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We argue that many future-eternal inflating spacetimes are likely to violate the weak energy condition. It is
possible that such spacetimes may not enforce any of the known averaged conditions either. If this is indeed the
case, it may open the door to constructing nonsingular, past-eternal inflating cosmologies. Simple nonsingular
models are, however, unsatisfactory, and it is not clear if satisfactory models can be built that solve the
problem of the initial singularity.@S0556-2821~97!02714-8#
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I. INTRODUCTION

Inflationary cosmological models@1# are generically fu-
ture eternal@2–7#. In such models, the universe consists of a
number of post-inflationary, thermalized regions embedded
in an always inflating background. The thermalized regions
grow in time, but the inflating background in which they are
embedded grows even faster, and the thermalized regions do
not, in general, merge. As a result, there never arrives an
instant of time after which the universe is completely ther-
malized. This scenario is schematically illustrated in Fig. 1.

Quantum fluctuations of the inflaton fieldf play an es-
sential role in many models of eternal inflation. In such mod-
els there is a parameterH ~the Hubble parameter, also re-
ferred to as the expansion rate!, such that the fluctuations of
f can be pictured as a ‘‘random walk,’’ or ‘‘diffusion,’’ in
which f varies by approximately6H/2p on the scale
H21 ~the ‘‘horizon scale’’! per time H21 ~the ‘‘Hubble
time’’ !. The fluctuations are superimposed on the classical
evolution off determined by its potentialV(f). Although
there is an overall tendency forf to roll down the potential,
it will be pushed up occasionally by quantum fluctuations. It
is this effect that is responsible for the eternal nature of in-
flation @8#.

These quantum fluctuations off induce fluctuations of
the spacetime geometry, and we expect that the expansion
rate will also fluctuate from one horizon-size region to an-
other. The quantum nature of the fluctuations becomes un-
important when the expansion of the Universe stretches their
wavelength well beyond the horizon. Hence, one can mean-
ingfully define classical spacetime histories for the scalar
field f (av)(x) and the metricgmn

(av)(x) averaged~‘‘smeared’’!
over a scalel .H21 @9#.

In the rest of this paper the spacetime geometry and the
field f will be understood in the averaged sense defined
above, and we shall drop the superscript ‘‘~av!.’’ In the in-
flating part of the Universe both the averaged fieldf and the
expansion rateH are expected to be slowly varying func-
tions, i.e., (]mH)

2!H4.

The future-eternal nature of inflation suggests that we
consider the possibility that inflating spacetimes can also be
extended to the infinite past, resulting in a ‘‘steady-state’’
nonsingular cosmological model. This possibility was dis-
cussed in the early days of inflation@10# but it was soon
realized by Linde@11# and by others@2,12# that the idea
could not be implemented in the simplest model in which the
inflating universe is described by an exact de Sitter space. It
was then proved by one of us@13# that a generic two-
dimensional spacetime that was eternally inflating to the fu-
ture could not be geodesically complete to the past@14#. This
paper also gave a plausibility argument that suggested that
the two-dimensional result would continue to hold in four
spacetime dimensions.

A rigorous four-dimensional proof was subsequently pro-
vided by us@15,16#, in a theorem that showed that under
some natural assumptions about the spacetime geometry, a
future-eternal inflationary model cannot be globally extended
into the infinite past; i.e., it is not geodesically complete in
the past direction. The assumptions that lead to geodesic in-
completeness in this result are the following.

~A! The Universe is causally simple@17#. ~A theorem
with this condition replaced by a condition called the ‘‘lim-
ited influence condition’’ was subsequently obtained
@18,19#.!

~B! The Universe is open.~An extension to certain closed
universes was subsequently obtained@20#.!

~C! The Universe obeys the ‘‘finite past-volume differ-
ence condition’’@21#.

~D! The Universe obeys the null convergence condition.
The main purpose of the present paper is to reexamine the

validity of this last condition.
We use conventions in which Einstein’s equation is
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FIG. 1. A schematic representation of an inflating universe. The
shaded regions are thermalized regions, where inflation has ended.
We live in such a region~i.e., the entire observed Universe lies
within a single thermalized region!.
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Rmn2 1
2 Rgmn58pGTmn . ~1!

Under these conventions, the null convergence condition re-
quires that the Ricci tensorRmn satisfies

RmnN
mNn>0 ~2!

for all null vectorsNm. This condition is closely related to
the weak energy condition, which requires that the energy-
momentum tensorTmn satisfies

TmnV
mVn>0 ~3!

for all timelike vectorsVm. An observer whose world line
has tangentVm at a point will measure an energy density of
TmnV

mVn at that point. Thus, the weak energy condition
means physically that the matter energy density is non-
negative when measured by any observer.

In models that obey Einstein’s equation~1! a violation of
the null convergence condition~2! implies a violation of the
weak energy condition~3!. To see this, suppose that there is
a ~say, future-directed! null vector Nm such that
RmnN

mNn52d,0. Einstein’s equation~1! implies that
TmnN

mNn52(8pG)21d,0. Then the timelike vector
given byVm5Nm1eTm, whereTm is a unit, future-directed
timelike vector will obeyTmnV

mVn,0 for sufficiently small
values ofe.

Thus, the null convergence condition appears to be a very
reasonable requirement on the spacetime geometry. For a
perfect-fluid spacetime with energy densityr and pressure
p the weak energy condition~and, therefore, the null conver-
gence condition! holds ifr>0 andr1p>0. This is satisfied
by all known forms of matter. An inflating universe is char-
acterized by a nearly vacuum equation of state,p'2r, and,
when the exact equality holds, the null convergence condi-
tion ~2! is satisfied, but only marginally. This is less unstable
than it seems, because all classical deviations from the
vacuum equation of state appear to work in the direction of
makingr1p positive rather than negative. For example, the
energy-momentum tensor of the inflaton fieldf is

Tmn5]mf]nf2gmn@ 1
2 ~]sf!22V~f!#, ~4!

and we can write

RmnN
mNn58pGTmnN

mNn58pG~Nm]mf!2>0. ~5!

Moreover, the addition of any ordinary matter withp.0
further tips the balance in the direction of a positive sign for
RmnN

mNn.
Equation~5! shows us that the null convergence condition

is satisfied in inflationary models as long as their dynamics is
accurately described by Einstein’s classical equation with a
scalar field source. The situation is not so clear in the ‘‘dif-
fusion’’ regions of spacetime where the dynamics is domi-
nated by quantum fluctuations off. The energy-momentum
tensor in such regions can be written as

Tmn5Tmn@f#1Tmn
~fluct! , ~6!

where Tmn@f# is constructed from the smeared-over-an-
horizon fieldf(x) and Tmn

(fluct) is the contribution of short-

wavelength mode off ~with wavelengthsl&H21). Ac-
counting for this contribution in a systematic way remains an
interesting unsolved problem. For our purposes it will be
sufficient to use the estimate

Tmn
~fluct!;H4. ~7!

~This estimate is easily understood if we recall thatf fluc-
tuates bydf;H on time and length scalesdt;dl ;H21

and thatTmn includes terms quadratic in gradients off.! In
the diffusion region, the smeared field gradients are small
~i.e., u]mfu&H2), and TmnN

mNn will now contain both a
manifestly non-negative term, as in Eq.~5!, as well as a
non-negligible correction fromTmn

(fluct) . It is no longer obvi-
ous, in this case, whether the null convergence condition~2!
is satisfied. In the next section we argue that the condition is
indeed violated in the ‘‘diffusion’’ regions of inflationary
spacetimes. This violation may open the door to escaping the
conclusion of our previous theorems@15,18#, and towards
constructing past-eternal, nonsingular cosmologies. Viola-
tions of the weak energy condition may also allow us to
avoid the conclusions of Farhi and Guth@22# whose results
appear to forbid the creation of an inflating universe in a
laboratory.~Other ways around the results of Farhi and Guth
have previously appeared in the literature@23–25#.!

The rest of this paper is organized as follows: In Sec. II
we discuss how the violation of the weak energy condition
arises in inflationary cosmology. In Sec. III we discuss
whether a suitable integral convergence condition might
hold, even if the pointwise condition does not. Several inte-
gral conditions are known to give rise to the focusing effects
necessary for results such as our previous theorems@15,18#
to go through@26–29#. We argue, however, that even the
weakest of the known integral conditions@29# may not hold
here. In Sec. IV we discuss the implications of the violation
of the weak energy condition for the existence of nonsingu-
lar, eternally inflating cosmological models. We construct an
explicit class of nonsingular cosmologies, and we discuss
why they are unsatisfactory as models of eternal inflation.
We also discuss a property that realistic inflationary sce-
narios might possess that would make all nonsingular models
unsuitable as models of eternal inflation. In Sec. V we take
stock of the situation: we compare our approach to quantum
stress-energy tensors with that of some other authors, and we
discuss the models to which our earlier theorems@15,18#
might still apply.

II. VIOLATION OF THE WEAK ENERGY CONDITION

We first look at a simple model in which the inflating
universe is locally approximated by a Robertson-Walker
metric:

ds25a2~h!~dh22dxW2!. ~8!

The approximation is justified when the scale of the spatial
variation of the inflaton fieldf and of the Hubble parameter
H is much greater thanH21. The Hubble parameter is de-
fined byH[a8/a2 ~where a prime is a derivative with re-
spect toh) and it obeys

H8~h!5a23~aa922a82!. ~9!
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Consider a null vector of the form

Nm5a22~1,nW !, unW u51, ~10!

where the ‘‘normalizing factor’’a22 is chosen so as to en-
sure thatNm is the tangent to an affinely parametrized geo-
desic~a feature that we will need later!. For such a vector,
we have

RmnN
mNn52

2

a6
~aa922a82!. ~11!

Comparing this with Eq.~9! we see that

RmnN
mNn52

2

a3
H852

2

a2
Ḣ. ~12!

An overdot here is a derivative with respect to the proper
time t, related toh by dt5adh. Thus, in a region where
H8.0 the null convergence condition will be violated.

The Hubble parameterH satisfies

H25
8pG

3
S ḟ2

2
1V~f! D 1O~GH4!, ~13!

where the last term represents the effect of the subhorizon
scale quantum fluctuations we alluded to earlier@see Eq.~7!#.
During inflation, we haveḟ2!V(f), and if the energy scale
of inflation is well below the Planck scale, we also have
GH2!1. The magnitude ofH is then determined mainly by
the inflaton potentialV(f). In regions of deterministic slow
roll,

uḟu'uV8~f!u/3H@H2, ~14!

and quantum fluctuations play a subdominant role in the dy-
namics of f. In such regions, Einstein’s equations with
energy-momentum tensor for the averaged field are satisfied
with good accuracy, and it is easily verified that
Ḣ'28pGḟ2,0. It then follows from Eq.~12! that the
weak energy condition is always satisfied in slow-roll re-
gions. On the other hand, in regions where the dynamics is
dominated by quantum diffusion of the fieldf, Eq.~14! does
not hold, and we have

H25
8pG

3
V~f!1O~GH4!.

Quantum fluctuations takef up and down the potential
V(f), and the range of variation ofV(f) in the diffusion
region is typically much greater thanH4. Hence, in some
parts of the diffusion region,H will grow and in other parts
it will decrease. The weak energy condition is thus necessar-
ily violated.

To see how this conclusion is affected by inhomogeneities
of the spacetime geometry, we consider a more general an-
satz for the metric

ds25a2~xW ,h!~dh22dxW2!. ~15!

For an inflating universe with a slowly varying expansion
rateH(xW ,h), the scale factor has the form

a~xW ,h!5S 12E
h0~xW !

h
H~xW ,h̃ !dh̃ D 21

.

With Nm given by Eq.~10!, we have

RmnN
mNn52a23nmnn]m]nS 1aD

522a23nmnn]m]nE
h0~xW !

h
H~xW ,h̃ !dh̃ , ~16!

wherenm5(1,nW ). To analyze the sign of this expression, we
note that the scale factora(xW ,h) ~and its inversea21) may
be expected to have many local minima, maxima, and saddle
points as a function ofxW at any ‘‘moment’’ h. At such
points,¹W a50 and Eq.~16! can be written as

RmnN
mNn52a23F2

]H

]h
1~nW •¹W !2S 1aD G .

At minima of a, the second term in the square brackets is
negative, and at saddle points it is negative at least for some
directions ofnW . The first term is negative wheneverH is
increasing with time. In the diffusion region, we do not ex-
pect any strong correlations between the spatial dependence
of the scale factor@which is determined by the whole prior
history ofH(xW ,h)] and the sign of]H/]h ~which depends
only on the local quantum fluctuation ofH). Thus, it appears
very likely that in some regions both terms on the right-hand
side will be negative and the weak energy condition will be
violated.

III. INTEGRAL CONVERGENCE CONDITIONS

The violation of the weak energy condition discussed
above is not total: there are regions where the condition is
violated, but also regions where it is satisfied. Moreover, the
probability for the field f to move down the potential
V(f) is always greater than that for it to move upward, and
the weak energy condition is satisfied when the field rolls
down. This suggests that, although there will be regions
where the null convergence condition will be locally vio-
lated, it may perhaps be satisfied in some averaged sense.

One kind of ‘‘averaged’’ condition is an integral conver-
gence condition@26–29#. If we assume that an inflating
spacetime is null complete to the past, then a past-directed
null geodesic may be expected to cross regions where the
weak energy condition is satisfied as well as ones where it
may be violated. Thus, it seems reasonable to ask whether an
integral null convergence condition along the lines

E RmnN
mNndp>0 ~17!

might hold, where the integral is taken along the geodesic,
andp is an affine parameter with respect to which the tan-
gent to the geodesicNm is defined~i.e.,Nm[dxm/dp). Con-
dition ~17! is either required to hold when the integral is
taken over the complete, or in some applications half-
complete, geodesic~as in the original proposal for such in-
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tegral conditions@26#!, or is required to ‘‘repeatedly hold,’’
as will happen when the integrated oscillates@29#.

One examination, however, it is not clear if Eq.~17! will
hold when interpreted in either way. Consider, for example,
the metric~8!. Affinely parametrized null geodesics for this
metric may be obtained from the LagrangianL5gmnN

mNn.
The Euler-Lagrange equations reduce tod(a2Nm)/dp50,
where p is an affine parameter, and we use the fact that
Nm is null. One solution of this is the null vector in Eq.~10!.
For this solution, we have

dp52a2dh5adt, ~18!

and using Eq.~12! we have

E RmnN
mNndp522E H8

a
dh522E Ḣ

a
dt. ~19!

The presence ofa in the denominator makes the behavior of
the integral on the right difficult to assess. Without it, Eq.
~19! would reduce merely to the difference in the values of
H at the end points of integration, and one could try and
arrange for this difference to be positive along at least some
geodesics. The presence ofa means, however, that there will
be increasingly larger contributions to the integral as we go
to earlier times~assuming that the Universe is expanding!
and it is not easy to decide if the contributions of the wrong
sign will always be compensated for by those of the right
sign. The situation is even more difficult in the case of the
more general metric~15!. Here one would have to deal with
the integral of the complicated expression on the right-hand
side of Eq.~16!, and it is hard to see that one can argue that
this integral will either converge to a non-negative value, or
even that it will be ‘‘repeatedly non-negative.’’

IV. NONSINGULAR COSMOLOGIES

What are the consequences if, in addition to the pointwise
violation of the weak energy condition that we have dis-
cussed here, a suitable integral condition also fails to hold?
One important consequence is that earlier arguments that
suggested that the Universe had a ‘‘beginning’’@15,18# may
no longer hold. A crucial ingredient of these arguments is
that a congruence of initially converging geodesics comes to
a focus. Convergence conditions, either pointwise or suitable
integral ones, guarantee focusing. Without such conditions,
models can be constructed where focusing does not occur,
and in which geodesics can be extended to infinite affine
lengths in the past direction.

If a model based on the metric~8! is to be nonsingular, it
follows from Eq.~18! that

E
2`

t

a~ t̃ !d t̃ ~20!

must diverge for allt, wheret is the proper time used above
~defined viadt5adh). We must also haveȧ.0 ~for the
Universe to be expanding!. Cosmologies with a scale factor

of the forma(t);(2t)2q, where 0,q<1 ~and t,0!, sat-
isfy these conditions. Such a scale factor appears, for ex-
ample, in the ‘‘pre-big-bang’’ stage of the proposed models
of string cosmology@30–32#. These models do not, however,
qualify as models of ‘‘steady-state’’ inflation. The Riemann
tensor in such models decreases asRmn

st}t
22 when

t→2`, indicating that the spacetime is asymptotically flat
in the past direction. The Hubble parameterH also vanishes
ast→2`. This behavior is very different from the quasiex-
ponential expansion withH'const that is characteristic of
inflation at later times. Since the idea behind a steady-state
model, and its chief attraction, is that the Universe is in more
or less the same state at all times, models with very different
behavior at early and late times are not viable as models of
steady-state inflation.

Another example of a geodesically complete cosmology
is de Sitter spacetime,

ds25dt22a2~ t !dV3
2 , ~21!

where

a~ t !5H0
21cosh~H0t !. ~22!

For t@H0
21, the expansion rateH is approximately equal to

the constant valueH0, and we have a canonical model of
inflation. This model, however, describes a contracting uni-
verse fort,0. Thermalized regions in such a universe would
rapidly merge and fill the entire space@13#. The universe
would then collapse to a singularity and would never make it
to the expanding stage. A further problem with a contracting
universe is that it is extremely unstable. The growth of per-
turbations by gravitational instability is slower in an expand-
ing universe than that in a flat spacetime, but in a contracting
universe the growth of perturbations accelerates. Hence, a
contracting universe will rapidly reach a grossly inhomoge-
neous state from which it is not likely to recover.

An inflating spacetime is not, of course, exactly de Sitter
spacetime, but is expected to be locally close to de Sitter
spacetime. That is, for any spacetime pointP there is a
neighborhood of proper extent;H21 where the metric can
be brought to de Sitter form with only small deviations from
the exact de Sitter metric. It has been argued by one of us
@13# that such a spacetime is necessarily contracting in the
past, implying that steady-state inflation is impossible in
such a model. That argument involved assumptions on the
form of the Riemann tensor. We provide here a new version
of the argument based on the Ricci tensor.

Consider a congruence of timelike geodesics, past di-
rected from some pointp. Let the proper timet along these
geodesics be zero atp, letVm be the tangent to the geodesics
with respect tot, and letu[DmV

m be the divergence of the
congruence. If the congruence is shear-free, as is the case in
de Sitter space for congruences that start without shear, or in
general two-dimensional spacetimes, we have

du

dt
52

1

n21
u22RmnV

mVn, ~23!
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where n is the spacetime dimension.~This equation is a
trivial extension of the standard four-dimensional geodesic
focusing equation@33#.! Assume now that the Ricci tensor
obeys

RmnV
mVn,2

d2

n21
,0 ~24!

for all unit timelike vectorsVm. In other words, assume that
the strong energy condition is everywhere violated by at least
a minimum amount. The strong energy condition requires
thatRmnV

mVn>0 for all timelike vectorsVm, and this con-
dition is violated in all models of inflation that have been
considered. In fact, we have argued elsewhere@16# that a
violation of this condition is necessary if a spacetime is to be
considered ‘‘inflating.’’

Combining Eqs.~23! and ~24! we get

du

dt
.

1

n21
~d22u2!. ~25!

Integrating this expression from some negative value oft
~i.e., a point to the past ofp on the congruence! to zero, and
using the fact thatu→2` as t→02, we get

u,FcothS t

n21
d D Gd. ~26!

Since cothx,21 for x,0 Eq. ~26! means that the past-
directed timelike geodesics fromp continue to diverge into
the infinite past by an amountu,2d. Compare this with flat
space, where the geodesics also continue to diverge, but
whereu;1/t. This faster-than-flat-space divergence suggests
that the universe is contracting at early times. The objections
raised above then apply here as well.

Although suggestive, this argument falls short of a proof.
Congruences of geodesics in realistic spacetimes will not re-
main shear-free, and the effect of shear needs to be taken into
account. The global structure of locally de Sitter spacetimes
remains an interesting open problem.

V. DISCUSSION

We have shown here that the weak energy condition ge-
nerically will be violated in inflating spacetimes. Violations
of the weak energy condition have been discussed by several
other authors~see, for example, Flanagan and Wald@34# and
references cited therein!. Previous work on the question has
focused on the expectation value of the energy-momentum
tensor ^Tmn& and this approach has yielded limits on the
violation of the weak energy condition. In particular, Ford
and Roman@35,36# have investigated quantum states of free
scalar and electromagnetic fields in a flat spacetime for
which ^T00&,0 in some region of spacetime. They have
shown that although such states can be constructed, the mag-
nitude of the negative energy density and the time interval
during which it occurs are limited by inequalities that have
the appearance of uncertainty principle inequalities. Pfenning
and Ford have obtained extensions of these ‘‘quantum in-

equalities’’ to some curved spacetimes@37,38#. Flanagan and
Wald @34# have shown that an integral form of the weak
energy condition is satisfied for an appropriately smeared
^Tmn& in the case of a free, massless scalar field in a nearly
flat spacetime.

Unfortunately, these results cannot be used to restrict the
violations of the weak energy condition of the type discussed
in this paper. One obvious reason is that the theorems proved
so far are restricted to free fields and a special class of space-
times, which usually does not include locally de Sitter
spaces.~Pfenning and Ford have recently obtained restric-
tions on violations of the weak energy condition in de Sitter
spacetime@39#, but their results apply to a limited class of
world lines.! A more basic reason, however, is that all these
results are concerned with the expectation value^Tmn&, while
we are interested in the fluctuations ofTmn . The expectation
value^Tmn(x)& can be thought of as a result of averaging the
observed value ofTmn at a pointx in an ensemble of identi-
cal universes. In some of these universes the inflaton field
will fluctuate ‘‘up the hill,’’ and the weak energy condition
will be violated, while in others it will go ‘‘down the hill,’’
and the condition will be satisfied. Since the probability to go
down is always greater than probability to go up, we expect
that on average the weak energy condition will be satisfied;
i.e., we expect that

^Tmn~x!&NmNn>0. ~27!

The violation of the weak energy condition, as well as the
eternal character of inflation, both disappear when the field
f and its energy-momentum tensor are replaced by their
expectation values, since both effects are due to relatively
rare quantum fluctuations of the fieldf.

It is important to know if we can reasonably expect the
energy conditions, or suitable integral versions, to be satis-
fied, because that will determine whether the singularity
theorems, and other results of classical general relativity,
will continue to hold~see Hawking and Ellis@33# for a re-
view of these classical results and further references!. If pre-
vious singularity theorems that were aimed at inflationary
cosmology@15,20,18# do not apply to some models, we may
then have the possibility of constructing a ‘‘steady-state’’
eternally inflating universe, without a beginning and without
an end. The issue of whether or not the Universe is past
eternal has been discussed several times in the literature by
Linde and his collaborators@39#. They have argued that even
when individual geodesics are past incomplete, it may still
be possible to view the Universe as infinitely old@40#. What
we have done here is to point to a possibility, although a
faint one, of constructing fully nonsingular models. Such
models, if they indeed exist, would be geodesically past
complete.

It must be noted that there is a class of inflationary models
to which our previous theorems do continue to apply. These
are models of ‘‘open-universe’’ inflation@41–44# where the
universe consists of post-inflationary ‘‘bubbles’’ embedded
in a metastable false vacuum state. Quantum diffusion of the
inflation field does not occur here, and in the false vacuum
the Ricci tensor is proportional to the metric. In this case the
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null convergence condition is satisfied pointwise, and the
models must possess initial singularities.

In other models of inflation, we have shown here that
there is a possibility for nonsingular models to exist, based
on the violation of the weak energy condition that occurs in
these models. Whether realistic models of this type can be
constructed, however, remains open. The discussion of Sec.
IV suggests that the construction of such models may be
difficult, if not impossible.

Note added. After we submitted this paper for publication
we learned of other work that also discusses the weak energy
condition in cosmology. Kar@45# and Kar and Sahdev@46#
have looked at wormholes in a cosmological background and
have discussed the weak energy condition using a relation
equivalent to Eq.~11! of the present paper. Fukuyamaet al.

@47# have discussed the violation of the weak energy condi-
tion in a specific model in which the Hubble parameter os-
cillates in time.
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