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We have recently presented the completeO(as
2) corrections to the semileptonic decay width of theb quark

at maximal recoil. Here we discuss various technical aspects of that calculation and further applications of
similar methods. In particular, we describe an expansion which facilitates the phase space integrations and the
treatment of the mixed real-virtual corrections, for which Taylor expansion does not work and the so-called
eikonal expansion must be employed. Several terms of the expansion are given for theO(as

2) QCD corrections
to the differential semileptonic decay width of theb quark at maximal recoil. We also demonstrate how the
light quark loop corrections to the top quark decay rate can be obtained using the same methods. We briefly
discuss the application of these techniques to the calculation of theO(as

2) correction to zero recoil sum rules
for heavy flavor transitions.@S0556-2821~97!03223-2#

PACS number~s!: 13.20.He, 12.15.Hh, 12.38.Bx

I. INTRODUCTION

Precise determination ofuVcbu, a parameter of the
Cabibbo-Kobayashi-Maskawa~CKM! matrix, is an impor-
tant goal of many experimental studies. The current experi-
mental limit @1#

uVcbu50.036 to 0.046 ~90% C.L.! ~1!

is based on measurements of theb-flavored hadron decays
produced at theY(4S) resonance~by ARGUS and by CLEO
II ! and in Z-boson decays~by the four experiments at the
CERN e1e2 collider LEP!. In the future large samples of
the b hadrons collected atB factories~at SLAC and KEK!
and at the hadron colliders will increase the statistical accu-
racy to a few percent level. To fully exploit the anticipated
experimental improvement, the theoretical description of the
b decay must be known with comparable precision.

There are two methods of extracting the value ofuVcbu,
based on measurements of the exclusive decayB→D̄! l̄ n l
and of the inclusive semileptonic decay width ofb hadrons
Gsl . These two methods rely on very different theoretical
considerations and experimental procedures and complement
each other. Their merits and theoretical uncertainties are
summarized, e.g., in Refs.@2,3#. One of the major sources of
the theoretical error are the perturbative QCD corrections at
the two loop level. For the exclusive decays at the zero recoil
point these corrections have recently been calculated@4,5#.
This has significantly improved the accuracy of the theoret-
ical prediction for the exclusive method.

Regarding the inclusive method, recently theO(as
2) cor-

rections to differential semileptonic decay width of theb
quark at maximal recoil have been calculated@6#. Combined
with the previously obtained value at zero~minimal! recoil,
these results permitted an estimate of the completeO(as

2)
correction to the total semileptonic decay width of theb
quark.

In the paper@6# we presented the results of that calcula-
tion and discussed its phenomenological relevance. The pur-
pose of the present paper is a detailed description of the
methods employed in that calculation. We would like to note

that a complete calculation of two-loop corrections to a fer-
mion decay width has never been performed before, neither
in QCD nor in QED~a long-standing example are the two-
loop QED corrections to the muon lifetime!. Therefore, in
the calculation we describe here we had to go beyond the
traditional methods used in higher-orders calculation. We
hope that a description of some technical aspects and meth-
ods will be of interest for the community.

Let us first mention the difficulties one encounters when
trying to compute the fourth order corrections to the fermion
decays. One of the problems is an appropriate treatment of
the real radiation of one or two gluons. For the virtual radia-
tive corrections there exists a number of algorithms, permit-
ting an efficient, analytical treatment of a large number of
complicated diagrams, which typically appear in such calcu-
lations. On the contrary, no similar algorithms were available
so far for the treatment of the real radiation.

The reason why the real radiation at orderO(as
2) is dif-

ficult to evaluate is that the particle in the initial state~the
decayingb quark! carries a color charge and therefore can
radiate. It is the presence of the massive propagator of the
initial quark which makes the integrations over the phase
space very tough. The kinematical configuration, where the
invariant mass of the leptons is equal to zero and the quark in
the final state is massive is the first case where a complete
analytical evaluation of the real radiation of two gluons in a
decay of a fermion turns out possible.

Another potential problem is the treatment of diagrams
which represent one-loop virtual corrections to a single
gluon emission in theb-quark decay. The virtual corrections
in such situation are one loop. Therefore one might naively
expect that this case does not require any sophisticated in-
vestigation. Unfortunately, the integration of the one-loop
formulas~especially of the boxes! over the three body phase
space is difficult. However, it turns out possible to express
the result for the loop as an expansion which can be easily
integrated over the phase space. With a systematic algorithm
for the expansion, this approach shifts the burden of the cal-
culation to the computer.

The idea which permitted us to calculate the contribution
of the real radiation of one or two gluons is~qualitatively
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speaking! the expansion in the velocity of the final quark. In
the limit mc→mb the charm quark in the final state is a
slowly moving particle, with spatial components of its mo-
mentum of the order ofmb2mc , much smaller than its
mass. The momenta of gluons and of leptons~in the case
when the invariant mass of the leptons is zero! are also of the
order ofmb2mc . It turns out that by a proper choice of the
phase space variables one can systematically expand the am-
plitudes and the phase space ind[(mb2mc)/mb!1 @some-
times we also use an equivalent expansion parameter
b[(mb

22mc
2)/mb

25d(22d); throughout this paper we use
mb as the unit of mass, puttingmb51#. The details of the
phase space parametrization will be explained in detail.

A word of caution is in order here. Our technique proved
to be very useful in problems where the mass of the quark in
the final state does not differ too much from the mass of the
quark in the initial state. In this respect an ideal application
are semileptonicb→c transitions. On the other hand, for
such problems as muon or top quark decay, the expansion
parameter may be close to unity and it is not clear at present
if our procedure is of any use there. We will, however, show
an example where our procedure remains meaningful and
delivers reliable predictions even in the case when the ex-
pansion parameter equals unity.

The paper is organized as follows. In the next section we
discuss how the real radiation of two gluons can be com-
puted. Section III is devoted to the treatment of tensor inte-
grals. Then we present a detailed study of one-loop virtual
corrections to a single gluon emission in theb decay. We
show that in such diagrams a new type of Feynman integrals
appears and discuss their evaluation. Section V is devoted to
the applications of our techniques. We present the result for
the O(as

2) correction to the differential semileptonic decay
width b→cln l up to d11. We also demonstrate how the
known light quark corrections to the top quark decay width
can be obtained with good accuracy if the expansion up to
high powers ofd is performed, and discuss an application of
our technique to corrections to the zero recoil sum rules. In
the last section we present conclusions.

II. EMISSION OF TWO GLUONS
IN SEMILEPTONIC b DECAYS

We first consider the radiation of two real gluons in a
semileptonicb decay,

b→c1e1ne1g11g2 ,

and discuss how its contribution to the width can be com-
puted.

Throughout this paper we denote the particles and their
four-momenta by the same letters, i.e., the momentum of the
b quark isb, etc. Moreover, we denote the momentum of the
lepton pair e1ne as W and often speak about the decay
b→c1W. All formulas in this paper apply to the case when
the invariant mass of the leptons is zero, i.e.,W250, if not
stated otherwise.

Our aim is to construct an expansion in
d5(mb2mc)/mb!1. In this case the spatial momentum of
the c quark is of the order ofmb2mc . The momenta of the
lepton pair and of the gluons are also of the order ofmb2mc

becauseW25g1
25g2

250. The smallness of these momenta
permits an expansion in terms ofd.

A. Expansion of the propagators

To show that such an expansion is indeed possible, we list
here all propagators of the virtual particles which appear in a
calculation of the two gluon emission in the semileptonicb
decay:

P15
1

~b2g1!22mb
2

5
1

22bg1
,

P25
1

~b2g2!22mb
2

5
1

22bg2
,

P35
1

~b2g12g2!22mb
2

5
1

22b~g11g2!12g1g2
,

~2!

P45
1

~c1g1!22mc
2

5
1

2cg1
, P55

1

~c1g2!22mc
2

5
1

2cg2
,

P65
1

~c1g11g2!22mc
2

5
1

2c~g11g2!12g1g2
,

P75
1

~g11g2!2
5

1

2g1g2
.

All these propagators are shown in the examples in Fig. 1. If
we eliminate the momentum of thec quark using momentum
conservation,c5b2W2g12g2, we can expand the propa-

FIG. 1. Notation used for the propagatorsPi in diagrams con-
tributing to semileptonicb decays: examples with two gluons~a!
QED-like and~b! with a non-Abelian coupling.
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gators P4•••P6 in the Taylor series with respect to the
‘‘small’’ momenta g1, g2, W. Explicitly, we have

P45
1

2bg1
(
j 50

`
~2g1W12g1g2! j

~2bg1! j
,

P55
1

2bg2
(
j 50

`
~2g2W12g1g2! j

~2bg2! j
,

P65
1

2b~g11g2!22g1g2
(
j 50

`
@2~g11g2!W# j

@2b~g11g2!22g1g2# j
.

~3!

From these expressions we see that the expansion does not
generate any new infrared divergences and, therefore, ap-
pears to be permissible. After this expansion only four dif-
ferent types of denominators remain. We list them for clar-
ity:

P1
0[

1

2bg1
, P2

0[
1

2bg2
,

P3
0[

1

2b~g11g2!22g1g2
, P75

1

2g1g2
. ~4!

As will become clear from the discussion below, it is more
convenient to useP3

0 as one of the basic propagators than to
expand it any further.

Let us emphasize at this point the advantages of the above
expansion. As can be seen from the above expressions, the
four-momentum of lepton pairW and the momentum of the
c quark do not appear in the denominator. This immediately
implies that the integral over the phase space ofW and c
factorizes. Therefore, the expansion suggests a simple way
how the rather nontrivial integration over the phase space of
four particles in the final state can be reduced to a more
familiar case of the three body phase space. This reduction is
described in the next section.

B. Phase-space integration for the emission of two gluons

After we have checked that the propagators of all virtual
particles can be expanded, the same must be demonstrated
for the phase space element. This is done in the present sec-
tion.

Considering the semileptonic decay of theb quark and
integrating first over the lepton phase space, one obtains the
following phase space integration element~we consider only
the point where the invariant mass of the lepton pairW2 is
zero!:

dR45@dc#@dW#@dg1#@dg2#dD~b2c2g12g22W!,

where a shorthand notation is

@dp#5
dD21p

2p0
, D5422e.

It is convenient to introduce an auxiliary vectorH which
equals to the sum of the momenta of thec quark andW
boson,H[c1W. With this notation the phase space integral
becomes

dR45E dH2E @dH#@dg1#@dg2#dD~b2H2g12g2!

3E @dW#@dc#dD~H2W2c!.

The integration over the (W,c) phase space gives~for now
we assume the integrand contains noW in the numerator; the
tensor integrals withW dependence will be analyzed in Sec.
III !

R2
Wc5E @dW#@dc#dD~H2W2c!5

VD21

2D21

~H22mc
2!D23

~H2!D/221
,

where

VD215
2p3/22e

G~3/22e!

is the volume of a (D21)-dimensional sphere of a unit ra-
dius.

Having performed the integration over the (W,c) phase
space we are left with the three particle phase space of one
massive (H) and two massless (g1, g2) particles and the
integration over the square of the momentumH.

We use the variables~with mb
2[1)

H25y, ~g11g2!25u, ~H1g2!25z, ~5!

and get the following expression for the four particle phase
space@7#:

dR45S VD21

2D21 D 3
1

B~12e,12e!
E dydzduu2ez2e

3~um2u!2e
~y2mc

2!122e

y12e
, ~6!

with um5(12z)(z2y)/z and the following limits of inte-
grations:

mc
2,y,1, y,z,1, 0,u,um . ~7!

In order to expand the phase space element in powers of
b5(mb

22mc
2)/mb

2 it is useful to change the variables in the
above expression:

y512bx1 , z512bx1x2 , u5umx3 ,

um5
b2x1

2x2~12x2!

12bx1x2
. ~8!

The integration limits for allxi are the same:

0,xi,1.
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Expressing the phase-space element through these variables
and restoring proper dimensionality we find

dR45R4
0b526eE

0

1

dx1dx2dx3J~x1 ,x2 ,x3!

3F 1

~12bx1x2!12e

1

~12bx1!12eG ,

where

J~x1 ,x2 ,x3!5x1
324e~12x1!122ex2

122e~12x2!122e

3x3
2e~12x3!2e,

R4
05

~mb
2!223e

B~12e,12e!S VD21

2D21 D 3

. ~9!

Our final aim is to expanddR4 in the limit of mc→mb .
The above expression is well suited for this purpose. Ex-
panding it in powers ofb5(mb

22mc
2)/mb

2 gives rise to
simple integrals which can be expressed by Beta functions:

E dx1dx2dx3J~x1 ,x2 ,x3!x1
nx2

mx3
k

5B~n1424e,222e!B~m1222e,222e!

3B~k112e,12e!. ~10!

C. Basic propagators

The basic propagatorsP1
0, P2

0, P3
0, and P7, expressed in

terms of the variables$xi% yield simple expressions which
can be integrated over the phase space. We find

P1
05

1

2bg1
5

1

bx1x2
,

P2
05

1

2bg2
5

12bx1x2

bx1~12x2!@12bx1x2~12x3!#
,

P3
05

1

2b~g11g2!22g1g2
5

1

bx1
,

P75
1

2g1g2
5

12bx1x2

b2x1
2x2~12x2!x3

. ~11!

Clearly, the expansion of these quantities in terms of smallb
is readily performed. The resulting integrals are very similar
to the integrals in Eq.~10! and can be expressed in terms of
the Beta functions.

The same is true for all scalar products of the four mo-
menta which enter the calculation. Therefore, the above dis-
cussion demonstrates that the part of the semileptonic decay
width of theb quark containing radiation of two gluons can
be calculated by expanding the matrix element and the four
particle phase space in powers ofb. What is still missing in
our discussion is the study of the integrals over the (W,c)
phase space when the numerator depends onW. We discuss
this issue in the next section.

III. TENSOR INTEGRALS

The expansion of the propagators in terms of the mo-
mentaW, g1, g2, may result in high powers of the scalar
products (Wg1)a(Wg2)b, which have to be integrated over
the (W,c) phase space. In this section we present efficient
methods for such integrations. The results of this section are
not restricted to the caseW250 and are likely to be useful
for solving other problems.

The main object we are going to discuss is the following
integral over the (W,c) phase space:

I ~a,b!5E @dW#@dc#dD~H2W2c!~Wg1!a~Wg2!b

[^~Wg1!a~Wg2!b&H5W1c ~12!

for arbitrarya,b.0. This integral can be rewritten as

I ~a,b!5g1
m1

•••g1
mag2

ma11
•••g2

ma1bTm,a1b ,

Tm,n[^Wm1
•••Wmn

&H5W1c . ~13!

The important property of the tensorT is that it depends on
a single external vector only (H). This property simplifies
the calculation of the necessary integrals. We discuss below
two approaches to such calculation; their relative merits de-
pend on the capabilities of the symbolic manipulation lan-
guages, if the algorithm is to be implemented using a com-
puter.

A. Method 1

The first approach is more general and potentially more
efficient. To fully exploit the dependence on the single ex-
ternal momentum we can extract the component of the vector
W which is parallel to it. For this purpose we write

W5W'1c1H, W'H50, c15
WH

H2
. ~14!

The value ofc1 is then fixed, because in the general case
W2Þ0 we have

WH5
1

2
~H21W22mc

2!. ~15!

Therefore, if we use the above substitution forW in the
tensor integralTm,n, we obtain a sum of tensor integrals over
transverse components of theW ~with respect toH):

T'
m,n[^W'

m1
•••W

'

mn&H5W1c . ~16!

Evidently, the tensor structure of this integral is trivial: since
W'H50, T'

m,n must be proportional to theabsolutely sym-
metric tensorof the (D21) dimensional space. The ‘‘build-
ing block’’ is the metric tensor of (D21)-dimensional
space:gmn2HmHn /H2. We note that only tensors ofeven
rank contribute. The generation of the absolutely symmetric
tensor of (D21)-dimensional space can be easily encoded
in a symbolic manipulation program. Hence, the algorithm
described above permits an efficient treatment of the tensor
integrals which appear in the problem at hand.
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B. Method 2

Using the same idea as in the previous section we can
advance slightly further with the analytical calculation of the
integral I (a,b).

After writing W5W'1c1H and noticing thatg1H and
g2H are constants in the (W,c) phase space, we conclude
that the nontrivial integrals to be computed are

I'~a,b![^~W'g1!a~W'g2!b&H5W1c

5^~W'g1'!a~W'g2'!b&H5W1c , ~17!

with gi' ( i 51,2) defined in analogy toW' .
The integralI' is a Lorentz scalar and we can choose an

arbitrary frame for its calculation. For instance, we consider
H to have only the zeroth component and put thez axis of
the (D21)-dimensional space along the vectorg1' . Then,
rewriting g2' as

g2'5g2a1c2g1' , g2ag1'50, c25g2'g1' /g1'
2 ,

~18!

we find thatI' is expressed as a sum of integrals of the form

I 1~a,b!5^~W'g1'!a~W'g2a!b&H5W1c . ~19!

This integral is nonzero only if botha andb are even inte-
gers.

Since g2ag1'50, we can put thex axis of the
(D21)-dimensional space along the vectorg2a . Then we
have

I 1~a,b!5R2
WcuW'u~a1b!ug1'uaug2aubI 2~a,b!,

I 2~a,b!5E dVD21

VD21
S W'g1'

uW'uug1'u D
aS W'g2a

uW'uug2au D
b

. ~20!

The integration element is

dVD215 )
i 51

D22

sinD222 iu idu i ,

0,u i,p~ iÞD22!,

0,uD22,2p. ~21!

If we choosez andx axes as described above, we get

W'g1'

uW'uug1'u
52cosu1 ,

W'g2a

uW'uug2au
52sinu1cosu2 . ~22!

The minus sign in the above equations arises because the
transverse vectors here are spacelike. In calculatingI 2(a,b)
the following formula is useful:

E
0

p

dusinaucosbu5BS 11a

2
,
11b

2 D . ~23!

This formula is valid for even and positiveb. Using it we get
the result for the integralI 2(a,b):

I 2~a,b!5
~21!a1bG~3/22e!G@~11a!/2#G@~11b!/2#

pG@~a1b1322e!/2#
.

~24!

In order to use these results for the further integration over
the phase space (H,g1 ,g2) it is necessary to express the
modulus of the vectorsW' , g1' , g2a in terms of the vari-
ables$xi% introduced in the previous section. This is a cum-
bersome but straightforward task and we do not discuss it
here in any detail.

The steps described above allow an easy implementation
in any symbolic manipulation program. They provide an ef-
ficient and uniform treatment of the tensor integrals which
appear in this calculation.

IV. ONE LOOP VIRTUAL CORRECTION
AND ONE REAL GLUON

Another source of theO(as
2) corrections are the one-loop

virtual corrections accompanied by a radiation of an addi-
tional real gluon. Again, we would like to expand those dia-
grams in powers ofd5(mb2mc)/mb . The purpose of this
section is to provide a suitable algorithm.

There is a principal difference from the radiation of two
real gluons in this part of the corrections. Namely, it is not
sufficient here to perform a Taylor expansion of the relevant
diagrams.

To see this, let us analyze a simple example. We consider
a diagram where theb quark radiates a gluon and then a
one-loop self-energy correction is inserted on theb-quark
line ~see Fig. 2!. Taking the limitmb→mc in such situation
implies that the momentum of the real gluon goes to zero.
Therefore the self-energy diagram should be calculated close
to the mass shell of theb quark. It is well known that in this
limit the self-energy diagram has an on-shell logarithmic sin-
gularity of the form

ln~M22p2!; ln~M22m2!; ln~d!.

Since this diagram contains ln(d) it is clear that it cannot
be calculated as a Taylor expansion with respect tod. There-
fore, a more sophisticated procedure is needed and the
method ofeikonal expansions@8,9# is used in this case. We
illustrate this approach in the following example.

FIG. 2. The simplest diagram in which the Taylor expansion in
(mb2mc)/mc leads to spurious divergences and must be supple-
mented by an eikonal expansion.
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A. An example of the eikonal expansion

In this subsection we consider a simple example of a one-
loop integral, where a result obtained from the eikonal ex-
pansion can be compared with an exact formula. We calcu-
late the scalar self-energy diagram:

B~p2,m2!5E dDk

~2p!D

1

k2@~k1p!22m2#
. ~25!

Performing Feynman parametrization, integrating over the
loop momenta, and expanding inr5(m22p2)/p2 we get
~usingp251 here!

B~p2,m2!5
iG~11e!

~4p!D/2 S 1

e
122r1r lnr

2
r2

2
1

r3

6
2

r4

12
1••• D . ~26!

The appearance of the ln(r) term in this result signals that
the Taylor expansion of theintegrandwill be insufficient. In
order to get the correct result we add the eikonal expansion.
For this purpose we write

B~p2,m2!5Bt1Beik . ~27!

The Taylor expansion termBt is obtained by expanding the
integrand in Eq.~25! in a Taylor series inr. This yields a set
of one-loop on-shell integrals which are well known. The
validity of such an expansion is determined by the condition
k212pk@rp2. If this is not the case, the Taylor expansion
breaks down. This breakdown gives rise to an infrared sin-
gularity which occurs in the region whererp2;2pk and
k2!rp2. This spurious divergence can be cancelled by add-
ing an expansion of the integrand ink2 ~for a more detailed
discussion see@8,9#!.

One should note in addition that if any power ofk2 ap-
pears in the numerator we get an integral of the form

I ~n!5E dDk

~2p!D

~k2!n

2pk2p2r
, n>0.

An important point is that such integrals are zero within the
dimensional regularization framework. One simple reason
for this is that the integral over transverse components ofk is
scaleless.

Hence, the only term in the eikonal expansion we should
consider is the one withk2 neglected in the second propaga-
tor. The eikonal integral therefore reads

Beik5E dDk

~2p!D

1

k2~2pk2p2r!
. ~28!

It is evident that this integral scales withr asBeik}r122e. It
is this dependence one which gives ln(r) in the final result.

ConsiderBeik in the rest frame ofp. Performing the inte-
gration over the time component of the loop momenta first,
one gets a simple integral representation over the transverse
components of the loop momenta which can be easily calcu-

lated. More sophisticated eikonal integrals are considered in
the next section, where all necessary formulas can be found.

B. Eikonal integrals: Preliminaries

Here we provide a set of formulas for dealing with inte-
grals appearing in the eikonal expansions. As is clear from
the example presented above, the region of integration in
which we are interested here is characterized by the values of
the virtual momentum of the order of the momentum of the
real gluon emitted in the decay.

We denote the loop momentum byk and the momentum
of the real gluon byg; explicitly, the eikonal expansion of
the propagator

P~k!5
1

~k1b2g!22mb
2

5
1

k212k~b2g!22bg

is given by

P~k!eik5
1

2kb22bg(0

` S 2kg2k2

2kb22bgD j

.

The basic eikonal integral in the one-loop correction then
reads1

I 6~n,m,a,b!

5E dDk

~2p!D

~kW!a~kg!b

~k21 id!~2kQ62Qg1 id!n~2kQ1 id!m
.

~29!

In the actual calculationQ is always atimelikevector which
for different diagrams can beb, b2g, c1g.

As we pointed out above, the integrals with any power of
k2 in the numerator vanish. There are several ways to see
this. First, the integrals over transverse~with respect toQ)
components of the loop momenta are scaleless; also if there
is no k2 in the denominator, the poles of the integrand are
located only on one side of thek0 integration axis. Also, if
n,0, the integral in Eq.~29! is zero because it is scaleless.

Let us describe the most economic way to calculateI 6.
We choose the Lorentz frame in whichQ5(Q0,0, . . . ,0).
The integration over the timelike component of the vectork
can be performed using the residues. If the integration con-
tour is closed in the upper half-plane, only that pole in 1/k2

contributes for whichk052k' .
After k0, the integration over the (D21)-dimensional

space should be performed. To discuss the integration over
k' we first note that after integrating overk0 the denomina-
tor of the integralI 6(n,m,a,b) depends onk'

2 only. There-
fore, all tensor integrals which appear due to the numerator
structure are simply related to theD21 absolutely symmet-
ric tensor of the corresponding rank. Hence, the tensor inte-
grals here are similar to the ones discussed in Sec. III.

1In the Feynman diagrams with self-gluon couplings the situation
is more complicated. Their treatment is described in Sec. IV C.
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Finally, we are left with the radial integration over the modulus ofk' . The following formulas are useful:

I 2~n,m,m1!5E dDk

~2p!D

~k'
2 !m1/2

~k21 id!~2kQ22Qg1 id!n~2kQ1 id!m
5

iVD21

~2p!D21
B~22m1m122e,n1m2m12212e!

3~Qg!22m1m12n22e~Q2!212m1/21e~21!n1m1m11122m2n21,

I 1~n,m,m1!5E dDk

~2p!D

~k'
2 !m1/2

~k21 id!~2kQ12Qg1 id!n~2kQ1 id!m

5
iVD21

~2p!D21
~Qg!22m1m12n22e~Q2!212m1/21e

~21!n1m1m11122m2n21

~n21!!

G~22m1m122e!

G~32n2m1m122e!

3@c~22m1m122e!2c~211m2m112e!#, ~30!

with

c~z!5
1

G~z!

dG~z!

dz
. ~31!

In the above formulasVD21 is the volume of the
(D21)-dimensional sphere of unit radius.

There is one subtle point concerning the expressions pre-
sented above. Namely, it is easy to see that the integralsI 1

have an additional singularity after the integration overk0
has been performed. This singularity corresponds to the ap-
pearance of the imaginary part in some of Feynman diagrams
which contribute to the result. Below we explain how this
singularity was treated.

In the singular integrals the integration over the modulus
of the transverse momenta is

I 1;E
0

`

dk'

k'
a

~k'212 id!n
.

The singularity is located at the pointk'51. To make this
integral meaningful we rewrite it as

I 1;
1

~n21!! S d

dxD ~n21!E
0

`

dk'

k'
a

k'2x2 id U
x51

.

Rescalingk'→xk' we get

I 1;
1

~n21!! S d

dxD ~n21!

xaE
0

`

dk'

k'
a

k'212 id U
x51

.

For the derivative we use

S d

dxD ~n21!

xa5
G~11a!

G~21a2n!
xa2n11.

Finally, after performing the remaining integration overk'

using

ReE
0

`

dx
xa

x211 id
5c~11a!2c~2a!,

we arrive at the formula forI (1) quoted above.

C. Eikonal integrals for the graphs
with the gluon self-coupling

The graphs with a triple gluon coupling lead to the most
difficult eikonal integrals. The difficulty originates from the
fact that in such graphs one has two massless~gluon! propa-
gators. A typical integral reads

E dDk

~2p!D

1

k2~k2g!2@~k1b2g!22mb
2#@~c1k!22mc

2#
.

The Taylor expansion of such integral is easy. However,
in the eikonal expansion one cannot expand massless propa-
gators. Therefore, the master integral in this case is

I ~n,m!5E dDk

~2p!D

1

k2~k2g!2~2kQ22Qg!n~2kQ!m
,

whereQ is again a ‘‘large’’ timelike vector, as described in
the previous section. Note also, that in this case the terms
with k2 or (k2g)2 in the numerator do contribute to the
result.

Let us describe in detail how such integrals can be calcu-
lated. For this purpose we first combine the massless de-
nominators:

1

k2~k2g!2
5E

0

1 dx

~k222kgx!2
5E

0

1 dx

@~k2gx!2#2
.

Next, we decompose the product of two eikonal propagators

1

~2kQ22Qg!n~2Qk!m

using partial fractions. The integralI (m,n) becomes now a
sum of the integrals of the following type:

I 1~n!5E
0

1

dxE dDk

~2p!D

1

@~k2gx!2#2~2kQ22gQ!n
,

I 2~n!5E
0

1

dxE dDk

~2p!D

1

@~k2gx!2#2~2kQ!n
. ~32!
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In both integrals we shift the integration momentum
k→k1xg and get

I 1~n!5E
0

1

dxE dDk

~2p!D

1

~k2!2@2kQ22gQ~12x!#n
,

I 2~n!5E
0

1

dxE dDk

~2p!D

1

~k2!2~2kQ12gQx!n
. ~33!

Now, in the first integral one makes the change of variables
x→12x and then rescales the integration momentak→xk
in both I 1 and I 2. The integration overx factorizes and can
be done using

E
0

1

dxxa5
1

a11
.

The integrals overk differ from the integral in the previ-
ous section by the presence of two powers ofk2 in the de-
nominator. In this case it is useful to perform a transforma-
tion ~similar to the technique of integration by parts@10#!,
which reduces the integrals with the second power ofk2 in
the denominator to the integrals with the first power only.

To write down this transformation we introduce the nota-
tion

I 6~a,n,m!5E dDk

~2p!D

1

~k2!a~2kQ62Qg!n~2kQ!m
.

Then

I 6~2,n,m!5Q2@22~m11!I 6~1,n,m12!

22nI6~1,n11,m11!#.

Using this formula we end up with integrals with the first
power of k2 in the denominator, for which the formulas of
the previous section are applicable.

D. Integration over the single gluon phase space

In the treatment of the radiation of one gluon withO(as
2)

accuracy, the last step one has to do is to perform the inte-
gration over the phase space of the real gluon. The eikonal
expansion, described above in detail, gives the virtual cor-
rections in terms of powers and logarithms of the small pa-
rameters. This form of the intermediate result simplifies the
final integration over the phase space of the decay products.
This would not be the case if we had anexactresult for the
loop: that would certainly contain dilogarithms of compli-
cated arguments.

The phase space integration with a single gluon is in its
general structure similar to the case of two real gluons, dis-
cussed in Sec. II B. For completeness, we give a short ac-
count of necessary formulas.

In the present case the phase space element is

dR35E @dc#@dW#@dg#dD~b2c2g2W!

5S VD21

2D21 D 2

mb
224eb324eE

0

1

dxJ~x!
1

~12bx!12e
,

J~x!5x122e~12x!122e ~34!

with

H5W1c, H2512bx,

bH512
bx

2
, bg5Hg5

bx

2
. ~35!

The master integral in this case reads

E
0

1

dxJ~x!xn5B~n1222e,222e!. ~36!

The results of the eikonal integrals require a slight modifica-
tion of the master integral. As we saw in Sec. IV B, those
results contain (bg)22e which results in an extra factorx22e.
In this case the master integral is

E
0

1

dxJ~x!xn22e5B~n1224e,222e!. ~37!

V. APPLICATIONS

In this section we discuss some applications of the tech-
niques described above.

First, we give a complete result for theO(as
2) correction

to the differential semileptonic decay width of theb quark at
the maximal recoil point. We next rederive the BLMO(as

2)
corrections to the quark top decay width into masslessW
boson andb quark with the help of the expansions presented
above. As will be explained below, the expansion parameter
in this case is unity. It not obvious that the techniques de-
scribed above can be of any use there. Therefore it is inter-
esting to check how the procedure works in such extreme
limit. Finally, we comment on the applications to zero recoil
sum rules.

A. Two-loop QCD correction to semileptonicb decay
at maximal recoil

The measurement of the inclusive semileptonic decay
width permits a determination of the CKM matrix parameter
uVcbu with a small theoretical uncertainty@2,3#. The magni-
tude of the perturbative correctionsO(as

2) to this quantity
has been subject of discussions in the recent literature. We
addressed this problem in Ref.@6# where the exact calcula-
tion of theO(as

2) corrections at maximal recoil was used to
estimate the total fourth order correction to theb-quark semi-
leptonic width. Here we present more complete results of
that calculation.

We consider semileptonic decay of theb quarkb→cln l .
The momentum carried away by leptons is denoted byq. We
write differential semileptonic decay width of the decay
b→cln l at q250 as
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FdGsl

dq2 G
q250

5G0FDBorn1
as

p
CFD11S as

p D 2

CFD2G , ~38!

where G05(GF
2mb

3/96p3)uVcbu2. DBorn5(12mc
2/mb

2)3 and
D1 is also known in a closed analytical form@11,12#. D2 is
the new result which givesO(as

2) correction to the differen-
tial semileptonic decay width of theb quark at the point of
zero invariant mass of leptons.

For the purpose of the presentation we write the fourth
order correction as

D25d3@~CF2CA/2!DF1CADA1TRNLDL1TRDH#.
~39!

In the above equationd5(12mc /mb) is the expansion
parameter.DH describes the contribution of the massiveb
andc quark loops.

For the SU~3! group the color factors areCA53,
CF54/3, TR51/2. NL is the number of light quark flavors
whose masses were neglected.

In Ref. @6# we presented analytical results for the func-
tionsDF,A,L,H up tod4, though actual calculations have been
done up tod8. Our complete formulas for these functions are
presented in the Appendix.

B. BLM O„b0as
2
… corrections to the decay width

of the top quark

As another application of the above techniques we con-
sider the decay of the top quarkt→Wb. It is well known that
this decay width~at least at the Born and the one-loop level!
can be well approximated by neglecting the masses of theW
boson and theb quark. In such case, sinceW250, the tech-
niques presented in the main part of this paper can be readily
applied. In particular, the formula~38! can be rewritten in
such form that it gives the correction to the two-body decay
width t→QW ~whereQ is a heavy quark!:

G~ t→QW!5G̃0FDBorn1
as

p
CFD11S as

p D 2

CFD2G .
~40!

The D i functions here are the same as in Eq.~38!, with mb
and mc replaced bymt and mQ . The problem, however, is
that the procedures described above were based on the ex-
pansion of the rate in the mass difference of the final and
initial quarks. In the case of the top quark decay with ab
quark in the final state this means that the expansion param-
eterd5(mt2mb)/mt is close to 1 for realistic values ofmt
andmb .

Little is known about convergence properties of the series
described in this paper. Fortunately, part of theO(as

2) cor-
rection to the top quark width is known exactly; it is the
contribution of the massless quarks, calculated for
mW5mb50 in @13,14# ~the relevant diagrams are shown if
Fig. 3!. We can use that limiting case to check if we can
reproduce it with our techniques.

The exact formula for the massless quark correction reads
~in the MS scheme and for one generation of massless fer-
mions!

G ferm~ t→Wb!5S as

p D 2 CFTR

16
G̃0F2z~3!1

23

9
z~2!2

8

9G ,
G̃05

GFmt
3

8A2p
. ~41!

It should be mentioned that the diagrams with real or
virtual massless fermions represent the simplest case for the
described algorithms. The reason is their simple planar to-
pology, which allows the computer programs to work very
fast. For this particular type of diagrams we can expand the
width up to a very high power ind.

We write the result of this expansion as

G ferm~ t→bW!5S as

p D 2

CFTRG̃0F~d!,

where the functionF(d) is given as a series of powers and
logs of d; we have computed this expansion up to terms of
the orderd21. The first few terms of that expansion are given
by the functionDL in the Appendix.

The numerical value of the exact result is

F~1!5
1

16S 2z~3!1
23

9
z~2!2

8

9D50.3574 . . . .

The values of the approximate resultF(d) for d51 are, for
three numbersN of the summed terms,

N521, F~1!50.3266,

N515, F~1!50.3210, ~42!

N511, F~1!50.3176.

FIG. 3. Examples of the light-quark loop corrections to the top
quark decay.
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Comparing these numbers with the exact result we see
that already the first 11 terms of the expansion give the ac-
curacy of about 10%. Unfortunately, the accuracy does not
improve significantly with the growing number of terms in
the expansion. This slow convergence of the series is caused
by the logarithms of the small (b quark! mass. Although
these terms are suppressed by powers of that mass~and
should give no contribution to the final result ifmb50), they
spoil the convergence of the expansion. It would be very
useful ~and we think it is possible! to find a systematic way
of eliminating those parts of the integrands which give rise to
these logs.

On the other hand, from the perspective of practical ap-
plications~such as top physics at the Next Linear Collider! it
would be sufficient to know the two-loop QCD correction to
the top quark decay width even with 10% accuracy. It is
tempting to apply our algorithms to this problem and ex-
trapolate the result to the pointd51; on the other hand, at
present we do not know any reliable method for estimating
the uncertainty of such a result.

C. Zero recoil sum rules for b˜c transition
with O„as

2
… accuracy

Another useful application of the techniques described
above is connected with the so-called zero recoil~ZR! sum
rules @2#. In this subsection we would like to discuss this
point. A more detailed discussion of ZR sum rules with the
O(as

2) corrections will be given in a future publication@17#.
The ZR sum rules are important for the estimates of the

zero recoil transition form factors such asFB→D* for
B→D* transition orFB→D for B→D transition. In turn, the
form factorFB→D* is a crucial ingredient foruVcbu determi-
nation from the exclusive semileptonicB→D* ln l decays.

The sum rules for exclusive heavy-to-heavy flavor transi-
tions are based on the operator product expansion~OPE! of
the hadronic amplitudes in terms of the inverse quark
masses. The zeroth order term in this expansion is the parton
model where free quarks are substituted for real hadrons both
in initial and final state. Here we disregard the nonperturba-
tive corrections and discuss how the perturbativeO(as

2) cor-
rections to the sum rules can be evaluated.

We consider a transition of ab quark at rest to ac quark
and massless partons which occurs under the influence of the
external currentJm . The momentum carried away by the
external current isq5(q0 ,0), where

q05mb2mc2e, e<m!mb ,mc .

The quantity which is of primary importance for the per-
turbative corrections to ZR sum rules can be schematically
written

E
0

m

dewJ~e!, wJ~e!5GJ~b→c1Xuq0!.

In this equation we have shown explicitly the dependence of
the transition rateGJ(b→cuq0) both on the external mo-
menta transferq0 and on the Lorentz structure of the current.

If e50, the transition is elastic; the final state is a single
c quark at rest. TheO(as

2) corrections in this case reduce to

the renormalization of the external currentJm . For vector
and axial currents they were calculated in@4,5#.

On the other hand, ifeÞ0 thec quark starts moving and
can radiate. The second order correctionsO(as) were calcu-
lated in@2,15,16#. Aiming at the fourth order, i.e., atO(as

2)
accuracy, one has to consider the final state with thec quark
and two real gluons or light quarks and also theO(as) cor-
rection to the single gluon emission inb→c transition.

Due to the hierarchy of scales,e,m!mb ,mc , the finalc
quark is moving slowly by definition; this is therefore a nice
place where the techniques described in this paper can be
applied. In particular, an algorithm for performing eikonal
expansions with the subsequent integration over the phase
space appears to be very useful here. This topic will be dis-
cussed in detail in Ref.@17#.

VI. CONCLUSION

In this paper we have described techniques used in the
calculation of theO(as

2) corrections to the semileptonic de-
cay widthb→cln l at maximal recoil@6#. The technical tool
we used for that calculation is an expansion of the decay rate
in powers and logarithms of the mass difference between the
initial and final quarks. We presented a detailed discussion of
the algorithm, which enables one to construct such expan-
sion. We treated virtual corrections, emission of one gluon,
and emission of two gluons separately. Therefore, these al-
gorithms can be used for the analyses of less inclusive quan-
tities than the total decay rate, at least in principle.

In the case of two-loop virtual corrections and emission of
two real gluons, the expansion ind5(mb2mc)/mb is a Tay-
lor expansion. In the case of one-loop corrections to the am-
plitude of single gluon emission inb decay, the Taylor ex-
pansion is insufficient. An appropriate method is provided by
the eikonal expansions, recently introduced in Refs.@8,9#.
When this procedure is used, a new type of Feynman inte-
grals appears. These integrals and methods which were used
for their evaluation were described here in some detail.

The whole construction works well if the mass difference
between initial and final state quarks is not too large. This is
the case for the semileptonicb→c transitions, where the
expansion parameter (mb2mc)/mb;0.7. In this case we cal-
culated the expansion up to the eleventh power ofd; the
estimated accuracy of the final result is better than 1%.

There is, however, a number of other applications where
the initial quark is significantly heavier than the final one. It
is not obvious to what extend the present method can be
useful in such situation. There is an indication, however, that
our procedures give meaningful results even in that limit. As
an example, we analyzed the light quark corrections to the
width of the top quark decay into masslessW boson and ab
quark. We have shown that the first several terms of the
expansion ind t5(mt2mb)/mt approximate the known exact
result with a 10% accuracy. Finally, we have argued that the
same techniques can be applied to the corrections to the zero
recoil sum rules for the heavy flavor transitions.
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APPENDIX: RESULTS FOR THE MAXIMAL RECOIL

In this appendix we present the first nine terms of the expansion of the coefficient functions for theb quark decay rate at
maximal recoil, as defined in Eq.~39!:
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