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Strongly coupled supersymmetric theories can give rise to composite quarks and leptons at low energy. We
show that the internal structure of these particles can explain the origin of three generations and provide a
qualitative understanding of mass ratios and mixing angles between the different flavors of fermions, all within
a renormalizable theory. The main point of the paper is to show how fermion masses and mixing angles can
result from a ‘‘dual’’ Frogatt-Nielsen mechanism: fields neutral under SU~3!3SU~2!3U~1! that carry flavor
quantum numbers are confined within quarks and leptons, and from their perturbative interactions arises the
observed flavor structure.@S0556-2821~97!05321-6#
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I. INTRODUCTION

The large hierarchy between the electroweak and Planck
scales suggests that electroweak symmetry breaking is asso-
ciated with nonperturbative physics in analogy with the hi-
erarchy betweenLQCD/M P . Various theoretical arguments
also indicate that the world may be supersymmetric at short
distances~see, for example,@1#!. While supersymmetry
~SUSY! protects the electroweak scale from radiative correc-
tions and associates it with the SUSY breaking scale, it does
not by itself explain the origin of the large hierarchy. Thus it
is often suggested that a SUSY theory with nonperturbative
dynamics lies behind the standard model~SM!.

In much of the literature it is assumed that the nonpertur-
bative SUSY physics lies in a hidden sector, decoupled from
standard model particles@1#. It seems to us a rather strong
assumption that nonperturbative physics exists at short dis-
tance solely to fix the electroweak scale~or the SUSY-
breaking scale!, without affecting any other low-energy ob-
servables. In this paper we speculate that strong interactions
are responsible not only for the electroweak hierarchy but
also for a substructure for quarks and leptons, which could
explain family replication, mass hierarchies, and flavor mix-
ing. Our motivation is partly opportunistic—there have been
significant advances in the past several years in the under-
standing of strongly interacting SUSY theories@2,3#, and one
can now construct models of composite quarks and leptons
@4# with a degree of theoretical confidence impossible until
recently. The development of new theoretical tools begs ap-
plication to the old problem of flavor. As we discuss at
length below, compositeness can provide a simple explana-
tion for why families are exact replicas of each other, as far
as SU~3!3SU~2!3U~1! gauge charges are concerned, while
being distinguished by their masses and mixing angles. An
analogy can be made between the SM generations and

nuclear isotopes. Consider, for example, the three isotopes of
hydrogen: they each have the same chemistry yet have dra-
matically different masses—a fact simply understood once it
is realized that the nucleus is composite, and that the three
isotopes each contain a single proton but varying numbers of
neutrons. Similarly, quarks and leptons could be bound states
of both charged and neutral constituents, with different num-
bers or types of neutral constituents for the different genera-
tions. The nature of these composites will be determined by
the underlying strong interactions, and the interactions of the
‘‘neutrons’’ will largely determine the flavor structure ob-
served at low energies.

In this paper we show how a strongly coupled SUSY
theory can realize this paradigm for the origin of three fami-
lies, particle masses, and flavor mixing. We begin by dis-
cussing the replication of families. We then devise a mecha-
nism for flavor structure along the lines of the isotope
analogy discussed above. We then describe several renormal-
izable models in which all quarks and leptons are composite,
and which reproduce qualitatively the flavor structure we ob-
serve in the standard model. We conclude with speculations
on future directions along the lines proposed here.

II. FAMILY REPLICATION

The first issue to be addressed is what sort of strongly
coupled SUSY gauge theory to consider. A minimum re-
quirement is that the theory must have composite particles in
its spectrum that transform nontrivially under a sufficiently
large symmetry group to contain SU~3!3SU~2!3U~1!. ~In
this work, we simplify our task by not trying to simulta-
neously explain flavor physics and dynamical SUSY break-
ing.! As discussed at length in@5#, the properties ofN51
supersymmetric gauge theories without a tree level superpo-
tential are largely determined by the number

x[(
j

m j2m~G!, ~2.1!

wherem j and m(G) are the Dynkin indices for the matter
and adjoint representations respectively of the gauge group
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G. Normalizingm51 for the fundamental representation,x
is even. Theories withm(G),x,0 have runaway vacua
and no ground state or break supersymmetry. Theories with
x.2 have moduli spaces of inequivalent vacua with mass-
less gauge bosons at the origin; for many of these theories
dual descriptions are known. Of the theories withx50 or
x52 many are known to confine; in the case ofx50 con-
finement always occurs with a quantum deformed moduli
space that breaks chiral symmetry, whereas confiningx52
theories have unbroken chiral symmetry at the origin of
moduli space and dynamically generate a superpotential for
the confined fields.

The x,0 theories do not appear promising to us; al-
though the runaway vacua may be stabilized by superpoten-
tial terms, the minimum will typically be characterized by
vacuum expectation values~VEVs! for fields that break the
global symmetries, which we wish to preserve. Thex.2
theories are interesting—one can imagine that the standard
model is the dual of some strongly coupled theory, with the
quarks and leptons being the magnetic degrees of freedom,
and the SM gauge group being the dual gauge group after
possible partial spontaneous symmetry breaking. However,
working backward from the SM to find a dual typically leads
to enormous gauge groups and we have yet to see or think of
a clever approach of this type. The confiningx52 theories
are particularly interesting for several reasons. First, they ex-
hibit confinement and possess large unbroken global symme-
tries. Secondly, these ‘‘s-confining’’ theories have been
completely classified in@5#, and their dynamically generated
superpotentials can be constructed straightforwardly. We fo-
cus on these theories because they are the best understood
and possess the properties we desire.~Confiningx50 theo-
ries might also be interesting even though—or because
@6#—the quantum deformed moduli space forces partial chi-
ral symmetry breaking. Their properties can often be derived
from thes-confiningx52 theories by giving a large mass to
a flavor so that it decouples.!

A particularly intriguing example of ans-confining theory
is an Sp(2N) gauge theory with six fundamentalsQ and an
antisymmetric tensorA @7,8#. The theory has an SU~6!3U~1!
global symmetry, as well as anR symmetry. The confined
description involves the Sp(2N) neutral fields

Tm5Tr Am, m52,3,...,N,

Mn5QAnQ, n50,1,2,...,N21, ~2.2!

where Sp(2N) indices are contracted with the appropriate
metric, which can be taken to be1 J5 is231N . The quantum
numbers of the fields are

Sp(2N) SU~6! U~1! U(1)R

A 1 23 0

Q h h N21 1
3

Tm 1 23m 0
Mn 2(N21)23n 2

3.
~2.3!

This model has a number of desirable features, and will be
the ‘‘workhorse’’ of all the explicit models discussed below.
If weak gauge interactions are embedded in the SU~6! sym-
metry of this model, then there is a replication of ‘‘families’’
of M fields @8#. Furthermore, in spite of havingN families,
the family symmetry of the model is not U(N), but only
U~1!. Family replication arises because theA field only car-
ries this global U~1! charge, and so the SM gauge charges of
a composite particle are independent of the number ofA
fields it contains. Breaking this U~1! flavor symmetry will
allow us to generate flavor in a manner analogous to the
Froggatt-Nielsen mechanism. The model realizes the isotope
paradigm of the introduction, with the (QQ) and A fields
playing the roles of the proton and neutron, respectively.

III. A NEW MECHANISM
FOR GENERATING TEXTURE

If all Yukawa interactions in the standard model were to
vanish there would be a global U~3!5 chiral flavor symmetry.
The real Yukawa couplings explicitly break this chiral sym-
metry down to U(1)B3U(1)L , but in a hierarchical manner,
as apparent from the hierarchy of observed fermion masses
and mixing angles. Effective low-energy models of the sym-
metry breaking can be constructed: one makes assumptions
about what subgroupHPU(3)5 is the approximate chiral
symmetry at short distances, and then introduces spurions
which breakH down to U(1)B3U(1)L . The advantage of
such models is that the large mass hierarchies we observe
may be explained qualitatively in terms of several param-
eters of order 1/10, however, the analysis is never unique due
to the paucity of information about the Yukawa matrices
available to us experimentally. The analysis is further com-
plicated in supersymmetric theories, where the physics of
flavor and of SUSY breaking may be intertwined, as in gen-
eral squark and slepton masses are sensitive to both.

To proceed, one must go beyond the effective description
of flavor in terms of spurions, and construct models for the
origin and communication of flavor symmetry breaking. It is
possible that the origins of flavor lie above the Planck scale,
or that the breaking of flavor symmetries is due to ‘‘Planck
slop’’—nonrenormalizable operators suppressed by powers
of M P . However, without a renormalizable theory of flavor,
one gains little insight beyond that obtained from the spurion
analysis.

A perturbative framework for generating flavor texture
was proposed in@9# by Froggatt and Nielsen~FN!. The pro-
posal is that at a short distance the only global flavor sym-
metry consists of U~1! groups. Quarks and leptons are
coupled to heavy, vectorlike fieldsV, which in turn couple to
a field A with strengthg, such that the productgA can be
consistently assigned U~1! charges.@Either theA is charged,
or g is a U~1! spurion, or both.# When the heavyV fields are

1The number of families equalsN because the matrixAJ has
eigenvalues that come in pairs; thus it satisfies the square root of its
characteristic equation, implying thatAN11 may be expressed in
terms of lower powers ofA.

7194 56KAPLAN, LEPEINTRE, AND SCHMALTZ



integrated out of the theory, nonrenormalizable operators in-
volving the quarks and leptons are generated, involving pow-
ers ofgA/MV . Below MV , theA field acquires a VEV, and
the quantitye[g^A&/MV serves as the flavor spurion with
which the Yukawa couplings are constructed. Variouse’s
can be assigned charges under the U~1! flavor symmetries,
and the different elements of the Yukawa matrices are con-
strained by the quark and lepton charge assignments to be
proportional to different powers ofe @10#. This framework
can be generalized to incorporate non-Abelian symmetries
@11#, both discrete and continuous.

The drawback of the FN approach is that whereas the 54
real parameters of the SM Yukawa matrices~in a particular
basis! are traded for typically far fewer charges and VEVs,
the charge assignments and symmetry-breaking patterns tend
to look quite ad hoc and little insight is gained into the
origins of flavor.

The mechanism for generating flavor structure that we
propose here is similar to the FN model, except that instead
of having theA field get an expectation value, we have it
carry strong interactions that cause it to be confined within
the quarks and leptons. Thus the spurion characterizing the
flavor hierarchies is notg^A&/MV , but rathere5gL/MV ,
where L is the confinement scale of the quark and lepton
constituents. Since theA field is in a confined phase, instead
of a Higgs phase as in the FN scenario, our mechanism is in
some sense dual to the FN mechanism. The advantage of this
approach is twofold: the FN charges of the quarks and lep-
tons are now set by the number ofA constituents, determined
by dynamics rather than fiat. Also, the two mass scales ap-
pearing ine, MV , andL are not entirely independent since
typically the strong group will run much faster after theV
fields are integrated out, so thatL will not be far belowMV .

In the next section we give an example of a toy model that
realizes the features we have been discussing—the low-
energy theory consists of composite fields for which both
family replication and hierarchical Yukawa interactions arise
as a consequence of the internal structure of the composites.

IV. A TOY MODEL WITH SU „3…

3 SYMMETRY

We now construct a model that illustrates the flavor
mechanism discussed above. It is far from realistic—leptons
end up being the heaviest particles,u and d quarks have
proportional mass matrices, and the Cabibbo-Kobayashi-
Maskawa~CKM! matrix is trivial. Nevertheless, it nicely il-
lustrates how nontrivial texture can arise dynamically in a
renormalizable model where all SM particles are composite.
In the subsequent section we will discuss more realistic mod-
els.

A. Fundamental fields and interactions

Yukawa interactions have the generic formLHR, where
L and R correspond to the left- and right-handed fermions
and H is the Higgs boson. If all three fields are composite,
such an interaction might be generated nonperturbatively due
to instantons, in which case, following the power counting
scheme of Ref.@12#, the Yukawa coupling would be;4p.
Thus only the top Yukawa interaction can be due purely to
strong dynamics, and we assume that the weaker Yukawa

interactions arise from some interplay between strong and
perturbative interactions. In the models we construct,L and
R ~with the exception of the top, in one example! are com-
posed of constituents bound by different strong forces, and
are able to interact only due to perturbative interactions. In
the toy model we present here, we assume that the Higgs
boson is composite as well, and thus that the strong interac-
tion corresponds to a semisimple gauge group with three
factors.

Since we wish to explain the existence of three families,
we take the strong group to be Sp~6!35Sp~6!L3Sp(6)H
3Sp(6)R . To create composite SM fields we include a
single antisymmetric tensor and six fundamentals for each
Sp~6! factor, as in Eq.~2.3!. Without any perturbative super-
potential added to the theory, the model possesses a global
SU(6)3 symmetry, in which we can embed ‘‘trinification,’’
the SU~3!3

›Z3 grand unified theory introduced in@13# where
the Z3 symmetry cyclicly permutes the three SU~3! group
factors. A SM family is embedded in the ‘‘trinified’’ repre-
sentation (3,3̄,1)% (1,3,3̄) % (3̄,1,3). We take the fundamen-
tal ‘‘preons’’ to transform under Sp~6!33SU~3!3 as2

Preon Sp(6)L Sp(6)H Sp(6)R SU(3)1 SU(3)2 SU(3)3

a1 1 1 1 1 1

p1 h 1 1 3 1 1

q1 h 1 1 1 3̄ 1

a2 1 1 1 1 1

p2 1 h 1 1 3 1

q2 1 h 1 1 1 3̄

a3 1 1 1 1 1

p3 1 1 h 1 1 3

q3 1 1 h 3̄ 1 1.
~4.1!

Each of the Sp~6! factors gives rise to composite fields as
discussed in Sec. II: there are theT25a2 andT35a3 fields,
which are neutral under SU(3)3, as well as the composite
fields shown below:

Composite SU~3!1 SU~3!2 SU~3!3

F (1)5p1q1 3 3̄ 1

F (2)5p2q2 1 3 3̄

F (3)5p3q3 3̄ 1 3

X5q3q3 3 1 1

X̄5p1p1 3̄ 1 1

Y5q1q1 1 3 1

Ȳ5p2p2 1 3̄ 1

Z5q2q2 1 1 3

Z̄5p3p3 1 1 3̄.

~4.2!

2From here on we use the notation that strongly coupled funda-
mental fields are lower case, while composite fields are in capitals.
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For simplicity we have only listed the family with noa con-
stituents; there are in fact three families. For example, the
three families ofF (1) fields are (p1q1), (p1a1q1), and
(p1a1

2q1). In this model, the fields with the mosta constitu-
ents will be the lightest, and so these composites correspond
to the third, second, and first family, respectively.

The SM gauge group is contained in SU(3)3 by identify-
ing SU(3)c5SU(3)1 , while embedding SU(2)w,SU(3)2
and U(1)Y,SU~3!23SU~3!3. With this embedding, theF
fields decompose as

F~1!→Q% G,

F~2!→L % Ē% N̄% Hu% Hd% S,

F~3!→Ū % D̄ % Ḡ, ~4.3!

whereQ,Ū,D̄,L,Ē,Hu,d are fields with SM quantum num-
bers, N̄ is a right-handed neutrino,G is a (3,1)21/3 exotic
diquark, andS is a singlet. A virtue of this model is that all
exotic fields are in real representations of the SM and can in
principle acquire large masses.

We now add a perturbative superpotential so that the three
sets of composite fields can interact with each other. The
purpose of this exercise is to generate a superpotential in the
low-energy theory that includes a Yukawa interaction be-
tween composites of the three strong groups, which exhibits
a hierarchical structure among the three families. To generate
the desired interaction we introduce three heavy fieldsv i ,
each of which transform as fundamentals under two of the
strong Sp~6! groups:

Heavy
field

Sp(6)L Sp(6)H Sp(6)R SU(3)1 SU(3)2 SU(3)3

v1 1 h h 1 1 1

v2 h 1 h 1 1 1

v3 h h 1 1 1 1.

~4.4!

With these fields we write down a nongeneric, renormal-
izable superpotential consistent with an Sp~6!33SU~3!3

›Z3

symmetry:

W5 (
i 51,2,3

1

2
Miv i

21bv1v2v31gpi 21v iqi 11 ,

Mi[~m2a1ai 112a2ai 21!, ~4.5!

where the subscripts are integers modulo 3,m is the common
mass of thev fields, anda6 , b, and g are coupling con-
stants. This superpotential has the necessary couplings for
the three sectors to communicate. Note that theav2 cou-
plings break the U(1)3 family symmetry that counts thea
fields, thus allowing mixing between families.

B. The effective superpotential

We integrate out thev fields at their mass scalem, as-
sumed to be above the confinement scaleL, and expand the
effective superpotential in powers of the couplingb. The
result at lowest order arising from the contribution in Fig. 1
is

W052
g2

2 (
i

~pi 11qi 21!2/Mi . ~4.6!

At the scaleL, the theory confines and the operator~4.6! gets
mapped onto a mass term for composite fields.

By expanding the propagators 1/Mi in Eq. ~4.6! in pow-
ers of each of theai fields up to second order, we can com-
pute the effective superpotential in terms of confined fields.3

If we denote the families with subscriptsn51,2,3 such that
n51 corresponds to the lightest family~maximum number
of a constituents! while n53 corresponds to the heaviest
family ~no a constituents!, then at orderb0 we find that the
three families of real exoticsX,X̄,Y,Ȳ,Z,Z̄ acquire hierar-
chical masses

3In the following expressions we set to zero theT moduli, the
singlet fields composed entirely ofa constituents. It is not difficult
to include them if one wishes.

FIG. 1. Contribution to the effective superpotential at orderb0

from integrating out the massivev fields. Exterior lines are thep
andq preons; internal lines arev propagators, from which preons
are emitted. Thep, q, anda preons later confine, and below the
confinement scale this contribution toWeff is a mass term, where the
number of a constituents determines the family numbers of the
composites.

FIG. 2. Contribution to the effective superpotential at orderb
from integrating out the massivev fields. Below the confinement
scale, these contributions become trilinear interactions between
composites.
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W0→S L2

m D Mmn~X̄mXn1ȲmYn1Z̄mZn!, ~4.7!

where the mass matrixM is given by (r ,s50,1,2)

M32r ,32s5S L

m D r 1s 1

r !s!
]x

r ]y
s~12a1x2a2y!21ux5y50

5
~r 1s!!

r !s!
e1

r e2
s 5S 6e2

2 e1
2 3e2e1

2 e1
2

3e2
2 e1 2e2e1 e1

e2
2 e2 1

D
~4.8!

with the definition

e6[S L

m Da6 . ~4.9!

While we are able to reliably calculate the effective su-
perpotential we cannot determine the Ka¨hler potential and
with it the wave function renormalization for the composite
fields. However, in the absence of small parameters in the

strong dynamics we can assume that the relative wave func-
tion renormalization of the different composites differs at
most by order 1 factors and does not wash out the predicted
hierarchy.

At order b, the effective superpotential arises from the
graph in Fig. 2, which yields

W152bg3~p1q1!~p2q2!~p3q3!/~M1M2M3!

→bS L

m D 3

yrstF r
~2!Fs

~1!F t
~3! , ~4.10!

where the three families of chiral composite fieldsF ( i ) in-
teract via the Yukawa coupling

y32r ,32s,32t5S L

m D r 1s1t 1

r !s! t!
]x

r ]y
s]z

t @~12a1x2a2y!

3~12a1y2a2z!

3~12a1z2a2x!#21ux5y5z50 . ~4.11!

For example, the Yukawa matrixy3mn has entries

y3mn5S ~e11e2!413e1
2 e2

2 ~e11e2!31e1
2 e2 ~e11e2!22e1e2

~e11e2!31e1e2
2 ~e11e2!21e1e2 ~e11e2!

~e11e2!22e1e2 ~e11e2! 1
D . ~4.12!

We need not continue theb expansion any further, since at
higher order inb the effective superpotential contains at least
four pairs of p and q preons, which translates into a non-
renormalizable interaction below the confinement scale.

These Yukawa interactions Eq.~4.12! contribute tou and
d quark masses, provided that a pair of the three families of
Hu,d can be identified with the minimal supersymmetric
stand and model~MSSM! Higgs fields. However, since the
composite Higgs and lepton fields arise from the same strong
group Sp(6)H , interactions among themselves arise purely
from nonperturbative physics, and not fromv exchange.
Thus, to address the question of Higgs and lepton masses,
one must consider nonperturbative contributions to the su-
perpotential. The nonperturbative superpotential has been
worked out for Sp~6! in @7,8#. In the notation of~2.3!, where
subscripts denote the number ofa constituents, and the com-
posites have not yet been rescaled to mass dimension 1, it is
given by

Wdyn5
1

L7 ~ 1
3 T2

2M0
31 1

2 T3M1M0
22 1

2 T2M0
2M21 1

4 M0M2
2

1 1
4 M1

2M2!. ~4.13!

The M fields are antisymmetric tensors of SU~6!, while T

fields are singlets; subscripts denote the number ofa con-
stituents. Under the SU(3)3 decomposition ~4.2!,
M3→(F (2))31ȲF (2)Y for the Sp(6)H composites, etc. The
SM content of the threeFa

(2) fields may be written as a 333
matrix:

Fa
~2!5S L

S
Hd

N̄

Hu

Ē D
a

, ~4.14!

where the dynamical interaction@F (2)#3 has indices con-
tracted with twoe tensors as in a determinant. Among the
interactions one finds4

Fa
~2!Fb

~2!Fc
~2!5SaHu,bHd,c1Hd,aLbĒc1Hu,aLbN̄c1••• .

~4.15!

4Above in Eq.~4.13! the subscripts denote the number ofa con-
stituents; for the remainder of the paper subscripts will denote fam-
ily number, defined as~3 minus the number ofa constituents!.
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Comparing the above expression withWdyn in Eq. ~4.13!, it
is interesting to note that in the vacuum where the modulus
S1 has a VEV while other moduli vanish, the three families
of Hu,d fields have a dynamically generated mass matrix that
is rank 2:

MH
2 }^S2&S 0 1 0

1 0 0

0 0 0
D . ~4.16!

Thus only the Higgs fields without ana constituent survive
to the weak scale in this vacuum.

While the above mechanism is an interesting way to en-
sure that a single pair of Higgs fields survive to low energy,
it has unwelcome phenomenological consequences. One is
that the superpotential contains a global SU(2)R symmetry
relating Ū↔D̄ and N̄↔Ē. Thusu andd quarks both have
Yukawa interactions given by Eq.~4.12!, their mass ratios
are equal, and mixing angles vanish. Furthermore, one sees
that the dynamically generated lepton mass matrices are rank
1 with one family being very massive@heavier than the top
quark, as theb(L/m)3 suppression appearing in Eq.~4.10! is
absent# while the other two lepton families are massless.

C. Comments

The model we have presented here is certainly no candi-
date for beyond the SM physics; however, it does provide an
example of how a renormalizable field theory can give rise to
three composite families of SM fields with nontrivial flavor
texture. The structure of the mass and Yukawa matrices of
Eqs. ~4.8! and ~4.12! is sufficiently complex that one can
imagine more sophisticated models based on our mechanism
being at least in qualitative agreement with the flavor struc-
ture of the SM. This is the subject of the next section.

We conclude this section with a comment on the factor
L/m that appears in Eq.~4.10!, and that phenomenologically
cannot be be allowed to be very small. Recall thatL charac-
terizes the confinement scale, whilem is the mass of thev
fields that communicate between the Higgs and the left- and
right-handed fields. One might worry about tuning a pertur-
bative coupling to be close to a nonperturbative scale. How-
ever, note that the fundamental parameters of the theory in
the ultraviolet are notm andL, but ratherm andLUV , where
the latter is the scale that determines the running of the Sp~6!
interactions above the scalem. The relation betweenLUV
and the confining scaleL is easily estimated from the one-
loop beta functions, and one finds in the present theory that

S L

m D5S LUV

m D 1/7

. ~4.17!

Thus, for example, one could haveLUV /m vary from 1023

to 1022, while L/m only varies between 0.4 and 0.5. The

lack of fine tuning reflects the fact that the Sp~6! groups are
nearly asymptotically flat with thev fields included, but con-
fine quickly once thev ’s are integrated out.

V. MORE REALISTIC MODELS

In this section we construct two models based on the
Sp~6! confining theory that succeed in reproducing qualita-
tively much of the flavor structure seen in the SM. The pur-
pose of these models is to show that a renormalizable,
strongly coupled theory can give rise to nontrivial CKM
angles and fermion mass ratios. The structure of model 1 is
similar to the toy model of the previous section but with a
cure for most of the shortcomings of the simpler toy. It pos-
sesses the interesting feature that the top Yukawa coupling is
generated nonperturbatively from Sp~6! instanton interac-
tions. However, the model cannot reproduce realistic masses
and mixing angles. Model 2 is of slightly different structure
and succeeds in fitting all the masses and mixing angles of
the standard model. Both models are rather complicated, and
are intended to serve as existence proofs rather than as para-
gons of beauty.

A. Sp„6…

3 with composite Higgs fields

The main drawbacks of the toy model of the previous
section were that~i! there were no CKM angles;~ii ! the top
quark Yukawa coupling was of orderb(L/m)3, which is
likely to be too small; and~iii ! the lepton masses were gen-
erated dynamically, and were therefore either too large or
zero. The first model we examine is similar to the example of
the previous section, but is designed to correct the three ma-
jor deficiencies. In particular, the up-type Yukawa matrix
receives both dynamical and perturbative contributions, al-
lowing the top to be very heavy. The down-type couplings
are only generated perturbatively, and so they are naturally
light. As up and down sectors are now treated differently,
nontrivial mixing angles and dissimilar mass ratios are pos-
sible. Finally, lepton masses are also generated perturba-
tively, but at higher order than the down quarks, so that they
are naturally lighter. The price for these successes is that the
model has less symmetry and is more complicated. It makes
gauge coupling unification look mysterious, and it predicts
incorrect relations, such asmm /me;1700 andVus;Vcb .

The strong group is taken to be Sp(6)3, and we take the
same preons as in the previous example, with the exception
that there is no SU(3)3 symmetry, and the preons have dif-
ferent U~1! assignments. These U~1! assignments are unique
under the requirement that~i! it is possible for the top quark
Yukawa coupling to arise nonperturbatively, and~ii ! that all
charged exotics are real under SU~3!3SU~2!3U~1! so that
they can in principle be heavy.
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Preon Sp(6)L Sp(6)H Sp(6)R SU~3! SU~2! U(1)Y U(1)B2L

a1 1 1 1 1 0 0

t1 h 1 1 3 1 21/3 21/6
d1 h 1 1 1 2 1/2 1/2
s1 h 1 1 1 1 0 21/2

a2 1 1 1 1 0 0

d2 1 h 1 1 2 21/2 21/2
s21 1 h 1 1 1 0 21/2
s22 1 h 1 1 1 0 1/2
s228 1 h 1 1 1 0 1/2
s23 1 h 1 1 1 1 1/2

a3 1 1 1 1 0 0

t3 1 1 h 3̄ 1 1/3 1/6
s31 1 1 h 1 1 0 21/2
s32 1 1 h 1 1 0 1/2
s33 1 1 h 1 1 21 21/2.

~5.1!

The first subscript on the preon fields designates under which Sp~6! group they transform. As before,a designates an Sp~6!
antisymmetric tensor, whiles, d, andt label Sp~6! fundamentals that transform as singlets, doublets, and triplets, respectively,
under SU~3!3SU~2!.

As before, the Sp(6)3 groups confine~assumed for simplicity to occur at the same scale! and the composite fields transform
as the three families of the SM~with right-handed neutrinos!, plus exotic states which are all real under SU~3!3SU~2!3U~1!.
Their quantum numbers are

Composite SU~3! SU~2! U(1)Y U(1)B2L

Ū (1)5t1t1 3̄ 1 22/3 21/3

Ē(1)5d1d1 1 1 1 1

Q5t1d1 3 2 1/6 1/3
G5t1s1 3 1 21/3 22/3
Hu

(1)5d1s1 1 2 1/2 0

E(2)5d2d2 1 1 21 21
L5d2s21 1 2 21/2 21
Hd

(2)5d2s22 1 2 21/2 0
Hd8

(2)5d2s228 1 2 21/2 0
Hu

(2)5d2s23 1 2 1/2 0
S(2)5s21s22 1 1 0 0
S8(2)5s21s228 1 1 0 0
f15s21s23 1 1 1 0

N̄5s22s228 1 1 0 1

Ē(2)5s22s23 1 1 1 1

Ē8(2)5s228 s23 1 1 1 1

U5t3t3 3 1 2/3 1/3

D̄5t3s31 3̄ 1 1/3 21/3

Ḡ5t3s32 3̄ 1 1/3 2/3

Ū (3)5t3s33 3̄ 1 22/3 21/3

S(3)5s31s32 1 1 0 0
E(3)5s31s33 1 1 21 21
f25s32s33 1 1 21 0.

~5.2!
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The charge assignments have been made so that the first set
of preons yields the compositesQ, Ū (1), and Hu

(1) , which
have the right quantum numbers to generate a large dynami-
cal top quark Yukawa coupling.

As before, we will add massivev fields to the theory,
which will generate perturbative preon interactions that will
in turn become SM Yukawa interactions below the confine-
ment scaleL. Before specifying exactly whatv fields are
needed, we sketch out how the various composites get their
masses.

1. The d quarks

SinceQ, Hd /Hd8 , and D̄ fields arise from the three dif-
ferent Sp~6! groups, Yukawa interactions for thed quarks
can be generated via the interaction in Fig. 2, as in the model
of the previous section. This will require threev fields,
which we denotev1,2,3. The d Yukawa coupling will then
arise from expanding 1/(M1M2M3), whereMi is the
a-dependent mass ofv i , and thus is of the form~4.11!,
~4.12!.

2. The u quarks

There are sixŪ fields in the theory~the three families of
Ū (1) andŪ (3)!; three can get large masses by pairing up with
the threeU fields. The mass matrix takes the form

Ū ~1! Ū ~3!

MU;U (1/M2 4p^S~3!&). ~5.3!

The factor of 4p follows from the power counting arguments
in Ref. @12#. The coupling betweenU and Ū (1) arises
through the exchange of thev2 field proportional to 1/M2
and resembles the mass matrixMmn in Eq. ~4.8!. The
S(3)-dependent coupling betweenU andŪ (3) arises from the
nonperturbative potential~4.13! as discussed in Sec. IV B,
and its family structure is

^S~3!&}S S3
~3!

S2
~3!

S1
~3!

S2
~3!

S1
~3!

0

S1
~3!

0
0
D . ~5.4!

Since 1/M2 is rank 3, all three families ofU acquire
masses. As it has the hierarchical structure seen in Eq.~4.8!,
the Ū (1) field that couples most strongly toU is the one with
no a1 constituents. By choosing onlyS1

(3) to get a VEV,
^S(3)& is rank 2, and by adjusting its size relative to 1/M2 ,
one can arrange to have theU quarks pair in such a way that
the masslessŪ quarks include one that is primarilyŪ (1) ~the
top!, one that is entirelyŪ (3) ~the up!, and one that is mostly
Ū (3) ~the charm!. The Ū (3) components can couple to an
Hu

(2) field through a perturbative diagram as in Fig. 2, while
the Ū (1) components can couple nonperturbatively toHu

(1) .
Therefore we must have some linear combination ofHu

(1)

andHu
(2) to develop a VEV at the electroweak scale.

3. The Hu,d doublets

There are a total of sixHu,d pairs in this theory, and we
will assume that only one pair remains light down to the

weak scale. Without loss of generality, we can take the light
down Higgs boson to be in one of the three families ofHd

(2)

~as opposed toHd8
(2)!. From the previous discussion, we see

that the lightHu must have components in bothHu
(1) ~to give

mass to the top! and in Hu
(2) ~to give mass to the up and

charm!. The Higgs mass matrix allows bothHd
(2) andHd8

(2)

to couple perturbatively toHu
(1) , and nonperturbatively to

Hu
(2) . We can get the required mass pattern if we take the

Higgs mass matrix to look like

MH ;
Hu

~1!

Hu
~2!

Hd
~2! Hd8

~2!

S 0 1/Mh

4p^S8~2!&2 4p^S~2!&3
D , ~5.5!

where 1/Mh is once again the sort of matrix in Eq.~4.8! due
to the exchange of a newvh field, and the subscripts on the
S VEVs signify the rank. Evidently, there is a single mass-
less down-type Higgs that isHd

(2) ~third family!, and there-
fore there is a single massless up-type Higgs field. The latter
contains components both inHu

(1) ~primarily first family! and
in Hu

(2) , as desired.
The fact that a pair of Higgs fields remains massless relies

on theHu
(1)2Hd

(2) element in the matrix~5.5! remaining zero
to all orders in perturbation theory. A potential problem
might arise fromO(b2) contributions toWeff shown in Fig.
3, which could yield the effective operator
Hu

(1)Hd
(2)S(3)S8(2), for example, where the two singletsS(3)

and S8(2) get VEVs. However, it is possible to avoid these
contributions by choosing the couplings of the heavyv fields
appropriately, so that the zero in Eq.~5.5! is preserved at all
orders inWeff .

4. Charged leptons

The charged lepton mass matrix takes the form

ME ;

Ē~1!

Ē~2!

Ē28

Ē~2! E~3!

S 1/M311/Mh 0

4p^S8~2!&2 1/M1

4p^S~2!&3 1/ME

D ~5.6!

FIG. 3. Contribution to the effective superpotential at orderb2

from integrating out the massivev fields. Below the confinement
scale, these contributions become quadrilinear interactions between
composites.
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where 1/M1 , 1/M3 , 1/Mh , and 1/ME arise from exchange
of v1 , v3 , vh , and a new fieldvE , respectively. The ranks
of the nonperturbative contributionŝS(2)&, ^S8(2)& were
fixed when considering the Higgs matrix above.

The masslessĒ fields will be family-dependent combina-
tions of Ē(1), Ē(2), andĒ8(2). Computing the Yukawa cou-
plings to the light Higgs bosonHd,0

(2) of these fields is com-
plicated, as the coupling toLHd

(2) is nonperturbative
(;4p) for Ē8(2), zero forĒ(2), and perturbative at orderb2

for Ē(1) via the graph pictured in Fig. 3. The 1/ME term was
introduced in Eq.~5.6! so that the leptons would not contain
much Ē8(2), which would lead to excessively large lepton
masses.

5. Neutrinos

As it stands, the model predicts that neutrino masses are
similar to quark masses. The situation can be remedied by
giving the right-handed neutrinos a large mass so that the
light neutrinos are predominantly left handed with small Ma-
jorana masses given by the see-saw formula

M n52@Yl #TMN
21Yl^Hu&

2, ~5.7!

whereMN is the Majorana mass matrix of the right-handed
neutrinos. Since the right-handed neutrinos are composite as
well their masses must arise from preon dynamics. A suit-
able mechanism involves adding an extra massive fieldwN

with lepton number 1, which transforms as an antisymmetric
tensor of the Sp(6)H group. We include the following super-
potential couplings

WN5 1
2 ~m2aNa2!wN

2 1wNs22s228 . ~5.8!

Note that the mass term forwN breaks lepton number by two
units as required for generating a Majorana mass for neutri-
nos. Integrating outwN yields a graph as in Fig. 1. Expand-
ing in aN , and matching onto confined fields gives the Ma-
jorana mass matrix for right-handed neutrinos

MN;
L2

m S 6eN
4

3eN
3

eN
2

3eN
3

2eN
2

eN

eN
2

eN

1
D , eN5aN

L

m
. ~5.9!

The resulting masses for the left-handed neutrinos are easily
determined because the dynamically generated Dirac mass
matrix for the neutrinos has only one nonzero entry in the
~1,1! component. Thus the electron neutrino is massive with
a mass that is inversely proportional to the compositeness
scalemne

;^Hu&
2/L, and the other two neutrino species are

massless.

6. Numerics

A summary of the massive fields needed to generate the
Yukawa interactions in this model are as follows:
Field Sp(6)L Sp(6)H Sp(6)R

v1 1 h h

v2 h 1 h

v3 h h 1
vE 1 h h

vG h 1 h

vH h h 1
wN 1 1.

~5.10!

Thev1,2,3 fields generate thed quark Yukawa interactions
as in the toy model of the previous section; they also play a
role in the u quark Yukawa interactions, along with the
Sp(6)L dynamical superpotential. The fieldsvE,G,H differ
from v1,2,3 in that they do not participate inv3 interactions,
and so can only generate masses for composites in real rep-
resentations, as in Fig. 1; they also couple to different com-
binations of thes,d,t preons. For example, forbidding a cou-
pling of eitherv2 and v3 to the preons1 ~a constituent of
Hu

(1)! protects the zero in the Higgs matrix~5.5! from con-
tributions pictured in Fig. 3; however,s1 is also a constituent
of G, and sovG must couple to it or else theG and Ḡ
composities will remain massless.

We give here a crude numerical fit to data, purposefully
not fine tuned. We take the sixv fields to be degenerate, with
the following couplings:

v1@s33s231s31s221s21s32#20.4~v1
2/2!@a21a3#

1v2t1t320.4~v2
2/2!@a11a3#1v3d1d2

1~v3
2/2!@0.3a110.7a2#112vE@s31s228 1s33s23#

20.9~vE
2/2!@a21a3#1vG@0.1t1t31s1s32#

20.4~vG
2 /2!@a11a3#1vH@d1d21s1s228 #

20.3~vH
2 /2!@a11a2#. ~5.11!

The scalar VEVs are

^S1
~2!&
L

520.05
L

4pm
,

^S28
~2!&

L
520.03

L

4pm
,

^S2
~3!&
L

50.03
L

4pm
,

^S3
~3!&
L

510
L

4pm
, ~5.12!

with

L

m
5

1

2
. ~5.13!

With these parameters one finds the quark and lepton mass
ratios ~at the scaleL, which will be high!
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mt /mc5410, mc /mu5300,

mb /ms524, ms /md534,
~5.14!

mt /mm515, mm /me51700,

mb /mt51.

The CKM matrix ~again computed at the scaleL! is

VCKM5S 0.98
20.17
20.05

0.16
0.97
20.18

0.07
0.17
0.98

D . ~5.15!

Aside from displaying sophisticated flavor structure, we
consider this model’s interesting features to include a dy-
namically generated top mass, as well as the complex mixing
between SM particles and vectorlike fields. The model also
displays the pitfalls generic to theories of composite quarks
and leptons that do not possess a baryon number symmetry,
even if they are invariant underB-L parity: in this model,
dimension five proton decay operators are generated upon
integrating out the massiveG field. We have not examined
these operators in detail, but the proton lifetime is expected
to be shorter than observed for any value of the composite-
ness scale below the Planck scale.

B. A realistic model with fundamental Higgs fields

By taking the Higgs fields to be fundamental instead of
composite, we can simultaneously simplify the model and
make it agree quantitatively with the observed world. In this
section, we present an explicit example of such a model that
successfully fits all masses and mixing angles of the SM. In
this model the three generations of matter fields are compos-
ites of two strong Sp~6! groups which confine at a scaleL as
described in Sec. II. An interesting feature of this model is
that baryon number is preserved exactly, thus preventing
dangerous proton decay and allowing the compositeness
scale to be low enough that there are experimentally testable
consequences.

1. Field content

We take the preons of the ultraviolet to transform under
the standard model gauge group with well-defined baryon
and lepton number

Preon Sp(6)1 Sp(6)2 SU~3! SU~2! U(1)Y U(1)B U(1)L

a1 1 1 1 0 0 0

p1 h 1 3 1 1/6 21/6 21/2
q1 h 1 1 2 0 1/2 1/2
r 1 h 1 1 1 21/2 21/2 1/2

a2 1 1 1 0 0 0

p2 1 h 3̄ 1 21/6 1/6 1/2
q2 1 h 1 1 1/2 21/2 21/2
r 2 1 h 1 1 21/2 21/2 21/2
s2 1 h 1 1 1/2 1/2 21/2.

~5.16!

After confinement of the two Sp~6! groups we obtain
three generations of composite quarks and leptons, distin-
guished by the number ofa constituents. The standard model
quantum numbers of these composites are

Composite SU~3! SU~2! U(1)Y U(1)B U(1)L

Q5p1q1 3 2 1/6 1/3 0

Ū5p2r 2 3̄ 1 22/3 21/3 0

D̄5p2q2 3̄ 1 1/3 21/3 0

L5q1r 1 1 2 21/2 0 1

Ē5q2s2 1 1 1 0 21

N̄5r 2s2 1 1 0 0 21

G5p2p2 3 1 21/3 1/3 1

Ḡ5p1p1 3̄ 1 1/3 21/3 21

R5p2s2 3̄ 1 1/3 2/3 0

R̄5p1r 1 3 1 21/3 22/3 0

S5q1q1 1 1 0 1 1

S̄5q2r 2 1 1 0 21 21

~5.17!

where again we have only shown only one of three compos-
ite families; the remaining families contain one or twoa
preons.

In addition to the three SM families, there are three gen-
erations of right-handed neutrinos, as well as exotics in real
representations of both the standard model gauge group and
baryon and lepton number. As advertised, the SM Higgs
fields do not appear in the composite spectrum, they are
added as fundamental fields.

At this stage there are no couplings of the composites to
the Higgs fields, thus there are no SM Yukawa couplings.
The dynamically generated superpotential~4.13! of the con-
fining Sp~6! groups only couples composites of the same
strong group. Since all of these couplings involve exotic
fields which will be shown to obtain large masses, these
dynamical superpotential terms are irrelevant for the infrared
theory, and we will not be concerned with them any further.

2. Yukawa couplings

In order to generate the Yukawa couplings we need
couple the preons of the two strong groups to the Higgs
doublets. This is achieved by introducing the following ad-
ditional fields, all of which are taken to have masses above
the confinement scale.

Field Sp(6)1 Sp(6)2 SU~3! SU~2! U(1)Y U(1)B U(1)L

vu h h 1 1 0 0 0
vd h h 1 1 0 0 0
vs h h 1 2 21/2 0 0
v̄s h h 1 2 1/2 0 0
wu h 1 1 1 1/2 1/2 1/2
w̄u h 1 1 1 21/2 21/2 21/2
wd h 1 1 1 21/2 1/2 1/2
w̄d h 1 1 1 1/2 21/2 21/2.

~5.18!
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The gauge symmetries not only allow masses for the new
fields but also renormalizable couplings to the preons of
table ~5.16!. We assume a perturbative superpotential of the
form

Wtree5
1

2
@m2au~a11a2!#vu

21
1

2
@m2ad~a11a2!#vd

2

1@m2as~a11a2!#v̄svs1mwuw̄u1mwdw̄d

1b1vu~p1p21r 1s2!1b2vd~p1p21r 1s2!

1b3vsq1q21b4v̄sq1r 21b5vuwur 21b6vuwdq2

1b7vdwdq21b8w̄uHuq11b9w̄dHdq1 . ~5.19!

These couplings communicate between the different sectors
and generate masses and Yukawa couplings below the mass
scales of the heavy fields and confinement. The superpoten-
tial Eq. ~5.19! is not the most general allowed by the sym-
metries; to simplify the analysis, we have identified the
masses of thev and w fields, and left out a few couplings.
Superpotentials are well known to be nongeneric, thus leav-
ing out terms that are allowed by symmetries is natural in a
supersymmetric theory. We will find that in this slightly sim-
plified version of the model we can get very close to fitting
all the masses and angles of the SM with only a few effective
parameters, the theory with a generic superpotential whose

analysis we do not describe here, has more free parameters
entering the Yukawa matrices and can be made fully realis-
tic.

To understand the origin of the SM Yukawa couplings we
follow the procedure described in the toy model in Sec. IV
first integrate out the massivev andw fields at the scalem
and expand the effective superpotential to dimension 4 in the
preon fieldsp,q,r ,s, and to dimension 2 in each of thea
preons. As in the toy model, below the mass of thev andw’s
the gauge couplings of the Sp~6! groups evolve rather
quickly and get strong at scaleL. Preons are confined into
composites, and the superpotential is mapped onto an effec-
tive superpotential for the composites that contains mass
terms for the exotics~Fig. 4! and the desired Yukawa cou-
plings for SM quarks and leptons~Fig. 5!

Weff5Mi j
GGiḠj1Mi j

RRiR̄j1Mi j
SSiS̄j1Yi j

u QiŪ jHu

1Yi j
d QiD̄ jHd1Yi j

l Li ĒjHd1Yi j
n LiN̄jHu . ~5.20!

The masses and Yukawa couplings of the effective theory
are readily computed in terms of the small parameters

eu5au

L

m
, ed5ad

L

m
, es5as

L

m
. ~5.21!

The mass matrices for the exotic fields,MG, MG, and MS

are

MG5MR5
L2

m F b1
2S 6eu

4

3eu
3

eu
2

3eu
3

2eu
2

eu

eu
2

eu

1
D 1b2

2S 6ed
4

3ed
3

ed
2

3ed
3

2ed
2

ed

ed
2

ed

1
D G ,

MS5
L2

m
b3b4S 6es

4

3es
3

es
2

3es
3

2es
2

es

es
2

es

1
D . ~5.22!

When these fields are integrated out of the theory, they will induce dimension-5 operators with interesting flavor structure into
the effective superpotential. For example, integrating out theG andR fields respectively gives rise to operators such as

1

MG QLŪĒ and
1

MG QQD̄Ū. ~5.23!

The flavor structure of these operators is intricate due to the hierarchical nature of the mass matrices~5.22! and the structure
of the instanton induced couplings between the exotic and ordinary fields.

The Yukawa matrices for the quarks and leptons~renormalized at the compositeness scale! are given by

FIG. 4. Contribution to the mass ofG,Ḡ in the effective super-
potential Eq.~5.20!. The internal~vertical! line is the propagator of
a heavyvu or vd field and the~horizontal! lines at the top and
bottom of the diagram are massless preons that carry SM quantum
numbers and are bound into composites together with SM gauge
neutral preons by the confining dynamics. The mass generation for
the R,R̄ fields proceeds through similar diagrams, while theS,S̄
mass arises fromvs ,v̄s exchange.

FIG. 5. Contribution to SM Yukawa couplingY31
u . Internal

~green! lines correspond to massivev and w propagators, black
~red! lines are preons that carry~do not carry! SM quantum num-
bers and are bound into composites by the nonperturbative strong
dynamics~blue!. The Higgs fields in this model are fundamental
and have perturbative couplings to preons.
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Yu5luS 6eu
4 3eu

3 eu
2

3eu
3 2eu

2 eu

eu
2 eu 1

D , Yd5ldF S 6ed
4 3ed

3 ed
2

3ed
3 2ed

2 ed

ed
2 ed 1

D 1rS 6eu
4 3eu

3 eu
2

3eu
3 2eu

2 eu

eu
2 eu 1

D G , ~5.24!

Yn5lnS 6eu
4 3eu

3 eu
2

3eu
3 2eu

2 eu

eu
2 eu 1

D , Yl5l lF S 6ed
4 3ed

3 ed
2

3ed
3 2ed

2 ed

ed
2 ed 1

D 1sS 6eu
4 3eu

3 eu
2

3eu
3 2eu

2 eu

eu
2 eu 1

D G . ~5.25!

The l factors contain an overall (L/m)2 times products of
the b couplings from the ultraviolet superpotential~5.19!; r
and s are functions of the couplings as well. Note that in
order for the top Yukawa coupling to be sufficiently large,
L;m or largeb couplings are required.

3. Numerical predictions for masses and angles

From Eq.~5.24!, one might expect to obtain predictions
for four of the seven quark mass ratios and mixing angles
because the mass ratios and angles only seem to depend on
the three parameterseu , ed , andr . However, to predict the
quark and lepton masses and mixing angles at the weak scale
one needs to calculate the renormalization-group evolution
of the couplings from the scale of confinement to the masses
of the quarks. The running depends sensitively on the value
of the top Yukawa coupling as well as the scale of confine-
ment. At one loop these contributions can be summarized in
a single parameter@14# so that we only lose one prediction.

A crude fit to md /ms , ms /mb , Vcb , mc /mt yields the
following values for the parameters:

eu;0.045, ed;0.22, r;4.8. ~5.26!

These values can then be used to predict

mc /mu5490, Vus50.25,
Vub

Vcb
50.17. ~5.27!

Whereas these numbers are not in complete agreement
with experiment, they are nevertheless encouragingly close.
This suggests that the textures obtained in Eq.~5.24! might
be interesting to study in their own right. In the context of
this model, the precise numbers for the predictions above
should not be taken too seriously because wave-function
renormalization for the composites arising from the unknown
Kähler potential can alter these predictions by factors pre-
sumed to beO~1!.

In the charged lepton sector the model has one more pa-
rameters to describe mass ratios. Fitting tome /mm yields a
prediction formm /mt that is a factor 1.4 too large. The fit
can be improved while avoiding fine tuning by including an
additional set of intermediate fieldswl , w̄l , which couple to
the constituents of the charged leptons.

Neutrino masses can be treated in the same manner as
discussed above in Sec. V A 5. We introduce an extra mas-
sive field wN with lepton number one, which transforms as
an antisymmetric tensor of the Sp~6!2 group and include the
following superpotential couplings:

WN5 1
2 ~m2aNa2!wN

2 1wNr 2s2 . ~5.28!

This interaction gives rise to the Majorana mass matrix~5.9!
for the right-handed neutrinos, and after they are integrated
out of the theory, the left-handed neutrinos develop hierar-
chical masses with mass ratios of ordereu

4/eN
2 through the

seesaw mechanism. Since the overall sizeln of the Dirac
neutrino masses in Eq.~5.24! is unconstrained, neutrino mass
bounds do not place any constraint on the scale of compos-
iteness.

4. Comments

In summary, this model based on Sp~6!2 is successful at
explaining the existence of three families and in reproducing
the observed flavor properties of quarks and leptons. A great
virtue of the model is that it possesses a baryon symmetry, so
that the compositeness scale need not be high. Constraints on
the scale of compositeness will therefore come from flavor
changing operators, such as lepton flavor violating operators
in the superpotential Eq.~5.23! or in the Kähler potential. An
investigation of such effects will be pursued elsewhere; here
we simply stress that compositeness effects may show up in
exotic flavor violating processes.

VI. CONCLUSIONS AND OUTLOOK

The new dynamical approach to the flavor problem that
we are advocating has been shown to be capable of repro-
ducing the fermion masses and mixing angles seen in nature,
as well as explaining the replication of families. We empha-
size that we were able to demonstrate, entirely in the context
of renormalizable field theories, how compositeness for
quarks and leptons can give rise to realistic flavor structure at
low energies. In particular, we have not relied on gravita-
tional effects to generate desired nonrenormalizable opera-
tors. While gravity may in fact play a role in determining
low-energy flavor properties, our present ignorance of dy-
namics above the Planck scale makes it impossible to know
which nonrenormalizable operators allowed by symmetries
actually are generated by gravity, and what their coefficients
are. By presenting a renormalizable theory of flavor with
composite quarks and leptons, we have shown that it is pos-
sible to construct a predictive model of flavor with no hidden
or unconventional dynamical assumptions. Furthermore, our
approach allows for flavor to arise from compositeness at a
relatively low scale, where gravitational effects will be com-
pletely negligible.

In the examples we presented, the three generations of
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quarks and leptons are composites of new strong interac-
tions. The Yukawa couplings arise from a combination of
perturbative dynamics above the scale where the new gauge
interactions get strong and confined. We obtain textures of
Yukawa matrices~4.12! without zeros~but with calculable
combinatoric factors! that can be predictive and sufficiently
rich to be realistic. The more realistic models we considered
in Sec. V are not unifiable, but as demonstrated by our toy
model of Sec. IV, the flavor mechanism we are proposing
here is at least in principle compatible with unification.

There are a number of avenues to explore from here.
~1! Other strong groups. In this paper we have focused on

the gauge group Sp~6! with an antisymmetric tensor matter
field to generate three generations. There are many other
models that might be useful for generating composite gen-
erations. A promising example is supersymmetric SU(Nc)
gauge theory with an adjoint matter fieldA and Nf flavors
Q1Q̄. Gauge invariants of this theory include the composite
operatorsM j5QAjQ̄ for j 50,1,2,... . The dynamics of these
theories is not as well understood, but with an added tree
level superpotentialWtree5trAk11 the theory has a dual de-
scription in terms of an SU(kNc2Nf) gauge group@15#, and
is believed to confine and generatek generations of compos-
ites M j for the special casekNc2Nf51. Other models can
be constructed using SO, SU, Sp groups with various tensor
matter fields@5,16#.

~2! SUSY breaking. The models presented in this paper
are incomplete as they do not address the issue of SUSY
breaking and electroweak symmetry breaking. It is desirable
to have the nonperturbative scale of flavor physics simulta-
neously explain the electroweak hierarchy. However, relat-
ing flavor physics and SUSY breaking runs the risk of gen-
erating large flavor changing neutral currents through
nondegeneracy of squark and slepton masses. To avoid large
flavor changing effects, it seems worthwhile to see if the
strong flavor dynamics we envision could trigger SUSY
breaking in a low-energy gauge-mediated model@17#. An
alternative would be to try to realize our flavor mechanism

within the effective SUSY scenario@12#, in which dangerous
flavor changing processes are suppressed by having first and
second family sparticles be much heavier than those of the
third family. A technical problem is to find a model that
breaks SUSY while preserving a large enough non-Abelian
global symmetry into which the SM gauge group can be
embedded. Conventional models of dynamical SUSY break-
ing are constructed by lifting all classical flat directions with
a tree level superpotential in a theory in which quantum ef-
fects push the vacuum away from the origin, resulting in
nonzero vacuum energy and SUSY breaking@18#. These
models are unsatisfactory for our purposes since both the tree
level superpotential and the VEVs break the desired global
symmetries. Recently, models of dynamical SUSY breaking
with sufficiently large global symmetries have been con-
structed@19,20#; a common feature of these models are clas-
sical flat directions which are only lifted by quantum dynam-
ics.

~3! Phenomenology. It seems worth pursuing the phenom-
enology of flavor changing interactions that result from com-
positeness, such as those discussed briefly in the previous
section. It is not clear, however, how much can be said in a
model without SUSY breaking. Another feature of phenom-
enological interest in the models we have described is the
ubiquity of neutral moduli such as theTk5trAk composite
fields. While they can be expected to develop mass when
SUSY is broken, there may be many such fields, with flavor
dependent couplings, which could in principle mediate de-
tectable long range forces@21#.
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