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A theory of theB→Kh8 decay is proposed. It is based on the Cabibbo-favoredb→ c̄cs process followed by
a direct materialization of thec̄c pair into theh8. This mechanism works due to a nonvalence Zweig-rule-
violating c-quark component of theh8, which is unique to its very special nature. This nonperturbative
‘‘intrinsic charm’’ content of theh8 is evaluated using the operator product expansion and QCD low-energy
theorems. Our results are consistent with an unexpectedly largeB(B→Kh8).7.831025 recently announced
by CLEO. @S0556-2821~97!04521-9#

PACS number~s!: 13.25.Hw, 11.40.Dw, 12.38.Aw, 12.38.Lg

I. INTRODUCTION

This paper suggests a theory of theB→Kh8 decay which
may shed a new light on properties of theh8 meson. Our
study is motivated by recent results of the CLEO Collabora-
tion @1# which has announced an unexpectedly large branch-
ing ratio

B~B→Kh8!5~7.822.2
12.761.0!31025. ~1!

Little thought is needed to realize that this number is in
severe contradiction with a standard view of the process at
the quark level as a decay of theb quark into the light quarks
which could be suggested as soon as theh8 is usually con-
sidered to be a SU~3! singlet meson made of theu, d ands
quarks~see Sec. II for more detail!. This result may not seem
too surprising if one remembers the well-known fact that the
quark content of theh8 is undistinguishable from the gluon
one due to the axial anomaly. On the other hand, in the weak
decay theb quark proceeds more strongly to thec̄cs system
due to the Cabibbo enhancement of the latter in comparison
to the ūus state. Since a pair ofc quarks can easily convert
to gluons, one can suggest the following scenario of the
B→Kh8 decay. Theb quark proceeds into thes-quark and
c-quark pair, while the latter directly materializes into theh8
via a nonvalence ‘‘intrinsic charm’’c-quark component of
theh8 which exists due to virtualc̄c↔gluons transitions. An
immediate objection to this proposal which can come to
one’s mind is that this process is expected to bring a very
small contribution to the decay width as soon as it obviously
violates the Zweig rule. We will argue that though the sce-
nario we suggest is indeed Zweig rule violating, it neverthe-
less can explain the data. The reason is that we actually deal
here with a situation where the Zweig rule itself is badly
broken down. As will be discussed in detail in Sec. IV, both
regularities and sources of breaking down the Zweig rule are
nowadays well classified and studied. In particular, it is
100% violated for pseudoscalar mesons including theh8. In
effect, we find that an extent to which the Zweig rule is

broken down in the problem at hand suffices to reconcile the
theory with the data~1!. The uniqueness ofh8 is in both a
possibility to evaluate this effect and its very large magni-
tude. The decayB→Kh8 serves as a probe of the ‘‘intrinsic
charm’’ content of theh8. On the contrary to how it may
sound, the mechanism of violating the Zweig rule in theh8
is purely nonperturbative. To be honest, we have to note that
the accuracy of our result is rather low, of the order of factor
2 in the amplitude. It is important, however, that a main
source of uncertainty in our approach is well localized and
related to the poor knowledge of a particular vacuum con-
densate. Therefore the theoretical precision can be consider-
ably improved in the future. We should stress that in contrast
to a recent proposal@2# on importance of the axial anomaly
in the closely related inclusiveB→h8Xs decay, it does not
play any role in our mechanism. On the contrary, the
anomaly is exactly cancelled in the operator product expan-
sion ~OPE! in powers ofmc

21 for a c-quark bilinear operator
@see Eqs.~16!, ~17! below#, which is a starting point of our
approach to the problem. In a sense, we therefore deal with a
‘‘postanomalous’’ effect which, of course, is suppressed by
the parameter 1/mc

2 . However, in the real world
mc.1.25 GeV is not far from a hadronic;1 GeV scale and,
as will be shown below, the effect of the charmed loop is
very large numerically. On the other hand, methods applied
in our study closely parallel those developed earlier in a
study of the famous U~1! problem~whose key ingredient is
just the axial anomaly!, and will be explained in the course
of our presentation.

Our strategy consists of a few steps. We start in Sec. II
with the standard approach to theB→Kh8 decay and dem-
onstrate that its prediction is about two orders of magnitude
smaller than the experimental number~1!. We then propose
in Sec. III an alternative gluon mechanism and explain our
method for calculation of a crucial quantity of our consider-
ation which is the matrix element^0uc̄gmg5cuh8&. Using the
data~1! as an input, we calculate an ‘‘experimental’’ value
of this matrix element. To calculate the same quantity theo-
retically, we first reduce it by using the OPE to the matrix
element of a pseudoscalar three gluon operator
^0uGG̃Guh8&. The latter object is further related to a par-
ticular correlation function of gluon currents extending ideas
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originally suggested by Witten@3# and Veneziano@4# in their
approach to the U~1! problem. This correlation function is
next calculated in Sec. IV in terms of a vacuum expectation
value of the three gluon operator^g3G3& by using QCD
low-energy theorems. We also discuss there physics respon-
sible for breaking down the Zweig rule. In Sec. V we esti-
mate the latter vacuum condensate and finally obtain a theo-
retical prediction for the matrix element of interest
^0uc̄gmg5cuh8&. We compare this number with an ‘‘experi-
mental’’ value found from the observed data~1! and find a
satisfactory agreement between them. This demonstrates that
the gluon mechanism indeed explains the data with a reser-
vation for uncertainty of our results. A final Sec. VI contains
our conclusions.

II. THE STANDARD APPROACH TO B˜Kh8

In this section we estimate a width of theB→Kh8 decay
assuming that theh8 meson is made exclusively of light
quarks. In this case the relevant terms in the effective non-
leptonic Hamiltonian are

HdB515
GF

&
FVubVus* ~c1O11c2O2!2VtbVts* (

i 53

12

ciOi G
1H.c. ~2!

Here Oi are defined as @we use the notation
Lm5gm(12g5), Rm5gm(11g5)#

O15 s̄iLmuj ūjLmbi , O25 s̄LmuūLmb,

O3~5!5 s̄Lmb(
q

q̄Lm~Rm!q,

O4~6!5 s̄iLmbj(
q

q̄jLm~Rm!qi ,

O7~9!5
3

2
s̄Lmb(

q
eqq̄Rm~Lm!q,

O8~10!5
3

2
s̄iLmbj(

q
eqq̄jRm~Lm!qi ,

O115
g

32p2 mbs̄~11g5!sGb,

O125
e

32p2 mbs̄~11g5!sFb, ~3!

where i , j are the color indices andq is any of the the
u,d,s,c quarks.Gmn5Gmn

a ta andFmn are the gluon and pho-
ton field strength tensors.O1 and O2 are the tree level op-
erators, whileO326 and O7210 are the gluon and elec-
troweak penguin operators, respectively.O11,12 are the
magnetic penguins. The Wilson coefficientsci5ci(m) de-
pend on the renormalization scalem and to the next-to-
leading order @5# @for as(mZ)50.118, aem(mZ)51/128,
mt5176 GeV,m.5 GeV# are given by the set@5–7#

c1520.3125, c251.1502, c350.0174,c4520.0373,

c550.0104, c6520.0459, c751.39831025,

c853.91931024, c9520.0103, c1051.98731023,

c11520.299, c12520.634. ~4!

Introducing the transition form factor

^K~q!us̄gmbuB~p1q!&52qm f 1~mh8
2

!

1pm@ f 1~mh8
2

!1 f 2~mh8
2

!# ~5!

and theh8 residue@8# ~the chiral limit mq50 is implied!

^h8uq̄gmg5qu0&52 i
1

)
f h8pm ,

1

)
f h85~0.520.8!

f p

)

.0.04 GeV, ~6!

and neglecting for the momentmh8 ,mK in comparison to
mB , the magnetic penguinsO11, O12, and O(1/mb ,1/N)
terms in the factorized matrix elements of penguin operators,
we obtain the following estimate for the amplitude of interest
~hereN stands for the number of colors!:

^Kh8uHWuB&.
GF

&
2i ~pq! f 1~mh8

2
!

f h8

)
FVubVus* S c11

c2

N D
2VtbVts* S 3c31c423c51

3

2
esc10D G , ~7!

where, in particular, we have omitted left-right penguin con-
tributions, which are suppressed by 1/mb . In our opinion,
this procedure is much better than an alternative one, where
only a subset of 1/mb corrections is retained. Furthermore, it
is well known that the factorization does not work in non-
leptonic B decays. Effects due to a nonfactorizability are
usually taken into account in a phenomenological manner by
the substitutionc11c2 /N→a1 with a1.0.25 obtained by a
global fit of the data on nonleptonicB decays@9#. Using this
number in Eq.~7!, we end up with1

B~B→Kh8!.131027 ~8!

which is by two orders of magnitude smaller than the experi-
mental result@1#. It is easy to see that this small value is a
consequence of a small residue of theh8 supplemented with
the Cabbibo suppression of theb→u transition. An account

1We disagree with @10# where much larger
B(B→Kh8).331025 was proposed. In our opinion, this large
width came as a result of an incorrect assignment of absorptive
parts to matrix elements of penguin operators, which, by definition
of the OPE, are not there. In particular, it follows~see p. 2187! from
the formulas given in@10# that this decay width becomes infinite in
the chiral SU~3! limit. In fact, at the level of penguin contributions
the decaysB→Kh8 and B→Kf are just identical and, assuming
that factorization works reasonably well, it is simply impossible to
obtain anything substantially different from our estimate~9!.
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of penguin contributions, as can be seen from Eq.~7!, does
not help much. Indeed, neglecting for simplicity the tree
level b→u transition, we can obtain an estimate for the ratio
of the decay width of the process of interest to the width of
the decayB→Kf:

G~B→Kh8!

G~B→Kf!
.

u^h8us̄gmg5su0&^Kus̄gmbuB&u2

u^fus̄gmsu0&^Kus̄gmbuB&u2 5
1

3 S f h8
f f

D 2

.2.531022, ~9!

where we have used the definition^fus̄gmsu0&5«m f fmf
with f f.240 MeV known experimentally from the
f→e1e2 decay~«m stands for the polarization vector of the
f meson!. As B(B→Kf).131025 @6#, we obtain a very
small magnitudeB(B→Kh8).2.531027 in reasonable
agreement with Eq.~8!. It is now obvious that corrections
due to a nonfactorizability of penguin operators, magnetic
penguins contributions,2 as well as O(1/mb ,1/N) terms
which have been omitted in Eq.~7!, cannot substantially
change the estimate~8!. We therefore conclude that the im-
age of theh8 meson as the SU~3! singlet quark state, made
exclusively of theu,d,s quarks, is not adequate to the prob-
lem at hand. To avoid possible misunderstanding, we should
note that the axial anomaly is in fact taken into account in
the above mechanism. However, its role there is merely to
fix the residue of the quark currrent~6! into theh8.

III. THE GLUON MECHANISM IN B˜Kh8

Here we suggest an alternative mechanism for the
B→Kh8 decay which is based on the well known fact that
the h8 is a very special meson strongly coupled to the glu-
ons. Therefore, the process of interest can be mediated by the
b→c decay followed by a conversion of thec quarks into
gluons. This means that the matrix element

^0uc̄gmg5cuh8~p!&5 i f h8
~c!pm ~10!

is nonzero due to thec→gluons transitions. Of course, since
one deals here with virtualc quarks, this matrix element is
suppressed by the 1/mc

2 factor. On the other hand, thec
quark is not very heavy and, taken together with the Cabbibo
enhancement of theb→c transition in comparison tob→u,
the suggested scenario of theB→Kh8 can be expected to
successfully compete with the standard one described in Sec.
II. Actually, this gluon mechanism will be argued to domi-
nate the decay. To get a feeling of how large the residue~10!
must be in order to explain the data~1!, we reverse the ar-
guments and estimate this quantity ‘‘experimentally’’ under
assumption that the proposed gluon mechanism exhausts the
B→Kh8 decay. A corresponding number is easy to calcu-
late. In the factorization approximation the amplitude takes
the form

M5
GF

&
VcbVcs* a1^h8~p!uc̄gmg5cu0&^K~q!us̄gmbuB~p1q!&

~11!

~herea1.0.25, see Sec. II!. For theB→K transition form
factor ~5! we use the dipole formula

f 1~p2!5
f 1~0!

12p2/m
*
2 ~12!

with f 1(0).0.32,m* .5 GeV @12,13#. Calculating now the
decay width, we obtain numerically the branching ratio in
terms of the residuef h8

(c) defined in Eq.~10!,

B~B→Kh8!.3.9231023S f h8
~c!

1 GeV
D 2

, ~13!

which together with the data~1! implies the ‘‘experimental’’
value @we use the central value of the branching ratio~1!#

f h8
~c!.140 MeV~exp!. ~14!

This number may seem to be too large for the proposed
mechanism to work as it is only a few times smaller than the
analogously normalized residue^0uc̄gmg5cuhc(p)&5 i f hc

pm

with f hc
.400 MeV known from thehc→2g decay. How-

ever, as will be argued in the rest of this paper, the theory is
able to produce such a large residuef h8

(c) . In effect, the gluon
mechanism completely overplays the standard one by two
orders of magnitude in the decay width, and reconciles a
theoretical prediction for theB→Kh8 decay with the data.

We now proceed to a theoretical calculation of theh8
residue of the charmed axial-vector current~10!. Making use
of the anomaly equation, we obtain, from Eq.~10!,

f h8
~c!

5
1

mh8
2 K 0U2mcc̄ig5c1

as

4p
GmnG̃mnUh8L . ~15!

Since thec quark is heavier then theh8, it cannot contribute
the matrix element~15! on a valence level. It does, however,
contribute when propagating in a loop. Thec quark in the
loop is subject to external gluon fields populating theh8. A
technical tool which allows us to evaluate the corresponding
contribution to the matrix element~15! is the operator prod-
uct expansion in inverse powers of thec-quark mass~the
heavy quark expansion!:

2mcc̄ig5c52
as

4p
GmnG̃mn2

1

16p2mc
2 g3f abcGmn

a G̃na
b Gam

c

1••• . ~16!

A detailed derivation of Eq.~16! is given in the Appendix,
while here we restrict ourselves to a few comments. The first
term in the right-hand side of Eq.~16! is the usual anomaly
term with the opposite sign. This sign can be easily under-
stood if one remembers that the anomaly term corresponds to
a subtraction of the Pauli-Villars regulator from the naive
divergence 2mqq̄ig5q of the axial-vector currentq̄gmg5q.
On the other hand, the Pauli-Villars contribution is a special
case of the heavy quark expansion~16! with the strict limit

2It has been argued that the magnetic penguin operatorO11 en-
hances the branching ratio for theb→sf decay by 20–30%@11#.
We expect a similar~or, anyway, not larger! effect of this operator
for the B→Kh8 decay.
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MR5`. The cancellation of leading terms;GG̃ which do
not depend onmc is in agreement with the intuitive idea that
heavy quarks cannot contribute matrix elements over light
hadrons3 in the limit mQ→`. The second term in Eq.~16! is
the gluon operator of the lowest~after the anomaly term!
dimension d56. We omit one more d56 operator
(DmGmn)(DaGan) which can be related to a four-quark op-
erator using the equation of motion. One can show that a
contribution of this operator is suppressed both parametri-
cally ~in N andas! and numerically. The ellipsis in Eq.~16!
stands for higher dimensional operators which we do not
address here. To this accuracy we therefore obtain

f h8
~c!

52
1

16p2mh8
2

1

mc
2 ^0ug3f abcGmn

a G̃na
b Gam

c uh8&. ~17!

We note that the gluon operator in Eq.~17! correspond to a
normalization pointm2.mc

2 .
We have thus reduced the problem to a calculation of the

matrix element of the purely gluonic operator~17!. Apart
from a trivial rescaling of the normalization point, this ma-
trix element is essentially defined by low-energy physics on
a scale;1 GeV. One could therefore think that we did not
make any progress at all as matrix elements of gluon opera-
tors are usually not easy to calculate. The situation with the
h8 is, however, exceptional, and the matrix element~17! is
amenable to a theoretical study. We will now show that it
can be evaluated making use of the largeN line of reasoning
along with the propertymh8

2 ;1/N in close analogy with the
way Witten addressed a very similar matrix element
^0uGG̃uh8&. The fact thatmh8

2 ;1/N was established by Wit-
ten @3# a long time ago in connection to the celebrated U~1!
problem. Witten’s objective was to understand within the
largeN approach how massless quarks are able to bring the
correlation function of the topological density

T~p!5 i E dxeipxK 0UTH as

4p
GmnG̃mn~x!

3
as

4p
GmnG̃mn~0!J U0L ~18!

at zero momentump→0 down to zero as required by the
chiral anomaly, if quark loops are suppressed by a power of
N, and thus apparently do not show up to leading order in
1/N. To lowest order in 1/N the two-point function~18! is
given by sums over one-hadron intermediate states:

T~p!5F (
glueballs

an
2

Mn
22p2 1subtractionsG

1
1

N (
mesons

cn
2

mn
22p2 , ~19!

whereMn ,an andmn ,N21/2cn stand for the masses and resi-
dues of thenth glueball and meson states, respectively. Here
an ,cn5O(N0), and moreover, to lowest order in 1/N, the
glueball residuesan do not depend on whether massless
quarks are present in the Lagrangian or not. Therefore the
first term in Eq.~19! to leading order in 1/N corresponds to
the two-point function in pure Yang-Mills theory~gluody-
namics!. The crucial observation made by Witten@3# and
Veneziano@4# was that while a cancellation of the two terms
in Eq. ~19! is not possible at genericp2Þ0, it can happen at
p250, if there is a single meson withm2;1/N, which would
then cancel the whole sum over glueballs together with sub-
traction terms in Eq.~19!. Witten and Veneziano further
identified this meson with theh8 since the latter is the light-
est flavor singlet preudoscalar state in nature.

The reason we have repeated at length the argument due
to Witten and Veneziano is that, as is easy to see, it carries
practically without a word of alteration over any nondiagonal
correlation function of the topological density
(as/4p) GmnG̃mn and arbitrary gluon operator with theO21

quantum numbers. Choosing for such the three gluon opera-
tor defining the matrix element~17!, we obtain the relation

^0ug3f abcGmn
a G̃na

b Gam
c uh8&

1

mh8
2 K h8U as

4p
GmnG̃mnU0L

52 i E dxK 0UTH g3f abcGmn
a G̃na

b Gam
c ~x!

3
as

4p
GmnG̃mn~0!J U0YM1OS 1

ND ~20!

where the subscript YM means that the correlation function
in Eq. ~20! refers to pure Yang-Mills theory. Its calculation
will be addressed in the next section. Here we would like to
mention that, as follows from Eq.~20!, the residue of interest
^0ug3GG̃Guh8&5O(N21/2).

IV. QCD LOW-ENERGY THEOREMS

The two-point function~20! is a new unknown quantity
which has to be evaluated in order to estimate the matrix
element~10!. Analogously to the diagonal correlation func-
tion of the topological density~18!, it vanishes in the pertur-
bation theory to all orders inas , since the topological den-
sity is a total derivative whose matrix elements are all zero at

3A well-known example is the problem of a light particle mass: in
the conformal anomaly equation

mh8
2

5^h8uummuh8&5Kh8U(
q

mqq̄qUh8L1
b~g2!

2g
^h8uGmn

2 uh8&

~where umm is the trace of the momentum-energy tensor and the
sum is taken over all quark flavors! the heavy quark can only con-
tribute when propagating in a loop, and its contribution cancels a
corresponding contribution of the heavy quark to theb function in
the second term. Thus, thec quark does not contribute theh8
mass in the limitmc→`.
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the perturbative level. Therefore the correlation function~20!
can only be nonzero due to nonperturbative contributions.
The goal of this section is to estimate Eq.~20!.

The idea of how to study correlation functions of gluonic
currents withO1(2) quantum number@such as our Eq.~20!#
was suggested long ago@8#, and we would like to shortly
repeat it here. It has been known for a long time that in
channels with scalar or pseudoscalar quantum numbers lead-
ing contributions to correlation functions of composite op-
erators are related not to standard vacuum condensates, but
rather to the so-called direct instantons@8#. The motivation
to introduce this object into the theory was a very strong
indication that the standard QCD sum rules@14# with stan-
dard power corrections due to local vacuum condensates are
not able to describe the 01(2) channels. In other words, OPE
does not reproduce there a scale of phenomena which is ex-
actly known from elsewhere. A source of this effect was
found in existence of direct instantons.

The meaning of this object is best explained if one con-
siders first a two-point function of~pseudo!scalar gluon cur-
rents at large Euclidean momentumQ2. In this case a lead-
ing nonperturbative contribution is obtained when the
momentumQ is transfered as a whole to a second vertex by
a vacuum field~this is allowed by quantum numbers of the
current! which therefore must be of small sizer;1/Q. Such
a situation corresponds to a small coupling regime, in which
the quasiclassical approximation becomes accurate. The
vacuum field is therefore classical; it is the famous Belavin-
Polyakov-Schwarz-Tyupkin~BPST! instanton@17#. Thus, a
recipe for the calculation of the direct instanton contribution
at largeQ2 is simple: the gluon field in the current must be
substituted by the instanton. The integral over the instanton
size is then dominated by smallr;1/Q. However, going
down to a resonance regionQ2;a few GeV2, this simple
picture breaks down@8#—instantons start to interact strongly
with each other and large size vacuum fields, and the one
instanton~or, the dilute instanton gas! approximation stops
making sense. A consistent calculation of instanton contribu-
tion in this case becomes a complicated problem which re-
quires going beyond the dilute instanton gas approximation
and taking into account instanton interactions, e.g., in a form
suggested by the instanton liquid vacuum model of Shuryak
and Diakonov-Petrov~see@15,16#, and references therein!.
We shall not proceed with this approach which is basically a
specific model of the QCD vacuum. Rather, we will follow
an alternative method which was proposed by Novikov, Shif-
man, Vainshtein, and Zakharov~NSVZ! @8#. It makes use of
a strong assumption that though a vacuum field transferring a
small momentumQ resembles the original undeformed
BPST instanton only a little, it nevertheless retains the~anti-!
self-duality property of the latter,

Gmn
a 56G̃mn

a , ~21!

in absence of massless quarks, i.e., in Yang-Mills~YM !
theory~where instanton transitions are not suppressed by fer-
mion zero modes!. This conjecture has been supported by
explicit calculations of next-to-leading~after direct instan-
tons! nonperturbative corrections for two-point functions of
the scalarG2 and pseudoscalarGG̃ currents at moderateQ2.
Up to an overall sign, they turn out the same~the direct

instanton contributions are identical in both channels by defi-
nition!. Therefore, a further extrapolation of the self-duality
selection rule~21! to even lowerQ2.0 is expected to be
correct at least 100% accurate. In fact, a phenomenologically
successful mass formula for theh8 derived in Ref.@8# by
using the selection rule~21! implies that an actual accuracy
of this approximations is of the order of 50%. This mass
formula was obtained4 by relating the residue of theh8 to the
value of the two-point function of topological density in YM
theory atQ250, while the latter was evaluated using the
selection rule~21! and a low-energy theorem@see Eq.~22!
below#. As a result,mh8

2 was found proportional to the gluon
condensatêg2G2& in YM theory.

Following the same logic, we therefore assume that the
self-duality selection rule~21! can also be applied to the
correlation function of interest~20!. If this is the case, the
value of the latter is fixed by the low-energy theorem@8#

i E dxK 0UTH O~x!
as

4p
G2~0!J U0L

YM

5
2d

b
^O&YM .

~22!

HereO(x) is arbitrary color singlet local operator of canoni-
cal dimensiond made of gluons andb511/3N stands for the
first coefficient of theb function in pure Yang-Mills theory.
As a derivation of the fundamental relation~22! is rather
simple, for the sake of completeness we would like to remind
the reader of it here. One starts with a redefinition of the
gluon field

Ḡmn[g0Gmn , ~23!

whereg0 is the bare coupling constant of QCD defined at the
cutoff scaleM0 . Then the path integral representation imme-
diately yields the relation

i E dx^0uT$O~x!Ḡ2~0!%u0&52
d

d~1/4g0
2!

^O&. ~24!

On the other hand, the renormalizability and the dimensional
transmutation phenomenon in a massless theory~either QCD
with massless quarks or gluodynamics! ensure that

^O&5const3FM0expS 2
8p2

bg0
2 D Gd

~25!

with the choiceb511/3N22/3nf ~wherenf is a number of
flavors! or b511/3N, respectively. Finally, performing the
differentiation yields the low-energy theorem~22!. More ac-
curate derivation~which gives the same final result! includ-
ing a regularization of ultraviolet divergences in Eq.~22! can
be found in@8#. Note that by definition perturbative contri-
butions are always subtracted in vacuum condensates such as

4Somewhat differently from Witten’s arguments, this was done
without an explicit reference to the largeN picture, but rather using
the fact that theh8 is light on a characteristic mass scale in the 02

channel, and therefore its inclusion is a localQ2.0 effect in the
momentum space which must nullify the two-point function~18! in
full QCD.
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^O&. Using now the low-energy theorem~22! for the particu-
lar choiceO5g3G3, we obtain

f h8
~c!.

3

4p2b

1

mc
2

^g3G3&YM

^0u ~as/4p! GmnG̃mnuh8&
. ~26!

This is the main result of this section. Coming back to our
original definition~10!, we see that we have related the resi-
due of the charmed axial-vector current intoh8 with an ap-
parently completely unrelated quantity which is the value of
the cubic gluon condensate in pure Yang-Mills theory„the
matrix element of the topological density is known@8#,
^0u(as /4p)GG̃uh8&.0.04 GeV3

…. This object will be ad-
dressed below, while here we would like to end up this sec-
tion with a discussion of one important conceptual point. It is
well known that usually nondiagonal transitions between
quarks and gluons or between quarks of different flavors are
suppressed—this is the famous Zweig rule. A most popular
theoretical explanation of this phenomenon exploits the large
N argumentation: in this limit all nondiagonal in flavors two-
point functions are suppressed by powers of 1/N relatively to
diagonal ones. Thus, atN→` any mixing dies off. On the
other hand, the Zweig rule is strongly violated in the scalar
and pseudoscalar 01(2) channels. A well known example of
this violation is provided by the pseudoscalar meson nonet:
while in the vector channel ther and v mesons are almost
pure mass eigenstates of the broken flavor SU~3!
r;(ūu2d̄d), v; s̄s and ther-v mixing is small, nothing
similar is observed in the pseudoscalar nonet. There theh is
predominantly the octeth;(ūu1d̄d22s̄s), which means
that the mixing is 100%. The theoretical explanation@8# as to
why the Zweig rule is violated for quark or gluon currents
with the 01(2) quantum numbers is that in these channels
there are direct instantons which are able to convert quarks
into gluons and vice versaq̄q↔gg at the classical level
without any suppression. Literally speaking, all factors en-
suring a smallness drop out: powers of the coupling constant
disappear since the instanton field is strong,Gmn;1/g, and
geometrical loop factors such as 1/(16p2) do not arise be-
cause there are no loops. One of the striking examples of
such is a conversion of gluons into photons@8#: while na-
ively the amplitude

K 0U2 bas

8p
G2U2g L 5OS S as

p D 2 a

p D , ~27!

in fact it is only O(a/p) according to a strict low-energy
theorem@8# which reads

K 0U b~as!

4as
G2Ug~k1!g~k2!L 5

a

3p
Nnf^Qq

2&Fmn
~1!Fmn

~2! .

~28!

~Here ^Qq
2& is the mean quark electric charge and

Fmn
( i ) 5km

( i )«n
( i )2kn

( i )«m
( i ) , i 51,2 stands for the fields strength

of a plane wave.! We would like to note that this process is
rather similar to our case. The gluons proceed to photons
through a loop of thec quark, but the perturbatively expected
suppression factor (as /p)2 does not occur.

A natural question to ask now is does all this mean that
the largeN picture is strongly violated in theJP501(2)

channels? A related question is whether the experimental fact
thatmh8

2 /mr
2.1 despite thatmh8

2 ;1/N, mr
25O(N0) implies

such a violation. The answer to both questions is no. More-
over, neither the direct instantons, nor the low-energy theo-
rems are at variance with the largeN picture. The point is
that, as was explained in Ref.@8#, N is the dimensionless
parameter, and true mass relations look rather similar to
mh8

2
5M2/N, where M2 is some mass scale. It is usually

tacitly assumed within the largeN reasoning that this mass
scale is universal for all hadrons. This is not the case, as was
demonstrated by NSVZ@8#: the mass scaleM2 is not univer-
sal but determined by the quantum numbers of the channel
considered. More concretely, this mass is set by a scale at
which the asymptotic freedom is violated in the particular
channel. The latter depends drastically on whether direct in-
stantons are allowed~which is the case in the 01(2) chan-
nels! or not. If they are there, an interaction of external cur-
rent with vacuum fields is very strong, and the asymptotic
freedom breaks down at very small distances, i.e., a charac-
teristic mass scale in this channel is not the typical hadron
mass;mr

2 , but rather much higher. It is therefore clear that
the second of the questions posed above is not properly for-
mulated: the mass of theh8 should be compared not with
mr

2 , but to a characteristic mass in theO2 channel which is
;15 GeV2 @8#. This fact is the ‘‘experimental’’ evidence
that the 1/N argumentation is quite accurate forh8, and 1/N
terms, omitted in Eq.~20!, are smallin comparison to both
explicitly written terms. At the same time, the above consid-
eration explains why the effects which we discuss are not
negligibly small numerically: despite the fact that the matrix
element ^0ug3GG̃Guh8&;N21/2, a large dimensional pa-
rameter in front ofN21/2 is able to make it large in reality.

V. HOW LARGE IS Šg3G3
‹ IN PURE GLUODYNAMICS

We are now returning to the main subject of our consid-
eration. Our task has reduced, according to Eq.~26!, to a
determination of the cubic gluon condensate^g3G3&YM in
pure YM theory. Note that this quantity does not have to
~and in fact does not! coincide with the cubic condensate
^g3G3& in the real world. While for the latter there exists a
semiphenomenological estimate@18#

^g3G3&5~0.0620.1! GeV6 ~29!

obtained within the QCD sum rules approach, it is of no
direct use in Eq.~26!. Unfortunately, we are not aware of any
method~except, perhaps, the lattice approach! which could
reliably calculate^g3G3&YM to an accuracy of, say, 20%.
Because of this uncertainty, we are unable to get a theoretical
prediction forB(B→Kh8) with a precision comparable to
the experimental one. What instead will be argued in this
section is that different estimates of the value^g3G3&YM en-
able one to claim that the large number~1! is within the
realms of our current understanding ofnonperturbative
QCD. We believe that this statement is interesting by itself in
view of a failure of the standard approach to this problem
~see Sec. II!. It will be shown below that
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^g3G3&YM.^g3G3&QCD ~this result follows directly from the
theory and has a status of theorem!, and moreover numeri-
cally

^g3G3&YM5~0.421.4! GeV6. ~30!

The first tool we are going to use is again the low-energy
theorem~22!. Let us recall how a very similar question on a
value of the condensate^g2G2&YM was addressed in the clas-
sical paper@8#. First of all, we note that this condensate
corresponds to an imaginary world in which all quarks are
very heavy. This world could be obtained from the real one
when the masses of lightu, d, and s quarks are smoothly
drawn up to some large valuemq . By the decoupling theo-
rem, this mass must not be very large—once it reaches the
confinement scalem.200 MeV, the heavy quarks decouple
and do not influence any more the gluon condensate. One the
other hand, the confinement scalem is not too far from the
s-quark massms.150 MeV. Therefore, one can expect that
a value of ^g2G2& in a world with mu5md
5ms[mq.150 MeV would give a reasonable estimate for
the YM condensatêg2G2&YM . In the linear approximation
in mu ,md we need to know the derivative

d

dmq
K as

p
G2L 52 i E dxK 0UTH as

p
G2~0!q̄q~x!J U0L . ~31!

The latter two-point function is fixed by the low-energy theo-
rem ~22! to be proportional to the quark condensate known
from elsewhere. Since the quark condensate is negative, it
follows that (d/dmq)^g2G2&.0. In this way NSVZ have
obtained an estimate

K as

p
G2L

YM

5~223!K as

p
G2L

QCD

. ~32!

As has been argued in@8#, the sign of effect
^g2G2&YM.^g2G2&QCD is in perfect agreement with the in-
stanton picture. Indeed, raising the quark masses diminishes
the chiral suppression of instantons and therefore increases
^G2&.

Proceeding analogously, we write

d

dmq
^g3G3&52 i E dx^0uT$g3G3~0!q̄q~x!%u0&. ~33!

The difference from the case of quadratic gluon condensate
~31! is that the two-point function does not coincide with the
low-energy theorem as it was in Eq.~31!. Therefore, its
value is not known exactly. Nevertheless, the low-energy
theorem~22! can still be used toestimatethe correlation
function ~33!. To this end, consider the relation~22! in QCD
with b511/3N22/3nf for three different operators

i E dxK 0UTH as

4p
G2~x!

as

4p
G2~0!J U0L 5

2

b K as

p
G2L ,

i E dxK 0UTH q̄q~x!
as

4p
G2~0!J U0L 5

6

b
^q̄q&,

i E dxK 0UTH g3G3~x!
as

4p
G2~0!J U0L 5

12

b
^g3G3&.

~34!
We now assume that these low-energy theorems are satu-
rated by some effective glueball states with ms;1 GeV. It

should be stressed that we do not insist on existence of a real
narrow glueball resonance with such mass. Actually, intro-
ducing such a~fictitious?! glueball amounts to an effective
description of the physics of 01 channel. Analogous meth-
ods have been used in a similar in spirit problem of a strange
content of the nucleon@19# which also deals with theO1

channel. Note that the glueball mass drops out in the final
result ~37!. Introducing the residues

K 0U as

4p
G2Us L 5l1 , ^0uq̄qus&5l2 , ^0ug3G3us&5l3

~35!

we put Eqs.~34! in the form

l1
2

ms
2 5

2

b K as

p
G2L ,

l1l2

ms
2 5

6

b
^q̄q&,

l3l1

ms
2 5

12

b
^g3G3&. ~36!

Using these equations and assuming the same scalar glueball
dominance in Eq.~33!, we obtain

d

dmq
^g3G3&52

l3l2

ms
2 52

36

b

^q̄q&^g3G3&

^~as /p! G2&
. ~37!

As ^q̄q&,0, the sign of the derivative is fixed:
(d/dmq)^g3G3&.0. Moreover, while an expected accuracy
of the estimate~37! is of the order of 100%, the sign is
entirely model independent and in fact is fixed by the posi-
tivity of spectral densities in Eqs.~34!. By the same token as
for (d/dmq)^g2G2&, this sign agrees with expectations based
on the instanton picture of the vacuum. Numerically, using
the values5 ^q̄q&.20.017 GeV3, ^(as /p)G2&.0.012
GeV4, in the linear approximation inmq Eq. ~37! yields, for
mq5150 MeV,

^g3G3&YM.4.4̂ g3G3&QCD5~0.2620.44!GeV6, ~38!

where we have used the estimate~29!. Note that the effect of
going from QCD to gluodynamics is larger for the cubic
condensate~38! than for the quadratic one~32!. This fact is a
direct consequence of the low-energy theorem~34!, and can
also be easily understood on dimensional grounds since
^g3G3&;^g2G2&3/2, increasing^g2G2& by a factor ;2.5

5The number for the quark condensate corresponds to the normal-
ization point 1 GeV2. Here we would like to point out that the
normalization point in our Eq.~26! is m2.mc

2 , while the low-
energy theorems refer, strictly speaking, to much lower
m.500 MeV. In view of a large numerical uncertainty of our re-
sults we neglect this perturbative evolution. Still, one has to bear in
mind that the large anomalous dimension of theG3 operator
g5218 @20# is working in the same direction: taking it into ac-
count is only able to enhance our final result~30! or the estimate
~38! by a factor of 2.
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@see Eq.~32!# yields an increase of̂g3G3& by (2.5)3/2.4 in
comparison to its value in QCD. Equation~38! constitutes
our first estimate for a value of the cubic gluon condensate in
pure YM theory which is based on the low-energy theorems
~34! and the semiphenomenological information on its value
in real world ~29!.

Another possible source of information on the value
^g3G3&YM is the instanton liquid vacuum model~see
@15,16#!. Two basic parameters of this model are average
instanton sizerc and interinstanton separationR. The latter
parameter is chosen such that to reproduce the phenomeno-
logical value of the gluon condensate^g2G2& using the fact
that each instanton contributes a fixed amount
*dxg2G2532p2 to this quantity. This yields the number
R.1/200 MeV21 for the phenomenological value~in QCD!
^(as /p)G2&.0.012 GeV4. This number provides the upper
limit for the instanton density in QCD as it implies that the
entire gluon condensate is due to instantons. On the other
hand, the ratiorc /R does not depend on the value of con-
densate and is fixed dynamically to berc /R.1/3. A value
of the cubic condensate calculated in this model was found
to be essentially larger than the semiphenomenological num-
ber ~29!:

^g3G3&

^g2G2&
5

12

5rc
2 .0.9 GeV2, ^g3G3&.0.4 GeV6 ~39!

~the formula for^g3G3& in terms of the instanton radiusrc
was first established in@14#!. We would like to make the
following comment in reference to the result~39!. For our
purposes it is more suitable to discuss the instanton vacuum
picture not in QCD, but in pure YM theory. We note that the
instanton vacuum is more simple in gluodynamics than in
QCD because of absence of the chiral suppression of instan-
tons. In this case the interinstanton separation must be cho-
sen to fit the gluon condensate^g2G2& in YM theory, which
is according to Eq.~32! larger than the corresponding num-
ber in QCD. On the other hand, for gluodynamics the ratio
rc /R.1/3 remains the same. Using Eq.~39! and the esti-
mate~32!, we obtain

^g3G3&YM.1.7 GeV6, ~40!

which is a few times larger than our first estimate~38!. We
feel that this result provides the upper estimate for the quan-
tity of interest, and the true answer for^g3G3& lies some-
where in between the two numbers~38! and ~40!.

Finally, we would like to discuss information on vacuum
condensates, which is available from lattice simulations. The
quadratic gluon condensate in YM theory on the lattice was
reported to be

K as

p
G2L 5H 0.15 GeV4 SU~2!@21#

0.10 GeV4 SU~3!@22#
.

We do not feel qualified enough to discuss a precision of
these calculations. In particular, it is not very clear~at least
to us! whether the large scale separation is accurately per-
formed to make possible a comparison with the SVZ defini-
tion. Still, it seems undoubtful that these results point in the
same direction as Eq.~32!: the quadratic gluon condensate in
YM theory is essentially larger than in QCD. As for the

cubic condensate, though a corresponding Monte Carlo data
does exist, it is rather difficult to extract from it a value of
the nonperturbative part of^g3G3& @23#. An estimate of this
quantity can still be obtained in an indirect way as the lattice
simulations of instantons suggest6 that the average size of
instantons in gluodynamics on the lattice is approximately
1/400 MeV which is a bit larger than the value predicted by
the instanton liquid model. In this case Eq.~39! together with
the above value of the quadratic condensate yields the esti-
mate@for the SU~3! color group#

^g3G3&YM.1.5 GeV6, ~41!

which is numerically close to Eq.~40!. Comparing finally all
three estimates~38!, ~40!, and ~41!, we suggest that while
Eq. ~38! presumably gives a lower bound for the number of
interest, Eqs.~40! and~41! seem to set up an upper limit with
a possible short distance enhancement. A reasonable com-
promise yields our final estimate given above by Eq.~30!.

We are now in a position to estimate the principal input in
Eq. ~11! which is the residuef h8

(c) of the charmed axial-vector
current into theh8, and which was the main object of our
consideration in this paper. Using Eqs.~26! and ~30!, we
obtain the following answer for this parameter:

f h8
~c!

5~502180!MeV. ~42!

Note that literally the ‘‘experimental’’ number~14! corre-
sponds to the value of the condensate^g3G3&YM.1 GeV6

which is about the midpoint of our prediction~30!. Given the
accuracy of our result~42!, we thus conclude that the gluon
mechanism seems to be sufficient to describe the data~1!.
Unfortunately, we are currently unable to improve our esti-
mate~42!, where the main source of uncertainty is due to a
poor knowledge of the cubic condensate in YM theory~30!.
Some ways to do this will be discussed in the next section.

VI. CONCLUSIONS

In this paper we proposed a theory of theB→Kh8 decay.
We showed that at the quark level this process proceeds via
the b→ c̄cs weak decay followed by a conversion of the
c-quark pair directly into theh8 which is possible due to a
presence of a nonvalence Zweig rule violating ‘‘intrinsic
charm’’ component of theh8 wave function. We have found
that a mechanism of breaking down the Zweig rule in our
case is of a purely nonperturbative origin. We have further
evaluated a most important ingredient of the factorized
B→Kh8 amplitude, which is the matrix element of the
charmed current̂0uc̄gmg5cuh8&, using a combination of the
operator product expansion technique, largeN approach, and
QCD low-energy theorems. Our results demonstrate that the
proposed mechanism is likely to exhaust an extremely large
branching ratio measured by the CLEO Collaboration, with a
certain reservation for a poor accuracy of our final answer
~42!. We do not pretend to have made a numerically reliable
calculation of the matrix element̂ 0uc̄gmg5cuh8(p)&

6E. V. Shuryak~private communication!. See also@16#.
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5ifh8
(c)pm which in our opinion determines theB→Kh8 decay

width. We have rather presented a semiquantitative~but
parametrically well established! picture which demonstrates
a close relation between this matrix element and properties
of the vacuum of QCD~or, more accurately, YM theory!.
Though the obtained result looks unexpectedly large, it has a
good explanation within QCD, and is related to strong fluc-
tuations in vacuum 01(2) channels. The main source of un-
certainty in our approach is well localized and related to a
value of the cubic condensate^g3G3&YM which is currently
not known with enough precision. Yet, the exact low-energy
theorems indicate that this matrix element is quite large. The
instanton vacuum model and lattice calculations also seem to
favor a large value of this condensate. In this reference, more
refined calculations of this quantity are highly welcome. In
particular, it would be very interesting if this condensate
could be reliably extracted from lattice simulations. An al-
ternative way which can be suggested to improve the deter-
mination of the condensatêg3G3&YM is akin to the idea of
the QCD sum rule approach@14#. If we had other physical
processes which essentially depend on the same cubic con-
densate, it could be then fixed ‘‘phenomenologically’’ once
and forever with an expected consistency between theoretical
predictions for different physical amplitudes. We plan to re-
turn to these issues elsewhere.

We would like to emphasize that the conclusion on a large
Zweig rule violatingc-quark component of theh8 certainly
goes beyond the particular example of theB→Kh8 decay
and may well be important in other physical processes. We
repeat that there are two basic reasons for a large magnitude
of the residuef h8

(c) : ~1! the c-quark mass is not too far from
the hadron scale 1 GeV and~2! the Zweig rule is badly
broken down in the 01(2) channels. While there is nothing
particularly special~except for its numerical effect! about the
first factor, the second one is specific to the unique nature
and quantum numbers of theh8. Therefore, we do not ex-
pect that any other than theh8 light particle could yield a
similar contribution to theB decay. In a more general con-
tent, there is an increasing evidence for importance of non-
valence Zweig rule violating components in hadrons. We
remind the reader that the problem of the strange quarks in
the nucleon~the so-calledpNs term! is resolved@19# ~see
also @24#! within physics which is very similar to that dis-
cussed in this paper. Furthermore, there are many other ex-
amples where ‘‘intrinsic’’ nonvalence configurations~includ-
ing, in particular, the ‘‘intrinsic charm’’ hadron components!
seem important~see, e.g.,@25# and@26#!. All these examples
unambiguously demonstrate that nonvalence components of
the hadron can be sizeable. In QCD terms such a situation
means that a corresponding matrix element has a nonpertur-
bative origin without the naively expectedas /p suppres-
sion. We have shown in this paper that this experimentally
testable physics is amenable to theoretical control. In this
respect, theh8 from B→h8 decays is an excellent laboratory
for the study of fundamental properties of strongly interact-
ing QCD.
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APPENDIX

The purpose of this appendix is to derive Eq.~16! in the
text. A convenient machinery for such a class of problem
was invented by Schwinger a long time ago@27#. The
Schwinger technique allows us in many instances~e.g., when
one is interested in a short distance expansion! to operate
with a propagator in external field without a specification of
the field. The result has a form of expansion in powers of the
field and its derivatives. The relevant object in our problem
is thec-quark propagator at short distances;1/mc , and the
expansion in the external gluon field amounts to a represen-
tation of the propagator in a form of series in powers of
LQCD/mc which is a sort of OPE. We refer the interested
reader to the pedagogical technical review@28# for more de-
tail and relevant references.

The Schwinger operator approach is based on a realiza-
tion of commutation relations of the coordinateXm and mo-
mentumPm ~Pm5 iD m , whereDm is the covariant deriva-
tive! operators

@Pm ,Xn#5 igmn ,

@Pm ,Pn#5 igGmn
a Ta, ~A1!

whereTa are the generators of the color group. One intro-
duces in the coordinate space a formal complete set of states
ux& as the eigenstates of the coordinate operatorXm :

Xmux&5xmux&,

^yux&5d~x2y!,

E dxux&^xu51, ~A2!

while in this basis the momentum operatorPm acts as the
covariant derivative

^yuPmux&5S i
]

]xm
1gAm

a ~x!TaD d~x2y!. ~A3!

In these notations we have to evaluate the expression

c̄ig5c5^xuTr$g5~P” 2m!21%ux&, ~A4!

wherem is thec-quark mass and Tr denotes the trace over
both color and Lorentz indices. Using a resolution of unity

15~P” 1m!21~P” 1m!

and the formula@smn5 i /2(gmgn2gngm)#

P” 25P21
1

2
smnGmn

a Ta,

we expand Eq.~A4! in powers ofsG[smnGmn
a Ta:
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c̄ig5c5mK xUTrH g5

g2

4

1

~P22m2!2 ~sG!
1

P22m2 ~sG!2
g3

8

1

~P22m2!2 ~sG!
1

P22m2 ~sG!
1

P22m2 ~sG!1•••J UxL
[D11D21••• , ~A5!

where the ellipsis stands for higher power terms in the exter-
nal field expansion. It is convenient to start the calculation
with the second term in Eq.~A5!. It explicitly contains the
gluon fieldGmn to the third power, and therefore to our ac-
curacy one can neglect the noncommutativity of the opera-
tors Pa andGmn . Thus

D252
g3

8
mTrH 1

~P22m2!4 g5~sG!3J . ~A6!

To the same accuracy the momentum operatorPm in the
denominator of Eq.~A6! is substituted by thec numberpm ,
and thex integration is performed using the formula

^xu~P22m2!A50
2~n21!ux&5E d4p

~2p!4 ~p22m2!2~n21!

5
~21!nm622n

16p2i ~n22!~n23!
,

which yields

D252
ig3

28333p2m3 Tr$g5~sG!3%. ~A7!

A calculation of the trace over the Lorentz indices gives

Tr$g5~sG!3%5225trcGmnG̃naGam ,

where trc stands for the trace over the color indices. The
latter is

trcGmnG̃naGam5
i

2
f abcGmn

a G̃na
b Gam

c [
i

2
GG̃G,

and finally we obtain

D252
1

16333p2m3 g3GG̃G. ~A8!

A calculation of the first term in Eq.~A5! is more tedious as
now we have to take into account the noncommutativity of
operators in order to evaluate this expression to theGG̃G
accuracy. Using the identity

~sG!
1

P22m2 5
1

P22m2 ~P22m2!~sG!
1

P22m2

5
1

P22m2 ~sG!

1
1

P22m2 @P2,~sG!#
1

P22m2 , ~A9!

we write

D15
g2

4
mK xUTrH g5

1

~P22m2!3 ~sG!2

1g5

1

~P22m2!3 @P2,~sG!#
1

P22m2 ~sG!J UxL
[P11P2 . ~A10!

The first term in Eq.~A10! is readily calculated to yield

P152
g2

323p2m
GmnG̃mn , ~A11!

while the second one needs more care. Let us perform first
the trace over the Lorentz indices:

P2522ig2K xUTrH 1

~P22m2!3 @P2,Gmn#

3
1

P22m2 G̃mnJ UxL . ~A12!

Calculating the commutator

@P2,Gmn#5Pl@Pl ,Gmn#1@Pl ,Gmn#Pl

52iPl~DlGmn!1D2Gmn ,

we obtain
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P254g2mK xUTrH 1

~P22m2!3 Pl~DlGmn!
1

P22m2 G̃mnJ UxL 22ig2mK xUTrH 1

~P22m2!3 ~D2Gmn!
1

P22m2 G̃mnJ UxL
54g2mK xUTrH 1

~P22m2!4 Pl~DlGmn!G̃mnJ UxL 14g2mK xUTrH 1

~P22m2!4 @P2,Pl~DlGmn!#
1

P22m2 G̃mnJ UxL
22ig2mK xUTrH 1

~P22m2!4 ~D2Gmn!G̃mnJ UxL 1••• . ~A13!

One can easily see that the first term in this expression gives
rise to higher dimensional operators and thus does not con-
tribute to our accuracy. However, the second term does con-
tain a needed power of the gluon field since

@P2,Pl~DlGmn!#52iPlPbDbDlGmn1•••

5 i $Pl ,Pb%DbDlGmn1••• ,

which results in

P252ig2mK xUTrH 2

~P22m2!5 $Pl ,Pb%DbDlGmnG̃mn

2
1

~P22m2!4 ~D2Gmn!G̃mnJ UxL . ~A14!

In the first term to our accuracy one can substitutePm→pm .
We further use the Bianki identity to evaluate

~D2Gmn!G̃mn5Da~2DnGam2DmGna!G̃mn

52iGamG̃mnGna ~A15!

and eventually obtain

P252
1

32333p2m3 g3GG̃G. ~A16!

Finally, collecting together Eqs.~A8!, ~A11!, and~A16! and
multiplying the whole answer by 2m, we arrive at

2mc̄ig5c52
as

4p
GG̃2

1

16p2m2 g3GG̃G1••• ,

~A17!

which completes the proof of Eq.~16!.
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