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I. INTRODUCTION

If we assume standard model unitarity, there are two in-
dependent angles in the ‘‘unitarity triangle,’’ both of which
are related to the underlying nonzero phases of Cabibbo-
Kobayashi-Maskawa~CKM! matrix elements. We use the
definition g5p2b2a, where

a[argF2
VtdVtb*

VudVub* G , b[argF2
VcdVcb*

VtdVtb*
G ~1.1!

have simple interpretations as phases of particular combina-
tions of CKM matrix elements.

In B factory experiments we seek to measure quantities
that, in the absence of physics from beyond the standard
model, are simply related to these angles. Ignoring for the
moment the effects of subleading amplitudes,CP-violating
asymmetries are proportional to sin2f wheref is one of the
angles of the triangle. In particular, the first twoCP asym-
metries to be measured are likely to be inB→cKS , which
measures sin2b, and inB→p1p2, which measures sin2a.
However, measurement of sin2f can only determine the
angle f up to a fourfold ambiguity:$f,p/22f,p1f,
3p/22f% with the angles defined by convention to lie be-
tween 0 and 2p. Thus, with two independent angles, there
can bea priori a total 16-fold ambiguity in their values as
determined fromCP asymmetry measurements. These am-
biguities can limit our ability to test the consistency between
the measured value of these angles and the range allowed by
other measurements interpreted in terms of the standard
model CKM matrix elements@1,2#.

In any model where the angles measured by the asymme-
tries inB→cKS andB→p1p2 are two angles of a triangle
only 4 of the 16 choices are allowed, since the other combi-
nations are incompatible with this geometry@3#. ~Note that in
such cases, a measurement of sin2g will remove the ambi-
guities completely.! Within the standard model, the present
data on the CKM matrix elements further reduce the allowed
range, implying that 2b is in the first quadrant (0,b,p/4),
that 0,a,p, and that there is a correlation between the
values ofa andb @4#. Thus, among the 16 possible solutions
at most 2, and probably only 1, will be found to be consistent
with standard model results.

In the presence of physics beyond the standard model the
values of the ‘‘would-be’’a andb extracted from asymme-
try measurements may not fall within their standard-model-

allowed range. Such new physics cannot be detected if the
values of the asymmetry angles happen to be related via the
ambiguities to values that do overlap the standard model
range. Clearly, the fewer ambiguous pairings that remain, the
better our chance of recognizing non-standard-model physics
should it occur.

One way to resolve these ambiguities is to measure asym-
metries that depend on very small angles@3,5#:
arg@2VcsVcb* /VtsVtb* # or arg@2VcdVcs* /VudVus* #. In this
work we discuss other ways to resolve the ambiguities by
measuring asymmetries that relate to large angles only. That
is not to say we discuss only easy measurements. We will
later briefly discuss the experimental difficulties, but first we
review the issue from a theoretical perspective. In addition to
the valuesof sin2f, only the signsof cos2f and sinf for
both f5a and f5b need to be determined. These four
signs resolve the ambiguities completely: sgn(cos2f) is used
to resolve thef→p/22f ambiguity; sgn(sinf) is used to
resolve thef→p1f ambiguity.

Several measurements which can determine sgn(cos2f)
have been proposed@3,6,1,7#. Uncertainties in calculation of
hadronic effects do not affect the interpretations of these
measurements, although they do depend on the known value
of hadronic quantities such as the width and the mass of the
r. The determination of sgn(sinf), however, cannot be
achieved without some theoretical input on hadronic physics.
Quantities that are independent of hadronic effects always
appear as the ratio of a product of CKM matrix elements to
the complex conjugate of the same product. Such pure
phases are thus always twice the difference of phases of the
CKM elements. Any observable that directly involves a
weak phase difference of two CKM elements,f ~rather than
2f), also involves hadronic quantities such as the ratio of
magnitudes of matrix elements and the difference of their
strong phases. Thus, in order to determine the sign of sina or
sinb some knowledge about hadronic physics is required.

We note that this is true even for our current knowledge
of the standard modelCP-violating phase sind.0 ~whered
is the single independent phase in the standard parametriza-
tion of the CKM matrix@8#!. In order to determine sgn(sind)
input on the sign ofBK is used@3#. The quantityBK is a ratio
of hadronic matrix elements. Its value is totally determined
by the strong interactions and thus,a priori, is not reliably
calculable. However, by now many methods of determining
BK , including lattice calculations, all find thatBK.0,
though the range of allowed values is still quite large. As a
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result, it is now widely accepted that the sign ofBK is reli-
able and thus that, in the standard model, sind.0.

Many weak decay amplitudes include two terms with dif-
ferent weak phases. In this work we show how the presence
of a second term can be used to determine the sign of sina
and sinb. The needed theoretical input is the sign of the real
part of the ratio of the two amplitude terms~excluding CKM
elements!. The fact that only the sign of this hadronic ratio is
needed is what makes the analysis proposed here plausible.
The focus of this paper is to examine what input assumptions
are needed to determine this sign and discuss the status of
these assumptions. Our aim is to clarify what is the minimum
understanding of strong interaction effects that will be
needed to resolve the angle ambiguities. Our current argu-
ments alone cannot stand as a convincing reason to exclude
an angle consistent with the standard model range in favor of
a choice that is not consistent. However, were such a choice
favored by this argument, it would at least pose a serious
challenge to theorists to understand better the strong interac-
tion effects involved. Eventually it may be that we have to
piece together many such puzzles to get a view of non-
standard-model physics from the low energy frontier ofB
decays.

In Sec. II we review the general formalism ofCP asym-
metries inB decays. In Sec. III we review methods to deter-
mine sgn(cos2f). In Sec. IV we explain how to determine
sgn(sinf), and what is the theoretical input that has to be
supplied. Finally, Sec. V contains a discussion and conclu-
sions.

II. GENERAL FORMALISM

In this section we present the general formalism ofCP
asymmetries inB decays. We start by explaining how we
group penguin and tree diagrams and then present the needed
formalism.

A. Two-term weak decay amplitudes

The terms ‘‘penguin’’ and ‘‘tree’’ amplitudes are standard
in the field for weak decay amplitudes, but are actually only
meaningful at the short-distance, quark-diagram level. Our
argument here is quite general and is not in any way affected
by the ambiguity inherent in these short-distance labels. We
group amplitude terms together by weak phase, rather than
by individual diagrams. Then there is no need to attempt the
unphysical distinction between rescattering of a tree diagram
and a long-distance cut of a penguin diagram. Further we use
CKM unitarity to eliminate one out of the up, charm, and top
penguin diagrams terms. In this way anyB decay amplitude,
including all tree and penguin diagrams, can be written as a
sum of two terms, each with a definite weak phase related to
particular CKM-matrix elements. The most convenient
choice of how to group terms depends on the final state
quarks.

For b→q q̄s decays, for any final statef , it is convenient
to choose the two terms as

Af
s5VcbVcs* Af

ccs1VubVus* Af
uus. ~2.1!

The second term here is Cabibbo suppressed compared to the
first and is negligible in most cases. Forb→c c̄s decays

~e.g., B→cKS) the second term gets further suppression
since the dominant term includes a tree level diagram while
the CKM-suppressed term contains only one-loop~penguin!
diagrams, namely,Af

ccs@Af
uus. In b→u ūs decays the tree

diagram contributes to the second term while the first term
has only penguin contributions and henceAf

ccs!Af
uus; thus,

in this case there is no clear hierarchy among the two terms.
For b→q q̄d decays all the CKM coefficients are of the

same order of magnitude. It is then convenient to express the
amplitude as

Af
d5VqbVqd* Af

qqd1VtbVtd* Af
ttd , ~2.2!

whereq5u or c is chosen so that the first term includes any
tree-diagram contribution for the channel in question.~When
there is no tree diagram the choice is arbitrary.! The second
term here has a weak phase predicted in the standard mod-
el to be half the weak phase of the mixing amplitude. Thus,
only one unknown weak phase difference enters the analysis
when the amplitude is written in this way.

For any given channel at most one of these two terms has
a tree-diagram contribution. The tree diagram is generally

expected to be the dominant contribution to anyAf
qqq8 for

which it is nonzero, and so we will call this the ‘‘tree-
dominated’’ term to remind the reader that it also contains a
difference of loop~or penguin! contributions with the same
weak phase. We then refer to the other term, which has no
tree-diagram contribution, as the ‘‘penguin-only’’ term.

We note, as an aside, that the two-term structure of decay
amplitudes can also accommodate any beyond-standard-
model physics contribution, since any additional term in a
decay amplitude, whatever its phase, can always be written
as a sum of two terms of definite phase with~possibly nega-
tive! real magnitudes. The difference between standard mod-
el physics and non-standard-model physics then comes
down to the expected relative sizes of the two terms. These
expected sizes are, in general, dependent on our understand-
ing of hadronic matrix elements. This just shows once again
how difficult it could be to recognize the presence of non-
standard-model physics. The only reliable way to find new
effect in decay amplitudes is to examine cases in which a
single term significantly dominates the weak decay ampli-
tude in the standard model@9#.

B. General formalism

Here we recall the general formalism ofCP asymmetries
in B decays. We use the standard notation@10#. We assume
the standard model throughout.

The time-dependentCP asymmetry inB decays into a
final CP eigenstate statef is defined as@10#

af~ t ![
G@B0~ t !→ f #2G@ B̄0~ t !→ f #

G@B0~ t !→ f #1G@ B̄0~ t !→ f #
, ~2.3!

and is given by

af~ t !5af
coscos~DMt !1af

sinsin~DMt !, ~2.4!

with
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af
cos[

12ulu2

11ulu2
, af

sin[
22 Iml

11ulu2
, l[

q

p

Ā

A
, ~2.5!

wherep andq are the components of the interaction eigen-
states in the mass eigenstates,uBL,H&5puB0&6quB̄0&, and
A( Ā) is theBd( B̄d)→ f transition amplitude@10#. The time-
dependent measurement can separately determineaf

cos and
af

sin. We always consider decays with a leading tree-diagram
amplitude. Then, we write the amplitude as

A5ATeifT8eidT1APeifP8eidP,

Ā5ATe2 ifT8eidT1APe2 ifP8eidP, ~2.6!

where T and P stand for the tree-dominated and penguin-
only terms, respectively. The weak phases of the decay am-
plitudes fT8 and fP8 are convention dependent, as is
arg(q/p), but the differencesfT5fT82arg(q/p)/2 and
fP5fP8 2arg(q/p)/2 are convention-independent quantities
that we seek to determine. Similarly, the strong phases are all
subject to arbitrary redefinitions; only the relative strong
phase of the two termsd[dP2dT is a physically meaningful
quantity. We have introduced strong phases for each term so
that we can always fix bothAT andAP to be real quantities,
independent of any phase convention choice. We then define
the real quantity

r[
AP

AT
. ~2.7!

Note that we allowr ,0. TheCP-violation-sensitive quan-
tity l is then

l5h f

e2 ifT1re2 ifPeid

eifT1reifPeid
. ~2.8!

Here h f is the CP parity of the final state. In particular,
hcKs

521 andhp1p25hD1D251.

For b→c c̄s decays, leading for example to the final state
cKS , the penguin-only term is Cabibbo suppressed and can
be safely neglected. Thusr 50 should be an excellent ap-
proximation and we get the well-known result@10#

af
cos50, af

sin5h fsin2fT . ~2.9!

We next considerb→q q̄d decays, leading, for example, to
the final statesB→p1p2 or B→D1D2. Here, by defini-
tion, fP50 since the penguin contributions with a different
weak phase are subsumed inAT . Then

af
cos5

2rsinfTsind

11r 212rcosfTcosd
,

af
sin5h f

sin2fT12rsinfTcosd

11r 212rcosfTcosd
. ~2.10!

III. DETERMINING sgn „cos2f…

In this section we review measurements that can be used
to extract sgn(cos2a) and sgn(cos2b). These signs resolve
the f→p/22f ambiguities.

A. B˜rp

All the three decays B→r1p2, B→r2p1, and
B→r0p0 can lead to ap1p2p0 final state. Because of
interferences between these channels, sufficient information
is encoded in theB→rp decays to distinguish between the
a andp/22a choices. This was shown in Ref.@6#, where it
was explained how both sin2a and cos2a can be measured
using a full Dalitz plot distribution analysis. To resolve the
ambiguity one needs only to fix the sign of cos2a, which
should be relatively easy to achieve.

We do not repeat here the detailed explanations of Ref.
@6#. In that work it was shown that there are several observ-
ables that, in the absence of penguin graphs, directly measure
cos2a. ~These observables all involve the imaginary part of
an overlap between two different Breit-Wigner functions de-
scribing two different charges ofr meson.! The presence of
penguin graphs spoils the simple relationship between these
quantities and cos2a. However, even when penguin terms
are present, there is enough information in the interference
regions to determine the sign of cos2a. A multiparameter fit
can obtain a preferred choice betweena andp/22a, even
allowing for arbitrarily large penguin contributions.

Here, and throughout this paper, we neglect the effects of
electroweak penguin graphs. These give a correction to
isospin-based treatments for isolating certain CKM factors.
The isospin structure of the amplitudes contributing torp
decays is used to isolate terms with isospin 2, because they
receive no contribution from QCD penguin graphs, and
hence show pure sin2a and/or cos2a dependence. Elec-
troweak penguin graphs can give isospin-2 parts but the rel-
evant contributions here are expected to be quite small and
hence unlikely to confuse the extraction of the sign of cos2a.

Experimentally, the cos2a determination involves fitting
parameters to the contributions of a broad resonance. Under
these resonances there are nonresonantB decay contributions
which must also be fit in order to extract the relevant reso-
nant effects. The question of how best to parametrize these
nonresonant contributions is under study@11#. It will have to
be resolved to extract useful results from these channels.

B. B˜DD**

The idea of using overlapping decays to add information
on cos2f can be in principle applied toB decays to higherD
resonances@7#. In that case, a full Dalitz plot distribution of
D (* )D (* )p final states can be used to determine the sign of
cos2b. Since theD* are rather narrow, the interference ef-
fects are probably too small to be detected inB→DD* since
there is essentially no overlap kinematic region between dif-
ferentD* ’s. TheB→D (* )D** decays are better candidates.
The D** widths are larger and the effect may be measur-
able. More details are expected to be given in Ref.@7#. Once
again, it may be a problem to parametrize nonresonant
D (* )D (* )p that contribute in the same region as the reso-
nances and could potentially destroy the analysis.
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C. B6
˜DK6

The angleg satisfies the condition

a1b1g5p ~mod 2p!. ~3.1!

Sinceg is defined modulo 2p, the 16 possibilities fora and
b result in an eightfold ambiguity ing. These eight values
give two different values for cos2g and four different values
for sin2g. Thus, by measuring cos2g or sin2g some of the
ambiguities can be resolved. Here we focus on cos2g and in
the next subsection we discuss sin2g.

The value of cos2g can be used to resolve some combi-
nation of thef→p/22f ambiguities. The trigonometric
identity

cos2g5cos2bcos2a2sin2asin2b ~3.2!

implies that the transformationsb→p/22b or a→p/22a
~but not both! change the value of cos2g. As we assume that
sin2b and sin2a are known, cos2g can distinguish between
the two cases$a,b%,$p/22a,p/22b% or $p/22a,b%,
$a,p/22b%. Thus, for example, if cos2a in known from the
B→rp analysis, the sign of cos2b can be determined from
the measurement of cos2g.

Several methods to extract sin2g ~or equivalently cos2g)
using B6→DK6 decays@12,13# or Bs decays@14# have
been proposed@15#. For the purpose of illustration, below we
concentrate on the method of@12#. This method uses mea-
surements of sixB6→DK6 decay rates to extract cos2g up
to a twofold ambiguity. This twofold ambiguity is due to an
unknown strong phase. In general, this ambiguity can be
removed by applying the same analysis for several final
states@12# with the same flavor quantum numbers asDK6.
All these modes have the same weak phase but, in general,
different strong phases. Thus, only one solution of cos2g is
consistent in all the modes while the second~incorrect! one
should be different in the different modes, since strong
phases differ from one mode to another.

We note that even if we have a twofold ambiguity in
cos2g because we have studied only a single final state sys-
tem, the incorrect value of cos2g should not be the same as
that obtained using the incorrect value ofb or a. In that case
there are going to be two possible solutions for cos2g from
the B6→DK6 measurement and two predictions arising
from the measurements of sin2b and sin2a. In general, only
one of the solutions will coincide and the other not. Choos-
ing the one that coincides is sufficient to resolve the ambi-
guity in the cos2g measurement and at the same time to fix
the relative sign of cos2a and cos2b.

D. Bs˜rKS

The time-dependentCP asymmetry in certainBs decays
~e.g.,Bs→rKS) directly measures sin2g if the penguin-only
term in the decay amplitude is neglected. A measurement of
sin2g would determine the signs of cos2b and cos2a @3#,
assuming their magnitudes are known. The trigonometric
identity

sin2g52~cos2bsin2a1cos2asin2b! ~3.3!

implies that either or both of the transformationsb→p/22b
anda→p/22a change the value of sin2g. Thus, the signs
of both cos2a and cos2b can be determined, once sin2g is
known.

Experimentally, it will be very hard, if at all possible, to
measure this asymmetry. In addition, the penguin-only term
is expected to be significant inb→uud̄ decays, making the
relationship between the asymmetry and the angleg more
complicated@15#. These problems imply that the methods we
mentioned before are better than the time-dependentCP
asymmetry inBs→rKS decay for determiningg @15#. How-
ever, all these other methods determine cos2g. The justifica-
tion for studying the time-dependentCP asymmetry in
Bs→rKS is that it probes a different functional dependence
of g, namely, sin2g.

As we need only to choose between few discrete choices
of g the problems mentioned before may not be so severe in
our case. By the time measurement of theCP asymmetry in
Bs→rKS is feasible we will probably already know the
rough value of the penguin contribution, from its relationship
to similar effects inB→pp, extracted via isospin analysis,
and those determined from fits toBd→rp. If cos2g is al-
ready measured as discussed above, then we need this mea-
surement only to distinguish between the two values of the
sign of sin2g. In general only one sign will be consistent
with the allowed range for the ratio of penguin-only to tree-
dominated terms, and so the ambiguity will be resolved even
though an a priori measurement of sin2g cannot be
achieved.

IV. DETERMINING sgn „sinf…

In this section we discuss how sgn(sina) and sgn(sinb)
can be determined. These signs resolve thef→p1f ambi-
guity. As we already explained, this ambiguity cannot be
resolved in any theoretically clean way. Some knowledge of
hadronic physics is always needed. In the following we de-
scribe several methods that can be used to resolve the ambi-
guity and explain what is the needed theoretical input.

In order to get sensitivity to sgn(sinf) we focus on cases
where two terms with different weak phases are involved in
the decay amplitude. Then, in principle, the relative phase
between these two terms can be determined. However, there
is also a relative strong phase between these two terms.
Therefore, theoretical input is required in order to disen-
tangle the strong and the weak phases. The relevant hadronic
quantity is found to be the sign ofrcosd, that is, the sign of
the real part of the ratio of the two amplitude terms~exclud-
ing weak phases!.

A. B˜cKS vs B˜D1D2

In the case of the angleb we have one class of measure-
ments, fromb→c c̄s processes such asB→cKS , which
have very smallr . For these channels Eq.~2.9! with fT5b
is valid and the asymmetry measurement determinesb up to
the usual fourfold ambiguity@10#:

acKS

sin 52sin2b. ~4.1!

The other class of measurements is fromb→c c̄d decays
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such asB→D1D2. In this case we expectr to be signifi-
cantly larger and Eq.~2.10! with fT5b is valid. For sim-
plicity we will here give results valid only to leading order in
r ; however, we have checked that the full expression con-
tains enough information to avoid this approximation if
needed. We get

aD1D2
sin

5sin2b22r DDcos2bsinbcosdDD , ~4.2!

wheredDD is the strong phase difference between the tree-
dominated and penguin-onlyB→D1D2 amplitudes, and
r DD is the signed ratio of their magnitudes. Comparing Eqs.
~4.2! and ~4.1! we find

acKS

sin 1aD1D2
sin

522r DDcosdDD~cos2bsinb!. ~4.3!

It is clear from this expression that we can fix the sign of
sinb only if we know the sign of cos2b and, in addition, the
sign ofr DDcosdDD . We assume that the first of these is given
by the methods discussed in the previous section.

Currently, there is no reliable way to determine the sign
of the real part of the ratio of hadronic matrix elements
(r DDcosdDD). In order to proceed, we assume factorization.
~We will discuss the reliability of this and subsequent as-
sumptions later.! Assuming factorization and that the top
penguin is dominant, we can infer from the results of Ref.
@16# that r DD,0. Within the factorization approximation the
relevant strong phases~almost! vanish, so thatdDD.0, and
hence the sign ofr DDcosdDD is given by the sign ofr DD .

Assumingr DDcosdDD,0 as given by the factorization cal-
culation we get

sgn~acKS

sin 1aD1D2
sin

!5 sgn~cos2bsinb!. ~4.4!

Note, in particular, that the standard model predicts
cos2bsinb.0, and therefore also that the asymmetry in
D1D2 is smaller in magnitude than the asymmetry incKS
~and opposite in sign!.

We need only measure the sign of the sum of the two
asymmetries to resolve the ambiguity. Even this may not be
an easy task ifr DD is small; however, a recent estimate
found that in the standard model 3%&r DD&30% @17#, and
certainly in the upper end of this range the required sign
should be measurable.

B. B˜rp vs B˜p1p2

We first explain how to get sin2a uniquely out of the
B→rp decays without uncertainties due to penguin-only
terms. Then, the comparison with the asymmetry in
B→p1p2 can be used to determined sgn(sina) using a
similar approach to that discussed forb above.

While the experiment may well proceed to determine all
the various amplitudes and phases simultaneously by a maxi-
mum likelihood fit, it is instructive to inspect the expressions
analytically to see what combination of terms actually enters
into the measurement of sin2a. We follow the treatment of
@6# and write

A35A~B0→r1p2!5T31P11P0 ,

Ā35A~ B̄0→r2p1!5 T̄31 P̄11 P̄0 ,

A45A~B0→r2p1!5T42P11P0 ,

Ā45A~ B̄0→r1p2!5 T̄42 P̄11 P̄0 ,

A55A~B0→r0p0!5T52P0 ,

Ā55A~ B̄0→r0p0!5 T̄52 P̄0 , ~4.5!

whereTi is the tree-dominated amplitude andP1 andP0 are
the ~suitably rescaled! penguin-only contribution for isospin
1 and isospin 0, respectively. TheCP conjugate amplitudes
Āi , T̄ i , and P̄i differ from the original amplitudesAi , Ti ,
andPi only in the sign of the weak phase of each term. We
further define

Asum[A31A412A55~ uT3ueid31uT4ueid412uT5ueid5!eifT8,

Āsum[ Ā31 Ā412Ā5

5~ uT3ueid31uT4ueid412uT5ueid5!e2 ifT8. ~4.6!

Here,d i is the strong phase ofTi , andfT8 is the common
weak phase of the tree-dominated terms. We see that

Āsum5Asume22ifT8. From Table I of Ref.@6# we see that both
AsumAsum* and Im(qĀsum p* Asum* ) are observables.~Note
that q as defined in Ref.@6# is equal toA2qp* in our stan-
dard notation.! In particular, we see that from the data we
can extract

arp
Dalitz[2 ImS q

p

Āsum

Asum
D 52sin2a, ~4.7!

where for the last equation we useduq/pu51 and
fT5p2a. Equation~4.7! shows that sin2a can be extracted
usingB→rp decays without penguin pollution. We empha-
size that in order to obtain this result we did not have to
assume that the top penguin is dominant. All penguin terms
are included, either as a subdominant part in the tree-
dominated amplitudes or in the penguin-only term.

Alternately, B→pp decay modes can also be used to
extract sin2a without hadronic uncertainties using isospin
analysis. The needed measurements are the time-dependent
rate forB→p1p2 together with the time-integrated rates of
B0→p0p0, B1→p1p2, and their conjugate decays@18#,
and a geometrical construction then allows extraction of
sin2a. However, discrete ambiguities in this construction im-
ply that sin2a can only be extracted up to certain discrete
choices, which correspond also to differences in the relative
phase and the ratio of magnitudes of certain tree-dominated
and penguin-only terms~but not the same combinations as
we identify below!. The determination fromrp does not
suffer from this problem.~These ambiguities could in prin-
ciple be removed by a precise measurement of the time-
dependent asymmetry inB→p0p0 @18#, but this measure-
ment is unlikely.!

Now, assuming we have determined sin2a, we look again
at theB→p1p2 decay, here using the interference of the
two terms in the amplitude to determine the sign of sina, just
as we did in theD1D2 case forb. Here,fT5p2a and
fP50, and Eq.~2.10! gives the asymmetry. Once again, for
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simplicity, we work to leading order inr , but this approxi-
mation can be avoided if needed. We get

ap1p2
sin

52sin2a22r ppcos2asinacosdpp , ~4.8!

wheredpp is the strong phase difference between the tree-
dominated and penguin-onlyB→p1p2 amplitudes, and
r pp is the signed ratio of their magnitudes. Comparing Eqs.
~4.7! and ~4.8! we get

ap1p2
sin

2arp
Dalitz522r ppcosdpp~cos2asina!. ~4.9!

Thus, once sgn(r ppcosdpp) is known, the measurements
will determine sgn(cos2asina). If the sgn(cos2a) is known
from the treatments discussed above, sgn(sina) is then de-
termined; if not, at least the fourfold ambiguity of
$sgn(cos2a), sgn(sina)% is reduced to a twofold ambiguity.

Again, there is as yet no reliable way to calculate the sign
of r ppcosdpp . Therefore, we turn to the short-distance cal-
culation with factorization to determine@16# that r pp,0 and
that dpp is very small. This then gives

sgn~ap1p2
sin

2arp
Dalitz!5 sgn~cos2asina!. ~4.10!

With the knowledge of cos2a this difference can be used to
fix the sign of sina.

C. CP asymmetries in inclusive decays

In the above, the main obstacle in getting theoretically
clean predictions is that we do not have a reliable way to
calculate the ratio of the relevant hadronic matrix elements.
An alternative way, which does not suffer from this problem,
is to measure asymmetries in semi-inclusive decays, e.g., to
all states with a given flavor content@19#. Here matrix ele-
ments are not needed. However, a crucial assumption in this
case is that the semi-inclusive measurements are described
by the quark level calculations, which are needed to deter-
mine j: the fraction ofCP-odd final states. The quantity
122j is referred to as the ‘‘dilution factor.’’ The assump-
tion, called local quark-hadron duality, that the quark-
diagram kinematics are unaltered by hadronization, is essen-
tial to this calculation and is not well justified. In addition,
we are convinced that full semi-inclusive measurements are
not experimentally feasible and that some data cuts will be
needed. The effect of such cuts on the ratio ofCP-even to
CP-odd contributions is difficult to calculate and likely to be
even more sensitively dependent on the local quark-hadron
duality assumption.

However, our game here is to determine signs, and so we
can possibly use these methods despite large uncertainties in
the calculation of the relevant dilution factors, as long as the
sign of (122j) is reliably determined. The hope is that by
the time the inclusive measurements will be carried out, we
will have consistency checks that will either support or rule
out local duality. For example, the inclusive asymmetry cal-
culations are similar to that of theBs width difference@20#.
If future measurements of theBs width difference agree with
this calculation, it would support the local duality assump-
tion.

A potentially useful measurement is the asymmetry in the
Bd→DX whereX is multipion state with noK meson con-

tributions. Such decays are governed by theb→c ūd and
b→u c̄d transitions. The inclusive calculation gives@19#

ac ūd d̄
sin

52~122j!UVcdVub

VudVcb
Usin~a2b!. ~4.11!

On the practical side, we note that the large inclusive rate
may help compensate the CKM suppression of the asymme-
try. We see that thea→p1a or b→p1b transformation
~but not both! will change the sign of the result. The quantity
(122j) is calculated to be about 0.21@19#, but the range of
uncertainty on this quantity and its dependence on the nec-
essary experimental cuts remain to be explored. If we can
convince ourselves that we know the sign of this quantity, as
calculated for the specific data sample used to determine the
asymmetry, we can use such a measurement to reduce the set
of ambiguous choices for the two angles. Perhaps one way to
proceed will be to explore, both in the theory and in the data,
the sensitivity of the signs to changes in the selected sample.

Another measurement that can be useful is that ofBs de-
cays governed by theb→c ūs andb→u c̄s transitions. For
this case Ref.@19# found

ac ūs s̄
sin

'~122j!UVcsVub

VusVcb
Usin~a1b!, ~4.12!

where 122j'0.28@19#. Again, thea→p1a or b→p1b
transformation~but not both! will change the sign of the
result. Note that unlike the previous case, here the CKM
suppression is not very small. However, asymmetries inBs
decays are expected to be harder to measure. Once again the
dilution factor calculation needs to be further explored to
determine whether the sign of this quantity can reliably be
calculated.

D. Remarks about the theoretical assumptions

We here examine the points at which it is important to
clarify our theoretical understanding if we are to use the
results ofB factory experiments to look for indications of
non-standard-model physics. Our arguments can be strength-
ened by a combination of improved calculational methods
~such as lattice calculations of matrix elements! and by test-
ing the implications of similar arguments in a variety of
channels, in addition to those studied for theCP studies. It is
to be hoped that, by the time we have sufficient data to
perform the measurements described above, both of these
avenues will have been explored and our arguments, e.g., on
the sign of thercosd terms, either discredited or more firmly
established. The point of this paper is that we need to pursue
this further understanding to resolve the ambiguous choices.

We will discuss here the exclusive final states. There, we
use factorization to calculate the sign ofrcosd. Here we dis-
cuss why it is plausible that this sign is correctly predicted by
the factorization calculation. Our calculation uses the opera-
tor product expansion approach, which is rigorous, but adds
to it the less rigorous ingredients of a model to calculate
matrix elements. We apply this model only in color-allowed
decays where the outcome is insensitive to the variation of
the parameter governing the relative contribution of color-
suppressed terms.
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The factorization approximation treats each quark-
antiquark combination separately; the only strong phase, in
this approximation, is a small effect that arises from cuts of
the short-distance penguin diagrams involvingu or c quarks.
Thus, d'0. To go beyond the factorization approximation
we consider a two-step picture in which the decay and had-
ronization occur as calculated in the factorization approxima-
tion but ~elastic and inelastic! final state rescattering is al-
lowed. While here we present only theD1D2 final state, a
similar treatment applies also to thep1p2 final state with
similar conclusions. The way to proceed is to work in the
isospin basis. Each of the termsATeidP andAPeidP has two
isospin contributions~labeled by the final state isospin
I f50,1). These terms acquire strong phases through rescat-
tering effects. We emphasize that the rescattering phases for
the same isospin channel can be different in the penguin-only
and tree-dominated terms. These amplitudes have different
overlaps between theD1D2 state and the other hadronic
states with the same charm quark content and isospin. Be-
cause the light quark content inD1D2 is d d̄, we know that
in both the tree-dominated and penguin-only terms sepa-
rately the two isospin contributions are equal in magnitude.
Thus, the effect of rescattering can be taken into account by
writing the tree-dominated and penguin-only amplitudes as

ATeidTcosdT
01, APeidPcosdP

01. ~4.13!

Here the phases are given by

dX5~dX
01dX

1 !/2, dX
015~dX

02dX
1 !/2, ~4.14!

where dX
i is the phase shift of the isospini term in the

X5T,P amplitude. Thus, after rescattering, we find

r DD5r DD
fact

cosdP
01

cosdT
01

, cosdDD5cos~dT2dP!, ~4.15!

wherer DD
fact is r DD as calculated using factorization. Thus, the

sign of r DDcosdDD is unchanged by rescattering if the rel-
evant phase shifts are all sufficiently small that the cosines in
Eqs.~4.15! are all positive.

It seems to be a reasonable assumption that all the rel-
evant strong phases are small. There are no known nearby
resonances with isospin 0 or 1 in the spin-0 partial wave in
the D1D2 system at theB mass. Furthermore, some cross-
checks on this argument are available. The rates ofD1D2

andD0D̄0 productions are given by

G~B→D1D2!5uATcosdT
01eidTeifT81APcosdP

01eidPeifP8 u2,
~4.16!

G~B→D0D̄0!5uATsindT
01eidTeifT81APsindP

01eidPeifP8 u2.

If the D0D̄0 rate is small compared to theD1D2 rate, it
provides some confirmation that the rescattering phasesdT

01

anddP
01 are small.

Direct CP violation effects in these channels depend on
the same rescattering phases and can be predicted in terms of
the same parametrization. Such effects are proportional to
sind and so are small if all rescattering effects are small.

Large directCP violations in theD1D2 or p1p2 channels
would be a reason to mistrust our argument for the sign of
rcosd. However, small directCP violations are consistent
with, but not a convincing argument for, a smalld. An in-
teresting example would be if sind is found to be small in
several channels with the same quark content~e.g., DD,
DD* , and D* D* ). Then, we would have to conclude that
eitherd;0 or d;p in each of these channels. There is no
reason to believe that any rescattering strong phases should
be close top and it is even less likely that several at once
have this value. However, because of the arguments for fac-
torization, it is quite plausible that all of them are small at the
same time.

To conclude, the needed theoretical input is the sign of
rcosd. Here, we argue that it is plausible that the correct sign
can be predicted by factorization in color-allowed channels.
Moreover, some cross-check can be done. However, we em-
phasize again that we believe that there is currently no reli-
able way to determine this sign.

V. FINAL REMARKS AND CONCLUSIONS

Our goal is to find physics beyond the standard model.
While in this paper we present our results as a way to resolve
the discrete ambiguities in the values ofa andb, it should
be remembered that in the context of the standard model,
because of constraints from other measurements, there is
only a twofold ambiguity ina and no ambiguity inb. The
importance of resolving the ambiguities is to expose a pos-
sible inconsistency with the standard model values. This
will then indicate new physics.

When looking for new physics, one should try to assume
as little as possible about its nature. Here, we allowed any
kind of new physics. This new physics can be~any combi-
nation of! new contribution toB-B̄, Bs-B̄s , or K-K̄ mixing,
violation of the three-generation CKM unitarity, or a new
contribution to decay amplitudes. Once some inconsistency
within the standard model is found, then the pattern it ex-
hibits can perhaps be used to get some insight into the kind
of new physics responsible for it.

The ideas presented here should be, of course, additional
to other methods of looking for new physics@21#. New phys-
ics can be found in several other ways: if the values ofa and
b are outside the standard-model-allowed range, if the asym-
metry in Bs decay mediated byb→c c̄s is significant, or if
asymmetries that should be the same in the standard mod-
el are found to be different@9#. Because any discrepancy can
be an indication of physics beyond the standard model, it is
important to try to have as many independent tests as pos-
sible.

If some of the above hints for new physics were found,
the ideas we presented have to be modified. For example, if
aCP(B→fKS)ÞaCP(B→cKS), which would indicate a
new contribution to theb→s transition@9,22#, we will not be
able to determine sgn(sinb) by comparingaCP(B→cKS) to
aCP(B→D1D2). The underlying assumption in this analy-
sis is that the former measures sin2b to a very high accuracy.
A new significant contribution to theb→s transition would
invalidate this assumption.

However, in some situations of new physics, the methods
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we discuss can still be useful. For example, in models where
the only significant new physics effects are large contribu-
tions to theB-B̄ or K-K̄ mixing amplitude the unitarity tri-
angle can, in principle, be reconstructed. However, the com-
bination of discrete ambiguities and hadronic uncertainties
make it impractical@2#. Reduction of the ambiguities, in a
manner discussed here, may help in making this program
feasible@2#.

In our analysis we always care only about a sign of a
specific quantity. Usually, the sign of a specific quantity can
be determined more easily than its magnitude. For example,
the determination of cos2g from B6→DK6 decays is ex-
perimentally very challenging. However, even a measure-
ment with large errors may be sufficient for our purpose. Of
course, if no choice is found to be consistent across the set of
measurements, we have an immediate indication for non-
standard-model physics.

While the methods we describe work in generic points of
the parameter space, there are some values of the angles
where they will not work. This is the case where some of the
quantities we need to determine are~very close to! zero. For
example, whena5p/4 we have cos2a50. Then, the ambi-
guity in the value ofa is only twofold, but it cannot be
removed by the methods we presented. We used the ratio
cos2asina/cos2a to determine sgn(sina). However, when
cos2a'0 we will not be able to measure this ratio.

From the experimental point of view, since many of the
channels we have discussed have yet to be reliably observed,
it is not clear how feasible the comparisons we discuss will
be. All these studies are certainly at least second-generation
B factory work, not feasible until large data samples have

been accumulated. For example, the determinations of
sgn(sinf) using exclusive decays involve comparisons of
measured asymmetries in two different channels. Determin-
ing the sign of a difference of two measured quantities, each
of which will have significant errors, is certainly not going to
be easy, and will be harder if the actual values of the asym-
metries are small~e.g., if uau is close top/2).

To conclude, we explain how the determination of
sgn(cos2f) and sgn(sinf) ~for f5a,b) fully resolves the
16-fold ambiguity in the values ofa and b as can be ex-
tracted fromCP asymmetries inB decays. The determina-
tions of sgn(cos2a) and sgn(cos2b) are theoretically clean.
The determinations of sgn(sina) and sgn(sinb), however,
are plagued with some theoretical input, which, at present, is
not reliable. The hope is that by the time the measurements
will be carried out, our theoretical toolkit will be improved
and we will be able to calculate more reliably the sign of the
relevant hadronic effects. From the experimental side, none
of the methods we described is easy to carry out. Hopefully,
some of them will turn out to be useful.
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