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We study the dynamics of anisotropic Bianchi type-IX models with matter and a cosmological constant. The
models can be thought of as describing the role of anisotropy in the early stages of inflation, where the
cosmological constantL plays the role of the vacuum energy of the inflaton field. The concurrence of the
cosmological constant and anisotropy are sufficient to produce a chaotic dynamics in the gravitational degrees
of freedom, connected to the presence of a critical point of saddle-center-type in the phase space of the system.
In the neighborhood of the saddle center, the phase space presents the structure of cylinders emanating from
unstable periodic orbits. The nonintegrability of the system implies that the extension of the cylinders away
from this neighborhood has a complicated structure arising from their transversal crossings, resulting in a
chaotic dynamics. The invariant character of chaos is guaranteed by the topology of cylinders. The model also
presents a strong asymptotic de Sitter attractor but the way out from the initial singularity to the inflationary
phase is completely chaotic. For a large set of initial conditions, even with very small anisotropy, the gravi-
tational degrees of freedom oscillate a long time in the neighborhood of the saddle center before recollapsing
or escaping to the de Sitter phase. These oscillations may provide a resonance mechanism for amplification of
specific wavelengths of inhomogeneous fluctuations in the models. A geometrical interpretation is given for
Wald’s inequality in terms of invariant tori and their destruction by increasing values of the cosmological
constant.@S0556-2821~97!02914-7#

PACS number~s!: 98.80.Hw, 95.10.Fh, 98.80.Cq

I. INTRODUCTION

One of the cornerstones in the paradigm of inflation@1# is
the presence of the cosmological constant, arising as the
vacuum energy of the inflaton field. The cosmological con-
stant plays a fundamental role in the gravitational dynamics
of the inflationary model, by inducing an exponential expan-
sion of the scales of the model toward the de Sitter configu-
ration. This asymptotic approach to the de Sitter solution
constitutes the basis of the so-called cosmic no-hair conjec-
ture. In the realm of homogeneous cosmologies, Wald@2#
showed that all initially expanding Bianchi cosmological
models with a positive cosmological constant, except Bian-
chi type IX, evolve towards the de Sitter configuration. Bi-
anchi type-IX models demand further that the absolute value
of the cosmological constant be sufficiently large compared
with spatial curvature terms. For the more general case of
inhomogeneous models, Starobinskii@3# showed that they do
inflate if a positive cosmological constant is present. This
crucial aspect of the cosmological constant has been suffi-
ciently emphasized in the literature, and many authors have

examined its role in producing nontrivial dynamics in the
early stages of inflaton. In particular, Calzetta and El Hasi
@4#, and Cornish and Levin@5# exhibited chaotic behavior in
the dynamics of Friedmann-Robertson-Walker models with a
cosmological constant term and scalar fields conformally
and/or minimally coupled to the curvature. Due to this fea-
ture of the dynamics, small fluctuations in initial conditions
of the model preclude or induce the Universe to inflate. The
Hamiltonian dynamical system originating from the field
equations is complex. In Ref.@4#, the effective degrees of
freedom of the model are the scale factor and a conformally
coupled scalar field. Such a scalar field is interpreted as a
radiation field, which is later assumed to gain mass by the
presence of the inflaton field. In Cornish and Levin’s work,
the degrees of freedom are the scale factor and two mini-
mally and/or conformally coupled scalar fields. In both
cases, the cosmological constant is responsible for the exis-
tence of a critical pointS in the finite region of the phase
space of the model.S is a pure saddle point@8# and the
separatrices emanating fromS are wholly contained in an
invariant plane of the dynamical system, corresponding to
the gravitational degree of freedom only. The separatrices
connectS to other critical points, and are denoted hetero-
clinic @10#. These connections are known to be highly un-
stable, and their breaking, due to the perturbations, come
from the coupling of the gravitational variable with the scalar
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fields, are basically responsible for the chaotic dynamics re-
ferred to above. This chaotic behavior is a consequence of
the so-called Poincare´ homoclinic phenomena in dynamical
systems@11#.

There is, however, another important feature in the prein-
flationary dynamics, arising from the presence of a positive
cosmological constant, whenever anisotropy is also present
even in the form of small perturbations. This point has not
been emphasized yet in the literature of inflation and will be
object of our paper. The degrees of freedom of the system
are taken basically in the gravitational sector and, for sim-
plicity, we restrict ourselves to two distinct scale factors. The
conjunction of the cosmological constant and anisotropy in
Bianchi IX models with perfect fluid implies the existence of
a critical pointE in phase space, identified as a saddle center
@8#. As a consequence, we have a wealthy dynamics based on
structures as homoclinic cylinders which emanate from un-
stable periodic orbits that exist in a neighborhood ofE.
Analogous to the breaking and crossing of heteroclinic
curves, for instance, these cylinders will cross each other in
nonintegrable cases producing a chaotic dynamics. As we
shall discuss, these structures will constitute an invariant
characterization of chaos@12# in the models. We will also
discuss their implications for the occurrence or not of infla-
tion, as well as for the physics in the early stages of inflation.
The paper is organized as follows. In Sec. II we establish the
Hamiltonian and the basic characteristics of the model. Sec-
tion III is devoted to present the cylindrical topology near the
saddle center which will be very useful to understand the
dynamics of orbits on the phase space. The numerical evi-
dence for a physically relevant chaotic behavior is showed in
Sec. IV, whereas in Sec. V an interesting connection between
the break up of torus and the Wald’s analysis is discussed.
Finally, in Sec. VI, we conclude and trace some perspectives
of the present work.

II. THE DYNAMICS OF THE MODEL

We consider anisotropic Bianchi type-IX cosmological
models characterized by two scale functionsA(t) andB(t)
with the line element

ds25dt22A2~ t !~w1!22B2~ t !@~w2!21~w3!2#. ~1!

Here t is the cosmological time and (w1,w2,w3) are invari-
ant one-forms for Bianchi type-IX models@13#. The matter
content is assumed to be a perfect fluid with velocity field
d0

m in the comoving coordinate system used plus a cosmo-
logical constantL. The cosmological constant term is inter-
preted as arising from the vacuum energy of the inflaton field
such that our models may provide a description for a prein-
flationary anisotropic stage of the Universe. The energy-
momentum tensor of the fluid is described by

Tmn5~r1p!d0
md0

n2pgmn, ~2!

wherer andp are the energy density and pressure, respec-
tively. We assume the equation of statep5gr, 0<g<1.
For sake of simplicity, we restrict ourselves to the case of
dust (g50). Distinct features arising in the cases ofgÞ0
will be discussed in the conclusions.

Einstein’s field equations1 @14#

Gmn2Lgmn5Tmn ~3!

for Eqs. ~1! and ~2! can be obtained from the Hamiltonian
constraint

H~A,B,PA ,PB!5
PAPB

4B
2
APA

2

8B2 12A2
A3

2B222LAB22E0

50, ~4!

wherePA andPB are the momenta canonically conjugated to
A andB, respectively, andE0 is a constant proportional to
the total energy of the models. It also occurs as the first
integral of the Bianchi identities, 2rAB25E0 . The full dy-
namics is governed by the Hamilton’s equations

Ȧ5
]H

]PA
5
PB

4B
2
APA
4B2 ,

Ḃ5
]H

]PB
5
PA

4B
,

~5!

ṖA52
]H

]A
5

PA
2

8B2221
3A2

2B2 12LB2,

ṖB52
]H

]B
5
PAPB

4B2 2
APA

2

4B32
A3

B3 14LAB.

The dynamical system~5! has one critical pointE in the
finite region of the phase space whose coordinates are

E: A05B05
1

A4L
, PA5PB50, ~6!

with associated energyE05Ecr51/A4L. This critical point
represents the static Einstein universe. Linearizing Eqs.~5!
about the critical pointE, we can show that the constant
matrix determining the linear system aboutE has the four
eigenvalues

l1,256
1

2Ecr
, l3,456

i&

Ecr
, ~7!

which characterizesE as a saddle center. The system~5! has
also a degenerate critical point@15# at A5B50, PA5PB
50. A straightforward analysis of the infinity of the phase
space under consideration shows that it has two critical
points at this region, corresponding to the de Sitter solution,
one acting as an attractor~stable de Sitter configuration! and
the other as a repeller~unstable de Sitter configuration!. The
scale factorsA andB approach the de Sitter attractor asA
5B;eAL/3t andPB52PA;e2AL/3t. One of the questions to
be examined in this paper is the characterization of sets of
initial conditions for which this asymptotic de Sitter attractor
is attained.

1We assume here 8pG5c51.
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Another important feature of the dynamical system~5! is
to admit an invariant manifoldM defined by

A5B, PA5PB/2. ~8!

OnM the dynamics is governed by the two-dimensional
system

Ḃ5
PB

8B
,

ṖB5
PB
2

16B22114LB2. ~9!

The system~9! is integrable. Its phase portrait is depicted
Fig. 1, where the integral curves represent homogeneous and
isotropic universes with Bianchi type-IX compact spatial
sections, with dust and a cosmological constant.

We remark that the critical pointE belongs toM. Con-
trary to the models examined in Refs.@4# and @5#, the sepa-
ratricesS are present as solutions of the full dynamical equa-
tions. As we will discuss in Secs. III and IV, the behavior of
the separatrices found in the previous studies will be played
by the cylinders emanating from unstable periodic orbits as-
sociated to the saddle center ofE.

III. CYLINDRICAL TOPOLOGY
NEAR THE CRITICAL POINT E

As a consequence of the saddle-center nature of the criti-
cal pointE, the dynamics of the models described by Eq.~5!

exhibits completely new features, which will be analyzed
now. Part of this analysis is based on Refs.@6–8#. The over-
all scenario originates from both the anisotropy of the model
and the cosmological constant. To discuss the topology of
the phase space in the neighborhood ofE, we make use of a
theorem by Moser@16# which states that it is always possible
to find a set of canonical variables such that, in a small
neighborhood of a saddle center at the origin, the Hamil-
tonian is expressed as

H~q1 ,q2 ,p1 ,p2!5
AL

2
~p2

22q2
2!2A2L~p1

21q1
2!1O~3!

2E01Ecr50. ~10!

The critical point is located at the originq15q25p1
5p150, with E05Ecr . Here O(3) denotes nonquadratic
terms of the expansion and6AL, 62iA2L are the eigen-
values of the linearized system aboutE.

Let us now restrict ourselves to a small neighborhood of
E such that we can neglectO(3) and the quantityE5E0
2Ecr is small. The Hamiltonian reduces to

H~q1 ,q2 ,p1 ,p2!;
AL

2
~p2

22q2
2!2A2L~p1

21q1
2!2E50.

~11!

In this approximation,H is separable with two approximate
constants of motion given by the partial energies

E25
AL

2
~p2

22q2
2!, E15A2L~p1

21q1
2!. ~12!

The energiesE2 andE1 will be referred@17# to as the hy-
perbolic motion energy and the rotational motion energy of
the system aboutE, respectively. Note thatE1 is always
positive. To describe all possible motions, the following situ-
ations must be taken into account.

If E250 two possibilities arise. First, we havep25q2
50 meaning that the motions are unstable periodic orbits
tE0 in the plane (p1 ,q1). Such orbits depend continuously

on the parameterE1;2E @cf. Fig. 2~a!#. The second possi-
bility will be p256q2 , which defines the linear stableVs
and unstableVu one-dimensional manifolds of Fig. 2~b!.
These manifolds are tangent atE to the separatricesS of the
invariant manifold~described asq150, p150 in the new
variables! of Fig. 1. The separatrices are actually the nonlin-
ear extension ofVu andVs . The direct product of the peri-
odic orbit tE0 with Vs andVu generates, in the linear neigh-

borhood ofE, the structure of stable (tE03Vs) and unstable

cylinders (tE03Vu), which coalesce into the orbittE0 for

times going to1` or 2`, respectively@cf. Figs. 2~c! and
2~d!#. The energy of any orbit on these cylinders is the same
as that of the periodic orbittE0. It can be showed that, in the
nonlinear regime~when nonquadratic terms of the Hamil-
tonian must be taken into account!, the plane (q1 ,p1) of the
rotational motion in the linear regime extends to a two-
dimensional manifold, the center manifold@9#, of unstable
periodic orbits of the system. The intersection of the center
manifold with the energy surface

FIG. 1. Integral curves on the invariant manifoldA5B, PA

5PB/2. The orbits on regions~I! haveE0,1/A4L, whereas for
those orbits on~II !, E0.1/A4L. The separatrices are characterized
by the energyE05Ecr51/A4L.
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H~E!50 ~13!

@cf. Eq. ~11!# is a periodic orbit parametrized withE0 , from
which a pair of cylinders emanates. We can see easily from
Eq. ~11! that the intersection of the central manifold with the
energy surfaceE50 is just the pointE. ForE.0 the energy
surface does not intersect the central manifold, the occur-
rence of the structure of cylinders being, therefore, restricted
to the energy surfaces in whichE,0.

For the caseE2Þ0 andE,0, the motion is restricted on
infinite cylinders resulting from the direct product of the hy-
perbolae lying in the regions I and II of Fig. 2~b!, with peri-
odic orbits of the central manifold in a small neighborhood
of E. A general orbit which visits the neighborhood ofE
belongs to the general caseE1Þ0,E2Þ0. In this region the
orbit has an oscillatory approach to the linear cylinders~cf.
Fig. 3!, the closer asE2→0. For instance, the outcome of
this oscillatory regime will collapse ifE2,0 or escape to de
Sitter attractor ifE2.0 for initial conditions taken in the
quadrantq2,0, p2.0. This is for the linear regime. In gen-
eral, for orbits which visit a neighborhood ofE, the nonin-
tegrability of the Hamiltonian system~5! induces that the
partition of the energyE into the rotational mode energy
E1 and the hyperbolic mode energyE2 is chaotic. In other
words, given a general initial condition of energyE, we are
no longer able to foretell which amount ofE goes to each
mode, namely, in what of the regions I or II@Fig. 2~b!# the
orbit will land when it approachesE. This manifestation of
the nonintegrability will be physically meaningful to charac-
terizing a chaotic exit to inflation, as we will show in the
next section.

FIG. 2. ~a! Periodic orbit of the Hamiltonian system~5! in the
linear approximation and projected onto plane (q1 ,p1) of the nor-
mal variables.~b! The linear unstableVu and stableVs one-
dimensional manifolds. The hyperbolae are the linearized solutions
in the plane (B,PB) of the saddle forE2,0 ~region I! andE2.0
~region II!. ~c! Stable and unstable cylinder manifolds emanating
from the periodic orbitt. They are the nonlinear extension of the
linearized cylinderst3Vu andt3Vs in the neighborhood ofE. ~d!
Numerical illustration of the linear stable and unstable cylinders for
L50.25 andE050.999 999 900 in the neighborhood ofE.

FIG. 3. General orbits with oscillatory approach to the cylinders
on the neighborhood ofE corresponding toE050.999 999 990.
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We must finally discuss the extension of the structure of
cylinders outside the neighborhood ofE. Let us consider a
linearized cylinder associated to a periodic orbit with energy
E0 such thatE5E02Ecr is very small. One possible way to
examine the extension of this cylinder is to consider the lin-
earization of the dynamical system~5! about the separatrix
S. The equations for the separatrix are denoted by

„aS~ t !,pS~ t !…, ~14!

and consider the expansion aboutS:

A5aS1X,

PA5pS1Z,
~15!

B5aS1Y,

PB52pS1W.

To the first order in (X,Y,Z,W), the system~5! results

S Ẋ

Ẏ

Ż

Ẇ

D 5A~ t !S X
Y
Z
W
D , ~16!

whereA(t) is a 434 time-dependent matrix, the entries of
which are simple functions ofaS and pS . We give its ex-
pression in the Appendix, and remark thatA(t) is bounded
and Lebesque integrable, except foraS→0,`. A matrix is
defined to be bounded if all its entries as well as its determi-
nant are bounded.2

Clearly, for a small neighborhood ofE, the separatrix is
approximated byVs andVu , and the linear cylinder based on
tE0 will be a solution of Eq.~16! by construction@18#. Fur-
thermore, it follows from the system~16! that its extension
will be contained in a four-dimensional small tube about the
separatrix, as far asaS(t) does not go to zero. When
aS(t)→0 the above linear approximation is no longer valid.
Higher-order terms become important for the dynamics, and
the nonintegrability of the system results in the distortion and
twisting of the cylinders. The stable cylinder and the un-
stable one will cross each other transversally, producing cha-
otic sets@6,8# and consequent ‘‘destroyed’’ regions of the
Poincare´ maps of the system, as showed in Sec. V. This also
occurs for cylinders emanating from periodic orbits of the
center manifold which are not in a small neighborhood of
E ~periodic orbits in the nonlinear regime!.

Finally, with view to the next section, let us select a four-
dimensional small sphere of initial conditions about one
point S0 of the separatrix with radiusR(S0) of the order of
the linear perturbation in Eq.~15!, namely, R(S0);(X2

1Y21Z21W2)1/2 ~cf. Fig. 4!. The energy surfaces which
intersect the sphere are those withE0 in the domain
uE02Ecru<R(S0). The cylinders~associated to the periodic
orbits tE0! in these surfaces will obviously intersect the
sphere. As we discussed before, if we evolve the sphere back
aS→0 the small tube spreads and twists, as well as the cyl-
inder associated totE0. This stable cylinder and the unstable
one will cross each other and return eventually several times
to the sphere. This geometry will be the basis of the numeri-
cal experiments of the next section. By evolving dynamically
the sphere towards the neighborhood ofE, we show that for
a band of energy, the sphere contains a chaotic set which
induces a chaotic exit to inflation.

IV. CHAOTIC EXIT TO INFLATION

In the numerical experiments performed here, we use the
variables (A,B,PA ,PB). All calculations were made using
the packagePOINCARÉ @19# in an IBM compatible PC Pen-
tium 133 with 64 MB of RAM memory, and aFORTRAN
program to construct Poincare´ surface of sections, where we
enforce that the error of the Hamiltonian never exceeds a
given threshold of 10210. Henceforth, we assumeL50.25,
so that the critical pointE is characterized byA5B51.0,
PA5PB50, andEcr51.

The phase space under consideration is not compact, and
we will actually identify a chaotic behavior associated to the
possible asymptotic outcomes of the orbits in this phase
space, namely, escape to de Sitter state attractor at infinity
~inflationary regime! or collapse after a burst of initial ex-
pansion. To begin with our numerical experiments, we con-
sider the invariant manifoldM ~A5B, PA5PB/2!. The ba-
sic characteristic of the curves inM have been discussed
already~cf. Fig. 1!. We remark, however, that the separa-
trices define the regions of collapse and expansion inM, but
not in the full four-dimensional phase space. Following the
theoretical backgrounds presented in Sec. III, we investigate
numerically the behavior of orbits in a domain near the sepa-
ratrices. In essence, the sets of initial conditions are con-
structed in the following way. LetS0 be a point belonging to
the separatrix (E051.0), with coordinatesA5B50.4, PB
52PA51.357 645 019 8. We are interested, therefore, in
those orbits representing expanding models after the initial
singularity. Around this point, we construct a four-
dimensional sphere in the phase space with arbitrary small
radiusR, for instanceR51022, 1023, 1024, etc.~cf. Fig. 4!.
The values ofA, B, PA , andPB are taken in energy surfaces
which have a nonempty intersection with this sphere as

2A similar analysis can be made of the motion around other inte-
gral curves of the invariant manifold depicted in Fig. 1. In Eqs.~14!
and~15! it is sufficient to substituteaS(t) andpS(t) by the solution
of the integral curve„aI(t),pI(t)… associated to a given energyEI in
the invariant manifold.

FIG. 4. Projection of the four-dimensional sphere of initial con-
ditions about the pointS0 of the separatrixS.
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FIG. 5. Collapse of 50 orbits initially inside a sphere of initial
conditions of radiusR51024 for E050.999 999 993 7 andL
50.25. ~a! View of orbits projected onto the plane (A,PA). ~b!
Zoom of the region near the critical point. Note the oscillations
around the separatrix as well as the critical pointE.

FIG. 6. Escape of 50 orbits to the de Sitter configuration. We
consider a sphere of initial conditions of radiusR51024 within an
energy surfaceE050.999 999 999 9.~a! View of orbits projected
onto the plane (A,PA). ~b! Zoom of the three-dimensional region
near the critical point.
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FIG. 7. Chaotic exit to inflation:~a! Outcome of 50 orbits showed in the plane (A,PB) for E050.999 999 997 7 and the sphere of initial
conditions with radiusR51024. ~b! Three-dimensional view of the region close to the critical pointE for R51023. ~c! View of the plane
(A,PB) for the caseR51025 and energyE050.999 999 999 9. Note that the orbits remain in a neighborhood ofE, which is of same order
of the initial sphere.
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evaluated from the Hamiltonian constraint. As we have seen,
such energy surfaces are those for which the range of energy,
DE0 , aboutE05Ecr51.0 is of the order of, or smaller than
the radiusR. On physical grounds, we are considering the
evolution of cosmological models with small anisotropic per-
turbations.

After several numerical experiments with the above sets
of initial conditions, we note that, as expected, two possible
outcomes arise: collapse or expansion into de Sitter configu-
ration. The energyE0 that varies from 1.02DE0 to 1.0
1DE0 , with DE0;R, determines the long-time behavior of
the orbits. In Figs. 5 and 6, collapse and escape of 50 orbits
are displayed forR51024. The orbits oscillate around the
separatrix and approach the critical pointE inside a sphere
about this point with radius of the same order ofR. In this
region, the linear approximation is valid and the local sepa-
ration of the dynamics into rotational motion and hyperbolic
motion @cf. Eq. ~10!# can be used to understand the results.
The final state of the orbits depends crucially on the partition
of the total energyE5E02Ecr into the rotational motion
mode and the hyperbolic motion mode. Hence, ifE2.0 the
orbits escape, whereas collapse is characterized byE2,0.
The rotational motion~energyE1! describes the oscillatory
character of the orbits around the critical point, indicating
that some orbits can spend more time aroundE than others.

The main result of this section is to show that, for a de-
termined interval of energydE* contained in the domain
D5@1.02DE0,1.01DE0#, this partition is chaotic. Indeed,
let us try to determine inD the values of energyE05Emin
for which all orbits escape andE05Emax for which all orbits
collapse. According to our numerical work, we find out that
for each sphere of initial conditions, there always exists a
non-null intervaldE*5uEmax2Eminu, where part of the orbits
escapes and another part collapses, resulting in an indetermi-
nate outcome. In Fig. 7, this behavior is showed for spheres
of initial conditions of radiusR51023, 1024, and 1025. An
empirical relation between the gapdE* and the radiusR is
obtained and showed in Table I. For spheres withR

<1022, we havedE*}R2. Indeterminate outcome due to
dE*Þ0 occurs only forE5E02Ecr,0, as expected@in-
deed, if E>0 all orbits escape since, from Eq.~11!,
E2.0#. The orbits collapse or escape, depending on the par-
tition of the energyE into the modesE1 andE2 @cf. Eqs.~11!
and ~12!#, such that the latter assumes negative or positive
values, respectively. The way in which this partition works,
once a set of orbits approachesE, is completely unknown for
energies in within the gapdE* . As a consequence, any in-
finitesimal fluctuation from a given initial condition inside
the sphere can lead to an indeterminate outcome, that is,
collapse or escape. This is the evidence of chaos in a physi-
cally relevant context. In other words, we may state that the
boundaries of initial conditions for collapse and inflation are
mixed as a consequence of the crossing of cylinders.

The presence of chaos in the system is a consequence of
the crossing of stable and unstable cylinders, emanating from
the unstable periodic orbits of the center manifold, as dis-
cussed before. This topological structure is actually an in-
variant characterization of chaos. Finally, we remark that the
above behavior is not restricted to initial conditions taken in
small neighborhoods of points of the separatrix. Any sets of
initial conditions taken in an arbitrary neighborhood of the
invariant manifoldM which results in orbits that visit a
small neighborhood ofE, display the above chaotic behav-
ior.

In a less simple model, radiation could be taken into ac-
count as a more plausible matter field emerging after the
Planck era@20# instead of dust. The effect of radiation is
considered if we set the equation of state asp5 1

3r. The
saddle-center critical point and the invariant manifold are
also present, and the same type of behavior occurs if we
construct sets of initial conditions as before. There is also a
similar relation between the gapdE* and the radiusR
showed in the Table II. A more complete and detailed analy-
sis will be subject of a forthcoming paper.

V. FURTHER NUMERICAL RESULTS
AND WALD’S PHENOMENON

We consider here the evolution of completely anisotropic
models taking initial conditions far from the invariant mani-
fold M. It is a remarkable fact that the Hamiltonian~4! is
regular at the planeA50 where the curvature is singular.
Therefore, from the point of view of the Hamiltonian dynam-
ics, orbits can be analytically extended beyond the singular-
ity to the domainA,0. Although these orbits are not physi-
cally meaningful in this domain, they are nevertheless
essential in the description of the underlying geometrical
structure of the full Hamiltonian system and its nonintegra-
bility. In this context we will give a geometrical picture for
Wald’s inequality@2#.

In Fig. 8~a!, we exhibit the Poincare´ map of the system
for ~E050.925 048 311 6,L50.25! with surface of section
~PB50, ṖB.0!. This map makes explicit the coexistence of
KAM tori and destroyed regions in the phase space, as a
consequence of the nonintegrability of the system. We were
not able to find a torus totally contained in the domainA
.0. Thus, orbits on, or inside, the tori~with initial condi-
tions taken onA.0! necessarily collapse. This can be seen
from the double Poincare´ map with surface of sectionPB

TABLE I. Relation between the radiusR and the gap of energy
dE0* for the caseg50 ~dust!.

R dE0*

1022 0.92831024

1023 0.61831026

1024 0.61731028

1025 0.619310210

1026 0.630310212

TABLE II. Relation between the radiusR and the gap of energy
dE0* for the caseg51/3 ~radiation!.

R dE0*

1022 2.87431024

1023 2.89031026

1024 2.85531028

1025 2.880310210

1026 2.830310212
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50 as showed in Fig. 8~b!, where~E050.15, L52.0!. On
the contrary, orbits in the destroyed region are free to escape.
Orbits on a torus with analytical continuation to a domain of
negativeA are said to perform cosmic cycles~according to
Ref. @4#!.

Our next step is to examine the effect of varying the value
of the cosmological constantL on the tori structure in the
same region of phase space. As can be verified numerically,
the effective result of increasingL is the destruction of the
tori. We showed this in Fig. 9, where orbits are drawn in the
same region of initial conditions but with distinct values of
L. If we change L from 0.25 to 0.30 ~the energy
changes from E050.8, taken initially, to E0
50.800 005 000 1!, orbits initially in a torus escape to the de
Sitter attractor after some cycles; if we further increaseL, no
cosmic cycles take place before escape. The

phenomenon of destruction of tori, by increasing the value of
the cosmological constant, is a geometrical picture for
Wald’s inequality. We nevertheless remark that, for any
value of the cosmological constant~however large, except
infinity!, there will always be collapsing orbits.

VI. FINAL REMARKS AND CONCLUSIONS

In this paper we have discussed the dynamics of Bianchi
type-IX models with perfect fluid, which may provide a de-
scription of preinflationary stages of the Universe. The main
ingredients of the models are a cosmological constant, aris-
ing as the vacuum of the inflaton field, and anisotropy. The
degrees of freedom are taken in the gravitational sector, and

FIG. 8. ~a! Poincare´ surface of section
PB50, ṖB.0 for L50.25 and E0

50.925 048 311 634 35.~b! Double Poincare´

surface of section with the conditionṖB.0 re-
laxed withE050.15 andL52.0. It is clear the
presence of destroyed regions of the phase space
together with KAM tori structure. The tori cross
the planeA50 performing the so-called cosmic
cycles.
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for simplicity we restrict ourselves to two distinct scale fac-
tors only. The presence of anisotropy, even in the form of
small perturbations, together with the cosmological constant,
produces in the phase space of the system a critical point
identified as a saddle center. Associated to the saddle center
we have a two-dimensional manifold of unstable periodic
orbits, and the structure of infinite unstable cylinders ema-
nating from them. The stable and unstable cylinders coalesce
into the corresponding periodic orbit for time going to` and
2`, respectively. The nonintegrability of the system results
in the distortion and twisting of the cylinders, and the even-
tual intersection of one~stable! with the other~unstable! with
a consequent chaotic behavior of the dynamics of the phase
space. This behavior of the cylinders is analogous to the one
played by the separatrices~heteroclinic curves connecting
saddle points! of the gravitational sector in the models dis-
cussed in@4,5#. In these models the gravitational variable
dynamics couples with the scalar fields giving rise in the
heteroclinic breaking and tangle which is the origin of chaos
in these models.

The results of Sec. IV, where we describe chaotic exit to
inflation, extends the result of Cornish and Levin@5# for the
case of two gravitational degrees of freedom. The breaking
of the boundary between initial condition domains of col-
lapse and escape to inflation, showed in@5#, is indeed mean-
ingful for the case of one gravitational degree of freedom
only ~the unperturbed separatrix is in fact a sharp boundary
between the domains of initial conditions!. In our case, the
separatrices are present in the full dynamics and define
sharply regions of collapse and inflation in the invariant
manifold, but not in the full four-dimensional phase space of
the gravitational dynamics. However, for each small sphere
of initial conditions taken about one point of the separatrix, it
is always possible to find a small domain~or gap! of energy
such that the intersection of the sphere with an energy sur-
face associated to the above domain is a chaotic set in the
sense discussed in Sec. IV. Namely, a small perturbation in
initial conditions taken in this set would change an orbit
from collapse to escape to the de Sitter phase. Furthermore,
we conjecture that it is feasible to select initial conditions in
this set such that the scale factors oscillate an arbitrary fixed
time T aboutE ~T5` included! before collapsing or escap-
ing to a de Sitter phase. Putting in other words, chaos is
established by the uncertainty in the partition of the energy
E0 into the rotational motion energy and hyperbolic motion
energy aboutE.

The oscillations of the scale factors aboutE may have an
important physical effect concerning inhomogeneous pertur-
bations. Let them be scalar field perturbations and/or matter
density perturbations in this gravitational background. In
fact, the time-dependent amplitude of each Fourier compo-
nent of the perturbation will satisfy a linear differential equa-
tion, the coefficients of which will be oscillatory functions
aboutE. As we have seen, the latter may be approximated
by a periodic function describingtE0. Therefore, by a reso-
nance mechanism, there will occur amplification of the par-
ticular Fourier components having period approximately
equal to the periodtE0 ~we obviously assume here that no
dissipation effects are included in the equations of motion of
the perturbation in this stage!. Even if the Universe inflates
afterwards, the relative ratio of amplitudes produced after

FIG. 9. ~a! Two collapsing orbits inside a torus withL50.25
andE050.8 . ~b! The result of increasing the cosmological con-
stant toL50.30, keeping the same region of the phase space and
assumingE050.800 005 000 1 , is the destruction of the torus: af-
ter some cycles, both orbits escape to the de Sitter configuration.
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this mechanism of amplification will be nevertheless main-
tained.

Finally, as discussed in Sec. IV, we have given a geomet-
ric interpretation for Wald’s result in terms of invariant tori
and their destruction by increasing the cosmological con-
stant. For a given value of the cosmological constant, the
phase space presents the structure of KAM tori, and orbits
on, or inside, these tori collapse necessarily. However, if we
increase the value of the cosmological constant, the tori are

destroyed and orbits previously on, or inside, them may
eventually escape to de Sitter configuration.
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APPENDIX

The matrixA(t) is given by
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