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Inhomogeneous string cosmologies
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We present exact inhomogeneous and anisotropic cosmological solutions of low-energy string theory con-
taining dilaton and axion fields. The spacetime metric possesses cylindrical symmetry. The solutions describe
ever-expanding universes with an initial curvature singularity and contain known homogeneous solutions as
subcases. The asymptotic form of the solution near the initial singularity has a spatially varying Kasner-like
form. The inhomogeneous axion and dilaton fields are found to evolve quasihomogeneously on scales larger
than the particle horizon. When the inhomogeneities enter the horizon they oscillate as nonlinear waves and the
inhomogeneities attentuate. When the inhomogeneities are small they behave as small perturbations of homo-
geneous universes. The manifestation of duality and the asymptotic behavior of the solutions are investigated.
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[. INTRODUCTION potentialB,,, in Bianchi metrics that are not necessarily di-
agonal. We also gave a classification of all the degrees of
The low-energy effective action of the bosonic sector offreedom permitted for thél field in spatially homogeneous
string theory provides a gravitation theory containing dilatonuniverses possessing a three-parameter group of motions.
and axion fields that possess cosmological solutions. Thesehe only spatially homogeneous universe excluded from this
solutions provide models for the behavior of the universestudy is the(closed S?x S' Kantowski-Sachs universe. A
near the Planckor string energy scal§l]. They allow us to  detailed study of this universe was made by Barrow and
investigate a number of long-standing questions regardin@abrowski[8].
the occurrence of singularities, the behavior of the general In this paper, we take one further step upwards in gener-
solution of the theory in the vicinity of a singularity, and the ality and consider a wide class of inhomogeneous and aniso-
likelihood of our Universe arising from generic initial data. tropic string cosmologies. These possess cylindrical symme-
They also provide a basis for investigation of higher-ordertry and contain homogeneous Bianchi and Kantowski-Sachs
corrections to low-energy cosmological string theory. Sev-universes as special cagé€d. They allow us to investigate
eral studies have recently been made of string cosmologies #fi¢ propagation of nonlinear inhomogeneities in the axion
order to ascertain the behavior of simple isotropic and anisoand dilaton fields. On scales larger than the particle horizon
tropic universes, investigate the implications of duality, andinhomogeneities in the axion and dilaton fields evolve quasi-
search for inflationary solutionf2—8]. Since one of the homogeneously but when the inhomogeneities enter the ho-
prime reasons for studying such solutions is to shed light ofiizon they undergo oscillations and attentuate. In the limit
the behavior of the universe at very high energies, where odhat the amplitude of the inhomogeneities is small we will
knowledge of its material content, geometrical and topologifecover the results of perturbation studies of homogeneous
cal properties, or its anisotropies and inhomogeneities, itring cosmologies in an appropriate gauge. Besides provid-
necessarily incomplete, it is unwise to make special assumpng exact descriptions of the gravitational self-interaction of
tions about the form of the cosmological solutions. Indeedstrongly inhomogeneous axion and dilaton fields, these solu-
any dimensional reduction process could be viewed as ations allow us to investigate the impact of duality upon the
extreme form of anisotropic evolution in more than threeform of the solution in a situation where there exist charac-
dimensions in which three spatial dimensions expand whilderistic spatial scales.
the rest remain static. A number of studies have focused on The string world-sheet action for a closed bosonic string
obtaining particular solutions fof3+1)-dimensional space- in a background field including all the massless states of the
times in cases where spatial homogendind sometimes string as part of the background is given [dy
also isotropy is assumed for the metric of spacetime, where
theH field is set to zerd4], or where theH field is included 1
by assuming that it takes a particular form which satisfies its ~ S=— —,j d%o{ \Ehaﬁaax“aBXng(XP)
constraints and its equation of motipB]. For example, Co- dma
pelandet al.[2_] discussed F_riedmann and Bianchi type-I uni- +6aﬁaax,u.(9ﬁxv8 (X" +a’ \/H(ﬁ(xp)R(Z)}, 1
verses, allowing H to be time dependent or space depen- ”
dent, respectively. In a second pad@] they discussed
Bianchi | solutions with a homogeneous antisymmetric tenwhereh®” is the two-dimensional world sheet metrR{?)
sor field. In[6] (see alsd5]) Batakis presented an overview the world sheet Ricci scalag®” the world sheet antisym-
of all possible configurations of éspatiall) homogeneous metric tensor, B,,(X") the antisymmetric tensor field,
H field in diagonal Bianchi models. Whereas, in R&f,, we  g,,(X?) the background spacetime metri(graviton,
investigated the case for @patiall) homogeneous tensor ¢(X?) the dilaton,a’ is the inverse string tension, and the
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functionsX”( o) map the string world sheet into the physical [l. EINSTEIN-ROSEN METRIC

D-dimensional spacetime manifold. Consider the anisotropic and inhomogeneous spacetime
For the consistency of string theory it is essential that P 9 P

local scale invariance holds. Imposing this condition resultsmemc[lo’lﬂ

in equations of motion for the fields,, , B,,, and¢ which ds2= — 20~ ¥ (d2—dr?) + R(e?/d 2+ e~ 2d ¢?)
can be derived to lowest order i’ from the low-energy ' )
effective action for a vanishing cosmological constant:

1 where y, ,R are unknown functions of andr. Thusd/dz

R+0%9 bdd— —HBYH ' and d/d¢ are Killing vectors. Without loss of generality it

9% 9addpd 12 py can be assumed thatr=<1 and 0< ¢=<1. Wheny=0 and

(2 R=e*, with R=R(7) and y=x(7), we recover an isotro-

_ ) _ pic Friedmann universe. Other homogeneous specializations
where the antisymmetric tensor field  strengthf the metric reduce it to one of the Bianchi-type homoge-
Hopy=0d[aBpg, is introduced. neous universef9]. Properties of the metri¢9) depend on

In a cosmological context it is general_ly ass_umed that bX/vhetherBMER,M is spacelike, timelike, or nuliGreek indi-
some means all but four of the 10 or 26 dimensions of spacgses run 0-3). The cases with a globally null or spacelike
time are compactified, leaving an expandin@+1)- B, correspond to plane or cylindrical gravitational waves,
dimensional spacetimeD(=4). Since we are interested in yagpectively[12]. Metrics where the sign oB,B* varies
cosmological solutions of the field equations derived fromthroughout the spacetime describe colliding gravitational
the variation of this action, we adopt the Einstein frame bywaves[13] or cosmologies with timelike and spacelike sin-

S= j d®x\—ge ¢

making the conformal transformation gularities[14]. Metrics with a globally timelikeB,, describe
— 3 cosmological models with spacelike singularities. If the
Yap™€ "Yap- 3 spacelike hypersurfaces are compact then the allowed spatial

pologies, [15], are a three-torus,S'®S'®S!, for
=(def,p) ¥?=7 with 0<7<%x and O<sr<w; a hyper-
torus, S'®S?, or a three-sphere, S,  for
R=(deg,p) Y?=sinrsinr with 0<r<= and O<r<m. We
shall present solutions for the globally timelike cd®e 7.
These correspond to ever-expanding cosmological models
1 with an initial curvature singularity at=0. Note that the
R~ Eg/“’R: K2(<¢>TMV+<H>TW), (4 behavior of the close&® mod_els ap_p_roaches that of the
three-torus universes as the singularities are approached be-
cause sin—7as7—0 and, and so the role played by the
V(e 2PH#M) =0, (5 duality invariance of these models can be investigated along
with the implications for the “pre big bang” scenario of
Gasperini et al. [16]. The homogeneous models of the

In this frame the four-dimensional string field equations anog)
the equations of motion are given Hgreek indices run
0<a, B=<3).

The low-energy effective action in the Einstein frame
yields the following set of equationscf=8#G, c=1):

—-2¢ VN —
Uo+ze “"H,,\H*"=0, ) sleS? case will be the Kantowski-Sachs universes studied
in Ref. [8]. For further results about the singularity structure
where and global existence of these metritise strong cosmic cen-
sorship hypothesis holisee the paper by Chrusciet al.
o 1 1 ) [17].
( )TW=§ P = 59,,(0P)7, (7) Rewriting Eq.(5) as
d(*H)—2(d®)\(xH)=0 (10
(0, =220 gH e Eg Hap,H*Y|. (8)
) pAS v g SpvitaBy ' and using
Thus, in this frame, the problem reduces to the study of dH=0, (11

inhomogeneous general relativistic cosmologies containing

two gravitationally interacting matter fields. In the next sec-we can determine the general form léfthat is compatible
tion we shall manipulate these equations into a soluble syswith the Einstein-Rosen spacetime geometry. Denoting
tem by introducing a particular inhomogeneous spacetima&’=r, x!=r, x>=z, andx3= ¢ we require

metric with cylindrical symmetry with a particular topology.

In Sec. Ill we give exact solutions in cases where ¢oe  H=6A(7,r)dx’A\dx'/\dx?>+6B(7,r)dx°A\dx*/\dx®

both) of the axion and dilaton fields depends only upon the
time variable. In Sec. IV we consider Ft)he case whgre both +6C(7,)DADEADC+ED (7,1 dx/AdXEA DX,

fields depend upon time and space coordinates. In Sec. V we (12
investigate the asymptotic behaviors of these fully inhomo-

geneous solutions on scales large and smaller than the hoiihe quantitiesH and ® can be functions only of and r

zon. In Sec. VI we study the nature of duality in these solu-here since the energy-momentum tensor is allowed to depend
tions and the results are discussed in Sec. VII. only on these variables. Hence E4l) implies



&1C—z?OD=0, (13)

while xH is given by

*H HA" dx*=F ,dx*. (14

= ge,u,v)\a

Sinced® = gy ®dx°+ g, Pdx’, Eq. (10) reduces to
[doF 1= d1F o= 2(F19q® — Fod1®) Jdx°Adx*
+[dgF,— 2F 9@ 1dX°A\dX?+[ 9,F ,— 2F 59, P ]d x!
AAX2+[ gF 3~ 2F 3000 ]dxAd 3

+[0,F3—2F 39, @ dx*\dx®=0. (15
This implies

9oF 1— 2F 19g® — 9,F o+ 2F g9, ® =0, (16)
d(e 2*F,)=0, (17
d(e ?®F3)=0, (18)

so Egs.(17) and(18) yield
F,=e?*A,, (19
Fy=e?PA,, (20)

whereA, andA; are constants.

Using the fact that C(r,7)=0g92:93sH"
=00002033¢"2F,=—RF; and, similarly, that D(r,7)
=—RFy, Eg.(13) becomes

d1(RF1) = do(RFp) =0 (21
and Eq.(16) implies that
do(e 2PFy)=d,(e 2PFy). (22

In order to solve the system of differential equati¢@$)
and(22) there are two obvious choice$) e ?*F,;=¢9,b and
e 2®Fy=4dyb, (i) RF;=dph and RFy=d;h. The latter
choice corresponds to takir®ys to be the only nonvanishing

component of the antisymmetric tensor potential defined by

H=dB and depending only om andr. The choice(i) re-
duces Eq(21) to
Ob+2V#pV ,®=0, (23

while choice(ii) produces another coupled wave equation

!

) R. y
h—h"—2h+ =h'=2(dh—0'h")=0 (24

where the overdot is equivalent t@dr and the prime is
equivalent tod/ dr.

The off-diagonal components of the Einstein tensor

G2, Gos, G12, G13, andG,3, are zero in the spacetini@).
The corresponding components §PT,, all vanish so we
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only need to ensure that all the corresponding off-diagonal
components of )T, are also zero. Since we have

1 1
(H)T02:§F2F0872¢:§A2F0, (25)

we must therefore sét,=0, and hencéi®**=B=0. For the
(03) component we have

1 1
<H>To3=§F3F0e’2‘I’=§A3FO, (26)

so we must sefA;=0, and henceH?°=A=0. With these
choices, the componentf)T,,, T 5, and MT,; also all
vanish. Therefore, the equations governing the dilaton and
antisymmetric tensor field for the two choices are given by
Eq. (6) together with the following coupled propagation
equations(27)—(28) or (29—(30), in the casegi) and (ii),
respectively:

0]

=

1

ﬁ(RQD’)’—ﬁ(Rd))'—eZ‘I’[b’z—bz]:O, (27

1 AV 1 h - I/ oL

ﬁ(Rb) —ﬁ(Rb) +2[®'b'—d b]=0. (28)

(ii)
R™Y(R®’)'—~R™}R®) +R 2% 2%[h'2—h?]=0,

(29

I " R ' ’r_ N I

h—h"—Zh+ —h'=—2(¢'h'~dh). (30)

Since both choices involve the same number of independent
functions they are equivalent; here, choiceis taken.
The energy-momentum tensor in E¢) reads

1 1
KZ((I))T;‘L:E( g””aﬂ)ﬂy‘b— 55,2(3(1))2)* (31)

1 1
K2(H>Tl’l:§ez‘p(gw‘aﬂbﬁyb— Eé;(ﬁb)z), (32

so the nonvanishing components of the energy-momentum
tensor are

1 : .
K2To=— 78 2002+ 0 2+ (D2 +b'2) €)= — k7T1,
1 : .
K*To=5e 20"V 0d’ +bb'e®]= — k*T],

1 : .
K2T§:Ze*2(X*¢)[(D2_(I)/2+(b2_b12)e2¢>]: K2T§,
(33
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The energy-momentum tensor can be interpreted as describ- ©
ing two stiff perfect fluids where the energy density for the Y(7,0) =0+ % InT+ E cogn(r—ry)]
dilaton fluid is found to be n=1

X[AP Jo(n7)+B¥ No(n7)], (40

Po=pPq :le*2()(*i//)[('p2_q)'2]
4 where %, AP, BW | r. are constants andy(x) and

No(x) denote the zeroth-order Bessel and Neumann func-
tions, respectively.
Equations(27)—(28) read

and its four-velocity is given by

ut=e"CV[P2- 2]~ d,0',0,0

o CI)”—?—C'I')—eZ‘I’[b’Z—bZ]:O, (42)
and for the axion fluid we have T
1 — 22X =P []2 _ 127 a2P b . ..
pr=pu=7e 2N V[b?-b'?le b~ —~b+2[®'b’' ~Db]=0. (42)
and its four-velocity is In the next section several solutions will be found.

v¥=e " ¥[ph2—b'2]" Y4 —b,b’,0,0).
0 1 2 3 L [ll. SOLUTIONS OF VARYING GENERALITY

Furthermore,Tg+T7;=0 andT5—T3=0 as the cylindri-
cal symmetry of the metric demands, and Einstein's equa- Before explicit solutions are given, we make some re-
tions for R(7,r) and ¢(7,r) are given by the linear wave marks about the procedure for solving the system of partial
equationg12] differential equations for the metric functiog(r,r). For

R(7)= 7, EQgs.(36) and(37) reduce to
R-R’=0, (34)

L, (35 XSRS, “
RV - RYEO

The remaining metric functiony(,r), is determined by the

X=- i+T(i/;2+ P'?)— 12T (44)
two Einstein constraint equations 47 0

1R . )
[ 2 12y —1 / 2 12 rpor
X =y¢= 4 E_(R “RO)TIRR (P44 +R'R Generally speaking, the most difficult step is to find the
o o _ integral for the part coupled tg¢(,r). However, this prob-
—2RRy)' —RR' — k?REX (TSR + TR) 1, lem was solved by Characti18]. Define a function

(36) G(y;.r) by

. . 1 R . . .. r_
X= _Zﬁ_(Rz—R’z)_l[ZRR’l/II,D’_RR(lﬂZ‘FI/I’z) G —’Tl,blﬁ y (45)
—RR"+R'R’ + k2 X" YR(TIR+TIR')]. (37) 1
G= 57+ y'?). (46)

Since cosmological solutions are of interest to us here, we
consider only the timelike solution of Eq34). Using the
general coordinate invariances*=r—f(7*r)] of the met-

ric this may be taken without loss of generality to be Note thaty satisfying

R=R(7)=17. (39 1
Ny +_' =
Then, Eq.(35) reduces to v 7-¢ =0
L1
gt ;‘/’_ ¥'=0 (39 is kept as a functional dependence@n The explicit depen-

dence onr andr might sometimes be suppressed and we
which is solved by write G(y) as
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©

G(¢;7,r) ="+ %(Olﬁl)z'nT‘Fol//lZl cogn(r—ry)[*¥ Jo(n7) +B¥ No(n7)]

1 ,< 1 <
+ 27221 n?{[AV Jo(n7)+B¥ No(n7) ]+ [P 1 (n7) +B¥ Ny(n7) 13— 5721 ncos[n(r—ry)]

X{(AW)236(N7) I3 (N7) +AW W [No(n7)I1(n7) + Jo(NT) Ny (n7) ]+ (BW ) *No(n )Ny (n7)}

0

1 nm - ©) B
+t57 2 Z{Slr[n(r_rn)]S|r{m(r_rm)][nUnm 7)—mUy(7)]
2 321 m=Tpnm N°—M
+cogn(r—ry)Jeog m(r —rm) IMUG(7) —nUL(D T}, (47)
|
where whereN, B are constants. From these expressias,r) is
found to be
Uin(1) =AW 33 (n7) Jo(n7) +B¥ W No(m7)Ny(n7) )
1 N
+ 28RV 1 (N7)No(m), X(r.0)= (7,0 +2G(fi70) = ZInT+ = P+ M,
54
UM =AUAW 3o 7) Jo(ma) + W EW No(n7)Ny(m7) 59
Ao B which gives the remaining metric component
+2° oW L Jo(nT)N1(mT).
17— a2G($) a2M _—1/4,(N2/8)72
We now consider classes of solutions in which ¢oeboth exx—yl=e e e ' (55)
of the ® andb fields depend on only one of the coordinates
r andt. C. Solutions with an oscillatory axion:®=®(r), b=b(r,r)
If we rewrite Eq.(42) as
A. Solutions homogeneous inr: ®=®(7), b=b(7)
, o #b  *b db[ 9® 1\ 9P b
The well-known solution to Eqg41) and(42) [6] in this — | 2—+- — —=0 (56)
subcase is ar arT or\ dr T ar oar
e®=coshNZ) + V1— (B2/N?)sinh(NZ) (48) and take a solution ®(7) = —In(77), then the axion field
’ b(r,7) also satisfies the wave equation
b(2)= N sinh(N¢) + V1 — (BZN?)coshN¢) 49 b 4%b
B costiN¢)+\1— BIZN2sini(N¢) Fr Ay 7
whereN and B are constants amd-= 7d{. Using this in the  which has the general solution
expression for the components of the energy-momentum ten-
sor gives an expression fai(7,r) , b(r,7)=ab(r+7)+ Bby(r—7), (58
N2—1 where a, B are constants anb; are arbitrary functions of
x(7,r)=¢(r,r)+2G (4 7,r)+ 7 In7+M, (50) their arguments. Equatio@1) is satisfied if
: . : ob\2 [db)?
where M is a constant. Hence, the metric function (_) - (_> =0. (59
exd x— ] is given by or ar
eXF[X_ w]:ege(w)eM ’T(Nz_l)/4. (51) This lmplles
db  db\[db b
B. Solutions homogeneous im: ®=®(r), b=b(r) (?_r+ arl\ar  or =0 (60)

The solution in this subcase is given by ) . .
so that either or 8 must vanish. Thus we obtain the solu-

B2 tion
e®=coshNr)+ 1—ﬁzsinr(Nr), (52

_ N sinh(Nr) + V1—(B?/N?)cosiNr) 53
B cosh{Nr)++1—(B“/N )sink(Nr)' b(7,r)=0(Wby(r+7)+[1-0(u)]by(r—7), (62

@(T):—%lnT—TO, 61)
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where ®(u) is the step function[®(u)=0 for u<Oo;
®(u)=1 for u>0] andu an arbitrary real parameter.

It is interesting to have a solution with a homogeneous
dilaton and arinhomogeneous axion. Note, that in this case

the axion behaves quite differently from the dilaton.
The functiony(r,r) is determined by

X =2+ Db, 69

'_'_i R NN
X= 167+T(l/f + )+4(b +b'9). (64)

To solve this system of equations we define a new function

B(7,r) satisfying

B’ =bb’ (65)
B=%(b2+b'2). (66)
Changing to new variables,
X=r+7, Y=r—rm,
we find
B _(B) & ()
X \aX] ' aY ) -
This implies
°B o 67
XY
which is generally solved by
B(X,Y)=B(X)+By(Y) (68

with B; arbitrary functions of their arguments. Using the gen-
eral solution forb in terms ofX andY, B(X,Y) is given by

db 2 db 2
B(X,Y)=®(U)fdx(d—xl) —[1—®(u)]fdv<d—;) _
(69

Finally, an expression fox(r,r) is obtained,

3
X0 =9(r 1) +26() + 5 B(r,1) — elnT+ M,
(70)
which results in

eX[i)(_ l/i] — eZG(l/I)eM - 3/16e(7'0 /2)B(7,r). (71)

D. Solutions with ®=®(7,r), b=b(7)

If we take b(7)=A7%2, A constant, and
O (7,r)=—In7+r), then Eq.(41) requiresS(r) to satisfy
d’s

W +A2625(r): 0.

JOHN D. BARROW AND KERSTIN E. KUNZE

Hence,

e—(I)(r,T): 7

AZ
cosh(Nr)+ \/1— msinlﬂ(Nr)}, (72

A
b(r)= 57 (73

is a solution of Eqs(41),(42).
Calculating the appropriate components of the energy-
momentum tensor yields

1
x(7.,0)=¢(7,r)+2G(¢;7,r)+ zln cosh(Nr)
A® N2
+\/1—Wsink(Nr) +g M, (74
hence
exd x— ¢]=e**"eM| coshNr)
A2 1/2 ) )
+\ 1~ @sini(Nr) eN®™ (75

E. Discussion

Apart from case Il C the solutions presented so far de-
scribe nonoscillatory axion-dilaton systems on an oscillatory
cosmological background. In case Ill C the axion field is
allowed to oscillate which couples the dilatonic and gravita-
tional waves. However, because of conditi&®), only trav-
elling wave solutions ib(7,r) are described in this case.

IV. CHARACH SOLUTIONS

The system of equatior(g1),(42) is very similar to equa-
tions determining the components of the electromagnetic po-
tential in the electromagnetic Gowdy univefd8,19. It was
stated in[18] (and references thergithat the geometric re-
quirements of the Einstein-Rosen spacetimes allow four in-
dependent components of the six possible components of the
Maxwell tensor which can be derived from two nonvanish-
ing components of the electromagnetic potential. In Sec. I,
we found that only two of the four possible components of
the antisymmetric tensor field strength can be nonvanishing,
which can then be accordingly derived from the potential-
like function b(r,r) or h(r,r). In the latter case there is a
direct connection to the antisymmetric tensor field potential
B,,, whereH=dB. In order to obtain an exact solution of
Egs.(41),(42), where® andb are dependent onand r we
employ a procedure introduced by Charath].

Assume that

(I)(I',T):—%mv[b(r,?')], (76)

wherev (b) is a function yet to be determined. Since
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&= 1bd|nv ®'— 1b,d|nv
—Pwm YT wme
1| .dinv .2d2|nv
—_ — — —+ [
2| db db? |’
= 1b/,d|nv+b,2d2|nv
20 db db? |’

we can use Eq42) to transform Eq(41) into

(b'2-b%)=0, (77

2U
W+2

while Eq. (42) becomes

b7 — b2 b= b2 p? Y 78

pe =[ ]W' (78)
Assumingb’?—b2#0, Eq.(77) implies

U(b):_b2+clb+C2, (79)

where the logarithm in Eq(76) requires that the constants

4, C, satisfy the inequality
c2+4c,>0. (80)

Equation(78) becomes

br—p— T — 120 e 81
P rep-p2 PP 8D

If we make the substitution
b=by+Mtanh M w), (82

Eq. (81) becomes

M?2 . 1.] _M%inhMo) .,
cosR(Ma)| © — ¢ 7% +2 cosf(Mw) SA
__M3in(Mo) ., o, @3

~“ cosP(Mw) [~

whereby= ic; and M?=c,+ 3c?>0. Hence,o(r,7) satis-
fies the linear wave equation

.1
o' —w— ;w=0. (84

The wave-packet solution to E¢B4) is given by

oo

w(7,1)=wo+ % InT+ X, cogn(r—r,)]
n=1

X[AQJo(nT)+BQNo(nT)], (85)

where %w;, 2Q,, BQ,, andr, are constants.

In summary, Eqsi4l) and(42) admit the inhomogeneous

solution

q)(r,r)=|n—cosr:AM ©) (86)
1
b(r,r)=-c;+MtanMw). (87)

2

Rewriting the componentsTy and T3 of the energy-
momentum tensor in terms af(7,r) gives

VN
k22X ITY=— - (0*+0'?), (89)

M2,
Kzez(X7¢)Té=7ww', (89

and Eqs.(43) and(44), which determiney(r,r), reduce to

2
X'=¢'+27¢¢’+7ﬁow’, (90)

'_l'//_i_’_ ('2+ 72)+M_2 ('2+ r2) (91)
X= yp TP+ 7 7@t o).

Using the functiorG(f;7,r), wheref + 7~ 1f — f"=0 and
G(f;7,r) is given by Eq.(47) and Eqgs(90),(91) lead to

1 M?2
dy=dy— Zdlnr+ 2dG(y;7,r)+ TdG(w;r,r)

(92

which yields

1 M?2
x(7m,r)=¢(r,r)— Z|n7+ 2G(¢; )+ TG(O);T,F)'FL,

(93

where L is some constant. So that the metric function
exd x— ] is given by

M2
exdx—yl=e-7" 1"‘ex;{ 2G(3) + 5 G(w) . (94)

V. ASYMPTOTIC BEHAVIOR

The existence of inhomogeneity in the solutions found in
Sec. IV introduces characteristic length scales and the gravi-
tational self-interaction of the dilatonic and axionic waves
will differ over scales according as they are causally coher-
ent or not. The horizon distance in thelirection is defined
by ds?|, ,=0; hence,

Ar= fdr= . 95)
0

Therefore, the combinationr in the solutions above can be
interpreted as the ratio of the radial horizon distance to the
coordinate wavelengtia since n«1/\(n). There are two
limiting cases to be considered: the case<1, when the
comoving wavelength is much larger than the radial horizon
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scale, and the caser>1, when the wavelength of the inho- — /44 (®y1) 2+ (M24) (Pw,)?
mogeneities is well within the horizon scale. We consider p1= 304+ O 2+ (M24) P2 (106
these two cases separately.
The Charach solutions discussed in the last section are the 1/2+ %
most general ones of those given. Apart from solutions of p,= T ; T3, (107
Sec. Il C the limiting properties of the other solutions are 34+ (CY) "+ (MT4) (Cwy)
included in those of the Charach-type solutions. Therefore in o
this section only the asymptotes of these solutions, of Sec. Da= 12="4n (108
IV, are discussed. Explicit formulas for the functions in- 37 314+ () %+ (M?14)(Pw,)?”
volved are given in the Appendix along with some useful ) ) .
definitions. It is convenient to define metric functions They satisfy the algebraic constraints
Ag(r.r)=exdx(7.r)—(7.r)], (96) 5
A2( T,r)= 7_l/2eu,//( ’T,f)’ (97) ;1 pPi= 1, (109)
Ag(7,r)=rt% Um0, (98)
3 2 0,12
A. The limit nr<1 E pizzl_M_ 0 (2w1)2 0 \272"
‘ = 2 [3/4+ () s+ M4 wq)4]
In this case (110
Al(,,'r)NeLTf1/4+2y2(¢;r>+(M2/2>72(w;r> The fact that=>_,p?’<1, where the equality holds in the
M2 vacuum caseN! =0), shows immediately that there are iso-
. . tropic solutions. This feature is present in the matter-filled
X 2 )+ —= |, 99 : i .
exp{ D+ 5 nlein ®9 Gowdy solutiong[18,19 and in the spatially homogeneous
Kasner universes containing a stiff fluid.
A,(7,r)~exlhn Jli2rax(yin) (100 The axion-dilaton system is independent of the gravita-
tional background in the sense that its determining equations
Ag(7,r)~e" aaln) pl2=ax(yin) (101) [see Egs(41) and (42)] do not involve any of the metric

functions apart fromR(r,r). However, due to the general
This limit corresponds to the case where the comoving wavestructure of the equations the solutions derandb are very
length is much larger than theadia) horizon size, or in  similar to those of the metric functions. As-0, the dilaton
other words the universe consists of causally disconnectednd axion fields approach
regions. In this case one would not expect to have any oscil-
latory behavior innr.

Concentrating on the homogeneous limit foapproach- ®(7,r)~In[eMar(@n) Maz(in) . @=May(wir) .= Mag(win)]

ing zero allows to discuss cosmological solutions near the
singularity. The metric functions are found to approach —In2M, (111

—1/4+(Opp) %+ (M212) (Pwq)?
A7)~ Cyp)*+ (M8 (Cw)® (102 2May(wir) 2Mag(win) _ 1

1
b(7,r)~5¢c1+M e2May(win) 2Mazlwin) 4 1 - (112

An(7)~ 71200, (103

120 We note that the early-time behavior of these solutions
As(7)~T L (104 falls under the category of “velocity-dominated” solutions
) ) ) ] .. used in studies of general relativistic cosmolodigg]. As
Changing to proper time using, in the homogeneous limityne singularity is approached the spatial gradients become
the relation negligible with respect to the time derivatives, three-
curvature anisotropies are ignored, and velocities are as-
t:f drA(7), sumed to be less than the speed of light. This approxim_atio_n
does not encompass the most general known behavior in
general relativity, with the metric undergoing chaotic oscil-
lations on approach to the singularitg0]. Chaos in string
cosmologies will the subject of a separate st{2y].

7(t) is found to be
roct 1134+ Cyp)?+ (M18) Cwp) ] (105
. . B. The limit n7>1
Defining the Kasner exponengs, i=1, 2, 3, by eimt T
In this case the comoving wavelength is smaller than the
g,,~diag — 1t2P1,t2P2,t2P3) (radia) horizon size allowing interaction between different
modes and hence an oscillatory behavior of the metric com-
they are found to be slowly spatially varying: ponents. From the limits ofs(7,r) and G(¢;,r) given in
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the Appendix it can be seen thatdisplays an oscillatory

behavior while the oscillations i are damped out:

Ay(7r)~ elr 1A+ 2y,4() + (M212) y4(w)

M2
xexr{273<w>+7y3<w>

2
X exp[

2ys(Y)+ > vs(w)
A,(7,r)~ 2B ebrWexd r~Yh(y;r,r)], (114

T], (113

Ag(r,r)~ 72 PWe~ PiDexd — = Y2n(y; r,r)].
(115

As can be easily seen from the definition lof; 7,r)
given in the Appendix it satisfies the wave equation
Minkowski space

h—h"=0. (116

The exponential i\, ensures that the homogeneous limit

1
b(r,r)~§c1+M

eMAu(w) 2ZMBA(w)[ 1+ 2M 7~ ¥h(w;7,r) ]~ 1
" @MW) 2V B 15 2M 7 V(i 1) [+ 1°
(120

Furthermore, the string coupling constant
gi(r,r)=e”

is a function ofr andr and is given by
) 1
gs(7,r)= Mcosth).

So that taking the limitr—o at constant results in a di-
verging gg, hence the string coupling is driven towards the
strong-coupling regime. This indicates the limited physical
interpretation of this model. The coupling goes off to infinity
since there are no ways of stabilizing the dilaton, for ex-
ample by a potential. Futhermore, in the next section we give
a simple example of an 0O(2,2) transformation relating a
strong and weak coupling solution.

In summary, these solutions highlight some new consid-

is approached at large, and is an anisotropic universe erations for string cosmology. In the past the string cosmolo-

which can be at most axisymmetri@,(#;t,r)=0]. Since
9,,~diag(—A?,AZ,A3,A3) and, for large values of, we
have

exg 27 Y2h(y;mr)]~1+27 YVhly;r.r]

gies that have been studied have all possessed simple geo-
metrical structure$2-8J: isotropic universes have a single
scale factor and the anisotropic models have been spatially
uniform. This ensures that the effects of duality are very
simple. However, in inhomogeneous cosmologies the situa-
tion becomes more unusual. It is possible for the universe to
display quite different behavior from place to place and for

and Sog’uv can be written as the sum of a background partthe universe to be expanding or Contracting in different

7., and a “wave” parth,,,,

g,u,V: 7];LV+ h,uv ’
which are found to be

N, =diag — A2 A2, 712820 e2B1(¥) 1-262(1g=281(0)),
(117
h,,=diad 0,0,2r1/2* 282V)e2BrDn(y; 7,1),

_271/2*2ﬁ2(¢)e*2ﬁ1(l//;t,r)h(,/,; 0] (118

places. Under these conditions the simple “pre-big-bang pic-
ture” [16] that has been investigated in the context of scale
factor duality becomes more complex. Our solutions do not
contain trapped surfaces and so there are no gravitationally
bound collapsing regions. However, if we had taken
R=sinrsint for the solution of Eq(34) then theS® topology
would permit local regions to collapse prematurely to singu-
larities. In the solutions found above, the oscillatory behavior
arises because the gravitational force created by the inhomo-
geneities in thep and b fields is balanced by the pressure
forces once they enter the horizon. Once inside the horizon
the fluctuations are within their Jeans length and behave as
acoustic waves. The inhomogeneities do not collapse to form
black holes because the pressure forces are able to support

The dilaton-axion system displays an oscillatory behavior ashem inside the horizon: in effect, they never fall within their
well, although as emphasized before, there is no interactiogchwarzschild radii.

between gravitational and axion-dilaton waves.
The asymptotes are given by

Q)(T’r),-v |n{eMﬁl(w)TMﬁ2(‘U)+ e_Mﬁl(w)T_MﬁZ(w)
+ M[MB1@) MEa(w)- 112

— e MA@ 2= MB(0) =121 (: 7,1 )L —IN(2M),
(119

VI. DUALITY

By means of dimensional reduction we can show that
the low-energy effective actio(®) is invariant under global
0O(d,d) transformations, wherd<D refers to the number
of coordinates it does not depend ¢82]. So, if one
assumes a spacetime of the folxK, where N is a
(D—d)-dimensional spacetime with coordinateg’ (u
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=0,1,...D—d-1), andK ad-dimensional compact space

with coordinatey/® (=1, ... d), and furthermore that all
fields are assumed to be independent ofytteordinates of
the “internal” spaceK, then using the notation 422] we
can rewrite Eq(2) as

5= [ ax[ oy =ge ¥ R+ 50,
N K

1mig ..
_1_H H,lLV)\ .

S (122)

The hatted quantities now refer to tBedimensional space-

time. Using the vielbein formalisnf;,;; is written as

(Dyp(D) (1)

gMV+AM YAVY Aﬂﬂ
1

A(Va? Gaﬁ

9=

; (122

whereg,,, is the metric orN andG,, ;5 the metric onK.
Define a shifted dilaton

. o~ 1
d=¢p— ElndelGaﬁ, (123
and a 21X 2d matrix Q, written indXxd blocks,
G! -G''B
Q (124

“lBe! c-BG B/

It can be shown that Eq121) is invariant under global
0O(d,d) transformations
d-d, Q-0QQT, (125

where) € O(d,d), that is,QT7Q = 7, where
0 1
1, o0

andly is thed-dimensional unity matrix.

In the case of a diagonéll;; and a vanishin® field, with
the choicesd=D—1 and()= 7, the scale-factor duality is
recovered. This was first discussed by Venezif2®|. In
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b= L 2Cas 12
~® 2 "ge (127

where the index “dual” indicates an @(d) transformed
quantity.

A simple exampleTo illustrate the effects of an O(2,2)
transformation we make a simple choice fQr, namely,
QO=7.

TransformingQ according to Eq(125) results in

G—G 1 (128
so that
Rauag2y g0 p-1g-20g 0 (129
Riualp =248 _ p-102y0—0 (130
which implies
yl=—y (13
RIA= R~ lexpy — ® — pdua), (132

Using Eq.(127) to find the transformed dilaton gives

= _ p-2|nR, (133

and hence

Rdva= R, (139

It can be explicitly checked that EgR7), (34), and(35)
are invariant under changes to the dual quantities. Equations
(27), (28), (34), and(35) provide the integrability conditions
for Egs.(36) and (37) which in turn determine the function
x- Since the integrability conditions are invariant under the
above transformation, the equations remain integrable and by
substituting the dual quantities into E¢36) and(37) y™is
found to be

x18= =24+ P +INR+C, (135

whereC is a constant. The dual metric functio(®6)—(98)
are found as follows:

this case the duality transformation results in an inversion of

the scale factors in the string frame. For a comprehensive

discussion of target-space duality see R2a4].

In the case of the Einstein-Rosen metf®, considered
here, the low-energy effective actid@) is invariant under
0(2,2) transformations fob=4. In this section, the anti-
symmetric tensor potentid,,, is assumed to be vanishing.
Transforming the metri¢9) to the string frame, the “inter-
nal” metric G, is found to be

Re%e® 0

Gup= 0 Re 24g® )"

(126)

The shifted dilaton defined above remains invariant under
0O(d,d) transformations and this implies that the dilaton it-

self transforms as

A= eCRePA (136)
A=A, (137)
A=A, (139

Sinceb(7,r)=0 in this section®(,r) satisfies an equa-
tion similar to that fori. To find the corresponding Kasner
exponentgsee Sec. V Aof the dual model it is necessary to
setM=1 and%w,="¢, in the equations of Sec. V A. This
reduces to

AcliuaIN 7_3/4+°<D1+(1/4)(0<I>1)2+(0¢1)2, (139
AguaI~ 71/2—01,//1, (140
AguaIN 7_1/2+0¢11. (141)
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Changing to proper time and reading off the Kasner exthe speed of light and so shock waves do not form even
ponents as described in Sec. V A results in when the nonlinearities are of large amplitude. The global
structure of our solutions prevents the formation of gravita-

3 tionally trapped regions and so there is no primordial black
241 pi=1 (142 hole formation(If the S? topology had been chosen, with the
associated choic®=sinr, then this would have been pos-
3 0 0 2 S|b|8)
> p?=1-2 Ol+ q)1+(1é4)( ;Dl)o . Solutions of varying degree of generality t@+1)-
<1 [7/4+7D; +(UAH P+ (Thy)7] dimensional string cosmology with dilaton and axion in a

(143 spacetime of cylindrical symmetry have been discussed. We
found that, in general, the axion-dilaton system is decoupled
Trom the gravitational background by the cylindrical symme-
Stry. However, the solutions of Sec. Ill C are special in the

This shows that the behaviors of the gravitational back
grounds in the original and dual model are very similar. Thi

is expected since onlf, really changes, whilé\; andA; qonse that they describe a universe at largéhich contains

are ju_st ipterchanged: prvever, the evol_utjon of the Stringscalar and gravitational waves that are coupled by the wave-
coupling is changed significantly. In the original background"ke solutions in the axion field. The most general Charach-

the general .50'9“0” for the dilaton is given by the Wavey ne solutions describe at large valuesofin anisotropic

packet solution in terms of Bessel and Neumann fu_nct|on niverse filled with gravitational and scalar waves caused by
[cf. E'q. (420)]' In the limit 7—co, at constant, the string e dynamics of the axion and dilaton. These two regimes
couplinggs(7,r) diverges. However, in the dual background 4154 allow us to find the asymptotic behavior of the universe

the string coupling evolves according to as7—0 andr—o. There is an initial curvature singularity
dual)2_ p-2~2 where the density of the dilaton and axion fields is formally
(9s7)°= gs (1) infinite (hence we venture outside of the low-energy string

theory regime assumed hgrélhe early-time behavior re-
sembles the Kasner singularity of general relativity with spa-
%ially varying indices and is analogous to that observed on
d%cales larger than the horizon at later times. The late-time
; . : evolution cannot straightforwardly be compared with the
weak couplings via O(2,2) transformations. ; R
present universe because of the absence of fermionic fields

reIaFtIir\]/?s”t)i/c’: goig?rgiitboen Tﬁent'sczjnrﬁdo;ht?‘tetizsli;urale)?egne;ﬁ:gvhich provide the standard matter and radiation components
- . - P of the big bang model. The impact of duality upon these
defining the quasi-Kasner behavior is recovefefl Egs.

(109 and(142)] since we are working in the Einstein frame solutions is more subtle than in the cosmological models that

Assuming a Bianchi | background in the Einstein frame, an ave been examined previously in string theory because of

transforming the Kasner solutions from the Einstein to thehe presence of inhomogeneity. This was discussed in detal

string frame. results in a constraint on the sum of the square® Sec. VI together with the relationships between the results
9 ' q iR the Einstein and string frames.

of thg Kasner exponents bemg unity. This b_ehawor is char- In summary, we have found exact inhomogeneous and
acteristic for Kasner-like solutions in the string fraf&s]. . . . ) .
anisotropic cosmological solutions of low-energy string

This, in a way, is more illuminating, since it reflects directly . : )

) ) ) SR theory with nonzero axion and dilaton stresses. These pro-
the invariance under scale factor duality which implies the id h ical lab in which | h
(discrete transformation of a Kasner exponent to its negativevI e a new theoretical laboratory in which to explore the

ramifications of low-energy string cosmology and to use as a

(Pi—=pi)- basis for incorporating the effects of higher-order correc-
tions.

AssumingR= 7, this shows that the string coupling in the
dual model evolves towards the weak-coupling regime in th
limit 7—o. Hence, picking{)=# provides a simple ex-

ample of the interconnection of backgrounds with strong an

VII. DISCUSSION

We have shown that it is possible to find exact inhomo- ACKNOWLEDGMENTS
geneous cosmological solutions of low-energy string cos-
mology. These solutions are cylindrically symmetric and The authors would like to thank E. Copeland, M. Dab-
represent cylindrical axionic, dilatonic, and gravitational rowski, J. Griffiths, M. Hindmarsh, and J. Isenberg for dis-
waves propagating inhomogeneously on a flat anisotropigussions. J.D.B. was supported by PPARC and K.E.K. was
background. When the inhomogeneities are of small amplisupported by the German National Scholarship Foundation.
tude these solutions will approach the behavior of small per-
turbations of isotropic and homogeneous anisotropic string
models. These solutions also allow us to study the evolution
of the universe in two physically distinct limits: when the  Using the properties of the Bessel and Neumann functions
inhomogeneities are larger or smaller than the particle horif26] the limits for (,r) [or w(7,r)] andG(r,r) are found.
zon. The behavior found has a simple physical interpretation. The limit nr<1,
When inhomogeneities are larger than the horizon they
evolve quasihomogeneously but when they enter the horizon ) ]
there is time for self-interaction to occur and the inhomoge- 1.0~ aa (i) + az(dhir)inT,
neities oscillate as waves. The axion and dilaton fields be-
have similar to two fluids in which the sound speed equalsvhere

APPENDIX



752 JOHN D. BARROW AND KERSTIN E. KUNZE 56

[

al<w;r>z°wo+n§l cogn(r—ry)]

2
Ap + ;B‘I'nlnn

0

2
ar(§ir)=yr+ 2, cogn(r—ry)]°¥,.

n=1
The functionG(7,r), of Eq. (47), is found to approach
G0~ yi(r)+ ya(¢ir)InT,

where

[

yl<¢;r>z°wo+°¢1n§1 cogn(r—r)[A¥,+BW¥ Inn],

1 oo}
Y20 =5 )+ % 2, cogn(r—ry) PV,
The limit n>1,
Y(T0)~Ba()+ Bo()InT+ 7~ Ph(yimr),

where

Bu()="p0,
,82(‘//)501/’1,

* 2 1/2 -
h(g;7,r)= 2, (—) cogn(r—r,)] A\Ifncos(nr—z>

n=1 \ N

4

v
+ B\Ifnsin( nr— —) )

For G(¢;7,r), the limiting behavior is found to be

G(¢7.0)~y3(h) + yva(P)InT+ ys(h) 7,

where

ya(9) ="y,

1
Ya(h)= E(Olﬂl)z,

©

1
Ys() =52 n[("Wp)2+(PW )7,

n=1
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