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We present exact inhomogeneous and anisotropic cosmological solutions of low-energy string theory con-
taining dilaton and axion fields. The spacetime metric possesses cylindrical symmetry. The solutions describe
ever-expanding universes with an initial curvature singularity and contain known homogeneous solutions as
subcases. The asymptotic form of the solution near the initial singularity has a spatially varying Kasner-like
form. The inhomogeneous axion and dilaton fields are found to evolve quasihomogeneously on scales larger
than the particle horizon. When the inhomogeneities enter the horizon they oscillate as nonlinear waves and the
inhomogeneities attentuate. When the inhomogeneities are small they behave as small perturbations of homo-
geneous universes. The manifestation of duality and the asymptotic behavior of the solutions are investigated.
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I. INTRODUCTION

The low-energy effective action of the bosonic sector of
string theory provides a gravitation theory containing dilaton
and axion fields that possess cosmological solutions. These
solutions provide models for the behavior of the universe
near the Planck~or string! energy scale@1#. They allow us to
investigate a number of long-standing questions regarding
the occurrence of singularities, the behavior of the general
solution of the theory in the vicinity of a singularity, and the
likelihood of our Universe arising from generic initial data.
They also provide a basis for investigation of higher-order
corrections to low-energy cosmological string theory. Sev-
eral studies have recently been made of string cosmologies in
order to ascertain the behavior of simple isotropic and aniso-
tropic universes, investigate the implications of duality, and
search for inflationary solutions@2–8#. Since one of the
prime reasons for studying such solutions is to shed light on
the behavior of the universe at very high energies, where our
knowledge of its material content, geometrical and topologi-
cal properties, or its anisotropies and inhomogeneities, is
necessarily incomplete, it is unwise to make special assump-
tions about the form of the cosmological solutions. Indeed,
any dimensional reduction process could be viewed as an
extreme form of anisotropic evolution in more than three
dimensions in which three spatial dimensions expand while
the rest remain static. A number of studies have focused on
obtaining particular solutions for~311!-dimensional space-
times in cases where spatial homogeneity~and sometimes
also isotropy! is assumed for the metric of spacetime, where
theH field is set to zero@4#, or where theH field is included
by assuming that it takes a particular form which satisfies its
constraints and its equation of motion@5#. For example, Co-
pelandet al. @2# discussed Friedmann and Bianchi type-I uni-
verses, allowing *H to be time dependent or space depen-
dent, respectively. In a second paper@3# they discussed
Bianchi I solutions with a homogeneous antisymmetric ten-
sor field. In@6# ~see also@5#! Batakis presented an overview
of all possible configurations of a~spatially! homogeneous
H field in diagonal Bianchi models. Whereas, in Ref.@7#, we
investigated the case for a~spatially! homogeneous tensor

potentialBmn in Bianchi metrics that are not necessarily di-
agonal. We also gave a classification of all the degrees of
freedom permitted for theH field in spatially homogeneous
universes possessing a three-parameter group of motions.
The only spatially homogeneous universe excluded from this
study is the~closed! S23S1 Kantowski-Sachs universe. A
detailed study of this universe was made by Barrow and
Dabrowski@8#.

In this paper, we take one further step upwards in gener-
ality and consider a wide class of inhomogeneous and aniso-
tropic string cosmologies. These possess cylindrical symme-
try and contain homogeneous Bianchi and Kantowski-Sachs
universes as special cases@9#. They allow us to investigate
the propagation of nonlinear inhomogeneities in the axion
and dilaton fields. On scales larger than the particle horizon
inhomogeneities in the axion and dilaton fields evolve quasi-
homogeneously but when the inhomogeneities enter the ho-
rizon they undergo oscillations and attentuate. In the limit
that the amplitude of the inhomogeneities is small we will
recover the results of perturbation studies of homogeneous
string cosmologies in an appropriate gauge. Besides provid-
ing exact descriptions of the gravitational self-interaction of
strongly inhomogeneous axion and dilaton fields, these solu-
tions allow us to investigate the impact of duality upon the
form of the solution in a situation where there exist charac-
teristic spatial scales.

The string world-sheet action for a closed bosonic string
in a background field including all the massless states of the
string as part of the background is given by@1#

S52
1

4pa8
E d2s$Ahhab]aX

m]bX
ngmn~Xr!

1eab]aX
m]bX

nBmn~Xr!1a8Ahf~Xr!R~2!%, ~1!

wherehab is the two-dimensional world sheet metric,R(2)

the world sheet Ricci scalar,eab the world sheet antisym-
metric tensor, Bmn(X

r) the antisymmetric tensor field,
gmn(X

r) the background spacetime metric~graviton!,
f(Xr) the dilaton,a8 is the inverse string tension, and the
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functionsXr(s) map the string world sheet into the physical
D-dimensional spacetime manifold.

For the consistency of string theory it is essential that
local scale invariance holds. Imposing this condition results
in equations of motion for the fieldsgmn , Bmn , andf which
can be derived to lowest order ina8 from the low-energy
effective action for a vanishing cosmological constant:

S5E dDxA2ge2fSR1gab]af]bf2
1

12
HabgHabgD ,

~2!

where the antisymmetric tensor field strength
Habg5] [aBbg] is introduced.

In a cosmological context it is generally assumed that by
some means all but four of the 10 or 26 dimensions of space-
time are compactified, leaving an expanding~311!-
dimensional spacetime (D54). Since we are interested in
cosmological solutions of the field equations derived from
the variation of this action, we adopt the Einstein frame by
making the conformal transformation

gab→e2Fgab . ~3!

In this frame the four-dimensional string field equations and
the equations of motion are given by~Greek indices run
0<a, b<3).

The low-energy effective action in the Einstein frame
yields the following set of equations (k2[8pG, c[1):

Rmn2
1

2
gmnR5k2~ ~F!Tmn1 ~H !Tmn!, ~4!

¹m~e22FHmnl!50, ~5!

hF1
1

6
e22FHmnlH

mnl50, ~6!

where

~F!Tmn5
1

2S F ,mF ,n2
1

2
gmn~]F!2D , ~7!

~H !Tmn5
1

12
e22FS 3HmlkHn

lk2
1

2
gmnHabgH

abgD . ~8!

Thus, in this frame, the problem reduces to the study of
inhomogeneous general relativistic cosmologies containing
two gravitationally interacting matter fields. In the next sec-
tion we shall manipulate these equations into a soluble sys-
tem by introducing a particular inhomogeneous spacetime
metric with cylindrical symmetry with a particular topology.
In Sec. III we give exact solutions in cases where one~or
both! of the axion and dilaton fields depends only upon the
time variable. In Sec. IV we consider the case where both
fields depend upon time and space coordinates. In Sec. V we
investigate the asymptotic behaviors of these fully inhomo-
geneous solutions on scales large and smaller than the hori-
zon. In Sec. VI we study the nature of duality in these solu-
tions and the results are discussed in Sec. VII.

II. EINSTEIN-ROSEN METRIC

Consider the anisotropic and inhomogeneous spacetime
metric @10,11#

ds252e2~x2c!~dt22dr2!1R~e2cdz21e22cdf2!,
~9!

wherex,c,R are unknown functions oft and r . Thus]/]z
and ]/]f are Killing vectors. Without loss of generality it
can be assumed that 0<z<1 and 0<f<1. Whenc50 and
R5e2x, with R[R(t) andx[x(t), we recover an isotro-
pic Friedmann universe. Other homogeneous specializations
of the metric reduce it to one of the Bianchi-type homoge-
neous universes@9#. Properties of the metric~9! depend on
whetherBm[R,m is spacelike, timelike, or null~Greek indi-
ces run 0→3). The cases with a globally null or spacelike
Bm correspond to plane or cylindrical gravitational waves,
respectively@12#. Metrics where the sign ofBmB

m varies
throughout the spacetime describe colliding gravitational
waves@13# or cosmologies with timelike and spacelike sin-
gularities@14#. Metrics with a globally timelikeBm describe
cosmological models with spacelike singularities. If the
spacelike hypersurfaces are compact then the allowed spatial
topologies, @15#, are a three-torus,S1^S1^S1, for
R5(detgab)

1/25t with 0<t,` and 0<r,`; a hyper-
torus, S1^S2, or a three-sphere, S3, for
R5(detgab)

1/25sinrsint with 0<r<p and 0<t<p. We
shall present solutions for the globally timelike caseR5t.
These correspond to ever-expanding cosmological models
with an initial curvature singularity att50. Note that the
behavior of the closedS3 models approaches that of the
three-torus universes as the singularities are approached be-
cause sint→t ast→0 andp, and so the role played by the
duality invariance of these models can be investigated along
with the implications for the ‘‘pre big bang’’ scenario of
Gasperini et al. @16#. The homogeneous models of the
S1^S2 case will be the Kantowski-Sachs universes studied
in Ref. @8#. For further results about the singularity structure
and global existence of these metrics~the strong cosmic cen-
sorship hypothesis holds! see the paper by Chruscielet al.
@17#.

Rewriting Eq.~5! as

d~!H !22~dF!`~!H !50 ~10!

and using

dH50, ~11!

we can determine the general form ofH that is compatible
with the Einstein-Rosen spacetime geometry. Denoting
x05t, x15r , x25z, andx35f we require

H56A~t,r !dx0`dx1`dx216B~t,r !dx0`dx1`dx3

16C~t,r !dx0`dx2`dx316D~t,r !dx1`dx2`dx3.

~12!

The quantitiesH andF can be functions only ofr and t
here since the energy-momentum tensor is allowed to depend
only on these variables. Hence Eq.~11! implies
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]1C2]0D50, ~13!

while !H is given by

!H5
1

6
emnlaH

mnldxa[Fadx
a. ~14!

SincedF5]0Fdx01]1Fdx1, Eq. ~10! reduces to

@]0F12]1F022~F1]0F2F0]1F!#dx0`dx1

1@]0F222F2]0F#dx0`dx21@]1F222F2]1F#dx1

`dx21@]0F322F3]0F#dx0`dx3

1@]1F322F3]1F#dx1`dx350. ~15!

This implies

]0F122F1]0F2]1F012F0]1F50, ~16!

d~e22FF2!50, ~17!

d~e22FF3!50, ~18!

so Eqs.~17! and ~18! yield

F25e2FA2 , ~19!

F35e2FA3 , ~20!

whereA2 andA3 are constants.
Using the fact that C(r ,t)5g00g22g33H

023

5g00g22g33e
0231F152RF1 and, similarly, that D(r ,t)

52RF0 , Eq. ~13! becomes

]1~RF1!2]0~RF0!50 ~21!

and Eq.~16! implies that

]0~e
22FF1!5]1~e

22FF0!. ~22!

In order to solve the system of differential equations~21!
and~22! there are two obvious choices:~i! e22FF15]1b and
e22FF05]0b, ~ii ! RF15]0h and RF05]1h. The latter
choice corresponds to takingB23 to be the only nonvanishing
component of the antisymmetric tensor potential defined by
H5dB and depending only ont and r . The choice~i! re-
duces Eq.~21! to

hb12¹mb¹mF50, ~23!

while choice~ii ! produces another coupled wave equation

ḧ2h92
Ṙ

R
ḣ1

R8

R
h822~Ḟḣ2F8h8!50 ~24!

where the overdot is equivalent to]/]t and the prime is
equivalent to]/]r .

The off-diagonal components of the Einstein tensor
G02, G03, G12, G13, andG23, are zero in the spacetime~9!.
The corresponding components of(F)Tmn all vanish so we

only need to ensure that all the corresponding off-diagonal
components of(H)Tmn are also zero. Since we have

~H !T025
1

2
F2F0e

22F5
1

2
A2F0 , ~25!

we must therefore setA250, and henceH0135B50. For the
(03) component we have

~H !T035
1

2
F3F0e

22F5
1

2
A3F0 , ~26!

so we must setA350, and henceH1205A50. With these
choices, the components(H)T12,

(H)T13, and
(H)T23 also all

vanish. Therefore, the equations governing the dilaton and
antisymmetric tensor field for the two choices are given by
Eq. ~6! together with the following coupled propagation
equations~27!–~28! or ~29!–~30!, in the cases~i! and ~ii !,
respectively:

~i!

1

R
~RF8!82

1

R
~RḞ!–2e2F@b822ḃ2#50, ~27!

1

R
~Rb8!82

1

R
~Rḃ!–12@F8b82Ḟ ḃ#50. ~28!

~ii !

R21~RF8!82R21~RḞ!–1R22e22F@h822ḣ2#50,
~29!

ḧ2h92
Ṙ

R
ḣ1

R8

R
h8522~F8h82Ḟḣ!. ~30!

Since both choices involve the same number of independent
functions they are equivalent; here, choice~i! is taken.

The energy-momentum tensor in Eq.~4! reads

k2~F!Tm
l 5

1

2S gnl]mF]nF2
1

2
dm

l ~]F!2D , ~31!

k2~H !Tm
l 5

1

2
e2FS gnl]mb]nb2

1

2
dm

l ~]b!2D , ~32!

so the nonvanishing components of the energy-momentum
tensor are

k2T0
052

1

4
e22~x2c!@Ḟ21F821~ ḃ21b82!e2F#52k2T1

1 ,

k2T0
15

1

2
e22~x2c!@ḞF81ḃb8e2F#52k2T1

0 ,

k2T2
25

1

4
e22~x2c!@Ḟ22F821~ ḃ22b82!e2F#5k2T3

3 ,

~33!
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The energy-momentum tensor can be interpreted as describ-
ing two stiff perfect fluids where the energy density for the
dilaton fluid is found to be

pF5rF5
1

4
e22~x2c!@Ḟ22F82#

and its four-velocity is given by

ua5e2~x2c!@Ḟ22F82#21/2~2Ḟ,F8,0,0!

and for the axion fluid we have

pH5rH5
1

4
e22~x2c!@ ḃ22b82#e2F

and its four-velocity is

va5e2~x2c!@ ḃ22b82#21/2~2b,b8,0,0!.

Furthermore,T0
01T1

150 andT2
22T3

350 as the cylindri-
cal symmetry of the metric demands, and Einstein’s equa-
tions for R(t,r ) and c(t,r ) are given by the linear wave
equations@12#

R̈2R950, ~34!

c̈1
Ṙ

R
ċ2c92

R8

R
c850. ~35!

The remaining metric function,x(t,r ), is determined by the
two Einstein constraint equations

x85c82
1

4

R8

R
2~Ṙ22R82!21@RR8~ ċ21c82!1R8R9

22ṘRċc82ṘṘ82k2Re2~x2c!~T0
0R81T0

1Ṙ!#,

~36!

ẋ5ċ2
1

4

Ṙ

R
2~Ṙ22R82!21@2RR8ċc82RṘ~ ċ21c82!

2ṘR91R8Ṙ81k2e2~x2c!R~T0
0Ṙ1T0

1R8!#. ~37!

Since cosmological solutions are of interest to us here, we
consider only the timelike solution of Eq.~34!. Using the
general coordinate invariances@t6r→ f (t6r )# of the met-
ric this may be taken without loss of generality to be

R5R~t!5t. ~38!

Then, Eq.~35! reduces to

c̈1
1

t
ċ2c950 ~39!

which is solved by

c~t,r !50c01
0c1lnt1 (

n51

`

cos@n~r2r n!#

3@ACnJ0~nt!1BCnN0~nt!#, ~40!

where 0c i ,
ACn ,

BCn , r n are constants andJ0(x) and
N0(x) denote the zeroth-order Bessel and Neumann func-
tions, respectively.

Equations~27!–~28! read

F92
Ḟ

t
2F̈2e2F@b822ḃ2#50, ~41!

b92
ḃ

t
2b̈12@F8b82Ḟḃ#50. ~42!

In the next section several solutions will be found.

III. SOLUTIONS OF VARYING GENERALITY

Before explicit solutions are given, we make some re-
marks about the procedure for solving the system of partial
differential equations for the metric functionx(t,r ). For
R(t)5t, Eqs.~36! and ~37! reduce to

x85c812tċc81k2te2~x2c!T0
1 , ~43!

ẋ5ċ2
1

4t
1t~ċ21c82!2k2te2~x2c!T0

0 . ~44!

Generally speaking, the most difficult step is to find the
integral for the part coupled toc(t,r ). However, this prob-
lem was solved by Charach@18#. Define a function
G(c;t,r ) by

G85tċc8, ~45!

Ġ5
1

2
t~ċ21c82!. ~46!

Note thatc satisfying

c̈1
1

t
ċ2c950

is kept as a functional dependence inG. The explicit depen-
dence ont and r might sometimes be suppressed and we
write G(c) as
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G~c;t,r !50c01
1

2
~0c1!

2lnt10c1(
n51

`

cos@n~r2r n!#@
ACnJ0~nt!1BCnN0~nt!#

1
1

4
t2(

n51

`

n2$@ACnJ0~nt!1BCnN0~nt!#21@ACnJ1~nt!1BCnN1~nt!#2%2
1

2
t (
n51

`

ncos2@n~r2r n!#

3$~ACn!
2J0~nt!J1~nt!1ACn

BCn@N0~nt!J1~nt!1J0~nt!N1~nt!#1~BCn!
2N0~nt!N1~nt!%

1
1

2
t (
n51

`

(
m51,nÞm

`
nm

n22m2 $sin@n~r2r n!#sin@m~r2rm!#@nUnm
~0!~t !2mUnm

~1!~t !#

1cos@n~r2r n!#cos@m~r2rm!#@mUnm
~0!~t !2nUnm

~1!~t !#%, ~47!

where

Unm
~0!~t ![ACn

ACmJ1~nt!J0~nt!1BCn
BCmN0~mt!N1~nt!

12ACn
BCmJ1~nt!N0~mt!,

Unm
~1!~t ![ACn

ACmJ0~nt!J0~mt!1BCn
BCmN0~nt!N1~mt!

12ACn
BCmJ0~nt!N1~mt!.

We now consider classes of solutions in which one~or both!
of theF andb fields depend on only one of the coordinates
r and t.

A. Solutions homogeneous int: F5F„t…, b5b„t…

The well-known solution to Eqs.~41! and~42! @6# in this
subcase is

eF5cosh~Nz!1A12~B2/N2!sinh~Nz!, ~48!

b~z!5
N

B

sinh~Nz!1A12~B2/N2!cosh~Nz!

cosh~Nz!1A12 B2/N2sinh~Nz!
, ~49!

whereN and B are constants anddt5tdz. Using this in the
expression for the components of the energy-momentum ten-
sor gives an expression forx(t,r ) ,

x~t,r !5c~t,r !12G~c;t,r !1
N221

4
lnt1M , ~50!

where M is a constant. Hence, the metric function
exp@x2c# is given by

exp@x2c#5e2G~c!eMt~N221!/4. ~51!

B. Solutions homogeneous inr : F5F„r …, b5b„r …

The solution in this subcase is given by

eF5cosh~Nr !1A12
B2

N2sinh~Nr !, ~52!

b~r !5
N

B

sinh~Nr !1A12~B2/N2!cosh~Nr !

cosh~Nr !1A12~B2/N2!sinh~Nr !
, ~53!

whereN, B are constants. From these expressions,x(t,r ) is
found to be

x~t,r !5c~t,r !12G~c;t,r !2
1

4
lnt1

N2

8
t21M ,

~54!

which gives the remaining metric component

exp@x2c#5e2G~c!e2Mt21/4e~N2/8!t2. ~55!

C. Solutions with an oscillatory axion:F5F„t…, b5b„t,r …

If we rewrite Eq.~42! as

]2b

]r 2
2

]2b

]t2
2

]b

]t S 2]F

]t
1
1

t D12
]F

]r

]b

]r
50 ~56!

and take a solution 2F(t)52 ln(t/t0), then the axion field
b(r ,t) also satisfies the wave equation

]2b

]r 2
2

]2b

]t2
50, ~57!

which has the general solution

b~r ,t!5ab1~r1t!1bb2~r2t!, ~58!

wherea, b are constants andbi are arbitrary functions of
their arguments. Equation~41! is satisfied if

S ]b

]r D
2

2S ]b

]t D 250. ~59!

This implies

S ]b

]r
1

]b

]t D S ]b

]r
2

]b

]t D50 ~60!

so that eithera or b must vanish. Thus we obtain the solu-
tion

F~t!52
1

2
ln

t

t0
, ~61!

b~t,r !5Q~u!b1~r1t!1@12Q~u!#b2~r2t!, ~62!
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where Q(u) is the step function@Q(u)50 for u<0;
Q~u!51 for u.0# andu an arbitrary real parameter.

It is interesting to have a solution with a homogeneous
dilaton and aninhomogeneous axion. Note, that in this case
the axion behaves quite differently from the dilaton.

The functionx(t,r ) is determined by

x85c812tċc81
t0
2
ḃb8, ~63!

ẋ5ċ2
3

16t
1t~ċ21c82!1

t0
4

~ ḃ21b82!. ~64!

To solve this system of equations we define a new function
B(t,r ) satisfying

B85ḃb8 ~65!

Ḃ5
1

2
~ ḃ21b82!. ~66!

Changing to new variables,

X5r1t, Y5r2t,

we find

]B

]X
5S ]b

]XD 2, ]B

]Y
52S ]b

]YD 2.
This implies

]2B

]X]Y
50 ~67!

which is generally solved by

B~X,Y!5B1~X!1B2~Y! ~68!

with Bi arbitrary functions of their arguments. Using the gen-
eral solution forb in terms ofX andY, B(X,Y) is given by

B~X,Y!5Q~u!E dXS db1dX D 22@12Q~u!#E dYS db2dY D 2.
~69!

Finally, an expression forx(t,r ) is obtained,

x~t,r !5c~t,r !12G~c!1
t0
2
B~t,r !2

3

16
lnt1M ,

~70!

which results in

exp@x2c#5e2G~c!eMt23/16e~t0 /2!B~t,r !. ~71!

D. Solutions with F5F„t,r …, b5b„t…

If we take b(t)5At2/2, A constant, and
F(t,r )52 lnt1S(r), then Eq.~41! requiresS(r ) to satisfy

d2S

dr2
1A2e2S~r !50.

Hence,

e2F~r ,t!5tFcosh~Nr !1A12
A2

N2sinh~Nr !G , ~72!

b~t!5
A

2
t2 ~73!

is a solution of Eqs.~41!,~42!.
Calculating the appropriate components of the energy-

momentum tensor yields

x~t,r !5c~t,r !12G~c;t,r !1
1

2
lnFcosh~Nr !

1A12
A2

N2sinh~Nr !G1
N2

8
t21M , ~74!

hence

exp@x2c#5e2G~c!eMFcosh~Nr !
1A12

A2

N2sinh~Nr !G1/2e~N2/8!t2. ~75!

E. Discussion

Apart from case III C the solutions presented so far de-
scribe nonoscillatory axion-dilaton systems on an oscillatory
cosmological background. In case III C the axion field is
allowed to oscillate which couples the dilatonic and gravita-
tional waves. However, because of condition~59!, only trav-
elling wave solutions inb(t,r ) are described in this case.

IV. CHARACH SOLUTIONS

The system of equations~41!,~42! is very similar to equa-
tions determining the components of the electromagnetic po-
tential in the electromagnetic Gowdy universe@18,19#. It was
stated in@18# ~and references therein! that the geometric re-
quirements of the Einstein-Rosen spacetimes allow four in-
dependent components of the six possible components of the
Maxwell tensor which can be derived from two nonvanish-
ing components of the electromagnetic potential. In Sec. II,
we found that only two of the four possible components of
the antisymmetric tensor field strength can be nonvanishing,
which can then be accordingly derived from the potential-
like function b(t,r ) or h(t,r ). In the latter case there is a
direct connection to the antisymmetric tensor field potential
Bmn , whereH5dB. In order to obtain an exact solution of
Eqs.~41!,~42!, whereF andb are dependent onr andt we
employ a procedure introduced by Charach@18#.

Assume that

F~r ,t!52
1

2
lnv@b~r ,t!#, ~76!

wherev(b) is a function yet to be determined. Since
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F̈52
1

2
ḃ
dlnv
db

, F852
1

2
b8
dlnv
db

,

F̈52
1

2F b̈dlnvdb
1ḃ2

d2lnv
db2 G ,

F952
1

2Fb9
dlnv
db

1b82
d2lnv
db2 G ,

we can use Eq.~42! to transform Eq.~41! into

S d2vdb2
12D ~b822b2!50, ~77!

while Eq. ~42! becomes

b92b̈2
1

t
ḃ5@b822b2#

dlnv
db

. ~78!

Assumingb822ḃ2Þ0, Eq. ~77! implies

v~b!52b21c1b1c2 , ~79!

where the logarithm in Eq.~76! requires that the constants
c1, c2 satisfy the inequality

c1
214c2.0. ~80!

Equation~78! becomes

b92b̈2
1

t
ḃ5

c122b

c21c1b2b2
~b822ḃ2!. ~81!

If we make the substitution

b5b01M tanh~Mv!, ~82!

Eq. ~81! becomes

M2

cosh2~Mv!Fv92v̈2
1

t
v̇G12

M3sinh~Mv!

cosh3~Mv!
@v̇22v82#

52
M3sinh~Mv!

cosh3~Mv!
@v̇22v82#, ~83!

whereb05
1
2c1 andM

25c21
1
4c1

2.0. Hence,v(r ,t) satis-
fies the linear wave equation

v92v̈2
1

t
v̇50. ~84!

The wave-packet solution to Eq.~84! is given by

v~t,r !50v01
0v1lnt1 (

n51

`

cos@n~r2r n!#

3@AVnJ0~nt!1BVnN0~nt!#, ~85!

where 0v i ,
AVn ,

BVn , andr n are constants.
In summary, Eqs.~41! and~42! admit the inhomogeneous

solution

F~t,r !5 ln
cosh~Mv!

M
, ~86!

b~t,r !5
1

2
c11M tanh~Mv!. ~87!

Rewriting the componentsT0
0 and T0

1 of the energy-
momentum tensor in terms ofv(t,r ) gives

k2e2~x2c!T0
052

M2

4
~v̇21v82!, ~88!

k2e2~x2c!T0
15

M2

2
v̇v8, ~89!

and Eqs.~43! and ~44!, which determinex(t,r ), reduce to

x85c812tċc81
M2

2
tv̇v8, ~90!

ẋ5ċ2
1

4t
1t~ċ21c82!1

M2

4
t~v̇21v82!. ~91!

Using the functionG( f ;t,r ), where f̈1t21 ḟ2 f 950 and
G( f ;t,r ) is given by Eq.~47! and Eqs.~90!,~91! lead to

dx5dc2
1

4
dlnt12dG~c;t,r !1

M2

2
dG~v;t,r !

~92!

which yields

x~t,r !5c~t,r !2
1

4
lnt12G~c;t,r !1

M2

2
G~v;t,r !1L,

~93!

where L is some constant. So that the metric function
exp@x2c# is given by

exp@x2c#5eLt2 1/4expS 2G~c!1
M2

2
G~v! D . ~94!

V. ASYMPTOTIC BEHAVIOR

The existence of inhomogeneity in the solutions found in
Sec. IV introduces characteristic length scales and the gravi-
tational self-interaction of the dilatonic and axionic waves
will differ over scales according as they are causally coher-
ent or not. The horizon distance in ther direction is defined
by ds2uz,f50; hence,

nr5E
0

t

dt5t. ~95!

Therefore, the combinationnt in the solutions above can be
interpreted as the ratio of the radial horizon distance to the
coordinate wavelengthl since n}1/l(n). There are two
limiting cases to be considered: the casent!1, when the
comoving wavelength is much larger than the radial horizon
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scale, and the casent@1, when the wavelength of the inho-
mogeneities is well within the horizon scale. We consider
these two cases separately.

The Charach solutions discussed in the last section are the
most general ones of those given. Apart from solutions of
Sec. III C the limiting properties of the other solutions are
included in those of the Charach-type solutions. Therefore in
this section only the asymptotes of these solutions, of Sec.
IV, are discussed. Explicit formulas for the functions in-
volved are given in the Appendix along with some useful
definitions. It is convenient to define metric functions

A1~t,r ![exp@x~t,r !2c~t,r !#, ~96!

A2~t,r ![t1/2ec~t,r !, ~97!

A3~t,r ![t1/2e2c~t,r !. ~98!

A. The limit nt!1

In this case

A1~t,r !;eLt21/412g2~c;r !1~M2/2!g2~v;r !

3expF2g1~c;r !1
M2

2
g1~v;r !G , ~99!

A2~t,r !;ea1~c;r !t1/21a2~c;r !, ~100!

A3~t,r !;e2a1~c;r !t1/22a2~c;r !. ~101!

This limit corresponds to the case where the comoving wave-
length is much larger than the~radial! horizon size, or in
other words the universe consists of causally disconnected
regions. In this case one would not expect to have any oscil-
latory behavior innt.

Concentrating on the homogeneous limit fort approach-
ing zero allows to discuss cosmological solutions near the
singularity. The metric functions are found to approach

A1~t!;t21/41~0c1!21~M2/4!~0v1!2, ~102!

A2~t!;t1/21
0c1, ~103!

A3~t!;t1/220c1. ~104!

Changing to proper time using, in the homogeneous limit,
the relation

t5E dtA1~t!,

t(t) is found to be

t}t1/@3/41~0c1!21~M2/4!~0v1!2#. ~105!

Defining the Kasner exponentspi , i51, 2, 3, by

gmn;diag~21,t2p1,t2p2,t2p3!

they are found to be slowly spatially varying:

p1[
21/41~0c1!

21~M2/4!~0v1!
2

3/41~0c1!
21~M2/4!~0v1!

2 , ~106!

p2[
1/210c1

3/41~0c1!
21~M2/4!~0v1!

2 , ~107!

p3[
1/220c1

3/41~0c1!
21~M2/4!~0v1!

2 . ~108!

They satisfy the algebraic constraints

(
i51

3

pi51, ~109!

(
i51

3

pi
2512

M2

2

~0v1!
2

@3/41~0c1!
21M2/4~0v1!

2#2
.

~110!

The fact that( i51
3 pi

2<1, where the equality holds in the
vacuum case (M50), shows immediately that there are iso-
tropic solutions. This feature is present in the matter-filled
Gowdy solutions@18,19# and in the spatially homogeneous
Kasner universes containing a stiff fluid.

The axion-dilaton system is independent of the gravita-
tional background in the sense that its determining equations
@see Eqs.~41! and ~42!# do not involve any of the metric
functions apart fromR(t,r ). However, due to the general
structure of the equations the solutions forF andb are very
similar to those of the metric functions. Ast→0, the dilaton
and axion fields approach

F~t,r !; ln@eMa1~v;r !tMa2~v;r !1e2Ma1~v;r !t2Ma2~v;r !#

2 ln2M , ~111!

b~t,r !;
1

2
c11M

e2Ma1~v;r !t2Ma2~v;r !21

e2Ma1~v;r !t2Ma2~v;r !11
. ~112!

We note that the early-time behavior of these solutions
falls under the category of ‘‘velocity-dominated’’ solutions
used in studies of general relativistic cosmologies@17#. As
the singularity is approached the spatial gradients become
negligible with respect to the time derivatives, three-
curvature anisotropies are ignored, and velocities are as-
sumed to be less than the speed of light. This approximation
does not encompass the most general known behavior in
general relativity, with the metric undergoing chaotic oscil-
lations on approach to the singularity@20#. Chaos in string
cosmologies will the subject of a separate study@21#.

B. The limit nt@1

In this case the comoving wavelength is smaller than the
~radial! horizon size allowing interaction between different
modes and hence an oscillatory behavior of the metric com-
ponents. From the limits ofc(t,r ) andG(c;t,r ) given in

748 56JOHN D. BARROW AND KERSTIN E. KUNZE



the Appendix it can be seen thatc displays an oscillatory
behavior while the oscillations inG are damped out:

A1~t,r !;eLt21/412g4~c!1~M2/2!g4~v!

3expF2g3~c!1
M2

2
g3~v!G

3expH F2g5~c!1
M2

2
g5~v!GtJ , ~113!

A2~t,r !;t1/21b2~c!eb1~c!exp@t21/2h~c;t,r !#, ~114!

A3~t,r !;t1/22b2~c!e2b1~c!exp@2t21/2h~c;t,r !#.
~115!

As can be easily seen from the definition ofh(c;t,r )
given in the Appendix it satisfies the wave equation~in
Minkowski space!

ḧ2h950. ~116!

The exponential inA1 ensures that the homogeneous limit
is approached at larget, and is an anisotropic universe
which can be at most axisymmetric@b2(c;t,r )50#. Since
gmn;diag(2A1

2 ,A1
2 ,A2

2 ,A3
2) and, for large values oft, we

have

exp@2t21/2h~c;t,r !#;112t21/2h@c;t,r #

and sogmn can be written as the sum of a background part
hmn and a ‘‘wave’’ parthmn ,

gmn5hmn1hmn ,

which are found to be

hmn[diag~2A1
2 ,A1

2 ,t112b2~c!e2b1~c!,t122b2~c!e22b1~c!!,
~117!

hmn[diag@0,0,2t1/212b2~c!e2b1~c!h~c;t,r !,

22t1/222b2~c!e22b1~c;t,r !h~c;t,r !#. ~118!

The dilaton-axion system displays an oscillatory behavior as
well, although as emphasized before, there is no interaction
between gravitational and axion-dilaton waves.

The asymptotes are given by

F~t,r !; ln$eMb1~v!tMb2~v!1e2Mb1~v!t2Mb2~v!

1M @eMb1~v!tMb2~v!21/2

2e2Mb1~v!t2Mb2~v!21/2#h~v;t,r !%2 ln~2M !,

~119!

b~t,r !;
1

2
c11M

3
e2Mb1~v!t2Mb2~v!@112Mt21/2h~v;t,r !#21

e2Mb1~v!t2Mb2~v!@112Mt21/2h~v;t,r !#11
.

~120!

Furthermore, the string coupling constant

gs
2~t,r !5eF

is a function oft and r and is given by

gs
2~t,r !5

1

M
cosh~Mv!.

So that taking the limitt→` at constantr results in a di-
verginggs

2 , hence the string coupling is driven towards the
strong-coupling regime. This indicates the limited physical
interpretation of this model. The coupling goes off to infinity
since there are no ways of stabilizing the dilaton, for ex-
ample by a potential. Futhermore, in the next section we give
a simple example of an O(2,2) transformation relating a
strong and weak coupling solution.

In summary, these solutions highlight some new consid-
erations for string cosmology. In the past the string cosmolo-
gies that have been studied have all possessed simple geo-
metrical structures@2–8#: isotropic universes have a single
scale factor and the anisotropic models have been spatially
uniform. This ensures that the effects of duality are very
simple. However, in inhomogeneous cosmologies the situa-
tion becomes more unusual. It is possible for the universe to
display quite different behavior from place to place and for
the universe to be expanding or contracting in different
places. Under these conditions the simple ‘‘pre-big-bang pic-
ture’’ @16# that has been investigated in the context of scale
factor duality becomes more complex. Our solutions do not
contain trapped surfaces and so there are no gravitationally
bound collapsing regions. However, if we had taken
R5sinrsint for the solution of Eq.~34! then theS3 topology
would permit local regions to collapse prematurely to singu-
larities. In the solutions found above, the oscillatory behavior
arises because the gravitational force created by the inhomo-
geneities in thef and b fields is balanced by the pressure
forces once they enter the horizon. Once inside the horizon
the fluctuations are within their Jeans length and behave as
acoustic waves. The inhomogeneities do not collapse to form
black holes because the pressure forces are able to support
them inside the horizon: in effect, they never fall within their
Schwarzschild radii.

VI. DUALITY

By means of dimensional reduction we can show that
the low-energy effective action~2! is invariant under global
O(d,d) transformations, whered<D refers to the number
of coordinates it does not depend on@22#. So, if one
assumes a spacetime of the formN3K, where N is a
(D2d)-dimensional spacetime with coordinatesxm (m
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50,1, . . .D2d21), andK a d-dimensional compact space
with coordinatesya (a51, . . . ,d), and furthermore that all
fields are assumed to be independent of they coordinates of
the ‘‘internal’’ spaceK, then using the notation of@22# we
can rewrite Eq.~2! as

S5E
N
dxE

K
dyA2ĝe2f̂S R̂~ ĝ!1ĝm̂n̂]m̂f̂]n̂f̂

2
1

12
Ĥ m̂n̂l̂Ĥ m̂n̂l̂D . ~121!

The hatted quantities now refer to theD-dimensional space-
time. Using the vielbein formalism,ĝm̂n̂ is written as

ĝm̂n̂5S gmn1Am
~1!gAng

~1! Amb
~1!

Ana
~1! Gab

D , ~122!

wheregmn is the metric onN andGab the metric onK.
Define a shifted dilaton

F̂[f̂2
1

2
lndetGab , ~123!

and a 2d32d matrixQ, written in d3d blocks,

Q[SG21 2G21B

BG21 G2BG21BD . ~124!

It can be shown that Eq.~121! is invariant under global
O(d,d) transformations

F̂→F̂, Q→VQVT, ~125!

whereVPO(d,d), that is,VThV5h, where

h5S 0 Id
Id 0 D

and Id is thed-dimensional unity matrix.
In the case of a diagonalĝm̂n̂ and a vanishingB field, with

the choicesd5D21 andV5h, the scale-factor duality is
recovered. This was first discussed by Veneziano@23#. In
this case the duality transformation results in an inversion of
the scale factors in the string frame. For a comprehensive
discussion of target-space duality see Ref.@24#.

In the case of the Einstein-Rosen metric~9!, considered
here, the low-energy effective action~2! is invariant under
O(2,2) transformations forD54. In this section, the anti-
symmetric tensor potentialBmn is assumed to be vanishing.
Transforming the metric~9! to the string frame, the ‘‘inter-
nal’’ metric Gab is found to be

Gab5SRe2ceF 0

0 Re22ceFD . ~126!

The shifted dilaton defined above remains invariant under
O(d,d) transformations and this implies that the dilaton it-
self transforms as

F→F2
1

2
ln
detGab

detGab
dual, ~127!

where the index ‘‘dual’’ indicates an O(d,d) transformed
quantity.

A simple example.To illustrate the effects of an O(2,2)
transformation we make a simple choice forV, namely,
V5h.

TransformingQ according to Eq.~125! results in

G→G21, ~128!

so that

Rduale2cdualeFdual
5R21e22ce2F, ~129!

Rduale22cdualeFdual
5R21e2ce2F, ~130!

which implies

cdual52c ~131!

Rdual5R21exp~2F2Fdual!. ~132!

Using Eq.~127! to find the transformed dilaton gives

Fdual52F22lnR, ~133!

and hence

Rdual5R. ~134!

It can be explicitly checked that Eqs.~27!, ~34!, and~35!
are invariant under changes to the dual quantities. Equations
~27!, ~28!, ~34!, and~35! provide the integrability conditions
for Eqs. ~36! and ~37! which in turn determine the function
x. Since the integrability conditions are invariant under the
above transformation, the equations remain integrable and by
substituting the dual quantities into Eqs.~36! and~37! xdual is
found to be

xdual5x22c1F1 lnR1C, ~135!

whereC is a constant. The dual metric functions~96!–~98!
are found as follows:

A1
dual5eCReFA1 , ~136!

A2
dual5A3 , ~137!

A3
dual5A2 . ~138!

Sinceb(t,r )50 in this section,F(t,r ) satisfies an equa-
tion similar to that forc. To find the corresponding Kasner
exponents~see Sec. V A! of the dual model it is necessary to
setM51 and 0v15

0f1 in the equations of Sec. V A. This
reduces to

A1
dual;t3/41

0F11~1/4!~0F1!21~0c1!2, ~139!

A2
dual;t1/22

0c1, ~140!

A3
dual;t1/21

0c1. ~141!
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Changing to proper time and reading off the Kasner ex-
ponents as described in Sec. V A results in

(
i51

3

pi51 ~142!

(
i51

3

pi
25122

110F11~1/4!~0F1!
2

@7/410F11~1/4!~0F1!
21~0c1!

2#2
.

~143!

This shows that the behaviors of the gravitational back-
grounds in the original and dual model are very similar. This
is expected since onlyA1 really changes, whileA2 andA3
are just interchanged. However, the evolution of the string
coupling is changed significantly. In the original background
the general solution for the dilaton is given by the wave
packet solution in terms of Bessel and Neumann functions
@cf. Eq. ~40!#. In the limit t→`, at constantr , the string
couplinggs

2(t,r ) diverges. However, in the dual background
the string coupling evolves according to

~gs
dual!25R22gs

22~t,r !.

AssumingR5t, this shows that the string coupling in the
dual model evolves towards the weak-coupling regime in the
limit t→`. Hence, pickingV5h provides a simple ex-
ample of the interconnection of backgrounds with strong and
weak couplings via O(2,2) transformations.

Finally, it should be mentioned that the usual general-
relativistic constraint on the sum of the Kasner exponents
defining the quasi-Kasner behavior is recovered@cf. Eqs.
~109! and~142!# since we are working in the Einstein frame.
Assuming a Bianchi I background in the Einstein frame, and
transforming the Kasner solutions from the Einstein to the
string frame, results in a constraint on the sum of the squares
of the Kasner exponents being unity. This behavior is char-
acteristic for Kasner-like solutions in the string frame@25#.
This, in a way, is more illuminating, since it reflects directly
the invariance under scale factor duality which implies the
~discrete! transformation of a Kasner exponent to its negative
(pi→2pi).

VII. DISCUSSION

We have shown that it is possible to find exact inhomo-
geneous cosmological solutions of low-energy string cos-
mology. These solutions are cylindrically symmetric and
represent cylindrical axionic, dilatonic, and gravitational
waves propagating inhomogeneously on a flat anisotropic
background. When the inhomogeneities are of small ampli-
tude these solutions will approach the behavior of small per-
turbations of isotropic and homogeneous anisotropic string
models. These solutions also allow us to study the evolution
of the universe in two physically distinct limits: when the
inhomogeneities are larger or smaller than the particle hori-
zon. The behavior found has a simple physical interpretation.
When inhomogeneities are larger than the horizon they
evolve quasihomogeneously but when they enter the horizon
there is time for self-interaction to occur and the inhomoge-
neities oscillate as waves. The axion and dilaton fields be-
have similar to two fluids in which the sound speed equals

the speed of light and so shock waves do not form even
when the nonlinearities are of large amplitude. The global
structure of our solutions prevents the formation of gravita-
tionally trapped regions and so there is no primordial black
hole formation.~If theS3 topology had been chosen, with the
associated choiceR5sint, then this would have been pos-
sible!.

Solutions of varying degree of generality to~311!-
dimensional string cosmology with dilaton and axion in a
spacetime of cylindrical symmetry have been discussed. We
found that, in general, the axion-dilaton system is decoupled
from the gravitational background by the cylindrical symme-
try. However, the solutions of Sec. III C are special in the
sense that they describe a universe at larget which contains
scalar and gravitational waves that are coupled by the wave-
like solutions in the axion field. The most general Charach-
type solutions describe at large values oft an anisotropic
universe filled with gravitational and scalar waves caused by
the dynamics of the axion and dilaton. These two regimes
also allow us to find the asymptotic behavior of the universe
ast→0 andt→`. There is an initial curvature singularity
where the density of the dilaton and axion fields is formally
infinite ~hence we venture outside of the low-energy string
theory regime assumed here!. The early-time behavior re-
sembles the Kasner singularity of general relativity with spa-
tially varying indices and is analogous to that observed on
scales larger than the horizon at later times. The late-time
evolution cannot straightforwardly be compared with the
present universe because of the absence of fermionic fields
which provide the standard matter and radiation components
of the big bang model. The impact of duality upon these
solutions is more subtle than in the cosmological models that
have been examined previously in string theory because of
the presence of inhomogeneity. This was discussed in detail
in Sec. VI together with the relationships between the results
in the Einstein and string frames.

In summary, we have found exact inhomogeneous and
anisotropic cosmological solutions of low-energy string
theory with nonzero axion and dilaton stresses. These pro-
vide a new theoretical laboratory in which to explore the
ramifications of low-energy string cosmology and to use as a
basis for incorporating the effects of higher-order correc-
tions.
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APPENDIX

Using the properties of the Bessel and Neumann functions
@26# the limits forc(t,r ) @or v(t,r )# andG(t,r ) are found.

The limit nt!1,

c~t,r !;a1~c;r !1a2~c;r !lnt,

where
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a1~c;r ![0c01 (
n51

`

cos@n~r2r n!#FACn1
2

p
BCnlnnG ,

a2~c;r ![0c11
2

p (
n51

`

cos@n~r2r n!#
BCn .

The functionG(t,r ), of Eq. ~47!, is found to approach

G~c;t,r !;g1~c;r !1g2~c;r !lnt,

where

g1~c;r ![0c01
0c1(

n51

`

cos@n~r2r n!#@
ACn1

BCnlnn#,

g2~c;r ![
1

2
~0c1!

210c1(
n51

`

cos@n~r2r n!#
BCn .

The limit nt@1,

c~t,r !;b1~c!1b2~c!lnt1t21/2h~c;t,r !,

where

b1~c![0c0 ,

b2~c![0c1 ,

h~c;t,r ![ (
n51

` S 2

pnD
1/2

cos@n~r2r n!#FACncosS nt2
p

4 D
1BCnsinS nt2

p

4 D G .
ForG(c;t,r ), the limiting behavior is found to be

G~c;t,r !;g3~c!1g4~c!lnt1g5~c!t,

where

g3~c![0c0 ,

g4~c![
1

2
~0c1!

2,

g5~c![
1

2p (
n51

`

n@~ACn!
21~BCn!

2#.
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