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of such a polynomial is given for the first time.@S0556-2821~97!02721-5#

PACS number~s!: 13.60.Le, 11.80.Et, 13.75.Lb, 13.85.Fb

I. INTRODUCTION

This paper describes in some detail the formalism neces-
sary for exploring partial-wave amplitudes in a system in-
volving two spinless particles. Although the results of this
paper can be applied to a wide class of production of reso-
nances, emphasis is given to a peripheral production of states
in exclusive reactions initiated byp or K beams. As such, it
is addressed to experimentalists engaged in searches for new
states in the classic channels for resonance production@1–8#.
The main purpose to this paper is to present a general
method of dealing with the ambiguity problem endemic to
this type of system. This paper follows closely the notation
and conventions spelled out previously by Chung@9# and
Chung and Trueman@10#.

The most familiar example of a system consisting of two
pseudoscalar particles is that ofpp, for which one must have
I 1l 5even, whereI is the isotopic spin andl is the spin—
equal to the orbital angular momentum in this case. If one
restricts oneself to the states withl ,3, then only aP wave
is allowed for I 51, whereas bothS and D waves are pos-
sible if I 50. Similarly, bothS andD waves are allowed for
an hh system sinceI 50 in this case. But for a system with
two dissimilar spinless particles, e.g.,ph or hh8, all three
possible statesS, P, andD should be present. It is for this
reason that theph system has been chosen as an example in
this paper.

If a system contains two identical spinless particles, then
only even waves are allowed because of Bose symmetriza-
tion. A classic example of such a system would be theI
50 p0p0 system. Analysis ofph and p0p0 systems re-
quires very different techniques, and this paper shows how to
treat such a system containing a set of partial waves with 0
<l <l m , wherel m is an arbitrary maximum integer spin
in the set. In particular, the general treatment of ap0p0

system requires the introduction of a new type of polynomial
in a single variablev52 cotu, where u is the scattering
angle of thep0p0 system in its rest frame. To the best of this
author’s knowledge, this polynomial has never been encoun-
tered in physics so far, and one of the main objectives of this
paper is to give a general form of the polynomial~see deri-
vation of the« function in Appendix B!.

In Secs. II and III are given the angular distributions and
the amplitudes in the reflectivity basis. Section IV is devoted
to the ambiguities in the partial waves for theph system.
The method detailed here for searching for ambiguities in the

amplitudes follows and expands on that given by Sadovsky
@11#. Treatment of thep0p0 system, or a system consisting
of two identical particles in general, is given in Sec. V. In
Secs. VI–IX are given several examples of practical impor-
tance, i.e., the systems consisting ofph or p0p0 with partial
waves up tol 54.

The angular distribution is specified uniquely, once a set
of moments$H% is given. For measurements of these mo-
ments from experimental data, the technique of the extended
maximum-likelihood analysis@12# is often used, and a brief
introduction to this topic is given in Sec. X. Also given in
this section is a treatment of the method of finding a set of
‘‘true’’ moments, given the experimental moments measured
in the face of the finite acceptance of the apparatus. Thed
functions, as well as thee functions derived from them, are
given explicitly for l up to 4 in Appendix A. Finally, the
polynomials «, needed for treatingp0p0 systems, are
worked out in Appendix B.

It should be emphasized that the amplitude analysis on
two-body spinless particles necessarily entails simplifying
assumptions. These assumptions are not needed when a
partial-wave analysis is carried out on three- and four-body
final states. One fundamental reason for this is that the di-
mension of the decay space~which includes all the indepen-
dent variables consisting of appropriate momenta, energies,
and angles! expands from two for two-body to five and eight
for three- and four-body systems. A thorough spin-parity
analysis of a resonance, therefore, must include—where
possible—a study of its three- and four-body decay modes,
but the formalism needed for such an analysis is very differ-
ent from that outlined in this paper@13,14#. Another inde-
pendent check of a state decaying into two spinless particles
would be to study its production in a multiparticle final state
from a known initial system, e.g.,pp̄ annihilations at rest. In
this case, interference effects in the multiparticle final state
allow for a relaxation of the simplifying assumptions. In par-
ticular, the ambiguity problem, the main focus of this paper,
can be avoided.

II. GENERAL ANGULAR DISTRIBUTIONS

Consider the following reaction:

p2p→p0hn. ~1!

PHYSICAL REVIEW D 1 DECEMBER 1997VOLUME 56, NUMBER 11

560556-2821/97/56~11!/7299~18!/$10.00 7299 © 1997 The American Physical Society



In the Jackson frame1 the amplitudes may be expanded in
terms of the partial waves for theph system:

Uk~V!5(
l m

Vl mkAl m~V!, ~2!

whereVl mk stands for the production amplitude for a state
ul m& and k represents the spin degrees of freedom for the
initial and final nucleons~k51,2 for spin-flip and spin-
nonflip amplitudes!. Al m(V) is the decay amplitude given
by

Al m~V!5A2l 11

4p
Dm0

l * ~f,u,0!5Yl
m~V!, ~3!

where the anglesV5(u,f) describe the direction of theh in
the Jackson frame. It is noted, in passing, that the smalld
function implicit in Eq.~3! is related to the associated Leg-
endre polynomial via

dm0
l ~u!5~2 !mA~ l 2m!!

~ l 1m!!
Pl

m~cosu!. ~4!

The angular distribution is defined by

I ~V!5(
k

uUk~V!u2. ~5!

It should be emphasized that the nucleon helicities are exter-
nal entities, and the summation onk is therefore applied to
the absolute square of the amplitudes. A complete study of
the ph system requires four variables:m(ph), 2t, and the
two angles inV. The distribution~5! is therefore to be ap-
plied to a given bin ofm(ph) and of2t.

The angular distribution may be expanded in terms of the
momentsH(LM ) via

I ~V!5(
LM

S 2L11

4 DH~LM !DM0
L* ~f,u,0!, ~6!

with

H~LM !5 (
l m

l 8m8

S 2l 811

2l 11 D 1/2

rmm8
l l 8 ~ l 8m8LM ul m!

3~ l 80L0ul 0!, ~7!

wherer is the spin-density matrix given by

rmm8
l l 8 5(

k
Vl mkVl 8m8k

* . ~8!

It is seen that the momentsH(LM ) are measurable quantities
since

H~LM !5E dVI ~V!DM0
L ~f,u,0!. ~9!

The normalization integral is

H~00!5E dVI ~V!. ~10!

The symmetry relations forH ’s are well known. From the
hermiticity of r, one gets

H* ~LM !5~2 !MH~L2M !, ~11!

and from parity conservation@9,10# in the production pro-
cess, one finds

H~LM !5~2 !MH~L2M !. ~12!

These show thatH ’s are real. The angular distribution can
now be recast into

I ~V!5(
LM

S 2L11

4p D t~M !H~LM !dM0
L ~u!cosMf,

~13!

where

t~M !52 ~M.0!

51 ~M50!

50 ~M,0!. ~14!

Note that all the terms of Eq.~13! are now real. Since theD
functions form a complete orthonormal set in the spaceV
5(u,f), one merely needs to specify a set of theH ’s to
uniquely define an angular distribution.

Let l m be the maximum spin present in a givenph mass
bin. It is easy to show that the number of independentH ’s
are

N05~ l m11!~2l m11!. ~15!

N0 as a function ofl m is given below as a table:

l m 0 1 2 3 4

N0 1 6 15 28 45

One makes a crucial assumption for amplitude analyses—the
z componentm of spin l can take on the values 0 or 1 only:
i.e., the production amplitudesV are zero2 if m.1. This
implies that theH ’s are zero ifM.2. Forl m.0 the number
of zeroH ’s is

N15~ l m21!~2l m21!, ~16!

so that the number of nonzero moments is

1The z axis is defined to be along the beam direction in theph
rest frame, whereas they axis is chosen to be along the production
normal in the overall center-of-mass frame.

2In a peripheral production of meson resonances frompp andKp
quasi-two-body processes, one does not expect the amplitudes with
m.1 to be important, because the initial and final baryon helicities
can impart at mostm51 amplitudes to the meson resonance.
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N25N02N156l m , ~17!

valid for l m.0. Now the number of nonzeroH ’s is linear in
l m . This allows one to determine amplitudes, as shown in
the next section.

N2 as a function ofl m is tabulated below:

l m 0 1 2 3 4

N2 1 6 12 18 24

III. AMPLITUDE ANALYSIS

The parity conservation in the two-body→two-body pro-
duction process can be treated by introducing reflection op-
erators@10# which preserve all the relevant momenta in theS
matrix and act directly on the rest states of the particles in-
volved. The coordinate system is always defined with they
axis along the production normal, so that the reflection op-
erator is simply the parity operator followed by a rotation by
p around they axis.

The eigenstates of this reflection operator are

uel m&5u~m!$ul m&2e~2 !mul 2m&%, ~18!

where

u~m!5
1

&
~m.0!

5
1

2
~m50!

50 ~m,0!. ~19!

One sees thatt(m)54u2(m); see Eq.~14!.
For a positive reflectivity, them50 states are not al-

lowed: i.e.,

uel 0&50 if e51. ~20!

The reflectivity quantum numbere has been defined so that it
coincides with the naturality of the exchanged particle in
reaction~1!. One can prove this by noting that the meson
production vertex is in reality a time-reversed process in
which a state of arbitrary spin parityJhJ decays into a pion
~the beam! and a particle of a given naturality~the exchanged
particle!:

JhJ→shs1p, ~21!

whereh’s stand for intrinsic parities. The helicity-coupling
amplitudeFJ for this decay@9# is

Ap
J~M !}Fl

JDMl
J* ~fp ,up,0!, ~22!

where l is the helicity of the exchanged particle and the
subscriptp stands for the ‘‘production’’ variables.M is thez
component of spinJ in the rest frame. From the parity con-
servation in the decay, one finds

Fl
J52F2l

J , ~23!

where one has used the relationshipshJ5(2)J ~true for two-
pseudoscalar systems! and hs5(2)s ~natural-parity ex-
change!. This formula shows that the helicity-coupling am-
plitude FJ is zero if l is zero. Since angular momentum is
conserved, its decay into two spinless particles cannot have
M50 along the beam direction~the Jackson rest system!;
i.e., the DJ function is zero unlessM5l, if up5fp50.
Finally, one may identifyJ with l and M with m, which
proves Eq.~20!.

The modifiedD functions in the reflectivity basis are
given by

eDm0
l * ~f,u,0!5u~m!@Dm0

l * ~f,u,0!2e~2 !mD2m0
l * ~f,u,0!#.

~24!

It is seen that they are real ife521 and imaginary ife5
11:

~2 !Dm0
l * ~f,u,0!52u~m!dm0

l ~u!cosmf,

~1 !Dm0
l * ~f,u,0!52iu~m!dm0

l ~u!sin mf. ~25!

The overall amplitude in the reflectivity basis is now

eUk~V!5(
l m

eVl mk
eAl m~V!, ~26!

where

eAl m~V!5A2l 11

4p
eDm0

l * ~f,u,0! ~27!

and the resulting angular distribution is

I ~V!5(
ek

ueUk~V!u2. ~28!

It is seen that the sum involves four noninterfering terms for
e56 and k51,2. The absence of the interfering terms of
different reflectivities is a direct consequence of parity con-
servation in the production process.

The momentsH(LM ) can be expressed in terms of the
amplitudes in the reflectivity basis. From the definition~9!,
one finds

H~LM !5(
e

(
l m

l 8m8

S 2l 811

2l 11 D 1/2
ermm8

l l 8 eb~ l 8m8LM l m!

3~ l 80L0ul 0!, ~29!

where er is the spin-density matrix in the reflectivity basis
given by

ermm8
l l 8 5(

k

eVl mk
eVl 8m8k

* ~30!

and a new functioneb is a sum of Clebsch-Gordan coeffi-
cients:
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eb~ l 8m8LM l m!5u~m8!u~m!@~ l 8m8LM ul m!

1~2 !M~ l 8m8L2M ul m!

2e~2 !m8~ l 82m8LM ul m!

2e~2 !m~ l 8m8LM ul 2m!#.

~31!

Formula~29! is essential in checking that a given set of the
partial waves satisfies the experimentally measured moments
H(LM ).

At this point one makes the second crucial assumption—
necessary for carrying out the amplitude analysis: the pro-
duction amplitudeseV do not depend onk. The distribution
function is then given by a sum of two terms

I ~V!5u~1 !U~V!u21u~2 !U~V!u2. ~32!

The first assumption demands that the production amplitudes
eV should be zero ifm.1. It is therefore convenient to
separate out theu dependence from that off, as follows:

~2 !U~V!5
1

A4p
@h0~u!1&h2~u!cosf#,

~1 !U~V!5
1

A4p
@&h1~u!sinf#, ~33!

where

h0~u!5 (
l 50

l m

A2l 11@ l #0d00
l ~u!,

h2~u!5 (
l 51

l m

A2l 11@ l #2d10
l ~u!,

h1~u!5 (
l 51

l m

A2l 11@ l #1d10
l ~u!. ~34!

Note that

h0~2u!51h0~u! and h6~2u!52h6~u!, ~35!

because of a symmetry relation for thed functions@see Eq.
~A3! of Appendix A#. Following convention@1–8#, one has
introduced a notation for partial amplitudes via

@ l #05 ~2 !Vl 0 , @ l #25 ~2 !Vl 1 , @ l #15 ~1 !Vl 1 ,
~36!

where@l # stands for the partial wavesS, P, D, F, andG
corresponding tol 50, 1, 2, 3, and 4.

It is useful to write down explicitly the formulas for
H(LM ) in terms of the partial waves. From Eq.~29!, one
finds

H~L0!5(
l l 8

A2l 811

2l 11
$@ l #0@ l 8#0* ~ l 80L0ul 0!1@ l #2@ l 8#2* ~ l 81L0ul 1!1@ l #1@ l 8#1* ~ l 81L0ul 1!%~ l 80L0ul 0!,

H~L1!5
1

&
(
l l 8

A2l 811

2l 11
$@ l #2@ l 8#0* ~ l 80L1ul 1!2@ l #0@ l 8#2* ~ l 821L1ul 0!%~ l 80L0ul 0!,

H~L2!5
1

2 (
l l 8

A2l 811

2l 11
$2@ l #2@ l 8#2* ~ l 821L2ul 1!1@ l #1@ l 8#1* ~ l 821L2ul 1!%~ l 80L0ul 0!. ~37!

These equations can be transformed further as follows:

H~L0!5(
l

$@ l #0@ l #0* ~ l 0L0ul 0!1@ l #2@ l #2* ~ l 1L0ul 1!1@ l #1@ l #1* ~ l 1L0ul 1!%~ l 0L0ul 0!

12 (
l ,l 8

A2l 811

2l 11
Re$@ l #0@ l 8#0* ~ l 80L0ul 0!1@ l #2@ l 8#2* ~ l 81L0ul 1!1@ l #1@ l 8#1* ~ l 81L0ul 1!%

3~ l 80L0ul 0!,

H~L1!5&(
l

Re$@ l #2@ l #0* %~ l 0L1ul 1!~ l 0L0ul 0!1& (
l ,l 8

A2l 811

2l 11
Re$@ l #2@ l 8#0* ~ l 80L1ul 1!2@ l #0@ l 8#2*

3~ l 821L1ul 0!%~ l 80L0ul 0!,

H~L2!5
1

2 (
l

$2@ l #2@ l #2* ~ l 21L2ul 1!1@ l #1@ l #1* ~ l 21L2ul 1!%~ l 0L0ul 0!1 (
l ,l 8

A2l 811

2l 11

3Re$2@ l #2@ l 8#2* ~ l 821L2ul 1!1@ l #1@ l 8#1* ~ l 821L2ul 1!%~ l 80L0ul 0!. ~38!
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One sees that only the real part of the interference terms
contribute to the moments, so that the moments themselves
are now explicitly real. It is worth mentioning that the mo-
mentsH(L1) have contributions only from the waves with
unnatural-parity exchange. Note also that the moments are
zero identically unlessl 81l 1L5 even. The first formula
above shows thatH(00) is simply a sum of all the waves in
the problem:

H~00!5(
l

$u@ l #0u21u@ l #2u21u@ l #1u2%. ~39!

There are three amplitudes for eachl , except for theS
wave which comes with only one amplitude. The angular
distribution is a sum of two noninterfering terms as given in
Eq. ~32!, so that one amplitude each fore56 can be set to
be real. There are therefore 6l m real parameters to be
determined—exactly equal to the numberN2 of H ’s as given
in the previous section. This allows one to solve in principle
for the partial waves, given a set of the moments$H%. For
example, one finds that, ifl m52, there are 12 nonzero mo-
ments

H~00!, H~10!, H~11!, H~20!, H~21!, H~22!,

H~30!, H~31!, H~32!, H~40!, H~41!, H~42!,
~40!

while the partial waves@l # are, for unnatural-parity ex-
change,

S0 , P0 , P2 , D0 , D2 ~41!

and, for natural-parity exchange,

P1 , D1 . ~42!

One wave in each naturality can be set to be real~S0 and
P1 , for example!, so that there are again 12 real parameters
to be determined.

IV. AMBIGUITIES IN THE PARTIAL WAVES

It is instructive to rewrite the angular distribution as fol-
lows:

I ~V!5
1

4p
@ f 0~u!12 f 1~u!cosf12 f 2~u!cos 2f#.

~43!

The f functions are experimentally measurable, as they are
completely determined given a set of moments$H%. Indeed
one finds, from Eq.~13!,

f M~u!5 (
L50

2l m

~2L11!H~LM !dM0
L ~u!, ~44!

where l m is again the maximuml in the problem. An al-
ternative expression forI (V) as a function of the partial
waves@l # is, from Eqs.~32! and ~33!,

I ~V!5
1

4p
$uh0~u!1&h2~u!cosfu21u&h1~u!sin fu2%.

~45!

Comparing the two expressions forI (V), one finds

f 0~u!5uh0~u!u21uh2~u!u21uh1~u!u2,

f 1~u!5& Re$h0~u!h2* ~u!%,

f 2~u!5
1

2
$uh2~u!u22uh1~u!u2%. ~46!

These equations succinctly summarize the problem at hand;
on the left-hand side are the functions involving measured
H ’s, and on the right-hand side are the functions containing
partial waves@l # to be determined.

One may eliminateh1 by combiningf 0(u) and f 2(u) and
modify f 1(u) to obtain

f a~u![ f 0~u!12 f 2~u!5uh0~u!u21u&h2~u!u2,

f b~u![2 f 1~u!52 Re$h0~u!&h2* ~u!%. ~47!

The form of f a and f b suggests that one can define, from
Eqs.~35!,

g~u!5
1

&
@h0~u!1&h2~u!#,

g~2u!5
1

&
@h0~u!2&h2~u!#, ~48!

and find

f a~u!5ug~u!u21ug~2u!u2,

f b~u!5ug~u!u22ug~2u!u2. ~49!

In order to examine the ambiguities in the problem, it is
necessary to express theh functions as ratios of polynomials
in a single variable. This is accomplished by introducing a
variableu5tan(u/2) and the functionsem8m

l (u), as shown in
Appendix A. One finds that theh functions assume the form

h0~u!5
(

l 50
l m A2l 11@ l #0~11u2! l m2l e00

l ~u!

~11u2! l m
,

h2~u!5
(

l 51
l m A2l 11@ l #2~11u2! l m2l e10

l ~u!

~11u2! l m
,

h1~u!5
(

l 51
l m A2l 11@ l #1~11u2! l m2l e10

l ~u!

~11u2! l m
. ~50!

The numerator ofh0(u) is a polynomial inu2 of order l m
@see Eq.~A8! of Appendix A#, and the numerator ofh6(u) is
u times a polynomial inu2 of order l m21. Consequently,
the functiong(u) has a numerator expressed as a polynomial
in u of order 2l m . The functionsf M may also be given in
terms of thee functions:
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f M~u!5
(L50

2l m~2L11!H~LM !~11u2!2l m2LeM0
L ~u!

~11u2!2l m
.

~51!

Suppose now that a set of@l # has been found satisfying
Eqs.~46!. One can then find 2l m roots of the function

~11u2! l mg~u!5c0)
k51

2l m

~u2uk!, ~52!

whereuk’s are complex roots—these are the so-called ‘‘Bar-
relet’’ zeros@15#—andc0 is a complex constant. Sinceg(u)
and g(2u) enter as absolute squares in the expression for
the f functions@see Eqs.~49!#, the complex conjugate of a
root uk is an equally valid solution; i.e., thef functions are
not perturbed. One concludes immediately that, for the par-
tial waves corresponding to unnatural-parity exchange (e5
2), there are in general 22l m21 solutions to the problem,
after eliminating those which may be obtained by taking
complex conjugation of the entire functiong(u). For each
new g(u), one may calculate

h0~u!5
1

&
@g~u!1g~2u!#,

h2~u!5
1

2
@g~u!2g~2u!#, ~53!

to search for a new set of partial waves@ l #0 and @ l #2 .
The third equation of Eqs.~46! is used to calculate

uh1~u!u25uh2~u!u222 f 2~u!. ~54!

Note that all the allowed set of partial waves,@ l #0 and
@ l #2 , must satisfy the condition that the right-hand side of
this equation remain non-negative@the first equation of Eqs.
~46!, of course, does not constitute a new constraint#. The
relationship~54!, in addition, indicates that the ambiguity
problem for@ l #1 can be dealt with by setting

~11u2! l mh1~u!5c1u )
k51

l m21

~u22r k!, ~55!

wherer k’s are the complex roots inu2 andc1 is a complex
constant. Forl m.1, there must be in general 2l m22 solu-
tions for the partial waves with natural-parity exchange, i.e.,
@ l #1 .

For each of the 22l m21 solutions involving @ l #0 and
@ l #2 , there must be a total of 2l m22 solutions for@ l #1 .
Therefore, a system containing the partial waves up tol
5l m>2 has a total ofNa522l m2132l m22 ambiguous so-
lutions.

Na is given below forl m<4:

l m 0 1 2 3 4

Na 1 2 8 64 512

V. SYSTEM OF TWO IDENTICAL PARTICLES

Consider the following reaction, as an example:

p2p→p0p0n ~56!

for production of a dipion systemp0p0 in the forward di-
rection, i.e., approximately along the beam line. In the Jack-
son frame, the decay amplitudes are again given by Eq.~26!
and the resulting angular distribution is given by Eq.~28!.
Because of the identity of the two final-state particles, the
odd l ’s are absent and thereforeH(LM )50 if L5odd. It
should be emphasized, once again, thatH(LM )’s are always
real from parity conservation in the production process.

Let l m be the maximum spin present in a givenpp mass
bin. It is easy to show that the number of independent non-
zeroH ’s is

Ne53l m11. ~57!

Ne as a function ofl m is given below as a table:

l m 0 2 4 6

Ne 1 7 13 19

The ambiguity problem in the amplitude analysis can be
dealt with in exactly the same way as in the case of two
dissimilar particles, except that all the odd waves should be
set to zero, i.e.,@ l #50 for l 5odd. There arel m/2 partial
waves greater than theS wave ~which could be set to be
real!. Under the assumption that thez component of spin is
either zero or61, each wave greater than zero requires three
complex numbers, but one wave of natural-parity exchange
could be set to be real. One concludes therefore that there are
3l m real parameters to be determined. But the number of
nonzero moments was shown to be 3l m11 in the previous
section—indicating that there must exist one linear relation-
ship among the moments. Such relationships are given ex-
plicitly in the two examples worked out in this paper.

Consider once again a system in which the highest al-
lowed partial wave is given byl m5even. It is shown in
Appendix B that the ambiguities among the partial waves
with unnatural-parity exchange are determined by an exami-
nation of thel m complex rootsvk of the function

G2~v !5
1

ul m
G2~u!5

1

ul m
~11u2! l m@h0~u!1&h2~u!#

5al m)k51

l m

~v2vk!, ~58!

which is a polynomial inv of order l m and al m
is the

coefficient of v l m. The new variablev is related tou
5tan(u/2) via

v5
1

u
2u52 cotu. ~59!

Recall that the complex conjugate of a rootvk does not per-
turb H(LM ) and hence leaves the angular distribution in-
variant but could alter the partial waves. Since taking the
complex conjugate ofall the roots does not lead to a new
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solution, there are in general 2l m21 solutions. Theh func-
tions appearing in the function are given in terms of the
partial waves@ l #0 and @ l #6 :

1

ul m
~11u2! l mh0~u!5 (

l 50

l m

A2l 11@ l #0

3S 1

u
1uD l m2l

«0
l ~u!,

1

ul m
~11u2! l mh6~u!5 (

l 51

l m

A2l 11@ l #6

3S 1

u
1uD l m2l

«1
l ~u!, ~60!

where a new function« is defined by

«m
l ~u!5

1

ul em0
l ~u!. ~61!

For the casel 5m50, one sees that

«0
0~u!51. ~62!

It is shown in Appendix B that both the« function and

S 1

u
1uD n

52n cscn u ~63!

for even ncan be expressed as polynomials in a single vari-
ablev.

The ambiguity among the partial waves@ l #1 can be
treated by examining the function

G1~v !5
1

ul m
G1~u!5

1

ul m
~11u2! l mh1~u!

5c1v )
k51

l m/221

~v22r k!, ~64!

wherec1 is the coefficient ofv l m21 and comes withl m/2
21 complex rootsr k . This means that there exists a total of
2l m/222 ambiguous solutions involving@ l #1 . Combining

TABLE I. Moments in terms of partial waves.

~a!

Ua U U U U U U U U
00300 00310 00311 00320 00321 10310 10311 10320 10321

H(00) 1 1
H(10) 1/3b 4/15
H(11) 1/6 1/10
H(20) 1/5 4/25
H(21) 1/10 3/50
H(30) 27/245
H(31) 12/245

~b!

Uc U U U U U Nd N N
11311 11320 11321 20320 20321 21321 11311 11321 21321

H(00) 1 1 1 1 1
H(10) 1/5b 1/5
H(11) 21/30
H(20) 21/25 4/49 1/49 21/25 1/49
H(21) 1/98
H(22) 3/50 3/98 23/50 23/98
H(30) 29/245 29/245
H(31) 9/245
H(32) 3/98 23/98
H(40) 4/49 216/441 216/441
H(41) 5/147
H(42) 10/441 210/441

aThe waves with unnatural-parity exchange. The notations are, e.g., (00)(00)5S0S0* 5uS0u2 and (00)(11)
5S0P2* 1P2S0* 52 Re$S0P2* %.
bA square root is understood for both numerators and denominators. An example:22/3 stands for2A2/3.
cThe waves with unnatural-parity exchange. The notations are, e.g., (20)(20)5D0D0* 5uD0u2 and ~11!~21!
5P2D2* 1D2P2* 52 Re$P2D2* %.
dThe waves with natural-parity exchange. The notations are, e.g., (11)(11)5P1P1* 5uP1u2 and (11)(21)
5P1D1* 1D1P1* 52 Re$P1D1* %.

56 7305TECHNIQUES OF AMPLITUDE ANALYSIS FOR TWO- . . .



the two ambiguities, one concludes that a system containing
partial waves forl <l m has a total ofNa

e52l m212l m/222

ambiguous solutions.3

Na
e is given below forl m<6:

l m 0 2 4 6

Na
e 1 2 8 64

VI. EXAMPLE WITH S, P, AND D WAVES

Consider an example of theph system withl m52, pro-
duced in reaction~1!. For the sake of completeness, all the
relevant moments are given here in terms of the partial
waves in the problem; see Eqs.~38!. The results are tabulated
in Table I, and are given explicitly in the next set of equa-
tions:

H~00!5S0
21P0

21P2
2 1D0

21D2
2 1P1

2 1D1
2 ,

H~10!5
1

)
S0P01

2

A15
P0D01

1

A5
~P2D21P1D1!,

H~11!5
1

A6
S0P21

1

A10
P0D22

1

A30
P2D0 ,

H~20!5
1

A5
S0D01

2

5
P0

22
1

5
~P2

2 1P1
2 !1

2

7
D0

2

1
1

7
~D2

2 1D1
2 !,

H~21!5
1

A10
S0D21

1

5
A3

2
P0P21

1

7&
D0D2 ,

H~22!5
1

5
A3

2
~P2

2 2P1
2 !1

1

7
A3

2
~D2

2 2D1
2 !,

H~30!5
3

7A5
~)P0D02P2D22P1D1!,

H~31!5
1

7
A3

5
~2P0D21)P2D0!,

H~32!5
1

7
A3

2
~P2D22P1D1!,

H~40!5
2

7
D0

22
4

21
~D2

2 1D1
2 !,

H~41!5
1

7
A5

3
D0D2 ,

H~42!5
A10

21
~D2

2 2D1
2 !. ~65!

One should note that the momentsH(4M ) have contribu-
tions from theD wave only, while the momentsH(3M )
result from interference betweenP andD waves.

In terms of the experimentally measured moments$H% ’s,
the f functions are, from Eq.~44!,

~11u2!4f M~u!5 (
L50

4

~2L11!H~LM !~11u2!42LeM0
L ~u!

~66!

or, explicitly,

~11u2!4f 0~u!5H~00!~11u2!413H~10!~11u2!3~12u2!

15H~20!~11u2!2~124u21u4!

17H~30!~11u2!~129u219u42u6!

19H~40!~1216u2136u4216u61u8!,

~11u2!4f 1~u!523&H~11!~11u2!3u25A6H~21!

3~11u2!2u~12u2!214)H~31!~11u2!

3u~123u21u4!218A5H~41!u~126u2

16u42u6!,

~11u2!4f 2~u!55A6H~22!~11u2!2u217A30H~32!

3~11u2!u2~12u2!19A10H~42!u2

3~328u213u4!. ~67!

Suppose now that one has found a set of solutions
$S0 ,P0 ,P2 ,D0 ,D2% for unnatural-parity exchange and
$P1 ,D1% for natural-parity exchange. It is helpful to write
down theh’s explicitly:

~11u2!2h0~u!5S0~11u2!21)P0~12u4!

1A5D0~124u21u4!,

&~11u2!2h2~u!522u@)P2~11u2!

1A15D2~12u2!#,

&~11u2!2h1~u!522u@)P1~11u2!

1A15D1~12u2!#. ~68!

The last equation above shows that there are no ambiguities
for the partial wavesP1 andD1 , since the expression inside
the square brackets is linear inu2. On the other hand, from
the first two equations, one finds that the functiong(u) is
given by

G~u![&~11u2!2g~u!5S0~11u2!21)P0~12u4!

1A5D0~124u21u4!22)P2~u1u3!

22A15D2~u2u3!, ~69!

which is a polynomial of order 4 inu and thus gives rise to
the ambiguities in the unnatural-parity partial waves through
the Barrelet zeros.3This formula is valid only ifl m>4.
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One may write

G~u!5a4u42a3u31a2u22a1u1a0 , ~70!

with

a45S02)P01A5D0 ,

a352)~P22A5D2!,

a252S024A5D0 ,

a152)~P21A5D2!,

a05S01)P01A5D0 . ~71!

The inverse is

6S052a01a212a4 ,

2)P05a02a4 ,

6A5D05a02a21a4 ,

4)P25a11a3 ,

4A15D25a12a3 . ~72!

SinceG(u) is a fourth-order polynomial inu with four com-
plex roots$u1 ,u2 ,u3 ,u4%, it is given by

G~u!5a4~u2u1!~u2u2!~u2u3!~u2u4!, ~73!

so that

a35a4~u11u21u31u4!,

a25a4~u1u21u1u31u1u41u2u31u2u41u3u4!,

a15a4~u1u2u31u2u3u41u3u4u11u4u1u2!,

a05a4~u1u2u3u4!. ~74!

Finally, substituting these into Eqs.~72!, the partial waves
can be expressed in terms of the roots or the Barrelet zeros:

6S05a4~2u1u2u3u41u1u21u1u31u1u41u2u31u2u4

1u3u412!,

2)P05a4~u1u2u3u421!,

6A5D05a4~u1u2u3u42u1u22u1u32u1u42u2u32u2u4

2u3u411!,

4)P25a4~u1u2u31u2u3u41u3u4u11u4u1u21u11u2

1u31u4!,

4A15D25a4~u1u2u31u2u3u41u3u4u11u4u1u22u12u2

2u32u4!. ~75!

These expressions show how the ambiguities in the partial
waves can be explored through complex conjugation of one

or more of the Barrelet zeros. It should be borne in mind,
however, thata4 above is fixed and is given by the original
set of the partial waves; see Eqs.~71!. More precisely, its
magnitudeua4u must remain invariant.

There should be in general eight ambiguous solutions in-
volving the partial wavesS0 , P0 , P2 , D0 , andD2 . The
eight solutions are enumerated below in two columns:

$u1 ,u2 ,u3* ,u4* % $u1 ,u2 ,u3* ,u4%,

$u1 ,u2 ,u3 ,u4% $u1 ,u2 ,u3 ,u4%,

$u1 ,u2 ,u3 ,u4* % $u1* ,u2 ,u3 ,u4%,

$u1 ,u2 ,u3* ,u4% $u1 ,u2* ,u3 ,u4%,

$u1 ,u2 ,u3* ,u4* % $u1 ,u2 ,u3* ,u4%,

$u1 ,u2* ,u3 ,u4% $u1 ,u2 ,u3 ,u4* %,

$u1 ,u2* ,u3 ,u4* % $u1* ,u2* ,u3 ,u4%,

$u1 ,u2* ,u3* ,u4% $u1* ,u2 ,u3* ,u4%,

$u1 ,u2* ,u3* ,u4* % $u1* ,u2 ,u3 ,u4* %. ~76!

The first column results from a procedure in whichu1 is left
invariant and the remaining three rootsu2 , u3 , andu4 are
allowed to undergo complex conjugation—one sees that
there are 2358 ways of doing this. The second column rep-
resents an alternative method of ennumerating the eight am-
biguous solutions. For each solution, a newG(u) is given by
Eq. ~73!, and hence one obtains newh’s via

h0~u!5
1

&
@g~u!1g~2u!#,

h2~u!5
1

2
@g~u!2g~2u!#, ~77!

and the new partial waves$S0 ,P0 ,P2 ,D0 ,D2% are given by
Eqs.~75!. Note thatS0 may become complex in the process,
but it can be made real again by dividing each wave in the
set by the phase ofS0 .

One can find the correspondingP1 andD1 from

uh1~u!u25uh2~u!u222 f 2~u!. ~78!

Formulas~67! and ~68! show that, if the factoru2 is taken
out from both sides of the equation above, then one is left
with a quadratic function inu2. One can, therefore, findP1 ,
D1 and the phase difference between the two, by setting the
three coefficients to zero. But a more direct way of finding
them is contained in Tables I~a! and I~b!. One sees that
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uD1u25uD2u22
21

A10
H~42!,

uP1u25uP2u213A5

2
H~42!25A2

3
H~22!,

2 Re$P1D1* %52 Re$P2D2* %27A2

3
H~32!. ~79!

It is clear that any solution resulting in negative values for
the first two equations above is not allowed. In addition, any
solution which makes the cosine of the phase difference
greater than 1 is clearly not allowed.

VII. SYSTEM WITH S, P, D, AND F WAVES

In this section, a brief description is given of a system
containing the partial wavesl 50, 1, 2, and 3. There are 13
parameters to be determined describing the seven amplitudes
S0 , P0 , D0 , F0 , P2 , D2 , andF2 produced via unnatural-
parity exchange, and there are 5 parameters for three ampli-
tudesP1 , D1 , andF1 with natural-parity exchange. There
are, on the other hand, 18 real momentsH(LM ) with 0<L
<6 andM50, 1, and 2, which specify the angular distribu-
tion. Therefore, it is in general possible to find a set of am-
plitudes satisfying the moments, but the process is not
unique, and there are in fact a total of 64 ambiguous solu-
tions.

The h functions are given by, from Appendix A,

~11u2!3h0~u!5S0~11u2!31)P0~11u2!2~12u2!

1A5D0~11u2!~124u21u4!

1A7F0~129u219u42u6!,

&~11u2!3h2~u!522u@)P2~11u2!21A15D2~12u4!

1A42F2~123u21u4!#,

&~11u2!3h1~u!522u@)P1~11u2!21A15D1~12u4!

1A42F1~123u21u4!#. ~80!

The functiong(u) is given by

G~u![&~11u2!3g~u!5a6u62a5u51a4u42a3u31a2u2

2a1u1a0 , ~81!

which is a polynomial of order 6 inu and the ambiguities in
the unnatural-parity partial waves can be found through the
Barrelet zeros, as before. From Eqs.~80!, one sees that

a65S02)P01A5D02A7F0 ,

a05S01)P01A5D01A7F0 ,

a453S02)P023A5D019A7F0 ,

a253S01)P023A5D029A7F0 ,

a552)P222A15D212A42F2 ,

a152)P212A15D212A42F2 ,

a354)P226A42F2 . ~82!

The inverse is

12S053~a61a0!1~a41a2!,

12A5D053~a61a0!2~a41a2!,

20)P059~a02a6!1~a22a4!,

20A7F05~a02a6!2~a22a4!,

20)P253~a51a1!12a3 ,

10A42F25~a51a1!2a3 ,

4A15D25a12a5 . ~83!

SinceG(u) is a sixth-order polynomial inu with six com-
plex roots$ui%, i 51 – 6, it can be written

G~u!5a6~u2u1!~u2u2!~u2u3!~u2u4!~u2u5!~u2u6!,
~84!

so that

a55a6~u11u21u31u41u51u6!,

a45a6(
P

uiuj ,

a35a6(
P

uiujuk ,

a25a6(
P

uiujukul ,

a15a6(
P

uiujukul um ,

a05a6~u1u2u3u4u5u6!. ~85!

The sums are over all permutations with the conditioni , j
,k,l ,m. Note that there are 15 terms ina4 , 20 ina3 , 15
in a2 , and 6 ina1 . Finally, substituting these into Eqs.~83!,
the partial waves can be expressed in terms of the Barrelet
zeros. An operationui→ui* for any i does not perturb
H(LM ) and therefore results in an ambiguous solution.
Since taking the complex conjugate of all six roots is not a
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new solution, one can leaveu1 invariant, and take complex
conjugates of all the rest—there are thus 25532 ways of
doing this, and this is the number of ambiguous solutions
involving the waves with unnatural-parity exchange.

An examination ofh1(u) in Eqs. ~80! reveals that it is
proportional to a polynomial of order 2 inu2 involving the
partial waves with natural-parity exchange. DefineQ(u) by

Q~u!5)P1~11u2!21A15D1~12u4!

1A42F1~123u21u4!

5b2u42b1u21b0 , ~86!

so that

b25)P12A15D11A42F1 ,

b05)P11A15D11A42F1 ,

b1522)P113A42F1 . ~87!

The inverse is

5A42F15b01b11b2 ,

10)P153b022b113b2 ,

2A15D15b02b2 . ~88!

Let r 1and r 2 be two roots given by

Q~u!5b2~u22r 1!~u22r 2!. ~89!

Then one finds

b15b2~r 11r 2!,

b05b2r 1r 2 . ~90!

Finally, substituting these into Eqs.~88! with r 2→r 2* , one
can obtain an alternate solution involving the partial waves
with natural-parity exchange.

There exist two solutions involvingP1 , D1 , andF1 for
each of the 32 partial-wave sets with unnatural-parity
exchange—one sees therefore that there must exist in general
a total of 64 ambiguous solutions for a system containing
spins up to 3. Because there should exist in general two
distinct solutions forP1 , D1 , andF1 , it is not possible to
invert the formulas forH(L2) with 2<L<6 and solve for
the amplitudes algebraically—the reader will recall that this
was possible for the problem containingl 50, 1, and 2~see
Sec. V!. Instead, one must resort to a function-minimization
routine to find one set of solutions forP1 , D1 , andF1 for
each of the 32 partial-wave sets with unnatural-parity ex-
change; the second set can then be found through the tech-
nique of Barrelet zeros@see Eq.~89!#. Not all 64 solutions
are ‘‘correct’’ in general; for each set one must calculate all
the predictedH(LM )’s and check that they are identical to
the experimental moments—at least within the error bars.

VIII. EXAMPLE WITH S AND D WAVES

Consider a case of two identical spinless particles with
l m52. There are five parameters involving the partial waves
with unnatural-parity exchange, i.e.,S0 ~real!, D0 ~complex!,
and D2 ~complex!, and only one parameter,D1 ~real!, for
the partial wave produced by natural-parity exchange. So one
sees that a total of six parameters are required in this case.

The unnormalized moments are expressed in terms of the
partial waves and are given in Eqs.~65! but with odd-L
moments missing. Not all seven moments listed are indepen-
dent; one finds, in fact,

2A5H~22!53)H~42!. ~91!

Therefore, there are six independent moments, correspond-
ing to six partial-wave parameters to be determined in the
problem.

Recall that the ambiguities among the partial waves with
unnatural-parity exchange are determined by the complex
roots of the function

G2~v !5S0S 1

u
1uD 2

1A5D0«0
2~u!1A10D2«1

2~u!

5a2v22a1v1a0 , ~92!

where

a25S01A5D0 ,

a152A15D2 ,

a054S022A5D0 . ~93!

Solving for S0 andD0 , one finds

6S05a012a2 ,

6A5D052a014a2 . ~94!

The Barrelet zeros are

$v1 ,v2%5
a16Aa1

224a0a2

2a2
, ~95!

where

G2~v !5a2~v2v1!~v2v2!, ~96!

and one finds

a15a2~v11v2!,

a05a2~v1v2!. ~97!

Finally, the partial waves can be expressed in terms of the
Barrelet zeros:

6S05a2~v1v212!,

6A5D05a2~2v1v214!,

2A15D25a2~v11v2!. ~98!
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There exist two ambiguous solutions, corresponding to the
sets$v1 ,v2% and$v1 ,v2* %.

The one wave with natural-parity exchange,D1 , can be
set to be real, to be determined from any one of the moments
H(20), H(22), H(40), or H(42). There are thus no ambi-
guities involvingD1 .

IX. EXAMPLE WITH S, D, AND G WAVES

Consider a system which consists of two identical spinless
particles with l m54. This problem requires a total of 12
parameters to be fitted, consisting ofS0 , D0 , D2 , G0 , G2 ,
D1 , andG1 which are complex in general. As in previous
examples, one may set one wave to be real in each group of
a given naturality, e.g.,S0 andD1 .

The relevant moments are given below in terms of the
partial waves:

H~00!5S0
21D0

21D2
2 1G0

21G2
2 1D1

2 1G1
2 ,

H~20!5
1

A5
S0D01

2

7
D0

21
1

7
~D2

2 1D1
2 !1

6

7A5
D0G0

1
A6

7
~D2G21D1G1!1

20

77
G0

21
17

77
~G2

2 1G1
2 !,

H~21!5
1

A10
S0D21

1

7&
D0D21

)

7
D0G22

2&

5A5
D2G0

1
A15

77
G0G2 ,

H~22!5
1

7
A3

2
~D2

2 2D1
2 !2

1

14
~D2G22D1G1!

1
5A6

77
~G2

2 2G1
2 !,

H~40!5
2

7
D0

22
4

21
~D2

2 1D1
2 !1

1

3
S0G01

20A5

231
D0G0

1
162

1001
G0

21
5&

77)
~D2G21D1G1!

1
81

1001
~G2

2 1G1
2 !,

H~41!5
1

7
A5

3
D0D21

1

3&
S0G21

17A5

231&
D0G2

1
5

77)
D2G01

81

1001&
G0G2 ,

H~42!5
A10

21
~D2

2 2D1
2 !1

3A15

154
~D2G22D1G1!

1
27A10

1001
~G2

2 2G1
2 !. ~99!

They are continued into the next set of formulas:

H~60!5
15A5

143
D0G02

10A6

143
~D2G21D1G1!1

20

143
G0

2

2
1

143
~G2

2 1G1
2 !,

H~61!5
5A21

143
D0G21

5A35

143&
D2G01

A105

143
G0G2 ,

H~62!5
2A70

143
~D2G22D1G1!1

A105

143
~G2

2 2G1
2 !,

H~80!5
490

2431
G0

22
392

2431
~G2

2 1G1
2 !,

H~81!5
147A5

2431
G0G2 ,

H~82!5
42A35

2431
~G2

2 2G1
2 !. ~100!

It is seen that there are 13 real moments, but the moments
H(LM ) with M52 are not independent. It can be shown, in
fact, that

6A70H~22!224A42H~42!1182H~62!2119)H~82!50.
~101!

This shows that there exist 12 independent moments corre-
sponding to 12 parameters to be fitted for the partial waves in
the problem.

One finds, from Eq.~58!,

G2~v !5S0S 1

u
1uD 4

1A5D0S 1

u
1uD 2

«0
2~u!13G0«0

4~u!

1A10D2S 1

u
1uD 2

«1
2~u!13&G2«1

4~u!

5a4v42a3v31a2v22a1v1a0 , ~102!

and the coefficients are

a45S01A5D013G0 ,

a258S012A5D0236G0 ,

a0516S028A5D0118G0 ,

a352A15D216A10G2 ,

a158A15D2218A10G2 . ~103!

Solving for the partial waves, one finds
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30S05a01a216a4 ,

42A5D0522a01a2124a4 ,

210G05a024a2116a4 ,

14A15D25a113a3 ,

42A10G252a114a3 . ~104!

Let $v1 ,v2 ,v3 ,v4% be the complex roots of the function
G2(v), so that

a15a4~v11v21v31v4!,

a25a4~v1v21v1v31v1v41v2v31v2v41v3v4!,

a35a4~v1v2v31v2v3v41v3v4v11v4v1v2!,

a45a4~v1v2v3v4!. ~105!

The partial waves are determined by substituting these into
Eqs. ~104!. Since taking the complex conjugate of all four
roots is not a new solution, one can leave one root fixed and
take complex conjugates of the remaining three—there are
thus 2358 ways of doing this, and this is the number of
ambiguous solutions involving the partial waves with
unnatural-parity exchange.

Given a set of the partial waves with unnatural-parity ex-
change, one can calculate the partial wavesD1 andG1 and
the phase between them via Eqs.~99! and ~100!:

uG1u25uG2u22
2431

42A35
H~82!,

uD1u25uD2u22
7&

)
H~22!1

221

4A35
F17

14
H~82!

2
11

17)
H~62!G ,

2 Re$D1G1* %52 Re$D2G2* %1
143

2A70
F 17

14)
H~82!

2H~62!G . ~106!

From this, one must conclude that the partial wavesD1 and
G1 with natural-parity exchange can be determined
uniquely—subject to the conditions thatuD1u2 and uG1u2

cannot be negative and that the cosine of the angle between
D1 andG1* cannot be greater than 1. Therefore, the problem
of finding S, D, andG partial waves amounts to exploring in
general eight ambiguous solutions among the partial waves
with unnatural-parity exchange.

X. EXPERIMENTAL MEASUREMENT
OF THE MOMENTS

The partial waves@ l #0 , @ l #2 , and @ l #1 can be used
directly as unknown parameters in the extended maximum-
likelihood fits @12#. Because there is an absolute scale in an
extended maximum-likelihood fit, one obtains directly the
predicted numbers of events for all the partial waves, cor-
rected for finite acceptance and angular distributions. The
partial waves in turn give rise to a set of predicted moments
$H%, as given in Tables I~a! and I~b! in the case of theph
system. But theH(00) is not 1@~10!# but the total predicted
number of events from the fit@see Eq.~39!#; i.e., one should
be using the unnormalized moments. One could chooseH ’s
as unknowns in the fit, but the two sets ofH ’s should be the
same ideally—this affords one an effective way of assessing
self-consistency between the moments and the partial waves.

One may determine directly the experimental moments
~unnormalized! as follows:

Hx~LM !5(
i

n

DM0
L ~f i ,u i ,0!, ~107!

where the sum is over a given numbern of experimental data
in a mass bin. But this is given by, from Eq.~9!,

Hx~LM !5E dVh~V!I ~V!DM0
L ~f,u,0!, ~108!

whereh~V! represents the finite acceptance of the apparatus,
and it includes software cuts, if any. From Eq.~6!, one finds
that

Hx~LM !5 (
L8M8

H~L8M 8!Cx~LML8M 8!, ~109!

where

Hx~LML8M 8!5S 2L81 1

4p D E dVh~V!DM0
L ~f,u,0!

3DM80
L8* ~f,u,0!. ~110!

Note that theC’s have a simple normalization

Cx~LML8M 8!5dLL8dMM8 ~111!

in the limit h(V)51. The integral~110! can be calculated
using a sample of ‘‘accepted’’ Monte Carlo~MC! events. Let
Nx be the number of accepted MC events, out of a total ofN
raw MC events. Then, the integral is

Cx~LML8M 8!5S 2L81 1

4p D 1

N (
i

Nx

DM0
L ~f i ,u i ,0!

3DM80
L8* ~f i ,u i ,0!. ~112!
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Equation~109! shows that one can predict the experimen-
tally measurable moments~107!, given a set$H% and C’s;
this provides a means of assessing the goodness of fit by
forming ax2 based on the set$Hx%.

There exists an alternative method of determiningC’s.
For the purpose, one expands the acceptance functionh~V!
in terms of the orthonormalD functions, as follows:

h~V!5(
LM

~2L11!j~LM !DM0
L* ~f,u,0!, ~113!

wherej(LM ) is given by

j~LM !5
1

4p E dVh~V!DM0
L ~f,u,0!, ~114!

The complex conjugate is, from the defining formula above,

j* ~LM !5~2 !Mj~L2M !, ~115!

so that the acceptance function can be made explicitly real,

h~V!5(
LM

~2L11!t~M !Re$j~LM !DM0
L* ~f,u,0!%,

~116!

using thet(M ) introduced in Eq.~14!. A set of j(LM )
specifies completely the acceptance in the problem. The nor-
malization for the acceptance function has been chosen such
that a perfect acceptance is given byh(V)51 andj(LM )
5dL0dM0 . The j(LM )’s can be measured experimentally
using the accepted MC events

j~LM !5
1

4pN (
i

Nx

DM0
L ~f i ,u i ,0!. ~117!

Finally, substituting Eq.~113! into Eq. ~110!, one finds

Cx~LML8M 8!5 (
L9M9

~2L911!j* ~L9M 9!

3~LML9M 9uL8M 8!~L0L90uL80!.

~118!

This formula shows an important aspect of thej(LM ) tech-
nique of representing acceptance. Although Eq.~114! in-
volves a sum in whichL andM could be extended to infinity
for an arbitrary acceptance, there is a cutoff if the set$H% has
maxima Lm and Mm @see Eq.~109!#. The formula above
demonstrates thatL9<2Lm and uM 9u<2Mm .

For completeness, a short comment is given on the ex-
tended likelihood functions. The likelihood function for find-
ing n events of a given bin with a finite acceptanceh~V! is
defined as a product of the probabilities:

L}F n̄n

n!
e2 n̄G)

i

n F I ~V i !

* I ~V!h~V!dV G , ~119!

where the first brackets are the Poisson probability forn
events. This is the so-called extended likelihood function, in
the sense that the Poisson distribution forn itself is included
in the likelihood function. The expectation valuen̄ for n is
given by

n̄}E I ~V!h~V!dV. ~120!

The likelihood functionL can now be written, dropping the
factors depending onn alone,

L}F)
i

n

I ~V i !GexpF2E I ~V!h~V!dV G .

The ‘‘log’’ of the likelihood function now has the form

ln L}(
i

n

ln I ~V i !2E dVh~V!I ~V!, ~121!

which can be recast in terms of thej(LM )’s:

ln L}(
i

n

ln I ~V i !2(
LM

~2L11!H~LM !j* ~LM !

}(
i

n

ln I ~V i !2(
LM

~2L11!t~M !H~LM !Re j~LM !.

~122!

H(LM )’s may be used directly as parameters in the fit or
may be given as functions of the partial waves. It is interest-
ing to note that thej(LM )’s for L.Lm and uM u.Mm are
not needed in the likelihood fit. Note also that only the real
part of thej(LM )’s are used in the fit.

It should be borne in mind that a set of the moments$H%
may not always be expressed in terms of the partial waves.
This is clear if one examines Tables I~a! and I~b!. Consider,
for example, an angular distribution in whichH(10) is the
only nonzero moment. But this moment is given by a set of
interference terms involving even-odd partial waves. So at
least one term cannot be zero—for example, the interference
term involvingS and P waves. But then neitherH(00) nor
H(20) can be zero, since bothS and P waves are nonzero.
One must conclude then that ax2 based on the set$Hx% may
not necessarily be zero identically.
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APPENDIX A: DERIVATION OF e FUNCTIONS

The d functions are normally given, from Rose@16#, as

dm8m
l

~u!5~2 !m82m@~ l 1m8!!

3~ l 2m8!! ~ l 1m!! ~ l 2m!! #1/2

3 (
k5k1

k2 ~2!kcos2l 2n~u/2!sinn~u/2!

~ l 2m82k!! ~ l 1m2k!! ~m82m1k!!k!
,

~A1!

wheren5m82m12k andk is a non-negative integer rang-
ing betweenk1 andk2 given by

k15max$0, m2m8%, k25min$l 2m8, l 1m%.
~A2!

Note thatn is also a non-negative integer. It is seen that the
d functions are nonsingular polynomials of order up to 2l in
two variables cos(u/2) and sin(u/2); they both range from 0
to 1, asu goes from 0 top. From the definition~A1!, one
finds the following relationships:

dm8m
l

~2u!5~2 !m82mdm8m
l

~u!,

dm8m
l

~u!5~2 !m82mdmm8
l

~u!,

dm8m
l

~u!5~2 !m82md2m82m
l

~u!,

dm8m
l

~p2u!5~2 ! l 1m8dm82m
l

~u!. ~A3!

The d functions depend in reality onz5cosu only,
through

x5sin
u

2
5A12z

2
and y5cos

u

2
5A11z

2
.

~A4!

This assertion is valid as long asu remains within the range
(0→p). In particular, negative values ofu are not allowed
in this scheme. But note thatu,0 is equivalent to

V5~2u,f!→V85~1u,p1f! ~A5!

and thatu is always positive in practice, since cosu is evalu-
ated as a scalar product of two momenta. With this proviso,
then, there should not be any sign of ambiguities inx andy
as defined by Eqs.~A4!. The d functions in terms of the
variablesx andy are given in this appendix, as the existing
tabulations are rarely given in these variables. For the pur-
pose it is sufficient to consider only those withm8>0 and
m8>umu because of the symmetry relations ford @see Eqs.
~A3!#. With these restrictions, the summation onk in Eq.
~A1! ranges fromk150 to k25l 2m8, and thed functions
take on the form

dm8m
l

~z!

5~2 !m82m@~ l 1m8!!

3~ l 2m8!! ~ l 1m!! ~ l 2m!!] 1/2xm82m

3F (
k5k1

k2 ~2 !kx2ky2~ l 2m82k!

~ l 2m82k!! ~ l 1m2k!! ~m82m1k!!k! G
3ym81m. ~A6!

Note that all the exponents are non-negative. The function in
the square brackets is a polynomial inx2 and iny2, each of
order l 2m8. The d function itself is a polynomial inx of
order 2l 2(m81m) and iny of order 2l 2(m82m).

The d functions are tabulated here forl up to 3:

l m8 m dm8m
l (z)

0 0 0 1

1 1 1 y2

1 1 0 2&xy

1 1 21 x2

1 0 0 y22x2

2 2 2 y4

2 2 1 22xy3

2 2 0 A6x2y2

2 2 21 22x3y

2 2 22 x4

2 1 1 (y223x2)y2

2 1 0 2A6x(y22x2)y

2 1 21 x2(3y22x2)

2 0 0 y424x2y21x4

l m8 m dm8m
l (z)

3 3 3 y6

3 3 2 2A6xy5

3 3 1 A15x2y4

3 3 0 22A5x3y3

3 3 21 A15x4y2

3 3 22 2A6x5y

3 3 23 x6

3 2 2 (y225x2)y4

3 2 1 2A10x(y222x2)y3

3 2 0 A30x2(y22x2)y2

3 2 21 2A10x3(2y22x2)y

3 2 22 x4(5y22x2)

3 1 1 (y428x2y216x4)y2

3 1 0 22)x(y423x2y21x4)y

3 1 21 x2(6y428x2y21x4)

3 0 0 y629x2y419x4y22x6
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The d functions forl 54 are given below:
l m8 m dm8m

l (z)

4 4 4 y8

4 4 3 221&xy7

4 4 2 2A7x2y6

4 4 1 22A14x3y5

4 4 0 A70x4y4

4 4 21 22A14x5y3

4 4 22 2A7x6y2

4 4 23 22&x7y

4 4 24 x8

l m8 m dm8m
l (z)

4 3 3 (y227x2)y6

4 3 2 2A14x(y223x2)y5

4 3 1 A7x2(3y225x2)y4

4 3 0 22A35x3(y22x2)y3

4 3 21 A7x4(5y223x2)y2

4 3 22 2A14x5(3y22x2)y

4 3 23 x6(7y22x2)

4 2 2 (y4212x2y2115x4)y4

4 2 1 2&x(3y4215x2y2110x4)y3

4 2 0 A10x2(3y428x2y213x4)y2

4 2 21 2&x3(10y4215x2y213x4)y

4 2 22 x4(15y4212x2y21x4)

4 1 1 (y6215x2y4130x4y2210x6)y2

4 1 0 22A5x(y626x2y416x4y22x6)y

4 1 21 x2(10y6230x2y4115x4y22x6)

4 0 0 y8216x2y6136x4y4216x6y21x8

Next an alternative expression for the functiondm8m
l (u) is

given as a ratio of two polynomials in a single variable. One
finds, collecting the terms of exponentn in Eq. ~A1! into a
single term,

dm8m
l

~u!5S cos
u

2D 2l

em8m
l S tan

u

2D , ~A7!

where thee function is now a polynomial of order up to 2l
in a single variableu5tan(u/2) given by

em8m
l

~u!

5~2 !m82mum82m@~ l 1m8!! ~ l 2m8!!

3~ l 1m!! ~ l 2m!!] 1/2

3 (
k5k1

k2 ~2 !ku2k

~ l 2m82k!! ~ l 1m2k!! ~m82m1k!!k!
.

~A8!

One may re-express thed functions in terms of the vari-
ableu only, as follows:

dm8m
l

~u!5
em8m

l
~u!

~11u2! l . ~A9!

It is seen that this function remains finite, whenu→` as
u→p.

It is clear that all the symmetry relations for thed func-
tions apply to thee functions as well. Thus, one has

em8m
l

~2u!5~2 !m82mem8m
l

~u!,

em8m
l

~u!5~2 !m82memm8
l

~u!,

em8m
l

~u!5~2 !m82me2m82m
l

~u!,

em8m
l

~1/u!5~2 ! l 2m8em82m
l

~u!. ~A10!

The e functions are tabulated here forl up to 3:
l m8 m em8m

l (u)

0 0 0 1

1 1 1 1

1 1 0 2&u

1 1 21 u2

1 0 0 12u2

2 2 2 1

2 2 1 22u

2 2 0 A6u2

2 2 21 22u3

2 2 22 u4

2 1 1 123u2

2 1 0 2A6u(12u2)

2 1 21 u2(32u2)

2 0 0 124u21u4

l m8 m em8m
l (u)

3 3 3 1

3 3 2 2A6u

3 3 1 A15u2

3 3 0 22A5u3

3 3 21 A15u4

3 3 22 2A6u5

3 3 23 u6

3 2 2 125u2

3 2 1 2A10u(122u2)

3 2 0 A30u2(12u2)

3 2 21 2A10u3(22u2)

3 2 22 u4(52u2)

3 1 1 128u216u4

3 1 0 22)u(123u21u4)

3 1 21 u2(628u21u4)

3 0 0 129u219u42u6
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The e functions forl 54 are given below:

l m8 m em8m
l (u)

4 4 4 1

4 4 3 22&u

4 4 2 2A7u2

4 4 1 22A14u3

4 4 0 A70u4

4 4 21 22A14u5

4 4 22 2A7u6

4 4 23 22&u7

4 4 24 u8

l m8 m em8m
l (u)

4 3 3 127u2

4 3 2 2A14u(123u2)

4 3 1 A7u2(325u2)

4 3 0 22A35u3(1
2u2)

4 3 21 A7u4(523u2)

4 3 22 2A14u5(32u2)

4 3 23 u6(72u2)

4 2 2 1212u2115u4

4 2 1
2&u(3215u2

110u4)

4 2 0
A10u2(328u2

13u4)

4 2 21
2&u3(10215u2

13u4)

4 2 22 u4(15212u21u4)

4 1 1
1215u2130u4

210u6

4 1 0
22A5u(126u2

16u42u6)

4 1 21
u2(10230u2

115u42u6)

4 0 0
1216u2136u4

216u61u8

APPENDIX B: DERIVATION OF « FUNCTIONS

Consider a system of two identical pseudoscalars, so that
it consists of evenl ’s only. Let l m be the maximum even
partial wave present at a given mass bin. The purpose of this
appendix is to show that the function

G2~v !5
1

ul m
G2~u!5

1

ul m
~11u2! l m@h0~u!1&h2~u!#

~B1!

is a polynomial of orderl m in the variablev51/u2u. From
Eqs.~60!, one sees that this problem reduces to transforming
the function

1

ul m
~11u2! l m2l em0

l ~u!5S 1

u
1uD l m2l

«m
l ~u! ~B2!

into a new function of a single variablev. The function«
above is given by Eq.~61!, where l is even (0<l <l m)
andm50 or m51 (m<l ).

Theu dependence in Eq.~B2!, including that in«, can be
expressed through a function

~n;u![wn5
1

un 1~2u!n, ~B3!

wheren is an arbitrary integer (>0). It is definedthat w0
51 ~not 2!. This function can be transformed into a rational
function of v only, by noting that, from Eq.~59!,

1

u
5S v

2D6A11S v
2D 2

,

2u5S v
2D7A11S v

2D 2

. ~B4!

Substituting these into Eq.~B3!, one finds

wn5t~n!(
k50

k0 n!

~n22k!! ~2k!! S v
2D n22kF11S v

2D 2Gk

,

~B5!

wherek05n/2 if n is even (>0) andk05(n21)/2 if n is
odd (>1). If n is even,wn is a polynomial of ordern/2 in
v2. If n is odd, thenwn is a product ofv and a polynomial of
order (n21)/2 in v2.

In general,ul 2m«m
l (u) is a polynomial of orderl 2m in

u2 and is given by

«m
l ~u!5~2 !ml ! @~ l 1m!! ~ l 2m!! #1/2

1

ul 2m

3 (
k50

l 2m
~2 !ku2k

~ l 2m2k!! ~ l 2k!! ~m1k!!k!
.

~B6!

The key observation is that the denominators in the sum
remain invariant under the interchange ofk by l 2m2k, so
that

«m
l ~u!5~2 !ml ! @~ l 1m!! ~ l 2m!! #1/2

3 (
k50

km ~2 !k

~ l 2m2k!! ~ l 2k!! ~m1k!!k!

3w~ l 2m22k;u!. ~B7!

km5(l 2m21)/2 for oddl 2m>1 andkm5(l 2m)/2 for
evenl 2m>0. Expanding the expression inside the brackets
in Eq. ~B5!, one finds
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«m
l ~u!5~2 !ml ! @~ l 1m!! ~ l 2m!! #1/2

3 (
k50

km ~2 !kt~ l 2m22k!

~ l 2m2k!! ~ l 2k!! ~m1k!!k!

3(
i 50

i m ~ l 2m22k!!

~ l 2m22k22i !! ~2i !! (
j 50

i
i !

~ i 2 j !! j !

3S v
2D l 2m22k22i 12 j

, ~B8!

where i m5(l 2m22k)/2 for even (l 2m22k) and i m

5(l 2m22k21)/2 for odd (l 2m22k). So «0
l (u) is a

polynomial of orderl /2 in v2 and«1
l (u) is proportional tov

times a polynomial of orderl /221 in v2. The next task is to
note that, for evenn,

S 1

u
1uD n

5 (
k50

n/2
n!

~n2k!!k!
w~n22k;u!, ~B9!

which is a polynomial of ordern/2 in v2. Once again ex-
panding the expression inside the brackets in Eq.~B5!, one
sees that

S 1

u
1uD n

5 (
k50

n/2
n! t~n22k!

~n2k!!k! (
i 50

i 0 ~n22k!!

~n22k22i !! ~2i !!

3(
j 50

i
i !

~ i 2 j !! j ! S v
2D n22k22i 12 j

, ~B10!

wherei 05(n22k)/2 for even (n22k) and i 05(n22k21!/
2 for odd (n22k). Formulas~B7! and~B9! have now been
expressed explicitly as polynomials inv/2 only.

It is helpful to write down thewn’s explicitly for a few of
the practically important values ofn:

w051 by definition,

w15v,

w25v212,

w35v~v213!,

w45v414v212,

w55v~v415v215!,

w65v616v419v212. ~B11!

One is now ready to express the relevant functions in terms
of v. For example, one finds that

S 1

u
1uD 2

5w2125v214,

S 1

u
1uD 4

5w414w2165v418v2116,

S 1

u
1uD 6

5w616w4115w21205v6112v4148v2164.

~B12!

The « functions have the following expressions in terms of
wn andv:

«0
2~u!5w2245v222,

«1
2~u!52A6w152A6v,

«0
4~u!5w4216w21365v4212v216,

«1
4~u!522A5~w326w1!522A5v~v223!,

«0
6~u!5w6236w41225w224005v6230v4190v2220,

«1
6~u!52A42~w5215w3150w1!

52A42v~v4210v2110!. ~B13!

It is instructive to compare the polynomials«m
l (u) as

functions ofv in Eqs.~B13! with the functionsem0
l (u) given

at the end of Appendix A. One sees that the polynomials inv
have little resemblance to thee functions expressed as poly-
nomials in u. Although the polynomials«m

l (u) have been
derived from thee functions@see Eq.~B2!# and hence they
are ultimately related to the familiard functions via Eqs.
~A7!, the polynomials«m

l (u) have been transformed beyond
recognition as functions inv ~to the best of this authors’s
knowledge, such polynomials inv have never been encoun-
tered so far in physics—at least, and most definitely, in the
field of hadron spectroscopy!. See Eq.~B8! for an explicit
expression of«m

l (u) as a function ofv.
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