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We study the dynamics of anisotropic Bianchi type-IX models with matter and a cosmological constant. The
models can be thought of as describing the role of anisotropy in the early stages of inflation, where the
cosmological constanA plays the role of the vacuum energy of the inflaton field. The concurrence of the
cosmological constant and anisotropy are sufficient to produce a chaotic dynamics in the gravitational degrees
of freedom, connected to the presence of a critical point of saddle-center-type in the phase space of the system.
In the neighborhood of the saddle center, the phase space presents the structure of cylinders emanating from
unstable periodic orbits. The nonintegrability of the system implies that the extension of the cylinders away
from this neighborhood has a complicated structure arising from their transversal crossings, resulting in a
chaotic dynamics. The invariant character of chaos is guaranteed by the topology of cylinders. The model also
presents a strong asymptotic de Sitter attractor but the way out from the initial singularity to the inflationary
phase is completely chaotic. For a large set of initial conditions, even with very small anisotropy, the gravi-
tational degrees of freedom oscillate a long time in the neighborhood of the saddle center before recollapsing
or escaping to the de Sitter phase. These oscillations may provide a resonance mechanism for amplification of
specific wavelengths of inhomogeneous fluctuations in the models. A geometrical interpretation is given for
Wald’s inequality in terms of invariant tori and their destruction by increasing values of the cosmological
constant[S0556-282(97)02914-7

PACS numbgs): 98.80.Hw, 95.10.Fh, 98.80.Cq

[. INTRODUCTION examined its role in producing nontrivial dynamics in the
early stages of inflaton. In particular, Calzetta and El Hasi
One of the cornerstones in the paradigm of inflafibhis ~ [4], and Cornish and Levifb] exhibited chaotic behavior in
the presence of the cosmological constant, arising as thie dynamics of Friedmann-Robertson-Walker models with a
vacuum energy of the inflaton field. The cosmological con-cosmological constant term and scalar fields conformally
stant plays a fundamental role in the gravitational dynamic&nd/or minimally coupled to the curvature. Due to this fea-
of the inflationary model, by inducing an exponential expan-ure of the dynamics, small fluctuations in initial conditions
sion of the scales of the model toward the de Sitter configuef the model preclude or induce the Universe to inflate. The
ration. This asymptotic approach to the de Sitter solutiorHamiltonian dynamical system originating from the field
constitutes the basis of the so-called cosmic no-hair conjeequations is complex. In Ref4], the effective degrees of
ture. In the realm of homogeneous cosmologies, Wald freedom of the model are the scale factor and a conformally
showed that all initially expanding Bianchi cosmological coupled scalar field. Such a scalar field is interpreted as a
models with a positive cosmological constant, except Bian+adiation field, which is later assumed to gain mass by the
chi type IX, evolve towards the de Sitter configuration. Bi- presence of the inflaton field. In Cornish and Levin’s work,
anchi type-IX models demand further that the absolute valughe degrees of freedom are the scale factor and two mini-
of the cosmological constant be sufficiently large comparednally and/or conformally coupled scalar fields. In both
with spatial curvature terms. For the more general case afases, the cosmological constant is responsible for the exis-
inhomogeneous models, Starobing®ij showed that they do tence of a critical poinS in the finite region of the phase
inflate if a positive cosmological constant is present. Thisspace of the modelS is a pure saddle point8] and the
crucial aspect of the cosmological constant has been suffseparatrices emanating froB are wholly contained in an
ciently emphasized in the literature, and many authors havimvariant plane of the dynamical system, corresponding to
the gravitational degree of freedom only. The separatrices
connectS to other critical points, and are denoted hetero-

*Electronic address: OLIVEIRA@SYMBCOMP.UERJ.BR clinic [10]. These connections are known to be highly un-
"Electronic address: IVANO@LCA1.DRP.CBPF.BR stable, and their breaking, due to the perturbations, come
*Electrronic address: TSTUCHI@IF.UFRJ.BR from the coupling of the gravitational variable with the scalar
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fields, are basically responsible for the chaotic dynamics re- Einstein’s field equatiortq14]

ferred to above. This chaotic behavior is a consequence of

the so-called Poincareomoclinic phenomena in dynamical GHY—AgH’=TH" ()]

systemg 11]. ) o
There is, however, another important feature in the preinfor Egs. (1) and (2) can be obtained from the Hamiltonian

flationary dynamics, arising from the presence of a positiveeonstraint

cosmological constant, whenever anisotropy is also present

2 3
even in the form of small perturbations. This point has NOtL(A,B,P,,Pg)= PaPs_ APA+2A_ A__ 2AAB2—E
been emphasized yet in the literature of inflation and will be ~ ~~ ~" 8 4B  8B? 2B2 0
object of our paper. The degrees of freedom of the system —0 @

are taken basically in the gravitational sector and, for sim-
plicity, we restrict ourselves to two distinct scale factors. The\NhereP andPg are the momenta canonically conjugated to
cqnjunption of the cpsmological constant and an.isotropy inA and B/? respeE::tiver, andt, is a constant proportional to
B|ar_1c_;h| IX mOde.Is with perfect ﬂl.“d '”!P"es the existence of the total energy of the models. It also occurs as the first
a critical pointE in phase space, identified as a saddle centeirntegral of the Bianchi identities, #\B2=E,. The full dy-

[8]. As a consequence, we have a wealthy dynamics based mics is governed by the Ham’ilton’s quétions

structures as homoclinic cylinders which emanate from un-
stable periodic orbits that exist in a neighborhood Eof . 9H Ps AP,
Analogous to the breaking and crossing of heteroclinic A= P. 2B B2
curves, for instance, these cylinders will cross each other in A
nonintegrable cases producing a chaotic dynamics. As we

shall discuss, these structures will constitute an invariant = ﬁ = E

characterization of chadd.2] in the models. We will also dPg 4B’ ©)
discuss their implications for the occurrence or not of infla-

tion, as well as for the physics in the early stages of inflation. . oH Pi 3A2 )

The paper is organized as follows. In Sec. |l we establish the Pa=— A @_ZJF 2B2 +2AB%,
Hamiltonian and the basic characteristics of the model. Sec-

tion Il is devoted to present the cylindrical topology near the , JH PsPg APZ A3

saddle center which will be very useful to understand the
dynamics of orbits on the phase space. The numerical evi-
dence for a physically relevant chaotic behavior is showed iﬁ'he dynamical systengs) has one critical poin€E in the
Sec. IV, whereas in Sec. V an interesting connection betwe hite region of the phase space whose coordinates are
the break up of torus and the Wald’s analysis is discussed.

Finally, in Sec. VI, we conclude and trace some perspectives 1

of the present work. E: A.=B.= P,=Pg=0, (6)

0 0 \/Ha

with associated energyo=E =1/J4A. This critical point
We consider anisotropic Bianchi type-IX cosmological represents the static Einstein universe. Linearizing Esjs.
models characterized by two scale functioh@) and B(t) about the critical pointE, we can show that the constant

8= 58~ 42 4B° B3 AMAB

Il. THE DYNAMICS OF THE MODEL

with the line element matrix determining the linear system abdtithas the four
eigenvalues
ds?=dt?— A2(t)(wh)2—BZ(t)[(W?) 2+ (W3)?]. (1) .
Nio=7F 1 A=+ V2 7)
Heret is the cosmological time andv®,w?,w?) are invari- 1272, T T E’

ant one-forms for Bianchi type-IX mode|43]. The matter

content is assumed to be a perfect fluid with velocity fieldwhich characterize as a saddle center. The systéshhas

8% in the comoving coordinate system used plus a cosmcalso a degenerate critical poifit5] at A=B=0, Po=Pg
logical constant\. The cosmological constant term is inter- =0. A straightforward analysis of the infinity of the phase
preted as arising from the vacuum energy of the inflaton fiel#Pace under consideration shows that it has two critical
such that our models may provide a description for a preinPoints at this region, corresponding to the de Sitter solution,
flationary anisotropic stage of the Universe. The energyOne acting as an attracttable de Sitter configuratipmand

momentum tensor of the fluid is described by the other as a repelléunstable de Sitter configuratipriThe
scale factorsA and B approach the de Sitter attractor As
THY=(p+p) oL sl —pg, 2 =B~e™ andPg=2P,~e? ™ One of the questions to

be examined in this paper is the characterization of sets of

wherep andp are the energy density and pressure respeci_nitial conditions for which this asymptotic de Sitter attractor
tively. We assume the equation of stgtes yp, O<y<1. IS attained.

For sake of simplicity, we restrict ourselves to the case of
dust (y=0). Distinct features arising in the cases w#0
will be discussed in the conclusions. we assume here8G=c=1.
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exhibits completely new features, which will be analyzed
now. Part of this analysis is based on R¢€-8]. The over-

all scenario originates from both the anisotropy of the model
and the cosmological constant. To discuss the topology of
the phase space in the neighborhoodEpfve make use of a
theorem by Moselr16] which states that it is always possible
to find a set of canonical variables such that, in a small
neighborhood of a saddle center at the origin, the Hamil-
tonian is expressed as

A
H(d1,02,P1,P2) = g (p3—q3) — V2A(p3+q?)+0O(3)

—Eo+Eg,=0. (10)

The critical point is located at the origin;=qg,=p;
=p,=0, with E;=E,. Here O(3) denotes nonquadratic
terms of the expansion ant /A, +2i2A are the eigen-
values of the linearized system abdtit

Let us now restrict ourselves to a small neighborhood of
E such that we can negle@(3) and the quantity=E,
—E is small. The Hamiltonian reduces to

VA
H(as,02.P1.P2)~ - (P5—03) — V2A(pi+0}) —£=0.

(13)
FIG. 1. Integral curves on the invariant manifolk=B, P, _ ) ) _ _ _
=Pg/2. The orbits on regionsl) have Eo<1/\4A, whereas for  In this approximationH is separable with two approximate
those orbits orll), Eo>1/\4A. The separatrices are characterized CoOnstants of motion given by the partial energies

by the energyEq=E = 1/V4A. \/_

Ao o 2, 42
Another important feature of the dynamical syst&his EZZT (p2—0d2), Ei= \/ﬁ(pﬁql). (12)
to admit an invariant manifold\ defined by
The energie€, and E; will be referred[17] to as the hy-
A=B, Pa=Pgl2. (8) perbolic motion energy and the rotational motion energy of
|the system abouE, respectively. Note thaE; is always

h ics i h -di i > ) X . . .
On M the dynamics is governed by the two-dimensiona positive. To describe all possible motions, the following situ-

system ations must be taken into account.
- Pg If E,=0 two possibilities arise. First, we hay® =0,
B=2n" =0 meaning that the motions are unstable periodic orbits
8B . ; .
Tg, IN the plane p;,q;). Such orbits depend continuously
: P2 on the parametdE,~ — & [cf. Fig. 2a)]. The second possi-
PB=@—1+4ABZ- (9)  bility will be p,=*q,, which defines the linear stabé,

and unstableV, one-dimensional manifolds of Fig.(l2.

The system(9) is integrable. Its phase portrait is depicted These manifolds are tangent&to the separatriceS of the
Fig. 1, where the integral curves represent homogeneous ari@variant manifold(described agj;=0, p;=0 in the new
isotropic universes with Bianchi type-IX compact spatial variableg of Fig. 1. The separatrices are actually the nonlin-
sections, with dust and a cosmological constant. ear extension oV, andVs. The direct product of the peri-
We remark that the critical poir belongs toM. Con-  odic orbit 7 with V¢ andV, generates, in the linear neigh-
trary to the models examined in Refd] and[5], the sepa- borhood ofE, the structure of stablergoxvs) and unstable

ratricesS are present as solutions of the full dynamical equagylinders (g X V), which coalesce into the orbitz  for
. . . . . Eqy u/» =
tions. As we will discuss in Secs. Il and 1V, the behavior of _. . . .

mes going to+o or —o, respectively[cf. Figs. Zc) and

the separatrices found in the previous studies will be playe , . ;

. . L ) (d)]. The energy of any orbit on these cylinders is the same
by the cylinders emanating from unstable periodic orbits 853 that of the periodic orbit- . It can be showed that. in the
sociated to the saddle centerBf P Eo* '

nonlinear regimglwhen nonquadratic terms of the Hamil-
tonian must be taken into accoynthe plane ¢, ,p;) of the
rotational motion in the linear regime extends to a two-
dimensional manifold, the center manifdlél], of unstable

As a consequence of the saddle-center nature of the critperiodic orbits of the system. The intersection of the center
cal pointE, the dynamics of the models described by &). manifold with the energy surface

[ll. CYLINDRICAL TOPOLOGY
NEAR THE CRITICAL POINT E
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FIG. 3. General orbits with oscillatory approach to the cylinders
on the neighborhood d& corresponding td,=0.999 999 990.

H(E)=0 (13

[cf. Eq.(11)] is a periodic orbit parametrized with,, from
which a pair of cylinders emanates. We can see easily from
Eqg. (11 that the intersection of the central manifold with the
energy surfac€=0 is just the poinE. For £>0 the energy
surface does not intersect the central manifold, the occur-
rence of the structure of cylinders being, therefore, restricted
to the energy surfaces in whid<0.

For the casd&,#0 and£<0, the motion is restricted on
infinite cylinders resulting from the direct product of the hy-
perbolae lying in the regions | and Il of Fig(l8, with peri-
odic orbits of the central manifold in a small neighborhood
of E. A general orbit which visits the neighborhood Bf
belongs to the general cakg# 0,E,+# 0. In this region the
orbit has an oscillatory approach to the linear cylindefs
Fig. 3), the closer a€£,—0. For instance, the outcome of
this oscillatory regime will collapse E,<0 or escape to de
Sitter attractor ifE,>0 for initial conditions taken in the
quadranig,<0, p,>0. This is for the linear regime. In gen-
eral, for orbits which visit a neighborhood &, the nonin-
tegrability of the Hamiltonian systernb) induces that the
partition of the energy€ into the rotational mode energy
E, and the hyperbolic mode ener@ is chaotic. In other

dimensional manifolds. The hyperbolae are the linearized solution¥/0rds, given a general initial condition of ener§ywe are

in the plane B,Pg) of the saddle folE,<0 (region |) andE,>0

no longer able to foretell which amount éfgoes to each

(region ). (c) Stable and unstable cylinder manifolds emanatingmode, namely, in what of the regions | or[Fig. 2(b)] the
from the periodic orbitr. They are the nonlinear extension of the orbit will land when it approacheg. This manifestation of

linearized cylinders XV, and 7X Vy in the neighborhood dE. (d)

the nonintegrability will be physically meaningful to charac-

Numerical illustration of the linear stable and unstable cylinders forterizing a chaotic exit to inflation, as we will show in the

A=0.25 andEy=0.999 999 900 in the neighborhood Bf

next section.
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We must finally discuss the extension of the structure of S
cylinders outside the neighborhood Bf Let us consider a Py 1 0 R (Sp)
linearized cylinder associated to a periodic orbit with energy
Eq such thatt=E,—E_, is very small. One possible way to

examine the extension of this cylinder is to consider the lin- E .
earization of the dynamical syste(&) about the separatrix B
S. The equations for the separatrix are denoted by :
(ag(t),ps(t)), (14
and consider the expansion ab&it FIG. 4. Projection of the four-dimensional sphere of initial con-
ditions about the poing, of the separatris.
A: as+ X,
+Y2+ 272+ W2 (cf. Fig. 4. The energy surfaces which
Pa=ps+Z, intersect the sphere are those wiHy in the domain
(19  |Eq—E.|<R(S). The cylinders(associated to the periodic
B=ag+V, orbits TEO) in these surfaces will obviously intersect the
sphere. As we discussed before, if we evolve the sphere back
Pg=2ps+W. as—0 the small tube spreads and twists, as well as the cyl-
inder associated tog, . This stable cylinder and the unstable
To the first order in X,Y,Z,W), the system5) results one will cross each other and return eventually several times

to the sphere. This geometry will be the basis of the numeri-

X X cal experiments of the next section. By evolving dynamically
\ Y the sphere towards the neighborhoodEgfwe show that for
7 =AM £ |, (16  a band of energy, the sphere contains a chaotic set which
. induces a chaotic exit to inflation.
W W
where A(t) is a 4X4 time-dependent matrix, the entries of IV. CHAOTIC EXIT TO INFLATION

which are simple functions ofig and ps. We give its ex-
pression in the Appendix, and remark thé(t) is bounded variables @,B,P,,Pg). All calculations were made using

gn? Lzbesgu% integrzb_:ce,"gxcept By 0,0 I’IA m_atrig S the packageOINCARE [19] in an IBM compatible PC Pen-
efined to be bounded if all its entries as well as its deterMig 133 with 64 MB of RAM memory, and &ORTRAN

nant are bounded! program to construct Poincaseirface of sections, where we

Clearly, for a small neighborhoogl &, thg separatrix is enforce that the error of the Hamiltonian never exceeds a
approximated by andV,,, and the linear cylinder based on given threshold of 10%°. Henceforth, we assumé&=0.25,

7e, Will be a solution of Eq(16) by constructior{18]. Fur- g4 that the critical poin€ is characterized by\=B=1.0,
thermore, it follows from the systerf16) that its extension p,=p,=0, andE,=1.
will be contained in a four-dimensional small tube about the The phase space under consideration is not Compact, and
separatrix, as far asg(t) does not go to zero. When e will actually identify a chaotic behavior associated to the
ag(t)—0 the above linear approximation is no longer valid. possible asymptotic outcomes of the orbits in this phase
Higher-order terms become important for the dynamics, andpace, namely, escape to de Sitter state attractor at infinity
the nonintegrability of the system results in the distortion andiinflationary regimé or collapse after a burst of initial ex-
twisting of the cylinders. The stable cylinder and the un-pansion. To begin with our numerical experiments, we con-
stable one will cross each other transversally, producing chasider the invariant manifoloM (A=B, P,=P3/2). The ba-
otic sets[6,8] and consequent “destroyed” regions of the sjc characteristic of the curves i have been discussed
Poincaremaps of the system, as showed in Sec. V. This als@ready(cf. Fig. 1). We remark, however, that the separa-
occurs for cylinders emanating from periodic orbits of thetrices define the regions of collapse and expansiakfinbut
center manifold which are not in a small neighborhood ofnot in the full four-dimensional phase space. Following the
E (periodic orbits in the nonlinear regime theoretical backgrounds presented in Sec. Ill, we investigate
Finally, with view to the next section, let us select a four- numerically the behavior of orbits in a domain near the sepa-
dimensional small sphere of initial conditions about oneratrices. In essence, the sets of initial conditions are con-
point Sy of the separatrix with radiuR(Sy) of the order of  structed in the following way. Le, be a point belonging to
the linear perturbation in Eq(15), namely, R(S))~(X?  the separatrix Ey=1.0), with coordinatesA=B=0.4, Pg
=2P,=1.357 645019 8. We are interested, therefore, in
those orbits representing expanding models after the initial
2A similar analysis can be made of the motion around other inteSingularity. Around this point, we construct a four-
gral curves of the invariant manifold depicted in Fig. 1. In Eq#) ~ dimensional sphere in the phase space with arbitrary small
and(15) it is sufficient to substitute<(t) andps(t) by the solution  radiusR, for instanceR=10"2, 103, 10 4, etc.(cf. Fig. 4.

of the integral curvéa, (t),p,(t)) associated to a given energyin ~ The values ofA, B, P,, andPg are taken in energy surfaces
the invariant manifold. which have a nonempty intersection with this sphere as

In the numerical experiments performed here, we use the



FIG. 5. Collapse of 50 orbits initially inside a sphere of initial
conditions of radiusR=10"* for Eq=0.999 999 9937 and\
=0.25. (8 View of orbits projected onto the plané\(P,). (b)
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TABLE I. Relation between the radit® and the gap of energy s10’2, we haveSE* «R2. Indeterminate outcome due to

SEG for the casey=0 (dus). SE*#0 occurs only forf=E,—E.<0, as expectedin-
deed, if £0 all orbits escape since, from Ed11),

R SES E,>0]. The orbits collapse or escape, depending on the par-
102 0.928x10~4 tition of the energy¢ into the mode&; andE, [cf. Egs.(11)

and (12)], such that the latter assumes negative or positive

1073 0.618x10°6 ) : ' ¢ ©

10-4 0617108 values, respectively. The way in which this partition works,
10°5 0'61%10,10 once a set of orbits approach€sis completely unknown for
10-6 0'63()(10,12 energies in within the gapE*. As a consequence, any in-

finitesimal fluctuation from a given initial condition inside
the sphere can lead to an indeterminate outcome, that is,

evaluated from the Hamiltonian constraint. As we have seenCOIIapse or escape. This is the evidence of chaos in a physi-
ally relevant context. In other words, we may state that the

such energy surfaces are those for which the range of energ bundaries of initial conditions for collapse and inflation are
AE,, aboutEy=E=1.0 is of the order of, or smaller than ap .
mixed as a consequence of the crossing of cylinders.

the radiusR. On physical grounds, we are considering the The presence of chaos in the svstem is a consequence of
evolution of cosmological models with small anisotropic per- pr yste at
the crossing of stable and unstable cylinders, emanating from

turbations. . . . .
After several numerical experiments with the above setéhe unstable peno@c orbits .Of the center manlfold, as d!s—
cussed before. This topological structure is actually an in-

of initial conditions, we note that, as expected, two pOSSibIevariant characterization of chaos. Finally, we remark that the
outcomes arise: collapse or expansion into de Sitter configu- C : - FInaty, o .
. . above behavior is not restricted to initial conditions taken in
ration. The energyE, that varies from 1.6 AE, to 1.0 ; . .
. . X ; small neighborhoods of points of the separatrix. Any sets of
+AE,, with AE;~R, determines the long-time behavior of : .. o . : .
. : _Initial conditions taken in an arbitrary neighborhood of the
the orbits. In Figs. 5 and 6, collapse and escape of 50 orbits . : . ’ . .
are displaved foR—10"* The orbits oscillate around the invariant manifold M which results in orbits that visit a
p'ay : . . small neighborhood oE, display the above chaotic behav-
separatrix and approach the critical pothtinside a sphere .
about this point with radius of the same orderRuf In this lor. : o :
region, the linear approximation is valid and the local sepa- In a less simple model, radiation could be taken into ac-
ragon ;)f the d namliacl:as into rotational motion and h erbolcl)icCount as a more plausible matter field emerging after the
motion [cf. E y(lO)] can be used to understand th)épresults Planck era[20] instead of dust. The effect of radiation is
The final s'tatg. of the orbits depends crucially on the artitior%consideer if we set the equation of statepassp. The
of the total eneravé=E.— E pinto the rota)t/ional mgtion saddle-center critical point and the invariant manifold are
mode and the h gyrb “0 m Ctrl n mode. HenceE4f=0 th also present, and the same type of behavior occurs if we
orck))'te 2 ca g yﬁg eg Ccolloao o 10 ci.ar:ctg . %e& Oe construct sets of initial conditions as before. There is also a
Thlsr tsti rl? I'r\r,1v tirr(i ; Eps; dls ib thnz éiilalglt.r similar relation between the gapE* and the radiusR
ch:ragtgr oofathe Oorct))itéa aer()(‘:]l}/ndl thee Sccritic?j po?n?sad?cgt%gsmwed in the Table Il A more complete and detailed analy-
. : ’ sis will be subject of a forthcoming paper.
that some orbits can spend more time aroé@nthan others. ) g pap
The main result of this section is to show that, for a de-
termined interval of energyp)E* contained in the domain V. FURTHER NUMERICAL RESULTS

D=[1.0— AE(,1.0+ AE,], this partition is chaotic. Indeed, AND WALD’S PHENOMENON

|f8t ush_tr% t(I)I deé_etrmlne D the v_aIIEues fOf enhe.r%EO”: Eg!it” We consider here the evolution of completely anisotropic
or which all orbits escape artel= Emay for which all orbits models taking initial conditions far from the invariant mani-

collapse. According to our numerical work, we find out thatfold M. It is a remarkable fact that the Hamiltonigd) is
for each sphere of initial conditions, there always exists aregular.at the plané=0 where the curvature is singular

. . e . .
non-null intervaloE™ =|E |, where pgrt Qf the .orb|ts Therefore, from the point of view of the Hamiltonian dynam-
escapes and anothgr part gollapseg, re;ultmg In an 'ndetem?é's, orbits can be analytically extended beyond the singular-
naFe_ (_)utcome_._ln Fig. 7, 'Fh's bEha_\g'or |s_fhowed f%r sphereﬁy to the domainA< 0. Although these orbits are not physi-
of |n|.t|.al lconldlt_lonsbof rad|u3?h= 10 ’*10 d, ﬁnd 1g_ ' An cally meaningful in this domain, they are nevertheless
empirical relation between the gafE" and the radiuR is  oqgentigl in the description of the underlying geometrical
obtained and showed in Table I. For spheres WRN  gi,ctyre of the full Hamiltonian system and its nonintegra-

] ) bility. In this context we will give a geometrical picture for
TABLE II. Relation between the radiu® and the gap of energy \y/31d's inequality[2].

SEg for the casey=1/3 (radiation. In Fig. 8a), we exhibit the Poincarenap of the system
for (Eo=0.925 048 311 6A =0.25 with surface of section

*

R %9 (Pg=0, Pg>0). This map makes explicit the coexistence of
1072 2.874x1074 KAM tori and destroyed regions in the phase space, as a
1073 2.890<10°© consequence of the nonintegrability of the system. We were
1074 2.855x10°8 not able to find a torus totally contained in the domain
1075 2.880x 1010 >0. Thus, orbits on, or inside, the tofith initial condi-
106 2.830<10 12 tions taken onA>0) necessarily collapse. This can be seen

from the double Poincarenap with surface of sectioRg
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(b) : A

=0 as showed in Fig.(®), where(E;=0.15, A=2.0. On  phenomenon of destruction of tori, by increasing the value of
the contrary, orbits in the destroyed region are free to escapthe cosmological constant, is a geometrical picture for
Orbits on a torus with analytical continuation to a domain ofWald's inequality. We nevertheless remark that, for any
negativeA are said to perform cosmic cycléaccording to  value of the cosmological constafttiowever large, except
Ref. [4]). infinity), there will always be collapsing orbits.

Our next step is to examine the effect of varying the value
of the cosmological constant on the tori structure in the
same region of phase space. As can be verified numerically,
the effective result of increasing is the destruction of the
tori. We showed this in Fig. 9, where orbits are drawn in the
same region of initial conditions but with distinct values of  In this paper we have discussed the dynamics of Bianchi
A. If we change A from 0.25 to 0.30 (the energy type-IX models with perfect fluid, which may provide a de-
changes from E,=0.8, taken initially, to E,  scription of preinflationary stages of the Universe. The main
=0.800 005 000 ), orbits initially in a torus escape to the de ingredients of the models are a cosmological constant, aris-
Sitter attractor after some cycles; if we further increAseo  ing as the vacuum of the inflaton field, and anisotropy. The
cosmic cycles take place before escape. Thalegrees of freedom are taken in the gravitational sector, and

VI. FINAL REMARKS AND CONCLUSIONS
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FIG. 9. (a) Two collapsing orbits inside a torus with=0.25 - )
and E,=0.8. (b) The result of increasing the cosmological con- equal to the periodg  (We obviously assume here that no

stant toA =0.30, keeping the same region of the phase space andissipation effects are included in the equations of motion of
assuminggq=0.800 005 000 1, is the destruction of the torus: af- the perturbation in this stageEven if the Universe inflates
ter some cycles, both orbits escape to the de Sitter configuration.afterwards, the relative ratio of amplitudes produced after

for simplicity we restrict ourselves to two distinct scale fac-
tors only. The presence of anisotropy, even in the form of
small perturbations, together with the cosmological constant,
produces in the phase space of the system a critical point
identified as a saddle center. Associated to the saddle center
we have a two-dimensional manifold of unstable periodic
orbits, and the structure of infinite unstable cylinders ema-
nating from them. The stable and unstable cylinders coalesce
into the corresponding periodic orbit for time goingetaand

— oo, respectively. The nonintegrability of the system results
in the distortion and twisting of the cylinders, and the even-
tual intersection of onéstableg with the other(unstablé with

a consequent chaotic behavior of the dynamics of the phase
space. This behavior of the cylinders is analogous to the one
played by the separatricdfeteroclinic curves connecting
saddle pointsof the gravitational sector in the models dis-
cussed in[4,5]. In these models the gravitational variable
dynamics couples with the scalar fields giving rise in the
heteroclinic breaking and tangle which is the origin of chaos
in these models.

The results of Sec. IV, where we describe chaotic exit to
inflation, extends the result of Cornish and Le{#] for the
case of two gravitational degrees of freedom. The breaking
of the boundary between initial condition domains of col-
lapse and escape to inflation, showed5h is indeed mean-
ingful for the case of one gravitational degree of freedom
only (the unperturbed separatrix is in fact a sharp boundary
between the domains of initial conditionsn our case, the
separatrices are present in the full dynamics and define
sharply regions of collapse and inflation in the invariant
manifold, but not in the full four-dimensional phase space of
the gravitational dynamics. However, for each small sphere
of initial conditions taken about one point of the separatrix, it
is always possible to find a small domdor gap of energy
such that the intersection of the sphere with an energy sur-
face associated to the above domain is a chaotic set in the
sense discussed in Sec. IV. Namely, a small perturbation in
initial conditions taken in this set would change an orbit
from collapse to escape to the de Sitter phase. Furthermore,
we conjecture that it is feasible to select initial conditions in
this set such that the scale factors oscillate an arbitrary fixed
time T aboutE (T=« included before collapsing or escap-
ing to a de Sitter phase. Putting in other words, chaos is
established by the uncertainty in the partition of the energy
E, into the rotational motion energy and hyperbolic motion
energy abouk.

The oscillations of the scale factors ab&.imay have an
important physical effect concerning inhomogeneous pertur-
bations. Let them be scalar field perturbations and/or matter
density perturbations in this gravitational background. In
fact, the time-dependent amplitude of each Fourier compo-
nent of the perturbation will satisfy a linear differential equa-
tion, the coefficients of which will be oscillatory functions
aboutE. As we have seen, the latter may be approximated
by a periodic function describingEo. Therefore, by a reso-

nance mechanism, there will occur amplification of the par-
ticular Fourier components having period approximately
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this mechanism of amplification will be nevertheless main-destroyed and orbits previously on, or inside, them may

tained. eventually escape to de Sitter configuration.
Finally, as discussed in Sec. IV, we have given a geomet-
ric interpretation for Wald’s result in terms of invariant tori ACKNOWLEDGMENT

and their destruction by increasing the cosmological con-
stant. For a given value of the cosmological constant, the
phase space presents the structure of KAM tori, and orbits
on, or inside, these tori collapse necessarily. However, if we
increase the value of the cosmological constant, the tori are The matrix.A(t) is given by

The authors are grateful to CNPq for financial support.

APPENDIX
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