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Two-loop contributions to the electromagnetic form factors are calculated in the kinematic regime close to
the fermion-antifermion threshold. The results are presented in an expansion in the velocityb of the fermions
in the c.m. frame up to next-to-next-to-leading order inb. The existence of a new Coulomb singularity
logarithmic in b, which is closely related to theO(a2lna) corrections known from positronium decays, is
demonstrated. It is shown that due to this Coulomb singularityO(a2) relativistic corrections to the nonrela-
tivistic cross section of heavy-fermion–antifermion pair production ine1e2 annihilation cannot be determined
by means of conventional multiloop perturbation theory.@S0556-2821~97!05123-0#

PACS number~s!: 13.40.Gp, 13.10.1q, 13.25.Gv, 13.40.Hq

I. INTRODUCTION

In view of future experiments@Next Linear Collider
~NLC!, B factory, t-charm factory# where heavy-quark–
antiquark pairs will be produced in the kinematic region
close to the threshold and a large amount of data can be
expected, it is a very attractive idea that an extraction of the
strong couplingas at a specific scale~or equivalentlyLQCD)
might be possible which is accurate enough to allow for a
serious comparison to complementary determinations ofas

from high-energy experiments, where quark masses are
much smaller than the relevant energy scales. Such an analy-
sis would be an extremely important test of QCD. In recent
literature two attempts can be found@1,2# where such an
analysis has been carried out based on present data on prop-

erties ofb b̄ mesons and on theoretical calculations involving
well-known results in the nonrelativistic limit. The results of
these analyses are somewhat controversial indicating that a
better understanding of the structure and size of relativistic
corrections to the nonrelativistic limit and of the interplay of
these corrections with nonperturbative effects is mandatory.

The framework in which relativistic corrections can be
determined systematically in a very elegant way is nonrela-
tivistic quantum chromodynamics~NRQCD! @3# which is
based on the concept of effective field theories. NRQCD
consists of a nonrelativistic Schro¨dinger field theory with a
Coulomb-like QCD potential whereby relativistic effects are
incorporated by introduction of higher dimensional operators
in accordance to the underlying symmetries. In order to ren-
der NRQCD equivalent to QCD the NRQCD Lagrangian has
to be matched to predictions in the framework of conven-
tional multiloop perturbation theory. This procedure leads to,
in general, divergent renormalization constants multiplying
the operators in the NRQCD Lagrangian and is essentially
equivalent to a separation of short- and long-distance effects.
As far as the decay and production properties of a heavy-
quark–antiquark pair involving single photon annihilation in
the threshold regime are concerned the relevant parts of the
NRQCD Lagrangian have only been renormalized at leading
and next-to-leading order inas so far @4#.

In this paper we present the two-loop contributions to the
electromagnetic vertex describing the decay of a virtual pho-

ton into two massive fermions in the kinematic regime where
the squared photon four momentum is close to four times the
squared fermion mass. The calculation is performed in the
framework of QED where only one fermion species with
massM and electronic chargee exists. The result is pre-
sented up to next-to-next-to-leading order~NNLO! in an ex-
pansion in

b5A124
M2

q21 i e
, ~1!

which is equal to the velocity of the fermions in the c.m.
frame above threshold,1 Aq2 being the c.m. energy. We ana-
lyze the structure and form of the results and demonstrate the
existence of a new logarithmic Coulomb singularity occur-
ring at NNLO in the velocity expansion. In particular, we
will study the impact of this singularity on the massive
fermion-antifermion pair production cross section slightly
above the threshold. In the framework of QCD our two-loop
results represent all two-loop contributions involving the
color factorCF

2 ~from exchange of two virtual gluons! and
CFT ~from the exchange of one gluon with the insertion of
the fermion-antifermion vacuum polarization! and, therefore,
are a gauge-invariant subset of all two-loop QCD contribu-
tions in the threshold regime.2

The two-loop contributions calculated in this work repre-
sent a first step toward a two-loop renormalization of the
NRQCD Lagrangian describing single photon annihilation
processes involving heavy-quark–antiquark pairs. In particu-
lar, they are a crucial input for the determination of NNLO
relativistic corrections for the single photon annihilation con-
tributions to decay and production of heavy-quark–antiquark
bound states and for the production of heavy-quark–
antiquark pairs ine1e2 collisions slightly above threshold.

1Thusb will be called ‘‘velocity’’ for the rest of this paper. From
now on in this paper we use the notion ‘‘leading order’’~and NLO,
NNLO, NNNLO! exclusively for the expansion in the velocity.

2The two-loop contributions arising from the virtual effects of
massless fermions have been calculated in@5# for all ratiosM2/q2

above threshold and will not be discussed in this work.
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In the framework of QED the result is essential for the de-
termination of the single photon annihilation contributions to
the O(a6) triplet-singlet hyperfine splitting of the positro-
nium ground state.

The content of this work is organized as follows. In Sec.
II we explain the notation and introduce the electromagnetic
form factors relevant for our calculations and discussions. In
Sec. III we reanalyze the well-known one-loop contributions
to the form factors in the threshold region. We discuss the
structure and properties of the individual coefficients of the
expansion in smallb and derive predictions for the form of
the two-loop corrections based on the factorization of long-
and short-distance contributions. In Sec. IV the two-loop
corrections are explicitly calculated using the dispersion in-
tegration technique. It is demonstrated that the predictions of
Sec. III are realized and the logarithmic Coulomb singularity
is discussed. Section V contains a summary.

II. NOTATION AND DEFINITION
OF THE ELECTROMAGNETIC FORM FACTORS

It is common to parametrize radiative~multiloop! correc-
tions to the electromagnetic vertex, describing the decay of a
photon with virtualityq2 into a fermion-antifermion pair, in
terms of the Dirac (F1) and the Pauli (F2) form factors.
They are defined through the relation

ū~p8!Lm
emv~p!

5 ie ū~p8!FgmF1~q2!1
i

2M
smnqnF2~q2!Gv~p!, ~2!

where

q5p1p8

and

smn5
i

2
@gm ,gn#.

Expanded in the number of loops, which corresponds to an
expansion in powers of the fine structure constanta, the
form factorsF1 andF2 read

F1~q2!511S a

p DF1
~1!~q2!1S a

p D 2

F1
~2!~q2!1•••,

F2~q2!5S a

p DF2
~1!~q2!1S a

p D 2

F2
~2!~q2!1•••. ~3!

The use ofF1 and F2 is particularly convenient for the ki-
nematic pointq250 becauseF2(0)5(gf22)/2 is directly
related to the gyromagnetic ratio of the fermion and because
F1(0)51 @i.e., F1

(n)(0)50 for n51,2, . . . ,̀ # due to gauge
invariance. These properties are useful if dispersion relation
techniques are used to calculate higher loop contributions
because overall UV divergences toF1

(n) (n51,2, . . . ,̀ ) can
be automatically renormalized by using once-subtracted dis-
persion relations. ForF2, on the other hand, no overall UV
divergences exist which makes the use of unsubtracted dis-
persion relations convenient. Since the determination of our

two-loop results relies on the dispersion relation technique
we will use the form factorsF1 andF2 for the actual calcu-
lations.

For physical applications in the threshold region, where
q2'4M2, however, the use of the combinations

Gm5F11F2 , ~4!

Ge5F11
s

4M2
F2 ~5!

is more appropriate. This can be easily seen by considering
the contributions of the form factorsF1 andF2 to the cross
section for the production of a fermion-antifermion pair
~with fermion massM ) in e1e2 annihilation above thresh-
old. Taking the colliding electrons and positrons as massless
one arrives at the following angular distribution for the pro-
duced fermion pairs for the c.m. energyAq2 above thresh-
old:

ds~e1e2→ f f̄ !

dV

5
a2b

4q2 F uGmu2~11cos2u!1
4M2

q2
uGeu2sin2uG , ~6!

whereu is the deflection angle. The corresponding expres-
sion for the total cross section reads (spt54pa2/3q2)

R[
s~e1e2→ f f̄ !

spt
5bF uGmu21

1

2
~12b2!uGeu2G . ~7!

Gm and Ge are called magnetic and electric form factors,
respectively@6#. They can be easily identified as the total
spin projection~relative to the electron direction! 61 and 0
amplitudes describing the produced fermion-antifermion pair
in a triplet (JPC5122) state. Because the fermion-
antifermion production cross section represents one of the
most important applications of the corrections to the electro-
magnetic vertex we will discuss the structure and properties
of the corrections by analyzing the moduli squared of the
magnetic and electric form factors above threshold. Their
expansion in the number of loops~i.e., in powers of the fine
structure constant! reads

uGmu2511S a

p Dgm
~1!1S a

p D 2

gm
~2!1•••,

uGeu2511S a

p Dge
~1!1S a

p D 2

ge
~2!1•••. ~8!

We finally would like to emphasize that throughout this pa-
per the fermions are understood as stable particles and that
the on-shell renormalization scheme is employed, wherea is
the fine-structure constant andM the fermion pole mass.
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III. ONE-LOOP RESULTS

Analytic expressions for the one-loop contributions to the
electromagnetic vertex valid for all energies have been well
known for a long time@7,8#. In this section we reanalyze the
one-loop contributions in the threshold region in the velocity
expansion as a preparation for the examination of the two-
loop contributions in Sec. IV.

Regularizing the soft photon infrared divergences with a
fictitious small photon massl, where the hierarchyl/M
!ubu!1 is understood, the one-loop contributions to the
electromagnetic form factorsF1 andF2 assume the form

F1
~1!~q2! 5

b→0
i

p
2bF lnS 2

2ibM
l D2

1
2G2 3

2

1 i
pb

2 F lnS 2
2ibM

l D2
1

2G
2

4

3F lnS M

l D1
5

24Gb21O~b3!, ~9!

F2
~1!~q2! 5

b→0
i

p
4b 2

1
2 2 i

pb
4 1

1
3 b21O~b3! ~10!

in the velocity expansion up to NNNLO. Expressions~9! and
~10! are valid above as well as below the threshold point,
q254M2, and lead to the following one-loop contributions
to the moduli squared of the magnetic and electric form fac-
tors above the threshold:

S a
p Dgm

~1!~q2! 5
b→0 ap

2b 24
a
p 1

apb
2

2
a

3pF8lnS M

l D2
1

3Gb21O~b3!, ~11!

S a
p Dge

~1!~q2! 5
b→0 ap

2b 24
a
p 1

apb
2

2
8a

3pF lnS M

l D1
1

3Gb21O~b3!. ~12!

For the rest of this section we will discuss the individual
terms in the velocity expansion displayed in Eqs.~11! and
~12!. We would like to emphasize that most of the issues
which are mentioned are well known and have been noted
before at various places throughout the literature. However,
we think that a review of these topics is necessary for a better
understanding of the structure of the two-loop results pre-
sented in Sec. IV and the new information contained in them.

Expressions~11! and ~12! exhibit the well-known soft
photon divergence} ln(M/l) which arises from the massless-
ness of the photon. This divergence occurs at orderb2 and
would cancel with the corresponding soft photon divergence
coming from the process of real radiation of one photon off
one of the fermions according to the Kinoshita-Lee-
Nauenberg theorem@9,10#. The fact that the divergent term
ln(M/l) is suppressed byb3 relative to the leading contribu-
tion in the expansion inb is expected at any loop level
because close to threshold the real radiation of one photon
results in an additional factorb from the phase space needed

for the photon and a factorb2 from the square of the dipole
matrix element.3 Because the soft photon ln(M/l) divergence
indicates the inadequacy of a pure fermion-antifermion final
state and the need for the introduction of a higher Fock
fermion-antifermion-photon state, theb3 suppression allows
us to conclude that the notion of a pure fermion-antifermion
state is consistent if we are only interested in NNLO accu-
racy in the expansion inb.

The leading term in the velocity expansion in Eqs.~11!
and ~12! is the well-known Coulomb singularity which di-
verges forb→0. Similar to the soft photon divergence dis-
cussed above the Coulomb singularity arises from the fact
that the photon is massless and represents a long-distance
effect. The Coulomb singularity, however, is of completely
different nature. Whereas the soft photon singularity indi-
cates the inadequacy of a pure fermion-antifermion state be-
yond NNLO in the velocity expansion the Coulomb singu-
larity reveals that in the nonrelativistic limit~corresponding
to the leading order in the velocity expansion! the photon-
mediated interaction between the fermion-antifermion pair
cannot be described in an expansion in Feynman diagrams,
where a diagram with a larger number of loops~correspond-
ing to a larger number of exchanged photons! would repre-
sent a higher order correction. Rather, a resummation of dia-
grams with any number of exchanged photons is needed to
arrive at a sensible description of the interaction between the
fermion-antifermion pair. The leading contribution in the ve-
locity expansion is obtained by resummation of diagrams
with instantaneous Coulomb exchanges of longitudinal pho-
tons ~in the Coulomb gauge!. This procedure can be explic-
itly carried out by calculating the normalized wave function
at the origin,CE(0), to theSchrödinger equation describing
a nonrelativistic fermion-antifermion pair with a Coulomb
interaction potential for positive energiesE5Mb2. The re-
sult of this calculation reads~see, e.g.,@8,12,13#!

uGmuLO
2 5uGeuLO

2 5uCMb2~0!u25
z

12exp~2z!
, ~13!

where

z[
ap

b
, ~14!

and is often called ‘‘Sommerfeld factor’’ in the literature.
The 1/b Coulomb singularity in Eqs.~11! and ~12! can be
recovered as theO(a) contribution in the expansion of the
Sommerfeld factor fora!b:

3It should be noted that this statement is equivalent to the fact that
contributions from the noninstantaneous~i.e., transverse! exchange
of photons among the fermion-antifermion pair are suppressed by
b3 with respect to the leading contributions in the velocity expan-
sion. As an example, this feature is apparent in a3S1, JPC5122

fermion-antifermion bound state, where the velocityb of the fer-
mions is of ordera. There, the exchange of noninstantaneous pho-
tons leads to the Lamb shift which represents anO(a3) correction
relative to the Coulomb energy levels.~See also@11#.!
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z
12exp~2z! 5

a!b
11

z
2 1

z2

121O~a3!. ~15!

This, on the other hand, also shows that the velocity expan-
sion of the perturbative~in the number of loops! series can
only be applied in the limita!b!1, where an expansion in
the number of loops~i.e., in a) is justified.4 It is worth to
study the effect of this resummation: inserting the Sommer-
feld factor into the formula for the cross section, Eq.~7!, we
get at threshold

R;
3
2 b

z
12exp~2z! ——→

b→0 3
2 ap, ~16!

which is the correct result according to nonrelativistic quan-
tum mechanics. On the other hand, if we naively use the
one-loop result~i.e., expansion in smalla), we obtain

R;
3
2 b S 11

z
2D ——→

b→0 3
4 ap. ~17!

Clearly, the perturbative calculation in the number of loops,
which is based on the assumption thata is a valid expansion
parameter close to threshold, gives a prediction forR at
threshold which deviates from the correct one by a factor of
one-half.

The next-to leading contribution in the velocity expansion
in Eqs. ~11! and ~12!, 24a/p, represents a short-distance
correction and can be understood as a finiteO(a) renormal-
ization of the electromagnetic current which produces the
fermion-antifermion pair in the threshold region. The short-
distance character of thisO(a) correction has been demon-
strated explicitly by the calculation of the Brodsky-Lepage-
Mackenzie~BLM ! @14# scale in the coupling governing the
24a/p contribution @5,15,1#. This BLM scale is of order
the fermion massM and indicates that the24a/p contribu-
tion represents a correction to the fermion-antifermion pro-
duction process which occurs at short distances of order
1/M . In contrast, the BLM scale of the coupling in the lead-
ing term in the velocity expansion,ap/2b, is of order of the
relative momentum of the fermion-antifermion pair,Mb
@5,15#, indicating that the latter contribution belongs to the
fermion-antifermion wave function. As a consequence the
leading order~long-distance! contributions contained in the
Sommerfeld factor and the short-distance corrections are ex-
pected to factorize, which leads to

uGmuNLO
2 5uGeuNLO

2 5
z

12exp~2z!S 124
a

p D ~18!

for the NLO expressions in the velocity expansion of the
moduli squared of the magnetic and electric form factors in
the threshold region. It should be noted that the factorized
result ~18! resums all contributions (a/b)n3@1,a#, n
50,1,2, . . . ,̀ . Because no (a/b)nb contributions exist,5

expression~18! unambiguously predicts the leading and
next-to-leading-order contributions in the velocity expansion
for all gm/e

(n) , n52,3, . . . ,̀ .
The NNLO term in the velocity expansion in Eqs.~11!

and ~12!, apb/2, has not received much attention in the
literature so far. Its structure, which involves the same power
of p and the same coefficient 1/2 as the LO term in the
velocity expansion, strongly implies that it is of long-
distance origin and therefore belongs to the Sommerfeld fac-
tor. This is in accordance to the observation that the BLM
scale in the coupling of the termapb/2 is of orderMb
rather thanM @5#. The relativistic extension of the Sommer-
feld factor @including O(b2) corrections# should then read

z̃

12exp~2 z̃!
, z̃[

ap

b
~11b2!. ~19!

Although the arguments given above in favor of expression
~19! are far from being a strict proof, the form ofz̃ is very
convincing because it indicates that the relativistic relative
velocity v rel of the fermion-antifermion pair in the c.m.
frame is involved in the argument of the Sommerfeld factor
if O(b2) relativistic corrections are taken into account:

z̃5
2ap

v rel
, v rel5

2b

11b2
. ~20!

Combining expression~19! with the short-distance factor
(124a/p) and taking into account that no soft photon di-
vergence} ln(M/l) arises up to NNLO in the velocity expan-
sion we can now predict that the two-loop contributions to
uGm/eu2 must have the form

gm/e
~2! ~q2! 5

b→0 p4

12b2
22

p2

b 1
p4

6

1@finite terms withoutp4#1O~b!.
~21!

We want to emphasize the theO(1/b2), O(1/b), and
O(b0p4) contributions on the right-hand side of Eq.~21! are
an unambiguous prediction and have to be recovered in the
explicit two-loop result if the concept of factorization in the
threshold regime is valid. It should be noted that up to
NNLO in the velocity expansion only theO(b0) contribu-
tions symbolized by@finite terms withoutp4# contain new
two-loop information.

4It should be noted that the region of convergence of the Taylor
expansion

z

12exp~2z!
511

z

2
1(

n51

`

~21!n11
Bnz

2n

~2n!!
,

where Bn are the Bernoulli numbers (B151/6, B251/30, B3

51/42, . . . ), is uzu,2p⇔ubu.a/2. This shows that for phenom-
enological applications a resummation of the leading order contri-
butions in the velocity expansion to any number of loops is man-
datory in the kinematic regimeubu&a.

5Pure b-dependent corrections to the Sommerfeld factor are of
kinematic origin and therefore expected to be of NNLO in the ve-
locity expansion, i.e.,}(a/b)nb2,n50,1,2,. . . ,`.
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IV. TWO-LOOP RESULTS

To determine the two-loop contributions to the electro-
magnetic form factorsF1 and F2 in the velocity expansion
we use the dispersion integration technique. For that we have
to integrate over the absorptive parts ImF1/2

(2) which have
been determined a long time ago by Barbieri, Mignaco, and
Remiddi @16#:

F1
~2!~q2!52

4M2q2

q224M2
F18

~2!~0!1
1

p

q4

q224M2E4M2

`

3
dq82

q82 ~q82 2q22 i e!

q82 24 M2

q82
ImF1

~2!~q82!,

~22!

F2
~2!~q2!52

4M2

q224M2
F2

~2!~0!1
1

p

q2

q224M2

3E
4M2

` dq82

q82 2q22 i e

q82 24M2

q82 ImF2
~2!~q82! .

~23!

We would like to mention that relations~22! and ~23! are
equivalent to the common once-subtracted and unsubtracted
dispersion relations. We use Eqs.~22! and~23! because they
do not run into nonanalyticity problems in the integration
region whereq8224M2 is of orderl2 if the limit l→0 is
already taken before the integration. Since the absorptive
parts in@16# are given in exactly this limit Eqs.~22! and~23!
are more convenient because in them the integration regime
q8224M2'l2 is strongly suppressed. The~low! price one
has to pay is that theO(a2) fermion charge radius@17,18#

F18
~2!~0!5

1

M2Fp2

6 S 3ln22
49

72D2
3

4
z32

4819

5184G , ~24!

and theO(a2) anomalous magnetic moment@19,20#,

F2
~2!~0!5

p2

12
~26ln211!1

3

4
z31

197

144
, ~25!

have to be taken as an input.6 Details for the quite lengthy
but straightforward calculation of the integrals~22! and~23!,
which requires strong support of algebraic manipulation pro-
grams, shall be presented elsewhere.

The final results for the two-loop contributions toF1 and
F2 up to NNLO in the velocity expansion read

F1,2g
~2! 5

b→0
2

p2

8b2Fp2

6
1S l 22l 1

1
3D G1 i

p

4b
@23l 11#

2Fp4

24
1

p2

4 S l 22l 1
23

15
ln~2 ib!1

7

10
ln21

73

50D
1

9

80S 9z32
421

27 D G1O~b! , ~26!

F1,f
~2! 5

b→0
2

13p2

45
1

37
12

1O~b2!, ~27!

F2,2g
~2! 5

b→0
2

p2

8b2F l 2
1
3G2 i

p

4b
@ l 11#1Fp2

20S ln~2 ib!

1
101
6

ln22
559
45 D1

1
80S 41z31

269
3 D G1O~b!,

~28!

F2,f
~2! 5

b→0

p2

15
2

23
36

1O~b2!, ~29!

where

l [ lnS 2
2ibM

l D ~30!

and, as in the one-loop case, the hierarchyl/M!ubu!1 is
understood. In Eqs.~26!–~29! the contributions from dia-
grams with two photons~subscript 2g) and from the dia-
grams with one photon and the insertion of the fermion-
antifermion vacuum polarization7 ~subscriptf ) are displayed
separately. This will facilitate the application in the frame-
work of QCD where both types of contributions are multi-
plied by the different color factorsCF

2 andCFT, respectively,
and represent gauge-invariant subsets of the full QCD two-
loop contributions.

The results~26!–~29! lead to the following two-loop con-
tributions to the moduli squared of the magnetic and electric
form factors above threshold up to NNLO in the velocity
expansion:

gm
~2!~q2! 5

b→0 p4

12b2
22

p2

b 1
p4

6 1p2S 2
2
3 lnb1

4
3 ln22

29
12D

2z31
527

36
1O~b!, ~31!

ge
~2!~q2! 5

b→0 p4

12b2
22

p2

b 1
p4

6 1p2S 2
2
3 lnb1

4
3 ln22

7
3D

2z31
527

36
1O~b!. ~32!

6This fact has already been pointed out in@16#. We also refer the
reader to this reference for a more thorough discussion of the prob-
lems which occur in the integration regionq8224M2'l2.

7The two-loop correctionsF1,f
(2) andF2,f

(2) have already been calcu-
lated before in@5# for all energies above threshold.
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It is evident that the prediction made in the previous section
based on the one-loop corrections and on the factorization of
long- and short-distance contributions@see Eq.~21!# are in-
deed realized by our explicit two-loop result confirming the
statements given in Sec. III. As a consequence only the
O(b0) terms in Eqs.~31! and ~32! essentially contain new
information.

The most conspicuous feature of theO(b0) contributions
in Eqs. ~31! and ~32! is the term ln(b). Similar to the 1/b2

Coulomb singularity exhibited in the leading term in the ve-
locity expansion, it indicates the breakdown of the conven-
tional perturbation series in the number of loops in the limit
b→0. The existence of this logarithm can be understood
from the fact that two scales are involved in the kinematic
regime near threshold, the fermion massM and the three
momentum of the fermion and antifermion in the c.m. frame
p[Mb. The logarithm of the velocityb is therefore actually
the logarithm of the ratio of these two scales, ln(p/M). Be-
cause the soft scalep is characteristic for the fermion-
antifermion wave function and not relevant for the produc-
tion mechanism of the fermion-antifermion pair~which
involves only the hard scaleM ), thea2ln(p/M) term in Eqs.
~31! and ~32! should occur with the same coefficient in the
O(a2) corrections to the positronium decay rates. For a vi-
able comparison, however, we also have to include the
fermion-antifermion vacuum polarization effects coming
from the fact that the fermion-antifermion pair, which is in a
JPC5122 state, can virtually annihilate into one photon.
This can be easily achieved by multiplyinguGm/eu2 by the
factor u11Pu22, where P is the one-particle-irreducible
vacuum polarization function. TheO(a2) contribution toP
also contains a logarithm ofb in the velocity expansion@21#.
This leads to the additional contributiona2ln(b) which has
to be added to22a2ln(b)/3 from uGm/eu2. @Actually the spin
average of the logarithmic terms in expressions~31! and~32!
has to be taken. This trivially results in22a2ln(b)/3 be-
cause the logarithmic term is universal in both spin ampli-
tudes.# Because the relative momentum of the electron-
positron pair in the positronium is of orderMa, we can
expect that theO(a2) corrections to the (3S1, JPC5122)
orthopositronium decay rate should contain the contribution
a2ln(a)/3. This logarithmicO(a2) correction has indeed
been found by explicit calculations of higher order correc-
tions to the orthopositronium decay rate@22#. We therefore
have to conclude that the ln(b) term in Eqs.~31! and ~32!
represents a new type of Coulomb singularity which, similar
to the powerlike 1/bn singularities, requires a resummation
of contributions to all orders in the number of loops.8 How

such a resummation has to be carried out for the ln(b) term
in the vacuum polarization function has been demonstrated
in @21#.

Finally, we want to discuss the impact of the ln(b) singu-
larity on the cross section of fermion-antifermion production
very close to threshold, see Eqs.~6! and ~7!. Because the
moduli squared of the magnetic and electric form factors are
multiplied by the phase space factorb one might naively
think that the ln(b) singularity is suppressed byb and does
not affect the cross section forb→0. At this point we have
to emphasize that the same would then be true for the short-
distance correction,24 a/p, in the one-loop contribution to
uGm/eu2 because the latter also represents aO(b0) term in the
velocity expansion@see Eqs.~11! and ~12!#. However, the
one-loop short-distance correction survives forb→0, see
Eqs.~16! and~18!. The resolution of this apparent contradic-
tion comes from the fact that due to factorization@see Eq.
~18!# the one-loop short-distance correction is also contained
in the O(1/b) term of the two-loop contribution touGm/eu2

where it multiplies theO(a) contribution of the expansion
of the Sommerfeld factor for smalla. This contribution does
not vanish in the cross section forb→0 and illustrates the
mechanism why the one-loop short-distance correction sur-
vives in this limit. In order to see that something similar
happens to the ln(b) singularity in the two-loop results~31!
and~32! let us have a closer look on the structure of the one-
and two-loop contributions to the form factorsF1 andF2. It
has been shown by Yennie, Frautschi, and Suura@24# that
the infrared soft photon divergences exponentiate com-
pletely. Because real soft photon divergences inuGm/eu2 oc-
cur only beyond NNLO in the velocity expansion~see Sec.
III ! all soft photon divergences which arise up to NNLO in
the velocity expansion in Eqs.~26!–~29! can be factorized
into a divergent phase factor which is known as theCoulomb
phase. In the moduli squared of the form factors this phase
drops out. Since the Coulomb phase has to be considered as
an intrinsic property of the fermion-antifermion wave func-
tion, where the relative momentum 2Mb is a relevant scale,
we can expect that the divergent phase factor should involve
the logarithm of the ratio 2Mb/l. This feature is indeed
realized because the sum of Born, one-loop and two-loop
contributions toF1 andF2 above threshold can be rewritten
as

11S a

p DF1
~1!1S a

p D 2

@F1,2g
~2! 1F1,f

~2!#

→expH i
a

2S 1

b
1b D l J H 12S a

p D F i
p

4 S 1

b
1b D1

3

2G
1S a

p D 2F2
p2

24b2S p2

2
11D1 i

p

4b
2

p4

24
2

p2

20

3S 23

3
ln~2 ib!1

7

2
ln21

1177

90 D2
9

80
~9z3243!G J ,

~33!

8At this point we would like to mention that the logarithmic Cou-
lomb singularity has also been disussed in@23# in the framework of
quarkonia decays. However, it is argued in@23# ~and also in@4#!
that this singularity~called ‘‘logarithmic infrared divergence’’ in
@4#! would indicate that perturbative QCD could not be applied in
the kinematic regime close to the threshold. We disagree with this
conclusion, because we think that this singularity can be treated by
a proper resummation of contributions to all orders in the number of
loops.
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S a

p DF2
~1!1S a

p D 2

@F2,2g
~2! 1F2,f

~2!#

→expH i
a

2S 1

b
1b D l J H S a

p D F i
p

4 S 1

b
2b D2

1

2G
1S a

p D 2F p2

24b2
2 i

p

4b
1

p2

20S ln~2ib!1
101

6
ln22

499

45 D
1

1

80S 41z31
347

9 D G J . ~34!

The factorized expressions~33! and ~34! predict that at the
three-loop level the real parts of the form factorsF1 andF2
contain the logarithmic andl-independentO(1/b) contribu-
tions 223a3p ln(b)/240b and a3p ln(b)/80b, respectively,
in the velocity expansion above the threshold. As a conse-
quence,uGmu2 and uGeu2 both contain the three-loop term
2a3p ln(b)/3b in the velocity expansion. We would like to
emphasize that the argument just given cannot be used to
determine all three-loop contributions, but it clearly shows
that a logarithmic Coulomb singularity also exists at order
a3/b which does not vanish in the limitb→0 in the cross
section. The coefficient of this singularity further strongly
implies that the ln(b) contributions inuGmu2 anduGeu2 to any
number of loops and at NNLO in the velocity expansion
above threshold can be cast into the factorized form

@ uGm/eu2#NNLO lnb contributions;
z

12exp~2z!S 2
2

3
a2lnb D .

~35!

It is clear from expression~35! and the arguments given
above that the logarithmic Coulomb singularity does indeed
affect the prediction for the cross section forb→0. In par-
ticular, we conclude that a conventional fixed order multi-

loop calculation is not capable to determine all NNLO rela-
tivistic contributions @corresponding toO(a2) relativistic
corrections# to the nonrelativistic cross section. In order to
determine the correct form of the NNLO relativistic contri-
butions to the nonrelativistic cross section~or the Sommer-
feld factor!, resummations of the type mentioned before have
to be performed. Such a program is beyond the scope of this
work and will be carried out elsewhere.

V. SUMMARY

In this work we have determined the two-loop contribu-
tions to the electromagnetic form factors in the kinematic
regime close to the fermion-antifermion threshold up to
NNLO in an expansion in the velocity of the fermions in the
c.m. frame. In the framework of NRQCD and NRQED the
results are an important input for the two-loop renormaliza-
tion of the effective Lagrangian. As the main outcome of this
work we have demonstrated the existence of a new logarith-
mic ~in the velocity! Coulomb singularity at NNLO in the
velocity expansion. This logarithmic contribution belongs to
the fermion-antifermion wave function and exists for the
production of free fermion-antifermion pairs above threshold
as well as for fermion-antifermion pairs in a bound state. For
the case of fermion-antifermion pair production ine1e2 an-
nihilation the logarithm indicates that a resummation of con-
tributions to any number of loops is mandatory in order to
arrive at a viable~i.e., finite! prediction for the cross section
with NNLO accuracy very close to the threshold point.
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