics scale can be expressed in terms eburce coupled to a gauge-invariant composite opefagjr
the Landau gauge vacuum instability scale times som&his formulation is applied to the scalar mass lower bound in
gauge-dependent piece which is arbitrary. Thus, we see ex forthcoming papel23].
plicitly that a vacuum instability scale defined in this manner The problem can also be formulated on a latfi24]. The
is necessarily gauge dependent. Wilson action for the gauge fields is gauge invariant and no
More generically, we might propose a vacuum instability gauge-fixing term is required. A series of simulations would
scalew for a gauge choicég as the value of thé at which  be run with successively smaller values of the input baye
V@] achieves some value(c might be zero, as discussed and one would look for a nonzero limit for the output ratio of
above, or the value oY at one of its extrema, or some the Higgs boson to top-quark masses. There will again be the

yields

(58

other numerical value not dependent &§n problem of relating the(lattice) cutoff to a scale of new
physics.
[Verl @, &1 ]o= wie,c)=C- (59
VI. CONCLUSIONS
Any of these possible definitions correspond to different
choices ofc, but for anyc the solution to Eq(59) w(é,c) In general it is difficult to extract physical information
will be a function ofé. from the conventionalgauge-dependenkffective potential
of a gauge theory, and one might reasonably be skeptical
V. ALTERNATIVE APPROACHES about the accepting the results of an effective potential cal-
TO THE CALCULATION OF LOWER MASS BOUNDS culation as physical without some concrete demonstration to
ON THE HIGGS BOSON that effect. One may argue that physical quantities are inde-

pendent of gauge, and thus one is free to simply use a con-
The gauge dependence of a supposedly physical quantityenient gauge. This is certainly true as long as the quantities
is a clear signal that one is computing the wrong quantity, irbeing calculated are indeed physical quantities in the field
this case the gauge-dependent effective potential. In this setheory. However abound on the Higgs pole mass isot
tion we briefly describe some existing and developing alterobviously a physical quantity, and the fact that this quantity
native gauge-invariant formulations in which one can giveis gauge dependent by explicit calculation with the conven-
meaningful estimates of the contribution of the gauge sectotional (gauge-dependeneffective potential tells us that we
to the dominant effect driven by the heavy-fermion contribu-are calculating the wrong thing. In this case, the expressions
tion. for the pole masses of the particles may indeed be expressed
One such approach has already been proposed by one iof terms of the renormalized couplings and mass parameter
the authord18]. That is to just directly solve the coupled and have no explicit gauge dependence order by order in
RGE's for the ratio of thégauge-independentunningMS  perturbation theory. The RG equations for the couplings are
Higgs boson and top-quark masses squared. Requiring thatso gauge independent. But the point at which the conven-
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tional effective potential attains some particular value is not, 2
and using that information to obtain numerical values of the
Higgs pole mass will inevitably introduce gauge dependence
into that number. The tree-lev&l 4 does not suffer from
gauge dependence, nor will estimates of the Higgs mass
based upon it. However, attempting to incorporate the one-
loop V¢ to improve these estimates inescapably introduces
uncontrollable gauge dependence even as it reduces the
renormalization scale dependence. A gauge-invariant formu-
lation is necessary to establish that the contribution of the
gauge sector is a small correction to the dominant contribu-
tion driven by the heavy fermion. Presumably the issues
raised in this context are also applicable to other problems in

g

5zB=[§ (4N¢+1)

)

2
6zL:{fgz+y§

—A,
=

2| A
0Zi=Yq @mn?)’

which one assigns physical meaning to features ofMig 0Z;=0,
effective potential of a model containing a gauge sector
(such as the location of minima
5252 5ZB y
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The relevant one—loopJI_S B and y functions for the
theory are

APPENDIX A: MS RENORMALIZATION

1. MS counterterms

1
—A Br=7=— (2002— 121g?+ 6g*— 8Ny;+ 8N\ y?2),
_ 2_an2 2 € 167
0Z4=[2Nry;—397+&9 ]L%)z}, (A1) A2)
g yi][ —A 1 AN, +1
—_| _ 2_n°2 2 - € f
52, [ 108 +6g7— 35— 4N;yZ+ AN = [W} Bf@gs( as] A3)
7 3 -A
6z =[—y2 —+N)+—g2H—e}, 117
y thg "7 2 (47)? By=1e2 || 7+ N 2y3—3g?%y?|, (A4)
6z 22[392—4)\—2ny2][1€2} 1
/2 t !
(4m) vo=1gmz [2NYE - 973 §)1, (A5)
_ g —A¢ where N; is the number of copies of fermion doubléll
02q= [ 6 (4Ng+1) (477)2}’ assumed to have the same couplings
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