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We have recently presented the comp@(ezg) corrections to the semileptonic decay width of thquark
at maximal recoil. Here we discuss various technical aspects of that calculation and further applications of
similar methods. In particular, we describe an expansion which facilitates the phase space integrations and the
treatment of the mixed real-virtual corrections, for which Taylor expansion does not work and the so-called
eikonal expansion must be employed. Several terms of the expansion are given@QuﬂjeQCD corrections
to the differential semileptonic decay width of thequark at maximal recoil. We also demonstrate how the
light quark loop corrections to the top quark decay rate can be obtained using the same methods. We briefly
discuss the application of these techniques to the calculation (@([hé) correction to zero recoil sum rules
for heavy flavor transitiond.50556-282(97)03223-2

PACS numbgs): 13.20.He, 12.15.Hh, 12.38.Bx

I. INTRODUCTION that a complete calculation of two-loop corrections to a fer-
mion decay width has never been performed before, neither
Precise determination ofV.,, a parameter of the in QCD nor in QED(a long-standing example are the two-
Cabibbo-Kobayashi-MaskawdCKM) matrix, is an impor- loop QED corrections to the muon lifetimeTherefore, in
tant goal of many experimental studies. The current experithe calculation we describe here we had to go beyond the

mental limit[1] traditional methods used in higher-orders calculation. We
hope that a description of some technical aspects and meth-
|Vep/=0.036 to 0.046 (90% C.L) (1) ods will be of interest for the community.

Let us first mention the difficulties one encounters when
trying to compute the fourth order corrections to the fermion
: ) decays. One of the problems is an appropriate treatment of
Il) and inZ-boson decaysby the four experiments at the the real radiation of one or two gluons. For the virtual radia-

il
CERNe"e" collider LEP. In the future large samples of e corrections there exists a number of algorithms, permit-
the b hadrons collected & factories(at SLAC and KEK g an efficient, analytical treatment of a large number of
and at the hadron colliders will increase the statistical aCCUzomplicated diagrams, which typically appear in such calcu-
racy to a few percent level. To fully exploit the anticipated |a4ions. On the contrary, no similar algorithms were available
experimental improvement, the theoretical description of the,; t4r for the treatment of the real radiation.

b decay must be known with comparable precision. The reason why the real radiation at ord@@f«?) is dif-
There are two methods of extracting the valuelfol,  ficult to evaluate is that the particle i S

1 bl particle in the initial stdthe
based on measurements of the exclusive d&ayD* | v;  decayingb quark carries a color charge and therefore can
and of the inclusive semileptonic decay widthiohadrons  radiate. It is the presence of the massive propagator of the
I's. These two methods rely on very different theoreticalinitial quark which makes the integrations over the phase
considerations and experimental procedures and complemegace very tough. The kinematical configuration, where the
each other. Their merits and theoretical uncertainties argariant mass of the leptons is equal to zero and the quark in
summarized, e.g., in Reff2,3]. One of the major sources of the final state is massive is the first case where a complete

the theoretical error are the perturbative QCD corrections ainalytical evaluation of the real radiation of two gluons in a
the two loop level. For the exclusive decays at the zero recoiiecay of a fermion turns out possible.

is based on measurements of thdlavored hadron decays
produced at th& (4S) resonancéby ARGUS and by CLEO

point these corrections have recently been calculpdes]. Another potential problem is the treatment of diagrams
This has significantly improved the accuracy of the theoretwhich represent one-loop virtual corrections to a single
ical prediction for the exclusive method. gluon emission in thé-quark decay. The virtual corrections

Regarding the inclusive method, recently @¢a?) cor-  in such situation are one loop. Therefore one might naively
rections to differential semileptonic decay width of the expect that this case does not require any sophisticated in-
quark at maximal recoil have been calculaféi Combined  vestigation. Unfortunately, the integration of the one-loop
with the previously obtained value at zefminimal) recoil,  formulas(especially of the box@ver the three body phase
these results permitted an estimate of the comp]b(t&ﬁ) space is difficult. However, it turns out possible to express
correction to the total semileptonic decay width of the the result for the loop as an expansion which can be easily
quark. integrated over the phase space. With a systematic algorithm

In the papef6] we presented the results of that calcula-for the expansion, this approach shifts the burden of the cal-
tion and discussed its phenomenological relevance. The puculation to the computer.
pose of the present paper is a detailed description of the The idea which permitted us to calculate the contribution
methods employed in that calculation. We would like to noteof the real radiation of one or two gluons (qualitatively
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speaking the expansion in the velocity of the final quark. In
the limit m.—m, the charm quark in the final state is a
slowly moving particle, with spatial components of its mo-
mentum of the order ofm,—m,, much smaller than its
mass. The momenta of gluons and of leptdimsthe case
when the invariant mass of the leptons is 2en@ also of the
order ofm,—m,. It turns out that by a proper choice of the
phase space variables one can systematically expand the am-
plitudes and the phase spaceds#s (m,—m;)/m,<1 [some-
times we also use an equivalent expansion parameter
B=(mZ—m?)/m3= 8(2— 6); throughout this paper we use
my, as the unit of mass, puttingy,=1]. The details of the
phase space parametrization will be explained in detail.

A word of caution is in order here. Our technique proved
to be very useful in problems where the mass of the quark in
the final state does not differ too much from the mass of the
quark in the initial state. In this respect an ideal application
are semileptonido—c transitions. On the other hand, for
such problems as muon or top quark decay, the expansion
parameter may be close to unity and it is not clear at present
if our procedure is of any use there. We will, however, show
an example where our procedure remains meaningful and ®)
delivers reliable predictions even in the case when the eX- ;- 1 \otation used for the propagatd®sin diagrams con-
pansion parameter eq_uals unity. . tributing to semileptonid decays: examples with two gluorta)

The paper is organized as follows. In the next section W&ED-like and(b) with a non-Abelian coupling.
discuss how the real radiation of two gluons can be com-
puted. Section Il is devoted to the treatment of tensor i”tebecauseNZ—g%g%:O. The smallness of these momenta

grals. Then we prgsent a detaileq gtudy of one-loop Virtuabermits an expansion in terms 6f
corrections to a single gluon emission in thedecay. We
show that in such diagrams a new type of Feynman integrals
appears and discuss their evaluation. Section V is devoted to
the applications of our techniques. We present the result for To show that such an expansion is indeed possible, we list
the O(«?) correction to the differential semileptonic decay here all propagators of the virtual particles which appear in a
width b—cly, up to 6*. We also demonstrate how the calculation of the two gluon emission in the semileptobic
known light quark corrections to the top quark decay widthdecay:

can be obtained with good accuracy if the expansion up to

high powers ofs is performed, and discuss an application of 1 1

A. Expansion of the propagators

our technique to corrections to the zero recoil sum rules. In Pl:(b_gl)Z_mg N —2bg;’
the last section we present conclusions.
b 1 1
Il. EMISSION OF TWO GLUONS 2T T % 27 _2ba,’
IN SEMILEPTONIC b DECAYS (b=g2)"—m; %
We first consider the radiation of two real gluons in a 1 1
. . P.= = s
semileptonicb decay, 3 (b—g1—go)>—m2  —2b(g1+05)+20:9;
b—c+e+ vetgy+0,, 2
. . I . 1 1 1 1
and discuss how its contribution to the width can be com-p,= = , = = ,
puted. (ct+gy)?-m; 2C0 (c+gp)?—m; 2¢0;
Throughout this paper we denote the particles and their
four-momenta by the same letters, i.e., the momentum of the 1 1
. P = = s
b quark isb, etc. Moreover, we denote the momentum of the 6 (Ctgitgn)?m?  26(g:1+0,)+20:9;

lepton paire+ v, as W and often speak about the decay
b—c+W. All formulas in this paper apply to the case when
the invariant mass of the leptons is zero, iW2=0, if not p— 1 _ 1
stated otherwise. T (g1409y)2 20192

Our aim is to construct an expansion in
8=(mp—m;)/m,<1. In this case the spatial momentum of All these propagators are shown in the examples in Fig. 1. If
the c quark is of the order ofn,—m.. The momenta of the we eliminate the momentum of tleequark using momentum
lepton pair and of the gluons are also of the ordemgf- m, conservationc=b—W-g,;—g,, we can expand the propa-
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gators P,- - - Pg in the Taylor series with respect to the It is convenient to introduce an auxiliary vectbr which

“small” momentag,, g,, W. Explicitly, we have equals to the sum of the momenta of tbhequark andw
boson,H=c+W. With this notation the phase space integral
1 < (20)W+29,0,) becomes

P4~ 2bg, 2 (2bg,)]
aR,= | dr? | [aHIldg,ITdg1°(b—H-0,~ g,

P, — 1 g (2g,W+2919;)’
® 2bg, % (2bg,)! ' XJ[d\N][dC]cSD(H—W—c).
1 ” [2(g1+g) W] The integration over theW,c) phase space givegor now

= 2b(91+ 0, — 2010, T20(9.4 02)— 20,051 we assume the integrand containsWan the numerator; the
(91102 142 J=0 917 92)~ 20102 @ tensor integrals wittW dependence will be analyzed in Sec.

1))

Ps

From these expressions we see that the expansion does not

generate any new infrared divergences and, therefore, am‘z’“:f [dW][dc]s°(H—W—c)
pears to be permissible. After this expansion only four dif-

ferent types of denominators remain. We list them for clar-

_Qpy (H2-mg)°P~3

_20—1 (HZ)D/Z—l

ity: where
2 3/2—€
po— 1 po_ ! QD*:#
17 2bg,’ 2 2bg,’ €
is the volume of aD —1)-dimensional sphere of a unit ra-
1 1 dius.
0_ —
Pa= 2b(g1+92)— 2919, P7_291gz' @ Having performed the integration over th&/(c) phase

space we are left with the three particle phase space of one
massive H) and two masslessgg, g,) particles and the
integration over the square of the momenthim

We use the variablegvith m3=1)

As will become clear from the discussion below, it is more
convenient to us@g as one of the basic propagators than to
expand it any further.

Let us emphasize at this point the advantages of the above
expansion. As can be seen from the above expressions, the
four-momentum of lepton paW and the momentum of the . . .

) . . . and get the following expression for the four particle phase
¢ quark do not appear in the denominator. This |mmed|atelys ace[7]:
implies that the integral over the phase spaca\bfaind ¢ b '
factorizes. Therefore, the expansion suggests a simple way 3

AT , Qp_1 1 o
how the rather nontrivial integration over the phase space of - e —€
. . : dR, dydzduu ¢z

four particles in the final state can be reduced to a more 20-1) B(l—¢€l-e)
familiar case of the three body phase space. This reduction is
described in the next section.

H2:y! (gl+92)2:u! (H+92)2221 (5)

(y—mg)t~2
1-€ !

y

(6)

X(Up—u)~ €

B. Phase-space integration for the emission of two gluons

. with u,=(1—2)(z—Yy)/z and the following limits of inte-
After we have checked that the propagators of all virtual rt tic;JnmS' ( )(z=y)/z and the following ts of inte
particles can be expanded, the same must be demonstra®d. '
for the phase space element. This is done in the present sec-

tion.

. Cons_lder[ng the semileptonic decay of thequark ar]d In order to expand the phase space element in powers of
mtegrgtmg first over thg Iepton. phase space, one obtains thﬁ=(m2—m2)/m2 it is useful to change the variables in the
following phase space integration eleméwe consider only -~ bex rcessign'

the point where the invariant mass of the lepton palfr is P ’

Zero:

dR,=[dc][dW][dg,][dg,]6°(b—c—g1—g,— W),

mi<y<1, y<z<1, 0<u<up. 7

y=1-8%;, z=1—BX1X;, U=UyXs,

BPXEXa(1-%p)

where a shorthand notation is m 1-BX1X;

®

go-1 The integration limits for alk; are the same:

p
[dp]= 20 D=4-2e.

O<Xi<1.
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Expressing the phase-space element through these variables Ill. TENSOR INTEGRALS

and restoring proper dimensionality we find The expansion of the propagators in terms of the mo-

1 mentaW, g4, g,, may result in high powers of the scalar
dR4=R9u35_66f dX;dxdX3d(X1,X2,X3) products Wg;)3(Wg,)®, which have to be integrated over

0 the (W,c) phase space. In this section we present efficient
methods for such integrations. The results of this section are
not restricted to the cas&/®=0 and are likely to be useful
for solving other problems.

The main object we are going to discuss is the following

integral over the \V,c) phase space:

1 1
X 1-€ 1-€
(1—Bx1X3) (1-8x9)
where
J(Xq X2, X3) = X3 4E(L—xp) 7 2x3 2 (1 —x,) 72

. . I(a,b)=f [dW][dc]6P(H—W—c)(Wg)A(Wgy)®
XXz (1—X3)" ¢,

=((Wg)3(Wgyp)P) - 12
L (0| (WG (WE) ) r-wsc (12
R4_B(1_6,1_ 6)\ 2D-1 ©) for arbitrarya,b>0. This integral can be rewritten as
———— Ma~HMa+ Ma+
Our final aim is to expandR, in the limit of m.—mj. l(a,b)=gy" - 91°0," - 05" "Tparn,
The above expression is well suited for this purpose. Ex- .
panding it in powers of3=(mZ—m?)/mZ gives rise to Tun= Wy Wy dri-wic- (13

imple int Is which Beta functions; . . . .
simple integrals which can be expressed by Beta func IOnSThe important property of the tensdris that it depends on

ok a single external vector onlyH). This property simplifies
J dx1d%dX3J(X1,X2,X3) X1X5 X3 the calculation of the necessary integrals. We discuss below
two approaches to such calculation; their relative merits de-
=B(n+4—4¢€,2—2¢)B(m+2—2¢,2—2¢) pend on the capabilities of the symbolic manipulation lan-
guages, if the algorithm is to be implemented using a com-
XB(k+1—¢€,1—€). (10
puter.
C. Basic propagators A. Method 1
The basic propagato8?, P9, P, and P;, expressed in The first approach is more general and potentially more
terms of the variable¢x;} yield simple expressions which efficient. To fully exploit the dependence on the single ex-
can be integrated over the phase space. We find ternal momentum we can extract the component of the vector
1 1 W which is parallel to it. For this purpose we write
0:_ = ——
! 2bg;  BxyXp’ WH
W=W, +ciH, W H=0, c;=—. (14)
pO_ 1 1-B%x1X, H
27 2bg,  Bx(1—X)[1—Bx1X(1—X3)]’ The value ofc, is then fixed, because in the general case
W20 we have
PO 1 1
= = Sy 1
3 2b(91+02)-20192 BXg WH=§(H2+W2—m§). (15)
1 1-pB8x1%,

.= = ) (11  Therefore, if we use the above substitution ff in the
2019 Bzxfxz(l—xz)x3 tensor integral“", we obtain a sum of tensor integrals over

transverse components of thié (with respect taH):
Clearly, the expansion of these quantities in terms of spall

P

is readily performed. The resulting integrals are very similar THEO=(W - W e (16)
to the integrals in Eq(10) and can be expressed in terms of
the Beta functions. Evidently, the tensor structure of this integral is trivial: since

The same is true for all scalar products of the four mo-W H=0, T#" must be proportional to thabsolutely sym-
menta which enter the calculation. Therefore, the above dismetric tensorof the (D —1) dimensional space. The “build-
cussion demonstrates that the part of the semileptonic decayg block” is the metric tensor of [ —1)-dimensional
width of theb quark containing radiation of two gluons can space:gW—H#Hyle. We note that only tensors @ven
be calculated by expanding the matrix element and the fourank contribute. The generation of the absolutely symmetric
particle phase space in powers®fWhat is still missing in  tensor of O —1)-dimensional space can be easily encoded
our discussion is the study of the integrals over thé d) in a symbolic manipulation program. Hence, the algorithm
phase space when the numerator dependd/oWe discuss described above permits an efficient treatment of the tensor
this issue in the next section. integrals which appear in the problem at hand.
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B. Method 2 |

Using the same idea as in the previous section we can
advance slightly further with the analytical calculation of the
integrall (a,b).

After writing W=W, +c,H and noticing thatg;H and
g,H are constants in theW,c) phase space, we conclude
that the nontrivial integrals to be computed are

IL(ayb)E((ngl)a(WLQZ)b>H=W+C

:<(WLglL)a(WL92L)b>H:W+c: (17 !

FIG. 2. The simplest diagram in which the Taylor expansion in

with g;, (i=1,2) defined in analogy taV, . . )
The integrall | is a Lorentz scalar and we can choose an(mb_mC)/mC leads to spurious divergences and must be supple-
L mented by an eikonal expansion.

arbitrary frame for its calculation. For instance, we consider
H to have only the zeroth component and put thaxis of atb
the (D— 1)-dimensional space along the vectnr, . Then, L(ab)= (=1)*"°T'(3/12—e)I'[(1+a)/2]T'[(1+Db)/2]
rewriting g,, as 2% mT[(a+b+3—2¢)/2]

(24
U20=02a+Co01,, 02401, =0, C2=02,01, /07, ,

(18) In order to use these results for the further integration over

we find thatl | is expressed as a sum of integrals of the formthe phase spaceH(g;,9;) it is necessary to express the

modulus of the vector$V, , g;, , g,, in terms of the vari-

11(a,b)=((W,91.)% (W, G20)°) - wec- (19 ables{x;} introduced in the previous section. This is a cum-

bersome but straightforward task and we do not discuss it
here in any detail.

The steps described above allow an easy implementation

in any symbolic manipulation program. They provide an ef-

ficient and uniform treatment of the tensor integrals which

This integral is nonzero only if both andb are even inte-
gers.

Since ¢,,0;, =0, we can put thex axis of the
(D—1)-dimensional space along the vectpy,. Then we

have appear in this calculation.
I1(a,b) =Ry AW, | "1, || gzal°l2(a,b),
. X IV. ONE LOOP VIRTUAL CORRECTION
| (ab)= Qp-1[ W91, ) ( W, g2a ) 20 AND ONE REAL GLUON
2 Qo1 W [lge ]/ VW 1924l )

Another source of th@(ag) corrections are the one-loop
The integration element is virtual corrections accompanied by a radiation of an addi-
tional real gluon. Again, we would like to expand those dia-

D-2 . .
B Do grams in powers ob=(my,—m.)/m,. The purpose of this
dp_,= .Hl sil "2 6,dg;, section is to provide a suitable algorithm.
- There is a principal difference from the radiation of two
0<,<m(i#D—2), real gluons in this part of the corrections. Namely, it is not
sufficient here to perform a Taylor expansion of the relevant
0<fp_,<27. (21)  diagrams.
To see this, let us analyze a simple example. We consider
If we choosez andx axes as described above, we get a diagram where thé quark radiates a gluon and then a
one-loop self-energy correction is inserted on theguark
Wigu _ cosh line (see Fig. 2 Taking the limitm,—m, in such situation
(W, [lg1.| 1 implies that the momentum of the real gluon goes to zero.

Therefore the self-energy diagram should be calculated close
W, 9z, . to the mass shell of thie quark. It is well known that in this
AN SiNg1C0SY; . (22 jimit the self-energy diagram has an on-shell logarithmic sin-
gularity of the form
The minus sign in the above equations arises because the
transverse_z vectors he_re are spacellke. In calculdtjta,b) IN(M2— p2) ~In(M2—m?) ~In( 3).
the following formula is useful:

l1+a 1+8

2 2

Since this diagram contains If)(it is clear that it cannot
be calculated as a Taylor expansion with respe@. tbhere-
fore, a more sophisticated procedure is needed and the
This formula is valid for even and positiy@ Using it we get method ofeikonal expansionE8,9] is used in this case. We
the result for the integrdl,(a,b): illustrate this approach in the following example.

(23

f désin*dcoLo=B
0
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A. An example of the eikonal expansion lated. More sophisticated eikonal integrals are considered in

In this subsection we consider a simple example of a onethe next section, where all necessary formulas can be found.

loop integral, where a result obtained from the eikonal ex-
pansion can be compared with an exact formula. We calcu- B. Eikonal integrals: Preliminaries

late the scalar self-energy diagram: Here we provide a set of formulas for dealing with inte-

dPk 1 grals appearing in the eikonal expansions. As 'is clear' from
_ (25)  the example presented above, the region of integration in
(27)P K (k+p)2—m?] which we are interested here is characterized by the values of
the virtual momentum of the order of the momentum of the
Performing Feynman parametrization, integrating over theeal gluon emitted in the decay.

(%)= |

loop momenta, and expanding = (m?—p?)/p? we get We denote the loop momentum kyand the momentum
(usingp®=1 herg of the real gluon byg; explicitly, the eikonal expansion of
the propagator
ir(l+e)(1
B(p?,m?)=————|—+2—p+plnp 1 1
(4m)PP2 | € P(k)= =
(k+b—g)2—m2 k?+2k(b—g)—2bg
2 3 4
e (26
2 6 12 is given by
The appearance of the p)(term in this result signals that o K2\
) ! . ; e 1 2kg—k
the Taylor expansion of thiategrandwill be insufficient. In P(K)eik= > _
order to get the correct result we add the eikonal expansion. 2kb—2bgs" | 2kb—2bg

For this purpose we write
The basic eikonal integral in the one-loop correction then
B(p%,m?) =B+ Bgi. (270 reads

The Taylor expansion term, is obtained by expanding the |*(n,m,a,b)

integrand in Eq(25) in a Taylor series ip. This yields a set

of one-loop on-shell integrals which are well known. The f dPk (kW)3(kg)®

validity of such an expansion is determined by the condition D (121 + Fs\n Csym’
k?+ 2pk> pp?. If this is not the case, the Taylor expansion (2m)” (K+10)(2kQ=2Qg+i 9)1(2kQ+10)
breaks down. This breakdown gives rise to an infrared sin- (29
gularity which occurs in the region wherep®~2pk and

k?<pp?. This spurious divergence can be cancelled by addn the actual calculatio is always aimelikevector which
ing an expansion of the integrand kA (for a more detailed for different diagrams can be, b—g, c+g.

discussion sef8,9)). As we pointed out above, the integrals with any power of
One should note in addition that if any poweridfap-  k? in the numerator vanish. There are several ways to see
pears in the numerator we get an integral of the form this. First, the integrals over transverseth respect toQ)
components of the loop momenta are scaleless; also if there
dPk (k)" is no k? in the denominator, the poles of the integrand are
I(n)=f 5 5=, n=0. located only on one side of tHe integration axis. Also, if
(2m)~ 2pk—p°p

n<0, the integral in Eq(29) is zero because it is scaleless.
Let us describe the most economic way to calculate

e choose the Lorentz frame in whic@=(Q0°,0, ... ,0).
"he integration over the timelike component of the vedtor
can be performed using the residues. If the integration con-
C}our is closed in the upper half-plane, only that pole ik?®1/
contributes for whichkg=—k, .

After ky, the integration over the—1)-dimensional
space should be performed. To discuss the integration over
4Ok 1 k, we first note that after integrating ovkg the denomina-

_k:J _ (29) tor of the integrall = (n,m,a,b) depends orkf only. There-
® (27)° k2(2pk—p?p) fore, all tensor integrals which appear due to the numerator
structure are simply related to tie— 1 absolutely symmet-
It is evident that this integral scales withasB<pl 2. It ric tensor of the corresponding rank. Hence, the tensor inte-
is this dependence oawhich gives Inp) in the final result.  grals here are similar to the ones discussed in Sec. IlI.

ConsiderB in the rest frame op. Performing the inte-
gration over the time component of the loop momenta first;
one gets a simple integral representation over the transverséin the Feynman diagrams with self-gluon couplings the situation
components of the loop momenta which can be easily calcus more complicated. Their treatment is described in Sec. IV C.

An important point is that such integrals are zero within theW
dimensional regularization framework. One simple reaso
for this is that the integral over transverse componentsisf
scaleless.

Hence, the only term in the eikonal expansion we shoul
consider is the one witk? neglected in the second propaga-
tor. The eikonal integral therefore reads
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Finally, we are left with the radial integration over the moduluscof The following formulas are useful:

dPk (k?)m/2 iQp_ 4
I‘(n,m,m1)=J : . - = B(2—m+m;—2e,n+m—m;—2+2¢)

(2m)P (k2+i6)(2kQ—2Qg+i8)"(2kQ+isH™ (2m7)P1

X(Qg)27m+mlfnfze(Q2)717m1/2+5(_1)n+m+m1+127m7n71

dPk (kf)m1/2
|+(n1m1m1):j . . .
(2m)° (K*+i16)(2kQ+2Qg+i6)"(2kQ+is)™

— QD_]' (Qg)Z—m-H’nl—n—ZE(QZ)—1—m1/2+e(_1)n+m+m1+12_m_n_l F(Z_m+m1_26)
(2m)P~1 (n—=21)! I'(3—n—m+m;—2¢)
X[#(2—m+m;—2¢€)— J(—1+m—my+2€)], (30

|
with C. Eikonal integrals for the graphs

with the gluon self-coupling
1 dI'(z)

W(z)= m a7 (3D The graphs with a triple gluon coupling lead to the most
z z

difficult eikonal integrals. The difficulty originates from the
fact that in such graphs one has two mass(ghson propa-

In th f lasQp_; i S
n the above formulasQy_; is the volume of the gators. A typical integral reads

(D —1)-dimensional sphere of unit radius.
There is one subtle point concerning the expressions pre-
sented above. Namely, it is easy to see that the integjtals f
have an additional singularity after the integration okgr (
has been performed. This singularity corresponds to the ap- ) ) _
pearance of the imaginary part in some of Feynman diagrams 1€ Taylor expansion of such integral is easy. However,
which contribute to the result. Below we explain how this !N the eikonal expansion one cannot expand massless propa-

dPk 1
2m)P k¥(k—g)q (k+b—g)2—mZ][(c+k)2—m?]’

singularity was treated. gators. Therefore, the master integral in this case is
In the singular integrals the integration over the modulus b
of the transverse momenta is I(n m):f d"k 1
» ’ (2m)° K2(k—9)%(2kQ—2QQ)"(2kQ)™’
|+~f dki—l.n' whereQ is again a “large” timelike vector, as described in
0 (k,—1-i0)

the previous section. Note also, that in this case the terms

The singularity is located at the poikt =1. To make this With k? or (k—g)? in the numerator do contribute to the

integral meaningful we rewrite it as result. o _ _
Let us describe in detail how such integrals can be calcu-

. 1 d\(M=D re K¢ lated. For this purpose we first combine the massless de-
"~ m(&) fo dklm L nominators:
Rescalingk, —xk, we get 1 = fl dx - fl dx ]
k(k—g)* Jo(k*—2kgx? Jo[(k—gx)*]?
1 d\mn-b o kT
T~ (n—1)1 &) X“J;) dkim . Next, we decompose the product of two eikonal propagators
! x=1
For the derivative we use 1
2kQ—-2Qg)"(2Qk)™
QY rasa (2kQ—2Q9)"(2QK)
dx T 2ta—n " : using partial fractions. The integré{m,n) becomes now a
sum of the integrals of the following type:
Finally, after performing the remaining integration over
using 1 dPk 1
l1(n)= f dxf )
% X 0 (2m)° [(k—gx)?]*(2kQ—2gQ)"
Re| dX———==¢(1+a)— ¢(—a),
o X—1+io 1 dPk 1
) I2(n)=f dxf 5 > . (32
we arrive at the formula fot{*) quoted above. 0 (27)° [(k—gx)?]?(2kQ)"
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In both integrals we shift the integration momentum 5
k—k+xg and get dR3=f [dc][dW][dg]s~(b—c—g—W)
2
1 de 1 _ QD—:L 2—4e »3—4de 1 1
|1(n):f de ) _( 2Dl) My B fO dXJ(X)(l_ﬁX)lfe’
0 (2m)P (k*)?[2kQ-29Q(1—x)]"

J(X)=x'"2¢(1—x)1 2% (34)
1

" d° 33 ith
'Z(n)_fo Xf (2m)° (k?)(2kQ+2gQx)"’ (3 wit

Now, in the first integral one makes the change of variables

x—1—x and then rescales the integration momeutaxk bH=1— ﬁ bg=Hg= & (35)
in both1, andl,. The integration ovek factorizes and can 2’ 2

be done using

H=W+c, H2?=1-px,

The master integral in this case reads

1

1 1
fo dxx“=m. jo dxJ(X)x"=B(n+2—2¢,2—2¢). (36)

The results of the eikonal integrals require a slight modifica-
tion of the master integral. As we saw in Sec. IV B, those
results containt§g) ~2€ which results in an extra factor 2.

In this case the master integral is

The integrals ovek differ from the integral in the previ-
ous section by the presence of two powerkdfin the de-
nominator. In this case it is useful to perform a transforma
tion (similar to the technique of integration by pafts]),
which reduces the integrals with the second powek?in

1
the denominator to the integrals with the first power only. J dxJ(X)X"2¢=B(n+2—4¢€,2— 2e¢). (37
To write down this transformation we introduce the nota- 0
tion
V. APPLICATIONS
1= (an m)=f d®k 1 _ In this seqtion we discuss some applications of the tech-
e (2m)P (K2)%(2kQ=*2Qg)"(2kQ)™’ niques described above.

First, we give a complete result for thi&( ai) correction
to the differential semileptonic decay width of thequark at
the maximal recoil point. We next rederive the BL(Mag)

corrections to the quark top decay width into massMés
1*(2n,m)=Q’[—2(m+1)I*(1h,m+2) boson and quark with the help of the expansions presented
+ above. As will be explained below, the expansion parameter
—2n7(1n+1m+1)]. in this case is unity.plt not obvious that tﬁe technri)ques de-
scribed above can be of any use there. Therefore it is inter-
Using this formula we end up with integrals with the first esting to check how the procedure works in such extreme

power ofk? in the denominator, for which the formulas of Jimit. Finally, we comment on the applications to zero recoil
the previous section are applicable. sum rules.

Then

D. Integration over the single gluon phase space A. Two-loop QCD correction to semileptonich decay

I 2 at maximal recoil
In the treatment of the radiation of one gluon wibf«s)

accuracy, the last step one has to do is to perform the inte- 1he measurement of the inclusive semileptonic decay
gration over the phase space of the real gluon. The eikondyidth permits a determination of the CKM matrix parameter
expansion, described above in detail, gives the virtual corlVesl With a small theoretical uncertainf®,3]. The magni-
rections in terms of powers and logarithms of the small patude of the perturbative correctioi@®(a?3) to this quantity
rameters. This form of the intermediate result simplifies thehas been subject of discussions in the recent literature. We
final integration over the phase space of the decay productgddressed this problem in R¢6] where the exact calcula-
This would not be the case if we had aractresult for the tion of theO(aﬁ) corrections at maximal recoil was used to
loop: that would certainly contain dilogarithms of compli- estimate the total fourth order correction to theuark semi-
cated arguments. leptonic width. Here we present more complete results of
The phase space integration with a single gluon is in itshat calculation.
general structure similar to the case of two real gluons, dis- We consider semileptonic decay of thequarkb—cly, .
cussed in Sec. Il B. For completeness, we give a short ackhe momentum carried away by leptons is denoted bye
count of necessary formulas. write differential semileptonic decay width of the decay
In the present case the phase space element is b—cly, atq?=0 as
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dl'y
dg?

ag

2
77) CeA,

, (39

as
=l ABom+?CFA1+
q2=0

where I'y=(GZm/9673) |V pl?. Agom=(1—mZ/m?)® and
A is also known in a closed analytical forftil,12. A, is
the new result which give@(ag) correction to the differen-
tial semileptonic decay width of thie quark at the point of
zero invariant mass of leptons.

For the purpose of the presentation we write the fourth
order correction as

Ay=8[(Cr—Cal2)Ap+CaAA+ TN A+ TrARL].
(39

In the above equatio®=(1—m./my) is the expansion
parameterA,, describes the contribution of the massive
andc quark loops.

For the SU3) group the color factors areC,=3,
Cg=4/3, Tg=1/2. N_ is the number of light quark flavors
whose masses were neglected.

In Ref. [6] we presented analytical results for the func-
tionsAg 4 Ly Up to 8%, though actual calculations have been
done up tos®. Our complete formulas for these functions are
presented in the Appendix.

B. BLM O(Bya?) corrections to the decay width
of the top quark

As another application of the above techniques we con-

sider the decay of the top quatrk> Wh. It is well known that
this decay widthat least at the Born and the one-loop lgvel
can be well approximated by neglecting the masses of\the
boson and thé quark. In such case, siné®¥?=0, the tech-

q.

-
o—t

(b)

FIG. 3. Examples of the light-quark loop corrections to the top
quark decay.

16

Fferm(tqwb):(%)zﬂf 25(3)+§§(2)_§
T 0 9 of

~ Ggm?

I'y= .
0 8\/577

(41)

It should be mentioned that the diagrams with real or

niques presented in the main part of this paper can be readiljirtual massless fermions represent the simplest case for the
applied. In particular, the formul&é38) can be rewritten in  described algorithms. The reason is their simple planar to-
such form that it gives the correction to the two-body decaypology, which allows the computer programs to work very

width t— QW (whereQ is a heavy quark
2
(40)

~ o
F(t—=QW)=Tg ABom+?SCFA1"‘

as
T

The A; functions here are the same as in E8p), with my

fast. For this particular type of diagrams we can expand the
width up to a very high power id.
We write the result of this expansion as

w

ferm — s ? T
I*™(t—bW) CeTrl'0F(6),

andm, replaced bym; andmg. The problem, however, is where the functiorf-() is given as a series of powers and

that the procedures described above were based on the dggs of §; we have computed this expansion up to terms of
pansion of the rate in the mass difference of the final andhe orders®. The first few terms of that expansion are given

initial quarks. In the case of the top quark decay with a by the functionA, in the Appendix.

quark in the final state this means that the expansion param- The numerical value of the exact result is

eter 6= (m,—my)/m, is close to 1 for realistic values of,
andm,.

Little is known about convergence properties of the series

described in this paper. Fortunately, part of théa?) cor-

23

1 8
F(1)=1—6 2£(3)+ §§(2)—§ =0.35%....

rection to the top quark width is known exactly; it is the The values of the approximate reskEil¢s) for 6=1 are, for
contribution of the massless quarks, calculated forthree number$\ of the summed terms,

my=my=0 in [13,14 (the relevant diagrams are shown if
Fig. 3. We can use that limiting case to check if we can
reproduce it with our techniques.

The exact formula for the massless quark correction reads
(in the MS scheme and for one generation of massless fer-

miong

N=21, F(1)=0.3266,
N=15, F(1)=0.3210, (42)

N=11, F(1)=0.3176.
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Comparing these numbers with the exact result we sethe renormalization of the external curreh}. For vector
that already the first 11 terms of the expansion give the acand axial currents they were calculated 475].
curacy of about 10%. Unfortunately, the accuracy does not On the other hand, i€+ 0 thec quark starts moving and
improve significantly with the growing number of terms in can radiate. The second order correcti@{sys) were calcu-
the expansion. This slow convergence of the series is causéated in[2,15,16. Aiming at the fourth order, i.e., d@(a?)
by the logarithms of the smallb( quark mass. Although accuracy, one has to consider the final state withcthieark
these terms are suppressed by powers of that rfmss  and two real gluons or light quarks and also @xs) cor-
should give no contribution to the final resultnif,=0), they ~ rection to the single gluon emission In-c transition.
spoil the convergence of the expansion. It would be very Due to the hierarchy of scales<<u<m;,mc, the finalc
useful (and we think it is possibleto find a systematic way quark is moving slowly by definition; this is therefore a nice

of eliminating those parts of the integrands which give rise to?lace where the techniques described in this paper can be
these logs. applied. In particular, an algorithm for performing eikonal

On the other hand, from the perspective of practical ap_expansions with the subsequent integration over the phase

plications(such as top physics at the Next Linear Collider ~ SPace appears to be very useful here. This topic will be dis-
would be sulfficient to know the two-loop QCD correction to cussed in detail in Re{17].

the top quark decay width even with 10% accuracy. It is VI. CONCLUSION

tempting to apply our algorithms to this problem and ex- ) ) ) )
trapolate the result to the poid=1; on the other hand, at  In this paper we have described techniques used in the

present we do not know any reliable method for estimatingalculation of theO(«Z) corrections to the semileptonic de-
the uncertainty of such a result. cay widthb—clv, at maximal recoil6]. The technical tool

we used for that calculation is an expansion of the decay rate
) N in powers and logarithms of the mass difference between the
C. Zero recoil sum ruzles for b—c transition initial and final quarks. We presented a detailed discussion of
with O(as) accuracy the algorithm, which enables one to construct such expan-
Another useful application of the techniques describedsion. We treated virtual corrections, emission of one gluon,
above is connected with the so-called zero re¢oR) sum  and emission of two gluons separately. Therefore, these al-
rules [2]. In this subsection we would like to discuss this 90rithms can be used for the analyses of less inclusive quan-
point. A more detailed discussion of ZR sum rules with theliti€s than the total decay rate, at least in principle.
O(ag) corrections will be given in a future publicatiga7]. In the case of two-loop virtual corrections and emission of

. . two real gluons, the expansion &+ (m,—m.)/my is a Tay-
The ZR. sum rqlgs are important for the estimates of theior expansion. In the case of one-loop corrections to the am-
zero recoil transition form factors such dsz_,p+ for

o " litude of single gluon emission ib decay, the Taylor ex-

B—D* transition orFg_, for B—D transition. In turn, the Bansion is insguffigient. An appropriate me%hod is p?/ovided by
form factorFg_p» is a crucial ingredient fofVey| determi-  ine gjkonal expansions, recently introduced in RE8s9).
nation from the exclusive semileptor:—~D*l v decays.  \when this procedure is used, a new type of Feynman inte-

The sum rules for exclusive heavy-to-heavy flavor transi-grals appears. These integrals and methods which were used
tions are based on the operator product expankdi®E) of  for their evaluation were described here in some detail.
the hadronic amplitudes in terms of the inverse quark The whole construction works well if the mass difference
masses. The zeroth order term in this expansion is the partdsetween initial and final state quarks is not too large. This is
model where free quarks are substituted for real hadrons bothe case for the semileptontz—c transitions, where the
in initial and final state. Here we disregard the nonperturbaexpansion parametem,—m;)/m,~0.7. In this case we cal-
tive corrections and discuss how the perturba@\er?) cor-  culated the expansion up to the eleventh powerspthe
rections to the sum rules can be evaluated. estimated accuracy of the final result is better than 1%.

We consider a transition of la quark at rest to & quark There is, however, a number of other applications where
and massless partons which occurs under the influence of tige initial quark is significantly heavier than the final one. It

external current),. The momentum carried away by the IS Not obvious to what extend the present method can be
" useful in such situation. There is an indication, however, that

external current ig|=(qq,0), where ; . : L
$1=(%.0) our procedures give meaningful results even in that limit. As
Qo=Mp—M.—€, €e<p<mp,m.. an example, we analyzed the light quark corrections to the

width of the top quark decay into masslé&sboson and &

The quantity which is of primary importance for the per- quark. We have shown that the first several terms of the

turbative corrections to ZR sum rules can be schematicallfXPansion ins;=(m;—m)/m; approximate the known exact
written esult with a 10% accuracy. Finally, we have argued that the

same techniques can be applied to the corrections to the zero
recoil sum rules for the heavy flavor transitions.

y23

dew;(e), wy(e)=I";(b—c+X|qp).
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APPENDIX: RESULTS FOR THE MAXIMAL RECOIL

In this appendix we present the first nine terms of the expansion of the coefficient functions foqtiaek decay rate at
maximal recoil, as defined in E¢39):

35 2 , (89 | [ 2422517 1708 8 257 , 2056607 854

AAZ—%"F 37T + 6| = ) —ar - 32400 In(26)——|n (26)+ = C:L+ %W 5° m—ﬁln(25)
L2250 4 307 | | 5789957 4663 2, W2 4 M2 ) [ 4413200

_”( )~ g% 1807 1323000 472a"(29) _”( )t 258" 15757 1984500

13063 1, 233 2 o 303218053 200063 251 , . 3349
+ 94520+ 5IN*(28) + e+ JeCy 222264000 264600" %) T 1260 (29T 132300
23 , 510931331+ 104561 o 167 , 4573 , 41 | _ 179575376107
630 ~ 244528000 105840"%) " 840" (29 F 352600" T 1260 ~ 172889640000

48009667 1859 18679 2, 4 )

o e 3
 52390800"?9) " 9250 (29 T 129688 " 135

L. 2.8 B, (28 | L1697 B . 22 359 | [ 347 4
F= g TRt g m o g A4t |+ 8 5gp — 5In(28) + g eot gpm |+ 720 T 3N(29)~ 15C2
179 | (4957991 1460 |2 L 139 , 2 | 1803701 304 . 8 .,
270" 396000 18929t g In“(29) = gapm F 7 C2 703800 1897029 T gIn"(29)
130 , 1 | (3529272355093 4, . 35671 , 29 (221825423
~ 200" T 7| %°| 122882000 28350"(29) T 5N*(29)~ 355500™ T 2552 95256000
sy 34 o 22049 , 17 o[ 93748812373 3067283 | 1133
18900”( )+ 25" (20)~ 535500 " 168%2) T 0| 43222410000 181912820 T 1575 (29)

10708293 , 211
T 119750400 T 2310°2

(Al)
L4 (82217 544 o 16, 16 | [ 103667 272 8 , . 8 ,
=g 0+ Jogp ~ 4520+ 5 (200 w7+ | ~ T g2 g2+ g
(1322183 2404 B |, g|1653341 1202 4 Lo 4
+ 6% oe125 1578200+ 2an*(20)~ 1357 |+ 8°| Togasng 157a(29)+ 25*(20) ~ 7
, 18480080 4831 - By |, (33623843 26651 41 -
27783000 7350 (29 F 378" (29) " gz 55566000 441002 T 630" (29~ 1gg0™
, | 1620326143 1053959 8 ., . 8 2)
2881494000 187110029 13520~ 4057
460 16 0821 344 33883 32 136 3754 154
- 2 2 20—~~~ -2 T T 2 - 2
Ap=—g —gm+(- 74+87T)+5( a1 2777) a\?( g0 92+ 77 ) 54( 105 13577)
, 5174907 88 77 | 893453 88 17489 | | 56241287 586
28350 138729 1357 18900 138729 37807 793800 _ 945"(29)

54623 ) 58( 35304151 556 39073 )

7560 ~ 297675 94529 T 3525

with ¢;=21/2¢3— 7?In(268) and c,=3/2{3— 72In2.
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