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Techniques of amplitude analysis for two-pseudoscalar systems
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The analytical tools needed for an amplitude analysis of two-pseudoscalar systems are described in some
detail. Analyses involving two identical spinless particles require a new type of polynomial; the general form
of such a polynomial is given for the first timgs0556-282097)02721-3
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I. INTRODUCTION amplitudes follows and expands on that given by Sadovsky
[11]. Treatment of ther®#° system, or a system consisting
This paper describes in some detail the formalism necessf two identical particles in general, is given in Sec. V. In
sary for exploring partial-wave amplitudes in a system in-Secs. VI-IX are given several examples of practical impor-
volving two spinless particles. Although the results of thistance, i.e., the systems consistingmof or 7% with partial
paper can be applied to a wide class of production of resoygyes up to/=4.
nances, emphasis is given to a peripheral production of states The angular distribution is specified uniquely, once a set
in exclusive reactions initiated by or K beams. As such, it oy moments{H} is given. For measurements of these mo-
is addressed to experimentalists engaged in searches for ngMants from experimental data, the technique of the extended
states in the classic channels for resonance produdie8l.  maximum-likelihood analysi§12] is often used, and a brief
The main purpose to this paper is to present a generghtroduction to this topic is given in Sec. X. Also given in
method of dealing with the ambiguity problem endemic totnis section is a treatment of the method of finding a set of
this type of system. This paper follows closely the notation-tre” moments, given the experimental moments measured
and conventions spelled out previously by ChuS§ and i the face of the finite acceptance of the apparatus. dhe

Chung and TruemaftL0]. o functions, as well as the functions derived from them, are
The most familiar example of a system consisting of tWOgiven explicitly for / up to 4 in Appendix A. Finally, the
pseudoscalar particles is that#®fr, for which one must have polynomials e, needed for treatingm®#° systems, are

| +/=even, wherd is the isotopic spin and is the spin—  \yorked out in Appendix B.

equql to the orbital angular mqmentum in this case. If one |t should be emphasized that the amplitude analysis on
restricts oneself to the states with<3, then only aP wave  tyo-hody spinless particles necessarily entails simplifying
is allowed forl=1, whereas botl$ andD waves are pos- assuymptions. These assumptions are not needed when a
sible if 1 =0. Similarly, bothS andD waves are allowed for partial-wave analysis is carried out on three- and four-body
an nz system sincé =0 in this case. But for a system with fina| states. One fundamental reason for this is that the di-
two dissimilar spinless particles, e.gry or 7', all three  mension of the decay spaéehich includes all the indepen-
possible state§, P, andD should be present. It is for this dent variables consisting of appropriate momenta, energies,
reason that ther, system has been chosen as an example iand anglesexpands from two for two-body to five and eight
this paper. for three- and four-body systems. A thorough spin-parity

If a system contains two identical spinless particles, themnalysis of a resonance, therefore, must include—where
only even waves are allowed because of Bose symmetrizzpossime_a study of its three- and four-body decay modes,
tion. A classic example of such a system would be the pyt the formalism needed for such an analysis is very differ-
=0 7%7° system. Analysis ofry and 7%« systems re- ent from that outlined in this papéi3,14. Another inde-
quires very different techniques, and this paper shows how tgendent check of a state decaying into two spinless particles
treat such a system containing a set of partial waves with Quould be to study its production in a multiparticle final state
</</m, where/\, is an arbitrary maximum integer spin from a known initial system, e.gap annihilations at rest. In
in the set. In particular, the general treatment ofr®r®  this case, interference effects in the multiparticle final state
system requires the introduction of a new type of polynomialaliow for a relaxation of the simplifying assumptions. In par-
in a single variablev =2 cot#, where ¢ is the scattering ticular, the ambiguity problem, the main focus of this paper,
angle of ther®7? system in its rest frame. To the best of this can be avoided.
author’s knowledge, this polynomial has never been encoun-
tered in physics so far, and one of the main objectives of this
paper is to give a general form of the polynomisée deri- Il. GENERAL ANGULAR DISTRIBUTIONS
vation of thee function in Appendix B.

In Secs. Il and Ill are given the angular distributions and  Consider the following reaction:
the amplitudes in the reflectivity basis. Section 1V is devoted
to the ambiguities in the partial waves for they system.
The method detailed here for searching for ambiguities in the m p—moyn. D
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In the Jackson frantethe amplitudes may be expanded in
terms of the partial waves for thez system: H(LM):f dQ1(Q)Diye( . 6,0). 9
The normalization integral is
UK =2 VomA (), ) J

) ) H(OO):f dQl1(Q). (10
whereV ,« stands for the production amplitude for a state

|~m) andk represents the spin degrees of freedom for the
initial and final nucleons(k=1,2 for spin-flip and spin-
nonflip amplitudes A, (Q) is the decay amplitude given

by H*(LM)=(—)MH(L—M), (12)

[2/+1 and from parity conservatiof®,10] in the production pro-
Am(2)= Ax Dt (4,6.00=YX(Q), (3 cess, one finds

The symmetry relations fdd’s are well known. From the
hermiticity of p, one gets

— M
where the angle® = (9, ¢) describe the direction of thgin HLM)=(=)"H(L—M). (12)

the Jackson frame. It is noted, in passing, that the sthall
function implicit in Eq.(3) is related to the associated Leg-
endre polynomial via

These show thall’s are real. The angular distribution can
now be recast into

(Q)=2, ZLH) (M)H(LM)dyo(6)cosM ¢
= T cos ,
dfo(6)=(—)" 4 | 4w "
(13
The angular distribution is defined by where
7(M)=2 (M>0)
(Q)=2 [U(Q)]2. (5)
K =1 (M=0)
It should be emphasized that the nucleon helicities are exter- =0 (M<0). (14

nal entities, and the summation d&nis therefore applied to

the absolute square of the amplitudes. A complete study drote that all the terms of Eq13) are now real. Since th®
the 7 system requires four variablesi(77), —t, and the functions form a complete orthonormal set in the spfce
two angles inQ). The distribution(5) is therefore to be ap- =(6,¢), one merely needs to specify a set of tHés to

plied to a given bin of(») and of —t. uniquely define an angular distribution.
The angular distribution may be expanded in terms of the Let/ ', be the maximum spin present in a giveny mass
momentsH(LM) via bin. It is easy to show that the number of independéis
are
1(Q)= E )H(LM)D o(¢,0,0), (6) No=(/m+1)(2/ n+1). (15
h N, as a function o/, is given below as a table:
wit
, ‘' 0 1 2 3 4
2/"+1 ,
HILM)= 2 | 5o pmmr(/ m’LM|/m) No 1 6 15 28 45
/'m’
X(/"0L0|/0) @) One makes a crucial assumption for amplitude analyses—the
' ’ z componenim of spin/” can take on the values 0 or 1 only:
wherep is the spin-density matrix given by i.e., the production amplitude¥ are zerd if m>1. This
implies that theH's are zero ifM >2. For/ ;>0 the number
z of zeroH’s is
Pl VYo (8)
m ek Ny=(/m—1)(2/m—1), (16)

It is seen that the momenitb(L M) are measurable quantities so that the number of nonzero moments is
since

2In a peripheral production of meson resonances freprandK p
1The z axis is defined to be along the beam direction in #e  quasi-two-body processes, one does not expect the amplitudes with
rest frame, whereas theaxis is chosen to be along the production m>1 to be important, because the initial and final baryon helicities
normal in the overall center-of-mass frame. can impart at mosin=1 amplitudes to the meson resonance.
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N,=Ng—N; =6/, (17)  where one has used the relationshigs- (—)” (true for two-

pseudoscalar systeinsand n,=(—)° (natural-parity ex-
valid for /,;>0. Now the number of nonzetd's is linear in ~ changg. This formula shows that the helicity-coupling am-
/. This allows one to determine amplitudes, as shown irplitude FJ is zero if \ is zero. Since angular momentum is

the next section. conserved, its decay into two spinless particles cannot have
N, as a function ot/ is tabulated below: M=0 along the beam directiofthe Jackson rest system
i.e., theD” function is zero unlesdM =X\, if 6,=¢,=0.
m 0 1 2 3 4 Finally, one may identifyJ with ~/ and M with m, which
proves Eq.(20).
N> 1 6 12 18 24 The modifiedD functions in the reflectivity basis are
given by

Ill. AMPLITUDE ANALYSIS

The parity conservation in the two-boeytwo-body pro- ‘D (¢,6,0)= 8(m)[ Dy (6,6,0) = (=)D % o( b, 60,0)].
duction process can be treated by introducing reflection op- (24
eratorq10] which preserve all the relevant momenta in $ie ) ) . )
matrix and act directly on the rest states of the particles inlt is seen that they are real &= —1 and imaginary ife=
volved. The coordinate system is always defined withythe *1
axis along the production normal, so that the reflection op-

erator is simply the parity operator followed by a rotation by (D75 (6,6,00=20(m)d7g( ) cosmg,
7 around they axis.
The eigenstates of this reflection operator are (FID7*($,6,0)=2i 6( m)déo( f)sin me. (25

le/m)=6(m){|/m)—e(—)"|/—m)}, (18) The overall amplitude in the reflectivity basis is now

where
fukm):; VA m(Q), (26)
1 /m
o(m)=— (m>0)

V2 where
1

=_ =0 2/+1
2 (MY D)=\ G Dis(4.00 (@D

=0 (m<0). (19

and the resulting angular distribution is
One sees that(m)=46%(m); see Eq(14).

For a positive reflectivity, then=0 states are not al-
lowed: ie., 1(Q)=2 [V (28)

|e/0Y=0 if e=+. (20) , , , _

It is seen that the sum involves four noninterfering terms for
The reflectivity quantum numberhas been defined so that it €=+ andk=1,2. The absence of the interfering terms of
coincides with the naturality of the exchanged particle indifferent reflectivities is a direct consequence of parity con-
reaction(1). One can prove this by noting that the mesonservation in the production process.
production vertex is in reality a time-reversed process in 1he momentH(LM) can be expressed in terms of the
which a state of arbitrary spin parity’? decays into a pion ampli_tudes in the reflectivity basis. From the definiti),
(the bearhand a particle of a given naturalitthe exchanged ©ne finds

particle:
2/,+1 1/26//,6 24 ! J
JM 8T+ g, (21) H(LM)=§E: ;r;] 5771 mm b(/'m'LM/m)
/'m’
where 7's stand for intrinsic parities. The helicity-coupling o ,
amplitudeF” for this decay[9] is X(/"0L0|/0), (29)
AJ(M)och\Dﬂ,,*A(cﬁ ,6,,0), (22) where €p is the spin-density matrix in the reflectivity basis
P PP given by
where \ is the helicity of the exchanged particle and the
subscriptp stands for the “production” variable$d is thez e /7 :2 oy, L ey (30)
component of spid in the rest frame. From the parity con- Pmm = 4wV /mk Y ik

servation in the decay, one finds

and a new functionfb is a sum of Clebsch-Gordan coeffi-
Fi=—F’ 23  cients:
)N -\ clents:
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b(/'m'LM/m)y=6(m’)o(m)[(/'m’'LM|/m) where
+(—)M(/'m'L=M|/m) .

ho( 0):/20 V2/+1[/1od5f 6),

— (=)™ (/" =m'LM|/m)

—e(—)™/'m'LM|/—m)]. /m
h_(6)= >, V2/+1[/]_d}46),
(31 /=1

Formula(29) is essential in checking that a given set of the
ﬂz?rlflliiﬂl)waves satisfies the experimentally measured moments h.(6)= 2 \/2/—+[/]+d10( (34)

At this point one makes the second crucial assumption—
necessary for carrying out the amplitude analysis: the proNote that
duction amplitudes’V do not depend ok. The distribution
function is then given by a sum of two terms ho(—8)=+ho(6) andh.(-60)=—h.(6), (39

1(Q)=|PUQ)]2+|u)2 (32)  because of a symmetry relation for thefunctions[see Eq.
(A3) of Appendix A]. Following conventior{1-8|, one has
The first assumption demands that the production amplitudetroduced a notation for partial amplitudes via
€V should be zero ifm>1. It is therefore convenient to

separate out thé dependence from that @, as follows: [710=""V,0, [71-=V,1, [/1:=V,q, .
36

- 1
CuQ)= N [ho(6) +v2h_(6)cosp], where[/] stands for the partial waved, P, D, F, andG

corresponding to”=0, 1, 2, 3, and 4.
1 It is useful to write down explicitly the formulas for
——[v2h.(6)sing] (33 H(LM) in terms of the partial waves. From E(29), one

2 1
N finds

(+)U(Q):

71

H(LO)= E 22//:1 {7 1[7" 15 (7"0LO|/0)+[ /[ /' T* (/" 1L0| /1) +[ /][ /' T5(#"1L0|/1)}(/"OL0| £ 0),

/

H(L1)= v /Z/ 2/+1 {[/]_[/']3(/'0L1|/1)—[/]O[/’]t(/’—1L1|/0)}(/'0Lo|/0),

H(L2)— E 2/+1 { (1171 (7 =1L2)l 7))+ [ 21715 (/" —1L2|/1)} (/' 0L0|/0). (37)
207

These equations can be transformed further as follows:

H(L0)= 3 {[/ 1ol /1§ (#0LO/0)+ [ /][ /T%(/1L0|/ 1) +[/].[/T5(/1LO/1)}(/0LO|/0)

71

22 2//:11 Re{[/1o[/"15(/"0LOI/0)+[/1_[/'T*(/'1L0|/ 1)+ [/ ][/ ]%(/"1L0|/ 1)}
/<’

X (/"0L0|/0),

,/ /

H(L1)= \/?E Re([/1_[/15}(/0L1|/1)(/0LO|/0)+v2 >,

2 N "~ Rell/1-L/ T8 (/" OLL/ D) [T 1T

X (/" —1L1|/0)}(/'0L0|/0),

2/ +1
H(L2)=5 2{ [A1-[/1*(/=1L2|/ 1) +[ /1. [/T5(/ = 1L2|/1)}(/0L0|/0)+ > 1
S~ /+1

XRe[—[/1_[/' 1 (/" =1L2|/ V) +[ 1./ 15/ —1L2|/1)}(/"0L0|/0). (38)
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One sees that only the real part of the interference terms 1

contribute to the moments, so that the moments themselve ()= ;— {lho(6) +v2h_(6)cos ¢|*+|vZh  (6)sin ¢|*}.
are now explicitly real. It is worth mentioning that the mo- (45)
mentsH(L1) have contributions only from the waves with

unnatural-parity exchange. Note also that the moments ar€omparing the two expressions fif(2), one finds

zero identically unlesg”’ +/+L= even. The first formula

above shows thatl(00) is simply a sum of all the waves in fo(8)=Iho(0)|?+[h_(6)[*+[h.(6)[?,

the problem:
f1(6)=v2 Re[ho(0)h* ()},

H(00) =2 {[[/Tol*+I[/1-I*+[[71-1%. (39 1
7 WA AP fa(0)=5{[h-(0)[*~[h.(0)[%}. (46)

wal—zerehiiLe égﬁgsavrcimtgifs ;%Lefnh I?tﬁ%eept_ltﬁ;tgis ularThese equations succinctly summarize the problem at hand,
R y P ’ NJUIAl, 1 the left-hand side are the functions involving measured
distribution is a sum of two noninterfering terms as given in

Eq. (32), S0 that one amplitude each fer-+ can be set to H’s, and on the right-hand side are the functions containing

, partial waved /] to be determined.
be rea!. There are therefore/f real param’eters 'Fo be One may eliminaté . by combiningf,(6) andf () and
determined—exactly equal to the numlibér of H's as given . .
) : ) i — 20 = modify f1(6) to obtain
in the previous section. This allows one to solve in principle

for the partial waves, given a set of the momeftts. For f.(0)=fo(8)+21,(0)=|ho(0)|2+|VZh_(6)|2,
example, one finds that, f ,=2, there are 12 nonzero mo-
ments fo(0)=2f1(0)=2 Reho(O)VZh*(0)}.  (47)
H(00), H(10), H(11), H(20), H(21), H(22), The form of f, and f,, suggests that one can define, from
Egs.(35),

H(30), H(31), H(32), H(40), H(41), H(42),

40 1
9 9(0)=5[ho(0)+f2h_(0)],

while the partial waveq/] are, for unnatural-parity ex-

change, .
S, Py, P., Do, D. (41) 9(—9)25[%(9)—\/%7(0)]1 (48)
and, for natural-parity exchange, and find
P,, D,. (42) fa(0)=19(0)[*+[g(— )|,
fo(0)=1g(0)1*~lg(—0)[*. (49

One wave in each naturality can be set to be (&land
P, , for example, so that there are again 12 real parameters

, In order to examine the ambiguities in the problem, it is
to be determined.

necessary to express thdunctions as ratios of polynomials
in a single variable. This is accomplished by introducing a
IV. AMBIGUITIES IN THE PARTIAL WAVES variableu=tan(@2) and the functione;,m(u), as shown in

It is instructive to rewrite the angular distribution as fol- APPeNdix A. One finds that thie functions assume the form

lows: , , : _
. )M oN2/+ 1 To(1+ ) eg(u)
1 ° (1+u?)’m ’
1(Q)= yp [fo(0)+2f(0)cosp+2f,(0)cos 2p].
43) . SIm 2710/ 1o (1+u?) m e u)
- - _(U)— (1+u2),m ’
The f functions are experimentally measurable, as they are
comp_letely determined given a set of momefits. Indeed Eiﬂlm[/h(l*-Uz)/m_/efo(u)
one finds, from Eq(13), h,(u)=— Trud) . (50
2/m
fu(6)= 2 (2L+1)H(LM)dE o (6) (44) The numerator ofy(u) is a polynomial inu? of order/,
£=0 MORT [see Eq(A8) of Appendix A], and the numerator d¢f.. (u) is

u times a polynomial iru? of order/,,— 1. Consequently,
where/, is again the maximum” in the problem. An al- the functiong(u) has a numerator expressed as a polynomial
ternative expression for(Q)) as a function of the partial in u of order 27,,. The functionsf,, may also be given in
waves[/] is, from Egs.(32) and(33), terms of thee functions:
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S m2L+ 1)H(LM)(1+u?)? m ek, o(u)
(14+u?)?/m '

fu(u)=
(5D

Suppose now that a set pf’] has been found satisfying
Egs.(46). One can then find 2,, roots of the function

2/ m

<1+u2>/mg(u>=cok[[1 (u—uy), (52

whereu,’s are complex roots—these are the so-called “Bar-

relet” zeros[15]—andc, is a complex constant. Singgu)

andg(—u) enter as absolute squares in the expression fol:r)in

the f functions[see Eqs(49)], the complex conjugate of a
root u, is an equally valid solution; i.e., thke functions are

not perturbed. One concludes immediately that, for the par-

tial waves corresponding to unnatural-parity exchange (
—), there are in general?2m~1! solutions to the problem,

S. U. CHUNG

56
V. SYSTEM OF TWO IDENTICAL PARTICLES
Consider the following reaction, as an example:
m p— 77N (56)

for production of a dipion systemr®#? in the forward di-
rection, i.e., approximately along the beam line. In the Jack-
son frame, the decay amplitudes are again given by(ZH).
and the resulting angular distribution is given by EZS).
Because of the identity of the two final-state particles, the
odd /’s are absent and therefok&(LM)=0 if L=odd. It
should be emphasized, once again, thélt M)’s are always
real from parity conservation in the production process.

Let 7/, be the maximum spin present in a giver mass

. It is easy to show that the number of independent non-
zeroH’s is

after eliminating those which may be obtained by taking

complex conjugation of the entire functiar(u). For each
newg(u), one may calculate

1
ho(6)= E[QWHQ(— 0)],

1
h-(0)=519(6)—9(=0)], (53

to search for a new set of partial wavies], and[/]_ .
The third equation of Eq€46) is used to calculate
lh, (0)[?=[h_(6)>—2,(6). (54)

Note that all the allowed set of partial wavds;], and

[~]_, must satisfy the condition that the right-hand side of

this equation remain non-negatif#be first equation of Egs.
(46), of course, does not constitute a new constiaifihe
relationship(54), in addition, indicates that the ambiguity
problem for[ /], can be dealt with by setting

/w1

<1+u2>/mh+<u>=c+ukﬂ (u2=ry), (55)
=1

wherer s are the complex roots in? andc, is a complex
constant. For’,,>1, there must be in general 2 2 solu-
tions for the partial waves with natural-parity exchange, i.e.
[7]-.

For each of the 2m~! solutions involving[/], and
[/]-, there must be a total of’ 22 solutions for[ /7. .
Therefore, a system containing the partial waves up’to
=/ =2 has a total oN,=2%m"1x 2/m~2 ambiguous so-
lutions.

N, is given below for/,<4:

0 1

,/' m

Na

1 2 64 512

Ne=3/,+1. (57
N® as a function of/, is given below as a table:
/m 0 2 4 6
Ne 1 7 13 19

The ambiguity problem in the amplitude analysis can be
dealt with in exactly the same way as in the case of two
dissimilar particles, except that all the odd waves should be
set to zero, i.e.[[/]=0 for /=o0dd. There are’,/2 patrtial
waves greater than th® wave (which could be set to be
rea). Under the assumption that tkecomponent of spin is
either zero or+ 1, each wave greater than zero requires three
complex numbers, but one wave of natural-parity exchange
could be set to be real. One concludes therefore that there are
3/, real parameters to be determined. But the number of
nonzero moments was shown to b&,3+1 in the previous
section—indicating that there must exist one linear relation-
ship among the moments. Such relationships are given ex-
plicitly in the two examples worked out in this paper.

Consider once again a system in which the highest al-
lowed partial wave is given by ,,=even. It is shown in
Appendix B that the ambiguities among the partial waves
with unnatural-parity exchange are determined by an exami-
nation of the/,, complex roots of the function

1 1
G-(v)= {7, G-(W)= 7 (1+ u?)’mho(u)+v2h_(u)]

/

=a/mk1:[1 (U_Uk), (58)

which is a polynomial inv of order 7/, and a,s is the

coefficient of v”m. The new variablev is related tou
=tan(d/2) via

1
v=a—u=2 cotf. (59

Recall that the complex conjugate of a reqtdoes not per-
turb H(LM) and hence leaves the angular distribution in-
variant but could alter the partial waves. Since taking the
complex conjugate oéll the roots does not lead to a new
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TABLE I. Moments in terms of partial waves.
@
u2 U U U U U U U U

00X00 00x10 00x11 00x20 00x21 10x 10 1011 10x20 10x21
H(00) 1 1
H(10) U2 4/15
H(11) 1/6 1/10
H(20) 1/5 4125
H(21) 1/10 3/50
H(30) 27/245
H(31) 12/245

(b)
uc U u U U U Nd N N

1111 11X20 11x21 2020 20x21 21X 21 1111 11x21 21X 21
H(00) 1 1 1 1 1
H(10) 1/ 1/5
H(11) —1/30
H(20) —1/25 4/49 1/49 —-1/25 1/49
H(21) 1/98
H(22) 3/50 3/98 —3/50 —3/98
H(30) —9/245 —9/245
H(31) 9/245
H(32) 3/98 —3/98
H(40) 4/49 —16/441 —16/441
H(41) 5/147
H(42) 10/441 —10/441
@The waves with unnatural-parity exchange. The notations are, e.g., (08)88§ =|S,|2 and (00)(11)
=SP* +P_S =2 RSP 1.
BA square root is understood for both numerators and denominators. An exanfi@stands for— 2/3.
°The waves with unnatural-parity exchange. The notations are, e.g., (289D} =|D,|? and (11)(22)
=P_D*+D_P*=2RdP_D*}.
9The waves with natural-parity exchange. The notations are, e.g., (1BEIP* =|P,|? and (11)(21)
=P,D* +D,P* =2 RdP.D*}.

solution, there are in general @ ! solutions. Theh func- sg(u)=1. (62

tions appearing in the function are given in terms of the

partial waveq /]o and[ /] :

It is shown in Appendix B that both the function and

/
1 m
o (1 u2)/mh0(u)=/§:;0 N2/ +1[ /7o

s

1
—+
u

n

u| =2"csc 0 (63

X|—=+u
u

eo(u),

/
1 J
G m(1+u2)/mht(u)=/21 N2/ +1[ /1.

X

—+u
u

where a new functior is defined by

1
em(W)= L7 €no(u).

For the case”=m=0, one sees that

St

e7(u),

(60)

(61)

for even ncan be expressed as polynomials in a single vari-
ablev.

The ambiguity among the partial wav¢g], can be
treated by examining the function

1 1 2\/
G4(0)= 57 G (W)= 7 (1+u) mh (u)

/w21

=c,v [I %=1y, (64)
k=1

wherec, is the coefficient oy”m~* and comes with’,,/2
—1 complex roots . This means that there exists a total of
2/m?2-2 ambiguous solutions involving/ ], . Combining
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the two ambiguities, one concludes that a system containin@ne should note that the momerti§4M) have contribu-
partial waves for/'</, has a total ofN$=2"m~ 1222 tions from theD wave only, while the momentsi(3M)

ambiguous solutions. result from interference betwedhandD waves.
NS is given below for/,<6: In terms of the experimentally measured momdits’s,
the f functions are, from Eq44),
‘m 0 2 4 6 4
NE 1 2 8 64  (L+u)*fy(u)=2 (2L+DH(LM)(1+u?)* “eyo(u)
L=0
VI. EXAMPLE WITH S, P, AND D WAVES (66)

Consider an example of thez system with/,,=2, pro- O, explicitly,

duced in reaction(1). For the sake of completeness, all the o4 _ a4 23 2
relevant moments are given here in terms of the partiaf 1 U") To(U)=H(00)(1+u%)"+3H(10)(1+u%)*(1~u?)

waves in the problem; see E¢88). The results are tabulated +5H(20)(1+u)?(1—4u?+u?)

in Table I, and are given explicitly in the next set of equa-

tions: +7H(30)(1+u?)(1—9u?+9u*—ub)
H(00)=S2+ P2+ P2 +D2+D? + P2 +D?, +9H(40)(1- 16u”+36u*—16u°+u®),

1 2 1 (1+ud)*f,(u)=—3vZH(11)(1+u?)3u—56H(21)
H(10)= 7§S°P°+ EP°D°+ E(P’D’Jr P+D.), X (14U?)2u(1—u?)— 14/3H(31)(1+u?)
X u(1—3u?+u*) —18\5H(41)u(1—6u?

+6u*—ub),

1 1 1
H(1l)= —=S,P_+ —PoD_——P_Dg,
( ) \/ESO \/ﬂ) 0 \/% 0
1 2 01, . 2 (1+u?)*f,(u)=56H(22)(1+u?)2u?+7/30H(32)
H(20)= —=S,Do+ =P5— =(P2+P?%)+ =D
(20) JESO 0t 5P 5 )+ 700 X (1+Uu?)u?(1—u?)+9\10H (42 u?
1 X (3—8u?+3u). 6
+7(D2_+D2+)' ( ) (67)
Suppose now that one has found a set of solutions

1 1 /3 1 {S,Py,P_,Dy,D_} for unnatural-parity exchange and
H(21)=—=SD_+ ¢ \/5 PoP-+-—DoD_, {P, ,D.} for natural-parity exchange. It is helpful to write
V10 5 V2 V2 ¢
down theh’s explicitly:
+BDo(1—4u+u?),
3
H(30)= ﬁ(@PODO—P,D,—P+D+), v2(1+u?)?h_(u)=—2u[V3P_(1+u?)
+V18D _(1-u?)],
1 3
H(3D =3 \[g (2PgD_+Vv3P_Dy), V2(1+u?)?h, (u)=—2u[V3P,(1+u?)
1 +V15D . (1-u)]. (68
H(32)= 7 \[5 (P-D-—P.D.), The last equation above shows that there are no ambiguities

for the partial wave® , andD , , since the expression inside
the square brackets is linear id. On the other hand, from

2 4
_ 2_ T n2 2
H(40)= 7D0 21(D—+D+)’ the first two equations, one finds that the functipfu) is

given by
H(41)=; \/g DD _, G(u)=v2(1+u?)?g(u)=Sy(1+u?)2+v3Py(1—-u?
+BDg(1—4u2+u*) —2v3P_(u+ud)
_\/E 2 2
H(42=— (D2-D%). (65) —2\15D _(u—ud), (69)

which is a polynomial of order 4 i and thus gives rise to
the ambiguities in the unnatural-parity partial waves through
3This formula is valid only if/,=4. the Barrelet zeros.
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One may write
G(u)=ayu*—azud+a,u’>—a,u+ag, (70)
with
a,=Sy—v3Po+1/5Do,
az=2v3(P_—\6D_),
8,=2S— 45D,
a;=2v3(P_+5D_),
ay=Sy+v3Po+\5Dg. (71)
The inverse is
6Sy=2ap+a,+2a,,
2V3Py=ap—ay,

6\/§Dozao_a2+ ag,

4\/§P,=a1+ a3,
415D _=a,—a;. (72)

SinceG(u) is a fourth-order polynomial i with four com-
plex roots{uy,u,,us,u,}, it is given by

G(u)=ag(u—u)(Uu—uUy)(u—ug)(u—uy), (73
so that
az=ay(Ug+UxtUztuy),
ar= a4(U1U2+ U1U3+ U1U4+ U2U3+ U2U4+ U3U4),
a;=a,(UyUyUg+ UyUgly+ UslUy + UgUgUy),

Ap=ay(UgUsUgUy). (74)

Finally, substituting these into Eqé72), the partial waves
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or more of the Barrelet zeros. It should be borne in mind,
however, that, above is fixed and is given by the original
set of the partial waves; see Eq31). More precisely, its
magnitudela,| must remain invariant.

There should be in general eight ambiguous solutions in-
volving the partial waves,, Py, P_, Dy, andD_. The
eight solutions are enumerated below in two columns:

{ui,up,uz,u3}t  {ug,uy,uU3z Uy,

{Ug,Uz,Uz,Us}  {Ug,Up, Uz, U},

{ug,uz,uz,uz}  {ul,up,ug,ugl,

{ui,up,uz,us) {ug,u3 ,Ug,Ugf,

{ug,uz,uz Uzt {ug,up,u3 U,

{ul’u§1u31u4} {Ul,UQ,Ug,UZ},

{ug,u3,ug,uz}  {u7,uz Uz, U4},

{ug,u3,uz Ut {ul ,up,u3 Uy},

{ug,u3,uz,us} {ul,u,,uz,uy}. (76)

The first column results from a procedure in whichis left
invariant and the remaining three roatg, u;, andu, are
allowed to undergo complex conjugation—one sees that
there are 3=8 ways of doing this. The second column rep-
resents an alternative method of ennumerating the eight am-
biguous solutions. For each solution, a n@@u) is given by

Eq. (73), and hence one obtains nédis via

1
ho(u)=5[g(U)+g(—U)],

can be expressed in terms of the roots or the Barrelet zeros:

6Sp=2a4(2ujUsUzus+UqUs+ UUs+ UgUs+ UsUzt UsUy
+UgUy+2),
2V3Py=a,(ujusuzu,—1),
6/5D = a,(UUpU3Us— UgUp— Uz Uz — Uyl — Upliz — Upl,
—uzuyst+1),
4v3P_=a,(UUyUs+ UsUgUy+ UglsUg + UgUqUs+Ug+ Uy
+usztuy),
415D _ = a,(U;UpUg+ UslgUi,+ UglizUy + UgUgUp— Ug — Uy

—Uz—Uy). (75

1
h-(u=3lg(w—-g(-w]l, (77

and the new partial wavds,,P,,P_ ,Dy,D _} are given by
Egs.(75). Note thatS; may become complex in the process,
but it can be made real again by dividing each wave in the
set by the phase &,.

One can find the correspondimy, andD , from

lh(W)?=[h_(uw)[*=2f5(u). (78

Formulas(67) and (68) show that, if the factou? is taken
out from both sides of the equation above, then one is left
with a quadratic function im?. One can, therefore, finl, ,
D, and the phase difference between the two, by setting the

These expressions show how the ambiguities in the partighree coefficients to zero. But a more direct way of finding
waves can be explored through complex conjugation of on¢hem is contained in Tablega) and kb). One sees that
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5 , 21 ag=So—V3Po+ 5Dy~ \7Fy,
ID.[*=[D_| —EHMZ),
a0=Sp+V3Po+ BDo+7Fy,
z 5 a,=3S,—V3P,— 35D+ 9\7F,,
P, 2=|P_ 2+3\ﬁ H(42)—5\ﬁ H(22),
[P I*=IP-| 2 3 a,=3Sy+V3Py—35Dy—9\7F,,
ag=2v3P_—2\15D_+242F _,

2
2ReP,D*}=2ReP_D* —7\ﬁH32. 79
§P.D3}=2ReP_DZ}-74/3 H(32. (79 a,=2V3P_+2\15D_+2.42F _,

It is clear that any solution resulting in negative values for 3= 4V3P- 6\/4—2F_' ®2
the first two equations above is not allowed. In addition, anyThe inverse is

solution which makes the cosine of the phase difference

greater than 1 is clearly not allowed. 12S,=3(ag+ag) +(as+ay),

12\/5Dy=3(ag+ag) — (a4 +ay),
VII. SYSTEM WITH S, P, D, AND F WAVES

In this section, a brief description is given of a system 20V3Po=9(a0— ) (a2~ 24),

containing the partial wave$=0, 1, 2, and 3. There are 13
parameters to be determined describing the seven amplitudes
Sy, Po, Do, Fg, P_, D_, andF _ produced via unnatural-
parity exchange, and there are 5 parameters for three ampli-
tudesP, , D, , andF, with natural-parity exchange. There
are, on the other hand, 18 real mometd M) with O<L

<6 andM=0, 1, and 2, which specify the angular distribu- _
tion. Therefore, it is in general possible to find a set of am- 418D _=a;~as. (83

plitudes satisfying the moments, but the process is not ginceG(u) is a sixth-order polynomial i with six com-
unique, and there are in fact a total of 64 ambiguous SOIuplex roots{u;}, i=1-6, it can be written

20\7F = (ap—as) — (az—ay),
20vV3P_=3(az+a;)+2as,

10V42F _=(as+a,)—as,

tions.
The h functions are given by, from Appendix A, G(u)=ag(u—uy)(u—uy)(u—ugzg)(u—uy)(u—us)(u—ug),
(84)
(1+u?)3ho(u)=Sy(1+u?)2+v3Py(1+u?)?(1—u?) so that
+BDo(1+u?)(1—4u+u? as=ag(Uy+Uy+Ug+U,+Us+Ug),
+\TFo(1—9u?+9u*—u®),
a4:a6; Uin,
V2(1+Uu?)3h_(u)= — 2u[v3P_(1+u?)?2+ 15D _(1—u?)
+\A2F _(1-3u?+ut], 83=26.2, UL,
V2(1+Uu?)®h, (u)=—2u[v3P, (1+u?)?+ 15D, (1—u% az=a6§ UjUjUil -,
+A2F , (1-3u2+uY)]. (80)
a1=a6; ujujuu U,
The functiong(u) is given by
ap= ap(U1UoU3U4UsUg). (85)

G(u)=v2(1+u?)’g(u) =agu’~asu®+a,u’~asu’+au®  The sums are over all permutations with the condiieny
—a,u+a, (81) §k</< m. Note that there are 15 termsag, 20 inas, 15
in a,, and 6 ina;. Finally, substituting these into Eq&3),
the partial waves can be expressed in terms of the Barrelet
which is a polynomial of order 6 im and the ambiguities in zeros. An operatioru;—u;®* for any i does not perturb
the unnatural-parity partial waves can be found through théd(LM) and therefore results in an ambiguous solution.
Barrelet zeros, as before. From E¢80), one sees that Since taking the complex conjugate of all six roots is not a
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new solution, one can leawg invariant, and take complex VIII. EXAMPLE WITH S AND D WAVES
conjugates of all the rest—there are thus=32 ways of

. . o . : Consider a case of two identical spinless particles with
doing this, and this is the number of ambiguous solutlons/ =2. There are five parameters involving the partial waves
involving the waves with unnatural-parity exchange. -m o P 9 P

An examination ofh,(u) in Egs.(80) reveals that it is with unnatural-parity exchange, i.& (rea), Do (complex,
proportional to a polynomial of order 2 ia? involving the andD._ (compley, and only one parameteR., (rea), for

. ; . the partial wave produced by natural-parity exchange. So one
partial waves with natural-parity exchange. Defipéu) by sees that a total of six parameters are required in this case.

The unnormalized moments are expressed in terms of the
- 2y2 _ 4
Q(U)=V3P.(1+u?)?+ 15D, (1-u?) partial waves and are given in Eq&5) but with oddL
+ \JaF (1-3u?+u?) moments missing. Not all seven moments listed are indepen-
" dent; one finds, in fact,

= b2U4_ blU2+ bo, (86)
2\5H(22)=3v3H(42). (91)
so that o
Therefore, there are six independent moments, correspond-
b2=f3P+—\/1—5D++\/4—2F+, Er%glc;rim partial-wave parameters to be determined in the
Recall that the ambiguities among the partial waves with
bo:‘@P++\/ED++\/4—2F+v unnatural-parity exchange are determined by the complex
roots of the function
by=—2v3P . +342F, . (87) Y
— _ 2 2
The inverse is g_(v)—so( u +u) +BDoe(i(u) + V10D e3(u)
— 2__
5\42F . =by+b;+b,, =ayv°—av+ao, (92
where
10\/§P+:3b0_2b1+3b2,
ay=Sp+ 5Dy,
2\/1_5D :bo—bz. (88)
: a;=2\150_,
Let r,andr, be two roots given by

u)=by(u?=ry)(u—r,). 89
Q(U)=ba( ) 2) @9 Solving for Sy andDg, one finds

Then one finds

6Sy=ay+2a,,
P1=ba(ry+12), 65Do= — a,+4a,. (94)
bo=boryrs. (90) The Barrelet zeros are
Finally, substituting these into Eqé88) with r,—r3 , one a;+ \/m
can obtain an alternate solution involving the partial waves {v1,02}= T 2a, (99

with natural-parity exchange.

There exist two solutions involving, , D, , andF, for  where
each of the 32 partial-wave sets with unnatural-parity
exchange—one sees therefore that there must exist in general G-(v)=ax(v—v)(v—uy), (96)
a total of 64 ambiguous solutions for a system containin
spins up to 3. Because there should exist in general twi
distinct solutions foP, , D, , andF ., it is not possible to
invert the formulas foH(L2) with 2<L=<6 and solve for
the amplit_udes algebraically—the r_eqder will recall that this ap=2a,(0107). (97)
was possible for the problem containiig=0, 1, and 2(see
Sec. V. Instead, one must resort to a function-minimizationFinally, the partial waves can be expressed in terms of the
routine to find one set of solutions f&, , D, , andF . for Barrelet zeros:
each of the 32 partial-wave sets with unnatural-parity ex-

nd one finds

ay=ax(v1tvy),

change; the second set can then be found through the tech- 6Sp=ax(v1v,+2),
nique of Barrelet zerofsee Eq.(89)]. Not all 64 solutions
are “correct” in general; for each set one must calculate all 6\/§D0=a2(—v1v2+4),

the predictedH(LM)’s and check that they are identical to
the experimental moments—at least within the error bars. 2\/1—5D,=a2(v1+v2). (98
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There exist two ambiguous solutions, corresponding to th&hey are continued into the next set of formulas:
sets{v,v,} and{vq,v3}.

The one wave with natural-parity exchan , can be 155 10V6 20
party g, 5 DoGo— \/—(D G_+D,G,)+ =G>

set to be real, to be determined from any one of the momentd1(60)= 143 143 143 Go
H(20), H(22), H(40), orH(42). There are thus no ambi-
guities involvingD | . (62 +G2),

143
IX. EXAMPLE WITH S, D, AND G WAVES

Consider a system which consists of two identical spinless 1 (g1)= 5,21 G_+ 535 D_Gg+ V105 GG

particles with/,=4. This problem requires a total of 12 143 7° 143
parameters to be fitted, consisting®yf, Doy, D_, Gy, G_,
D., andG, which are complex in general. As in previous 270 N

105 ,
(D_G_-D,G,)+—— (G2 -G?),

examples, one may set one wave to be real in each group of H(62)= 143

a given naturality, e.g$, andD . .
The relevant moments are given below in terms of the 490 392

partial waves: 2 2
H(80)= 543160~ 2231(C” +G%).
H(00)=S2+D3+D2 + G2+ G2 + D% + G2,

143

475
2 6 H(81) = 24;/1— GoG_,
H(20)= —=SyDo+ =D+ = (02 +D2)+ —=DGo
f 7 7\5
4235
G 20 , 17 , H(82)= (G2-G%). (100
+ = (D-G_+D.G,)+ =Gj+ 7=(G? +G), 2431
It is seen that there are 13 real moments, but the moments
1 V3 V2 H(LM) with M =2 are not independent. It can be shown, in
H(21)= \/T)SOD,-FﬁDOD,-F?DOG,——S\/g D_Gy fact, that
V15
+ =7 GG, 670H (22) — 24\/42H (42) + 182H(62) — 119/3H(82) =0.
(101
H(22)= \[ (D2 — )_ —(D G_-D.G,) This shows that there exist 12 independent moments corre-
B e sponding to 12 parameters to be fitted for the partial waves in
/6 the problem.
6 (G?-G?) One finds, from Eq(58),
2 1 205 4 1 \?
H(40)= = D5~ 1(D2_+D2+)+§SOGO+EDOGO G_(v)=S +u +\/—D0( £§(u)+3Goeg(u)
162 5v2 2, .
e ¥ +10D_| = u)+3v2G_e7(u
+ 100108+ 75 (D-G-+D.G) V10 ef(u) e1(u)
=a*—agit+ay’—apw+ag, (102
(62 +G%),
1001 ' and the coefficients are
1 \f 1 17\5 a,=So+ 5D+ 3G
H(4)=5 \/5DoD_+—S,G_+——D,G_ 4 0 o
(D=7 Vg PP+ 3 %6-+ 5 P
a,=8Sy+2/6D,— 36Gy,
+——D_Gy+ GoG_,
73 1002 ay=16S,— 85D+ 18Gy,
V10 3\15 a;=2\15D_+610G_,
H(42)= 27 (D? ~D%)+ g, (D-G_~D.G,) 3
27J—0 a,=8+/15D_—18,/10G_ . (103
2
1001 +)- (99) Solving for the partial waves, one finds
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30S,=ay+a,+6ay, cannot be negative and that the cosine of the angle between
D, andG?* cannot be greater than 1. Therefore, the problem
425D = —2a,+a,+ 24a,, of finding S, D, andG partial waves amounts to exploring in
general eight ambiguous solutions among the partial waves
210Gy=ay—4a,+ 16a,, with unnatural-parity exchange.

X. EXPERIMENTAL MEASUREMENT
14\/15D _=a,+3as, OF THE MOMENTS

The partial waveg /]y, [/]-, and[/], can be used
_ directly as unknown parameters in the extended maximum-
42106 = ~as +4a, (104 likelihood fits[12]. Because there is an absolute scale in an
Let {v1,05,03,04) be the complex roots of the function extended maximum-likelihood fit, one obtains directly the
G_(v), so that predicted numbers of events for all the partial waves, cor-
rected for finite acceptance and angular distributions. The
partial waves in turn give rise to a set of predicted moments
a=az(vi+tvatustuy), {H}, as given in Tables(® and Kb) in the case of thery
system. But thed(00) is not 1[(10)] but the total predicted
number of events from the fisee Eq(39)]; i.e., one should
a,=a4(V1U2 T VW3t VW4T V3T VW4T V3V, be using the unnormalized moments. One could chétse
as unknowns in the fit, but the two setskbfs should be the
same ideally—this affords one an effective way of assessing
Az=a,(V1V03F VW3V F V3V F VIV D), self-consistency between the moments and the partial waves.
One may determine directly the experimental moments
(unnormalized as follows:

a4:a4(U]_U 21)3U4). (105)

The partial waves are determined by substituting these into Hx(LM):E Dho(i.6:.,0), (107
Egs. (104). Since taking the complex conjugate of all four
roots is not a new solution, one can leave one root fixed an@here the sum is over a given numireof experimental data
take complex conjugates of the remaining three—there ar! @ mass bin. But this is given by, from E),
thus £=8 ways of doing this, and this is the number of
ambiguous  solutions involving the partial waves with (LM)_j dQ7(Q)1(Q)DYo(4,0,0), (108
unnatural-parity exchange.

Given a set of the partial waves with unnatural-parity ex-where 7({2) represents the finite acceptance of the apparatus,
change, one can calculate the partial wabesandG, and  and it includes software cuts, if any. From Ef), one finds

the phase between them via E¢89) and (100): that
243 H(LM)= > H(L'M")¥ (LML'M’), (109
|G, [2=]G_|*~ 2\/—H(82) M
where
’ ’ +1 L
S %) 221 |17 H(LML'M")=| —, fdﬂn(Q)DMow,e,O)
ID4|?=[D_[*— — H(22)+ —=| 7;H(82)
V3 43514 o
Dy o( ,6,0). (110
11
- 173 H(62)|, Note that the?’s have a simple normalization

\PX(LML,M,):aLLraMMI (111)

143 in the limit »(Q)=1. The integral(110 can be calculated
2RgD,G*%}=2RgD_G*}1+ —

270 | 143 H(82) using a sample of “accepted” Monte CanlbIiC) events. Let
N, be the number of accepted MC events, out of a tot of
raw MC events. Then, the integral is
—H(62)]|. (106 N
2L'+1 X
¥ (LML'M’)= E Dol i , 6,0
From this, one must conclude that the partial wabgsand

G, with natural-parity exchange can be determined Lis
uniquely—subject to the conditions thHD, |? and |G, |? XDy ro(i,6;,0). (112
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Equation (109 shows that one can predict the experimen-where the first brackets are the Poisson probability rfor

tally measurable moment407), given a sefH} andW¥’'s;  events. This is the so-called extended likelihood function, in

this provides a means of assessing the goodness of fit lihe sense that the Poisson distributionriatself is included

forming ax? based on the s¢H,}. in the likelihood function. The expectation valuefor n is
There exists an alternative method of determinifitg.  given by

For the purpose, one expands the acceptance fungtiQn
in terms of the orthonormdD functions, as follows:

mcf 1(Q) 7(Q)dQ. (120

n(n>=§(2L+1>§<LM)DkA*o<¢,0,0>. (113

o The likelihood functionZ can now be written, dropping the
where£(LM) is given by factors depending on alone,

1 L
EUM) = o= [ d09(@)D(6.00, (114

Eoc{l__[ () exp[—J I(Q)n(Q)dQ}

The complex conjugate is, from the defining formula above,

E(LM)=(—)MEL-M), (115
The “log” of the likelihood function now has the form

so that the acceptance function can be made explicitly real,

7(Q)=2 (2L+1)7(M)Re[&LM)D(¢,6,0)}, "
LM In Lo, In I(Qi)—f dQ n(Q)1(Q), (121
(116 i

using the (M) introduced in Eq.(14). A set of £(LM)
specifies completely the acceptance in the problem. The nofyhich can be recast in terms of ti§éLM)’s:
malization for the acceptance function has been chosen such
that a perfect acceptance is given hyQ))=1 and&(LM)
=0.00mo- The £&(LM)’s can be measured experimentally
using the accepted MC events n

In Lo, In I(Qi)—% (2L+1)H(LM)E* (LM)

1 X i
- L n
ELM)= 73 2 Dinol(41,6,0. (117 ;
Finally, substituting Eq(113 into Eq. (110, one finds “Ei In |(Qi)_% (2L+1)7(M)H(LM)Re £(LM).
Y, (LML'M")= X (2L"+1)£*(L"M") (123
LHMH
X(LML"M”|L"M")(LOL"0|L"0).

H(LM)’s may be used directly as parameters in the fit or

. . (118 may be given as functions of the partial waves. It is interest-
This formula shows an important aspect of #{&M) tech- ing to note that thet(LM)’s for L>L,, and |M|>M,, are

nique of representing acceptance. Although Etl4) in- ot heeded in the likelihood fit. Note also that only the real
volves a sum in whict. andM could be extended to infinity part of the&(LM)’s are used in the fit.

for an arbitrary acceptance, there is a cutoff if the{s&t has It should be borne in mind that a set of the momefitt3
maximalp and My, [see Eq.(109]. The formula above may not always be expressed in terms of the partial waves.
demonstrates that”<2L,, and|M"|<2M,,. This is clear if one examines Table®)l and Kb). Consider,

For completeness, a short comment is given on the &Xyr example, an angular distribution in whi¢h(10) is the
tended likelihood functions. The likelihood function for find- only nonzero moment. But this moment is given by a set of
ing n events of a given bin with a finite gcceptann(eﬂ) IS interference terms involving even-odd partial waves. So at
defined as a product of the probabilities: least one term cannot be zero—for example, the interference

term involving S and P waves. But then neithef (00) nor
o n Q) H(20) can be zero, since boiand P waves are nonzero.
o e_ﬂﬂ [ (£ } (119 One must conclude then thapd based on the séH,} may
. i

Lox e . . :
not necessarily be zero identically.

J1(Q) n(Q)dQ
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APPENDIX A: DERIVATION OF e FUNCTIONS d/ (2)
m’'m
Thed functions are normally given, from Ro$#6], as

=(=)™ "/ +m)!
d/m,m(e):(_)m’—m[(/‘_’_m,)! X(/’_mr)!(/+m)!(/_m)!]1/2Xm’7m

ky (— )kXZkyZ(/—m’ —k)

X (/=m")(/+m)l(/—m)l]2 3
K=k, (Z/—m' =K)!(/+m=Kk)!(m —m+Kk)!k!

X

ky _ /—n i
y (—)kcog” ~"(612)sin(6/2) s ym'+m (A6)

Kx, (Z/—m' =K+ m=K)!(m —m+k)!k!’

(A1) Note that all the exponents are non-negative. The function in
the square brackets is a polynomialxfiand iny?, each of
order/—m’. Thed function itself is a polynomial inx of
order 27— (m’+m) and iny of order 27— (m’ —m).

wheren=m’—m+ 2k andk is a non-negative integer rang-
ing betweerk; andk, given by

k;=max0, m—m’}, k,=min{/—m’, /+m}. Thed functions are tabulated here fgr up to 3:
(A2)
. o _ / m’ m d’, (2)
Note thatn is also a non-negative integer. It is seen that the m’m
d functions are nonsingular polynomials of order up t6ia 0 0 0 1
two variables cos{2) and sin@/2); they both range from 0 4 1 1 y2
to 1, as6 goes from 0 tom. From the definition(Al), one 1 1 0 3
finds the following relationships: Xy
1 1 -1 x?
/ "_my/ 2_ 2
dm'm(_e):(_)m mdm/m(a)v l 0 O y X
2 2 2 y4
d’, (0)=(—)"""d’ (6), 2 2 1 —2xy°
2 2 0 N
/ " mny/
drym(O)=(—)™""d" |, (0), 2 2 -1 —2x%y
. . 2 2 -2 x4
(= 6)=(=)"*™d, . (6). (A3) 2 1 1 (y2—3x?)y?
2 1 0 - 2—x?
The d functions depend in reality oz=cos# only, 2\/§x2(y 5 x)y
through 2 1 -1 X*(3y"—x%)
2 0 0 y4—Aax2y?+ x4
0 1-z 0 1+z , /
x=sin > >~ and y=cos; \/ > mrm(2)
(Ad) 3 3 3 y®
This assertion is valid as long #remains within the range 3 3 2 —JBxy®
(0— ). In particular, negative values @fare not allowed 3 3 1 J15x2y*
in this scheme. But note th#< 0 is equivalent to 3 3 0 —2/Bx3y3
3 3 -1 J15x%y?
Q=(—-0,0)—Q'=(+6,7+ ) (A5) 3 3 -2 — /6x%y
3 3 -3 x°
2_ 2\,,4
and thatd is always positive in practice, since céss evalu- 3 2 2 ¢ —5xy
ated as a scalar product of two momenta. With this proviso3 2 1 —V10x(y?—2x?)y?
then, there should not be any sign of ambiguities iandy 3 2 0 J30x2(y2—x2)y?2
as defined by Egqs(A4). The d functions in terms of the 5 1 — JTOC(2y%— x?)
variablesx andy are given in this appendix, as the existing ae o 2y y
tabulations are rarely given in these variables. For the pur3 2 -2 X*(5y“—x°)
pose it is sufficient to consider only those witli =0 and 3 1 1 (y*—8x%y2+ 6x%)y?
m’=|m| because of the symmetry relations fib{see Egs. 3 1 0 —2V3x(VA— 3x2V2+ X
(A3)]. With these restrictions, the summation &nin Eq. 3x(y Xy“ )y
. ; 3 1 -1 x2(6y*—8x2y2+ x4
(A1) ranges fromk;=0 to k,=/—m’, and thed functions y y
take on the form 3 0 0 y®—9x2y*+9x*y2—xb
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Thed functions for/=4 are given below: P . e;/m(u)
/ m’ m dm’m(z) d'm,m(u)z m (Ag)
4 4 4 y®
4 4 3 —2+V2xy" 1t s seen that this function remains finite, whars= as
4 4 2 2\7x%y8 60— 1.
4 4 1 —2/14x3y5 ~ Itis clear that all the symmetry relations for thlefunc-
4 4 0 JT0xy4 tions apply to thee functions as well. Thus, one has
4 4 -1 ~2y14¢y° S~ W)= (=)™ el (),
4 4 -2 2\7x8y?
4 4 -3 —2v2x’y e = (=)™ "Mel (U,
4 4 —4 x8 , -y
Y m’ m &, (2) Enm(W)=(-) € —m(U),
4 3 3 AT e m(L)=(=)"""er,_ (u). (A10)
4 3 2 —J14x(y?—3x?)y°® The e functions are tabulated here ferup to 3:
4 3 1 J7x3(3y?—5x?)y* ’ m’ m el m(Y)
4 3 0 —2/35¢3(y? = x?)y® 0 0 0 1
4 3 -1 7x%5y?—3x?)y? 1 1 1 1
4 3 -2 —14x5(3y?—x?)y 1 1 0 VAU
4 3 -3 x8(7y?—x?) 1 1 1 U2
4 2 2 ('—-12¢y?+15¢t)y? 1 0 0 1- 42
4 2 1 —v2x(3y*—15¢%y?+ 10x*)y® 5 2 2 1
4 2 0 VI0x3(3y*—8x%y?+3x%)y? 2 2 1 —ou
4 2 -1 —v2x3(10y*— 15x%y2+ 3x%)y 2 2 0 J6u?
4 2 -2 x4(15y*—12x2y2+x%) 2 2 1 o3
4 1 1 (y®— 15x2y*+ 30x%y2 — 10x®) y? 2 2 5 Ut
4 1 0 —2\Bx(yo—6x2y*+6x%y2—x%)y 5 1 1 1— 312
4 1 -1 x*(10y®—30x%y*+ 15x*y?—x°%) 2 1 0 — Ju(1-u?)
4 0 0 y®—16x%y°®+36xty* - 16x°y?+x2 5 1 q u2(3—u2)
Next an alternative expression for the functhhf@ m(@)is 2 0 0 1—4u2+uy*
given as a ratio of two polynomials in a single variable. One
finds, collecting the terms of exponentin Eq. (A1) intoa 7 m’ m elm(U)
single term, 3 3 3 1
2/
d/m,m(0)=<cos§ €n'm tang , (A7) 2 2 i \/1—\/532
where thee function is now a polynomial of order up to/2 8 8 0 ~2y5u°
in a single variablau=tan(/2) given by 3 3 -1 V1su*
| 3 3 -2 —\J6u’®
e (U 3 3 -3 u®
=(—)™ =M™ =M (S m)N(S—m)] 3 2 2 1-5u*
3 2 1 —J10u(1-2u?)
X(/+m)l(/—m)1 2 3 2 0 V30u?(1—u?)
3 2 -1 —J1oud(2—-u?)
& (—)ku? 3 2 —2 u4(5—u?)
X D — .
Kk, (F=m' =K)H(/+m=K)!H(m'—m+k)!k! 3 1 1 1-8u?+6u*
(A8) 3 1 0 —2v3u(1—3u?+ud)
One may re-express thefunctions in terms of the vari- 3 1 -1 u(6—8u’+u’)
ableu only, as follows: 3 0 0 1-9u?+9u*—ub
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The e functions for/=4 are given below: 1 ‘m=¢ ,
G (1+u?) m el o(u)= J+u gn(u) (B2
' /
/ m m e m(U)
4 4 4 1 into a new function of a single variable. The functione
above is given by Eq(61), where/ is even (G=/</,)
4 4 3 —2vau andm=0 orm=1 (m=/).
4 4 2 2\7u? Theu dependence in EqB2), including that ine, can be
4 4 1 —2\144®  expressed through a function
4 4 0 J70u*
5 . 1 n
4 4 -1 —2\14u (Mu)=wp=r5+(—w)", (B3)
4 4 -2 2\7u®
4 4 -3 —2vau’ wheren is an arbitrary integer=0). It is definedthat w,
4 4 -4 ud =1 (not 2. This function can be transformed into a rational
‘ . function ofv only, by noting that, from Eq(59),
/ m m € m(Y)
4 3 3 1-7u? 1:<2)i 14 2)
4 3 2 — Tau(1-3u2) u \2 2
2(q__ 2
4 3 1 J7Uu3(3—5u?) . —
4 3 0 —2435u%(1 —u=|z|F\/1+|=] . (B4)
“ ) 2 2
_ 4 2
4 3 1 J7u*(5-3u?) Substituting these into E¢B3), one finds
4 3 -2 —14u5(3—-u?)
4 3 -3 us(7-u?) 2 n! p\n=2K 27k
4 2 2 1- 1202+ 150% =1 & =212k | 2 3|
—v2u(3—15u (BS)
4 2 1 +10u%) . . o
10u2(3—8u2 whereko=n/2 if n is even &0) andko=(n—1)/2 if n is
4 2 0 \/+—3u‘(‘) ! odd (=1). If n is even,w, is a polynomial of orden/2 in
v2. If nis odd, '[henNn is a product ob and a polynomial of
—v2u3(10— 1502
4 2 -1 . order (1—1)/2 inv?
+3u®) In generalu” ™ /(u) is a polynomial of order”—m in
4 2 -2 u*(15—12u2+u*)  u? and is given by
_ 2 4
4 1 1 1_ 136-% 30u L
/ _ m o 1/2
en(W)=(=)"A1[(/+m)l(/—m)! -
2 Bu(1-6u? m(W) = (—=)"/1[( ) NI
4 1 0 6
+6u”—u®) /—=m K, .2k
u2(10— 30u2 x (Z)u
4 1 -1 £ 1504 —uf) o (/—m=k)!(/=k)!(m+k)!k!"
1—16u%+36u* (B6)
4 0 0 —16u°+u®

The key observation is that the denominators in the sum

APPENDIX B: DERIVATION OF & FUNCTIONS remain invariant under the interchangekaby /' —m—k, so

Consider a system of two identical pseudoscalars, so thatl at

it consists of evenr”’s only. Let /', be the maximum even
partial wave present at a given mass bin. The purpose of this
appendix is to show that the function

shﬂ(u)=(—)m/![(/+ m)!(/ —m)! ]2

_\k
XE (-)

/—m—K)1 (/=K (m+K)K!
Xw(/—m—2k;u). (B7)

1 1
G-(v)=7,G-(u)= u7;(1+u2)/m[h0(u)+\/§h,(u)]
(B1)
is a polynomial of order’,,, in the variablew=1/u—u. From  k,=(/—m-1)/2 for odd/—m=1 andk,=(/—m)/2 for

Egs.(60), one sees that this problem reduces to transformingven/—m=0. Expanding the expression inside the brackets
the function in Eq. (B5), one finds
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en(U)=(—)"A1[(/+m)l(/—m)I ]2 One is now ready to express the relevant functions in terms
of v. For example, one finds that
(=)*r(/—m—2k)

km
X 2

2

& (7—m—K1(/—K (M KK Lol cwr2-024a,
u
i ) i .
0 /—m—2k)! i
Xz > ( .) - — 1 4
=0 (/=—m=2k=20)!(2)! =0 (i—=))']! (—+u =W, + 4w, +6=0*+8v2+ 16,
v /' —m—2k—2i+2j u
X E , (BS) 1 6
—+u| =wg+6W,+ 15w, +20=0v°+ 1204+ 4802+ 64.
where i ,=(/—m-2k)/2 for even ¢ —m—-2k) and i, u (B12
=(/—m—2k—1)/2 for odd ¢'—m—2k). Soej(u) is a

polynomial of order//2 in v* ande{ (u) is proportional tov  The ¢ functions have the following expressions in terms of
times a polynomial of ordef/2— 1 inv?. The next task is to w, andv:

note that, for evem, ) )

eo(U)=wW,r,—4=p°=2,

1 \" 2
a+u :k§=:O mw(n—Zk;u), (B9) sf(u)z—\/éwlz—\/gv,
which is a polynomial of orden/2 in v2. Once again ex- gg(U)=W,— 16w, +36=v*— 120246,
ggggl?hgatthe expression inside the brackets in [B%), one si‘(u)=—2\/§(w3—6w1)= 2 Bo(s?-3),
1 \" ™ nign—2k) & (n—2K)! £(U) =wg— 36w, + 225w, — 400= 1 ®— 300*+ 90v 2 20,
a Y =2 oIk 2 (n—2k=2i)i (2!

£3(u) = — 42(ws— 15w3+50Wy)

= — 42 (v*— 1002+ 10). (B13)
It is instructive to compare the polynomia&{n(u) as

Do . functions ofv in Egs.(B13) with the functionse/,,(u) given
whereiy=(n—2k)/2 for even —2k) andiy=(n—2k—1)/ . mo L
2 for ogd En—2k)). FormuIas(IS?) an)d(BQ) %a\(/e now been at the end of Appendix A. One sees that the polynomiais in

n—2k—2i +2j
) , (B10)

expressed explicitly as polynomials iri2 only. have little resemblance to treefunctions e>;pressed as poly-
It is helpful to write down thew,’s explicitly for a few of ~Nomials inu. Although the polynomials:r,(u) have been
the practically important values of derived from thee functions[see Eq.(B2)] and hence they

are ultimately related to the familiad functions via Egs.
(A7), the ponnomiaISE;(u) have been transformed beyond

Wi=v, recognition as functions im (to the best of this authors’s
Wo=02+2, knowledge, such polynomials i have never been encoun-
tered so far in physics—at least, and most definitely, in the
field of hadron spectroscopySee Eq.(B8) for an explicit
wy=v*+40v%+2, expression ofsé](u) as a function ob.

ws=v(v*+502+5),

wo=1 by definition,

W3:U(U2+3),

BNL is operated under Contract No. DE-ACO02-

We=0v°+60%+ 902+ 2. (B11)  76CHO00016 with the U.S. Department of Energy.
[1] A. B. Wicklund et al, Phys. Rev. D17, 1197(1978. CERN 71-8, 1971.
[2] G. Costaet al,, Nucl. Phys.B175 402 (1980. [10] S. U. Chung and T. L. Trueman, Phys. RevlD) 633(1975.
[3] D. Cohenet al., Phys. Rev. D22, 2595(1980. [11] S. A. Sadovsky, “On the ambiguities in the partial-wave
[4] A. Etkin et al, Phys. Rev. 25, 1786(1982. analysis ofr~ p— 7a’n Reaction,” IHEP 91-75, 1991.
[5] R. S. Longacreet al, Phys. Lett. B177, 223(1986. [12] S. U. Chung, “Formulas for Partial-Wave Analysis,” version
[6] B. V. Bolonkin et al, Nucl. Phys.B309, 426 (1988. Il, BNL-QGS-93-05, 1993.

[7] W. Dunwoodie,The Hadron Mass SpectryrRroceedings of [13] S. U. Chung, Phys. Rev. B8, 1225(1993.

the Conference, St. Goar, Germany, 1990, edited by E. Klempf14] S. U. Chunget al, Ann. Phys.(Leipzig) 4, 404 (1995.

and K. PetergNucl. Phys. B(Proc. Supp). 21, 16 (1991)]. [15] E. Barrelet, Nuovo Cimento &, 331(1972.
[8] A. Aoyagi et al, Nucl. Phys.B314, 246 (1993. [16] M. E. Rose Elementary Theory of Angular Momentyi#iley,
[9] S. U. Chung, “Spin Formalisms,” CERN Yellow Report New York, 1957.



