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Violation of the weak energy condition in inflating spacetimes
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We argue that many future-eternal inflating spacetimes are likely to violate the weak energy condition. It is
possible that such spacetimes may not enforce any of the known averaged conditions either. If this is indeed the
case, it may open the door to constructing nonsingular, past-eternal inflating cosmologies. Simple nonsingular
models are, however, unsatisfactory, and it is not clear if satisfactory models can be built that solve the
problem of the initial singularity] S0556-282(97)02714-9

PACS numbg(s): 98.80.Cq, 04.20.Dw

[. INTRODUCTION The future-eternal nature of inflation suggests that we
consider the possibility that inflating spacetimes can also be
Inflationary cosmological modelgl] are generically fu- extended to the infinite past, resulting in a “steady-state”
ture eterna[2—7]. In such models, the universe consists of anonsingular cosmological model. This possibility was dis-
number of post-inflationary, thermalized regions embeddedussed in the early days of inflatigd0] but it was soon
in an always inflating background. The thermalized regiongealized by Linde[11] and by otherq2,12] that the idea
grow in time, but the inflating background in which they are could not be implemented in the simplest model in which the
embedded grows even faster, and the thermalized regions @eflating universe is described by an exact de Sitter space. It
not, in general, merge. As a result, there never arrives awas then proved by one of Ud3] that a generic two-
instant of time after which the universe is completely ther-dimensional spacetime that was eternally inflating to the fu-
malized. This scenario is schematically illustrated in Fig. 1.ture could not be geodesically complete to the pag}. This
Quantum fluctuations of the inflaton fielg play an es- paper also gave a plausibility argument that suggested that
sential role in many models of eternal inflation. In such mod-the two-dimensional result would continue to hold in four
els there is a parametét (the Hubble parameter, also re- spacetime dimensions.
ferred to as the expansion rgtsuch that the fluctuations of A rigorous four-dimensional proof was subsequently pro-
¢ can be pictured as a “random walk,” or “diffusion,” in vided by us[15,16], in a theorem that showed that under
which ¢ varies by approximately=H/27w on the scale some natural assumptions about the spacetime geometry, a
H~! (the “horizon scale’) per time H™! (the “Hubble future-eternal inflationary model cannot be globally extended
time”). The fluctuations are superimposed on the classicahto the infinite past; i.e., it is not geodesically complete in
evolution of ¢ determined by its potential(¢). Although  the past direction. The assumptions that lead to geodesic in-
there is an overall tendency faf to roll down the potential, completeness in this result are the following.
it will be pushed up occasionally by quantum fluctuations. It (A) The Universe is causally simplel7]. (A theorem
is this effect that is responsible for the eternal nature of inwith this condition replaced by a condition called the “lim-
flation [8]. ited influence condition” was subsequently obtained
These quantum fluctuations @f induce fluctuations of [18,19.)
the spacetime geometry, and we expect that the expansion (B) The Universe is oper{An extension to certain closed
rate will also fluctuate from one horizon-size region to an-universes was subsequently obtaih2€].)
other. The quantum nature of the fluctuations becomes un- (C) The Universe obeys the “finite past-volume differ-
important when the expansion of the Universe stretches thegnce condition”[21].
wavelength well beyond the horizon. Hence, one can mean- (D) The Universe obeys the null convergence condition.
ingfully define classical spacetime histories for the scalar The main purpose of the present paper is to reexamine the
field $()(x) and the metrig{®)(x) averaged“smeared”)  validity of this last condition.

over a scale”>H"1[9]. We use conventions in which Einstein’s equation is

In the rest of this paper the spacetime geometry and the
field ¢ will be understood in the averaged sense defined
above, and we shall drop the superscrigay).” In the in-
flating part of the Universe both the averaged figlénd the
expansion ratéH are expected to be slowly varying func-
tions, i.e., ¢,H)2<H"

future infinity

time
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. _ ]
Ry~ %RgﬁyzstTM. (1) wavel.ength mpde ofd_> (V\_/lth.wavelengths?\sH ). Ac_:
counting for this contribution in a systematic way remains an
Under these conventions, the null convergence condition rehteresting unsolved problem. For our purposes it will be
quires that the Ricci tensd,,, satisfies sufficient to use the estimate

R,,N“N'=0 ) T~ H4, @)

for all null vectorsN*. This condition is closely related to (This estimate is easily understood if we recall tafluc-
the weak energy condition, which requires that the energytuates bys¢~H on time and length scale®~ 6/ ~H"

momentum tensof ,, satisfies and thatT ,, includes terms quadratic in gradients®f In
the diffusion region, the smeared field gradients are small
T, VAV"=0 3 (e, |d,4|<H?, and T, ,N*“N” will now contain both a

o . ) manifestly non-negative term, as in E(), as well as a
for all timelike vectorsV#. An observer whose world line non-negligible correction fronT(ﬂ]L)Jct)_ It is no longer obvi-

has tangenV* at a point will measure an energy density of 5 in this case, whether the null convergence condign
T, V*V” at that point. Thus, the weak energy condition s satisfied. In the next section we argue that the condition is
means physically that the matter energy density is NONjgeeq violated in the “diffusion” regions of inflationary
negative when measured by any observer. spacetimes. This violation may open the door to escaping the
In models that obey Einstein's equatidh) a violation of - cqncjusion of our previous theoreniss,18, and towards
the null convergence conditio2) implies a violation of the  constructing past-eternal, nonsingular cosmologies. Viola-
weak energy conditiofB). To see this, suppose that there is ions of the weak energy condition may also allow us to
a (say, future-directed null vector N* such that ayoid the conclusions of Farhi and GUt2] whose results
R,,N“N"=—6<0. Einstein’s equation(1) implies that gnnear to forbid the creation of an inflating universe in a

TuN“N"=—(87G) 16<0. Then the timelike vector |anoratory(Other ways around the results of Farhi and Guth
given byV#=N#+€T#, whereT# is a unit, future-directed p,5ye previously appeared in the literat(iZ8—25.)

timelike vector will obeyT ,,V¥V”<0 for sufficiently small The rest of this paper is organized as follows: In Sec. Il
values ofe. we discuss how the violation of the weak energy condition
Thus, the null convergence condition appears to be a Verjyises in inflationary cosmology. In Sec. Ill we discuss
reasonable requirement on the spacetime geometry. For\gnether a suitable integral convergence condition might
perfect-fluid spacetime with energy densjiyand pressure hold, even if the pointwise condition does not. Several inte-
p the weak energy conditiofand, therefore, the null conver- grg| conditions are known to give rise to the focusing effects
gence conditiopholds ifp=0 andp+p=0. This is satisfied necessary for results such as our previous theofdH48
by all known forms of matter. An inflating universe is char- g go through[26—29. We argue, however, that even the
acterized by a nearly vacuum equation of state,—p, and,  weakest of the known integral conditiof9] may not hold
when the exact equality holds, the null convergence condihere. In Sec. IV we discuss the implications of the violation
tion (2) is satisfied, but only marginally. This is less unstableof the weak energy condition for the existence of nonsingu-
than it seems, because all classical deviations from thgyr eternally inflating cosmological models. We construct an
vacuum equation of state appear to work in the direction okxplicit class of nonsingular cosmologies, and we discuss
makingp+ p positive rather than negative. For example, thewhy they are unsatisfactory as models of eternal inflation.

energy-momentum tensor of the inflaton fiesdis We also discuss a property that realistic inflationary sce-
narios might possess that would make all nonsingular models

Tu=0,00,6—0,.[3 (9,6)*~V($)], (4  unsuitable as models of eternal inflation. In Sec. V we take

. stock of the situation: we compare our approach to quantum
and we can write stress-energy tensors with that of some other authors, and we

discuss the models to which our earlier theordrs,1§

R, N“N"=87GT, N“N"=87G(N“d,$)?=0. (5)  might still apply.

Moreover, the addition of any ordinary matter wig»0
further tips the balance in the direction of a positive sign for

R NN We first look at a simple model in which the inflating

~ Equation(5) shows us that the null convergence conditionynijverse is locally approximated by a Robertson-Walker
is satisfied in inflationary models as long as their dynamics ignetric:

accurately described by Einstein’s classical equation with a

scalar field source. The situation is not so clear in the *“dif- ds?=a?(7)(dn2—dx?). (8)
fusion” regions of spacetime where the dynamics is domi-

nated by quantum fluctuations ¢f. The energy-momentum The approximation is justified when the scale of the spatial

II. VIOLATION OF THE WEAK ENERGY CONDITION

tensor in such regions can be written as variation of the inflaton field) and of the Hubble parameter
et H is much greater thakl ~. The Hubble parameter is de-
T, =Tl +THY, (6)  fined byH=a’'/a? (where a prime is a derivative with re-

. spect ton) and it obeys
where T,,[ ¢] is constructed from the smeared-over-an-

horizon field ¢(x) and T{' is the contribution of short- H'(p)=a 3aa’'—2a’?). (9)
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Consider a null vector of the form R
a(x,n)=

” R -1
) A l—f . H(X,n)dn) .
Ne=a~?(1n), |n|=1, (10 7o)

where the “normalizing factor"a~2 is chosen so as to en- With N given by Eq.(10), we have
sure thatN# is the tangent to an affinely parametrized geo-

desic(a feature that we will need laterFor such a vector, RWNMNVZZa—%unva#(;V E)
we have a
vl 2 o2 =—2a"°n#n’9,q f” H(x,7)d7, (16)
R,,N*N :—g(aa —2a’'9). (11) V) o3 ’ '
Comparing this with Eq(9) we see that wheren#= (1,ﬁ). To analyze the sign of this expression, we
5 5 note that the scale factta(f, ») (and its inversea™!) may
R, NANY=— —H'=— —H (12)  be expected to have many local minima, maxima, and saddle
v a a” -’

points as a function ok at any “moment” 7. At such

An overdot here is a derivative with respect to the propeoints,Va=0 and Eq.(16) can be written as
time t, related ton by dt=ad». Thus, in a region where

H’>0 the null convergence c_oqdition will be violated. RWNMNVZZa—s _ ﬁ+(ﬁ-ﬁ)2 E) )
The Hubble parametdd satisfies an a
87G| ¢? At minima of a, the second term in the square brackets is
2=T 7+V(¢) +0O(GHY), (13)  negative, and at saddle points it is negative at least for some

directions ofn. The first term is negative whenevet is
where the last term represents the effect of the subhorizoimcreasing with time. In the diffusion region, we do not ex-
scale quantum fluctuations we alluded to eaflsere Eq(7)]. pect any strong correlations between the spatial dependence
During inflation, we havep2<V/(¢), and if the energy scale ©f the scale factofwhich is determined by the whole prior
of inflation is well below the Planck scale, we also havehistory ofH(i, 7)] and the sign ofoH/d% (which depends
GH?2<1. The magnitude ofl is then determined mainly by only on the local quantum fluctuation bf). Thus, it appears
the inflaton potentiaV/(¢). In regions of deterministic slow very likely that in some regions both terms on the right-hand
roll, side will be negative and the weak energy condition will be
) violated.
|pl=|V'($)|/BH>H?, (14

. . . Ill. INTEGRAL CONVERGENCE CONDITIONS
and quantum fluctuations play a subdominant role in the dy-
namics of ¢. In such regions, Einstein’s equations with  The violation of the weak energy condition discussed
energy-momentum tensor for the averaged field are satisfiesbove is not total: there are regions where the condition is
with good accuracy, and it is easily verified that violated, but also regions where it is satisfied. Moreover, the
H~—-87G$?<0. It then follows from Eq.(12) that the probability for the field ¢ to move down the potential
weak energy condition is always satisfied in slow-roll re-V(¢) is always greater than that for it to move upward, and
gions. On the other hand, in regions where the dynamics ithe weak energy condition is satisfied when the field rolls
dominated by quantum diffusion of the fieftl Eq.(14) does down. This suggests that, although there will be regions
not hold, and we have where the null convergence condition will be locally vio-
lated, it may perhaps be satisfied in some averaged sense.
One kind of “averaged” condition is an integral conver-
gence condition[26—-29. If we assume that an inflating
spacetime is null complete to the past, then a past-directed
Quantum fluctuations takeb up and down the potential null geodesic may be expected to cross regions where the
V(¢), and the range of variation of(¢) in the diffusion  weak energy condition is satisfied as well as ones where it
region is typically much greater thad®. Hence, in some may be violated. Thus, it seems reasonable to ask whether an
parts of the diffusion regioril will grow and in other parts integral null convergence condition along the lines
it will decrease. The weak energy condition is thus necessar-
ily violated. ;
To see how this conclusion is affected by inhomogeneities j R.,/N*N"dp=0 (17
of the spacetime geometry, we consider a more general an-
satz for the metric might hold, where the integral is taken along the geodesic,
andp is an affine parameter with respect to which the tan-
ds?=a?(x, n)(d5?—dx?). (15  gent to the geodesid* is defined(i.e., N“=dx*/dp). Con-
dition (17) is either required to hold when the integral is
For an inflating universe with a slowly varying expansiontaken over the complete, or in some applications half-
rateH(i, 7), the scale factor has the form complete, geodesi@s in the original proposal for such in-

) 871G 4
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tegral conditiong26]), or is required to “repeatedly hold,” of the forma(t)~(—t)~9, where 0<g<1 (andt<0), sat-
as will happen when the integrated oscillaf28]. isfy these conditions. Such a scale factor appears, for ex-
One examination, however, it is not clear if EG.7) will ample, in the “pre-big-bang” stage of the proposed models
hold when interpreted in either way. Consider, for examplepf string cosmology30-32. These models do not, however,
the metric(8). Affinely parametrized null geodesics for this qualify as models of “steady-state” inflation. The Riemann
metric may be obtained from the Lagrangiérg,,N“N”.  tensor in such models decreases RS, «t~? when
The Euler-Lagrange equations reduced@@?N#)/dp=0, t— —o, indicating that the spacetime is asymptotically flat
where p is an affine parameter, and we use the fact thatn the past direction. The Hubble parameterlso vanishes
N# is null. One solution of this is the null vector in EG.0). ast— —. This behavior is very different from the quasiex-
For this solution, we have ponential expansion witlid~const that is characteristic of
inflation at later times. Since the idea behind a steady-state
model, and its chief attraction, is that the Universe is in more
dp=—a’dy=adt, (18 or less the same state at all times, models with very different
behavior at early and late times are not viable as models of
] steady-state inflation.
and using Eq(12) we have Another example of a geodesically complete cosmology
is de Sitter spacetime,

H' H
f RM,,N”NVdp=—2J' ?dn=—2f 4t (19 ds?=dt?—a?(t)dQ32, (21)

The presence d in the denominator makes the behavior of where
the integral on the right difficult to assess. Without it, Eq.

(19) would reduce merely to the difference in the values of

H at the end points of integration, and one could try and
arrange for this difference to be positive along at least some
geodesics. The presenceaomeans, however, that there will Fort>H 1, the expansion ratel is approximately equal to
be increasingly larger contributions to the integral as we gqpe constant valuédo, and we have a canonical model of
to earlier times(assuming that the Universe is expanding inflation. This model, however, describes a contracting uni-
and it is not easy to decide if the contributions of the wrong,erse fort<0. Thermalized regions in such a universe would
sign will always be compensated for by those of the right gy merge and fill the entire spaga3]. The universe
sign. The situation is even more difficult in the case of_ theyould then collapse to a singularity and would never make it
more general metri€15). Here one would have to deal with 4 the expanding stage. A further problem with a contracting
the integral of the complicated expression on the right-hang,jyerse s that it is extremely unstable. The growth of per-
side of Eq.(16), and it is hard to see that one can argue thatrmations by gravitational instability is slower in an expand-
this integral will either converge to a non-negative value, Ofing njverse than that in a flat spacetime, but in a contracting

a(t)=Hg *cosi(Ht). (22)

even that it will be “repeatedly non-negative.” universe the growth of perturbations accelerates. Hence, a
contracting universe will rapidly reach a grossly inhomoge-
IV. NONSINGULAR COSMOLOGIES neous state from which it is not likely to recover.

. . Lo An inflating spacetime is not, of course, exactly de Sitter
What are the consequences if, in addition to the pointwise . . ;
L g .~ Spacetime, but is expected to be locally close to de Sitter
violation of the weak energy condition that we have dis-

cussed here, a suitable integral condition also fails to holg3Pacetime. That is, for any spaj:ftlme pomtthere. IS a
1gaghborhood of proper extentH ™~ where the metric can

One important consequence is that earlier arguments th e brought to de Sitter form with only small deviations from
suggested that the Universe had a “beginnirid3,1§ may the exact de Sitter metric. It has been argued by one of us

no longer hold. A crucial ingredient of these arguments is]i‘13] that such a spacetime is necessarily contracting in the
that a congruence of initially converging geodesics comes t : : P g nlycon gint
Qast, implying that steady-state inflation is impossible in

a focus. Convergence conditions, either pointwise or SUitablsuch a model. That arqument involved assumptions on the
integral ones, guarantee focusing. Without such conditionﬁ, : 9 P

models can be constructed where focusing does not occu’™m of the Riemann tensor. We.prpwde here a new version
of the argument based on the Ricci tensor.

and in which geodesics can be extended to infinite affine . S . .
lengths in the past direction. Consider a congruence of timelike geodesms, past di-
If a model based on the metr{8) is to be nonsingular, it rected f_rom some poirp. Let the proper time along thesg

follows from Eq.(18) that g(_aodesms be zero pt let V¥ be the tangent. to the geodesics
with respect td, and let¢=D ,V* be the divergence of the
t congruence. If the congruence is shear-free, as is the case in
j a(t)dt (20 de Sitter space for congruences that start without shear, or in
- general two-dimensional spacetimes, we have

must diverge for alt, wheret is the proper time used above

(defined viadt=adz). We must also hava>0 (for the %:_ 1 —R VAV 23
Universe to be expandifngCosmologies with a scale factor dt n—1 atd '
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where n is the spacetime dimensioriThis equation is a equalities” to some curved spacetin{@¥,3§. Flanagan and
trivial extension of the standard four-dimensional geodesidVald [34] have shown that an integral form of the weak
focusing equatiorf33].) Assume now that the Ricci tensor energy condition is satisfied for an appropriately smeared
obeys (T, in the case of a free, massless scalar field in a nearly
flat spacetime.
<0 (24) _ Un_fortunately, these results cannot be used to rgstrict the
n—-1 violations of the weak energy condition of the type discussed
in this paper. One obvious reason is that the theorems proved
so far are restricted to free fields and a special class of space-
for all unit timelike vectorsv*. In other words, assume that times, which usually does not include locally de Sitter
the strong energy condition is everywhere violated by at leas§paces(Pfenning and Ford have recently obtained restric-
a minimum amount. The strong energy condition requiresions on violations of the weak energy condition in de Sitter
thatR,,V#V"=0 for all timelike vectorsv#, and this con-  spacetimg39], but their results apply to a limited class of
dition is violated in all models of inflation that have been world lines) A more basic reason, however, is that all these
considered. In fact, we have argued elsewHd® that a  results are concerned with the expectation vallig,), while
violation of this condition is necessary if a spacetime is to beye are interested in the fluctuations®f, . The expectation
considered “inflating.” value(T (X)) can be thought of as a result of averaging the
Combining Eqgs(23) and(24) we get observed value of ,, at a pointx in an ensemble of identi-
cal universes. In some of these universes the inflaton field
will fluctuate “up the hill,” and the weak energy condition
4. 1 2 . (25)  Will be violated, while in others it will go “down the hill,”
dt” n—-1 and the condition will be satisfied. Since the probability to go
down is always greater than probability to go up, we expect

) ) ] ] that on average the weak energy condition will be satisfied,;
Integrating this expression from some negative valud of ; o e expect that

(i.e., a point to the past gf on the congruengeo zero, and
using the fact that— —~ ast—0~, we get

t (TM,,(X)>N”NV>0. (27
cotl—(— ”5

52

R, VA< —

0< — (26)

Since coth<—1 for x<0 Eq. (26) means that the past- The violation of the weak energy condition, as well as the
directed timelike geodesics from continue to diverge into €ternal character of inflation, both disappear when the field
the infinite past by an amoumt< — 5. Compare this with flat ¢ and its energy-momentum tensor are replaced by their
space, where the geodesics also continue to diverge, b@kPectation values, since both effects are due to relatively
whered~ 11t. This faster-than-flat-space divergence suggest&are guantum fluctuations of the fieil
that the universe is contracting at early times. The objections It is important to know if we can reasonably expect the
raised above then apply here as well. energy conditions, or suitable integral versions, to be satis-
Although suggestive, this argument falls short of a proof.fied, because that will determine whether the singularity
Congruences of geodesics in realistic spacetimes will not r¢heorems, and other results of classical general relativity,
main shear-free, and the effect of shear needs to be taken infg!l continue to hold(see Hawking and Elli$33] for a re-
account. The global structure of locally de Sitter spacetime¥iew of these classical results and further referendégre-

remains an interesting open problem. vious singularity theorems that were aimed at inflationary
cosmology{15,20,1§ do not apply to some models, we may
V. DISCUSSION then have the possibility of constructing a “steady-state”

eternally inflating universe, without a beginning and without

We have shown here that the weak energy condition gean end. The issue of whether or not the Universe is past
nerically will be violated in inflating spacetimes. Violations eternal has been discussed several times in the literature by
of the weak energy condition have been discussed by severhinde and his collaboratof89]. They have argued that even
other authorgsee, for example, Flanagan and WE8d] and ~ when individual geodesics are past incomplete, it may still
references cited therginPrevious work on the question has be possible to view the Universe as infinitely ¢#D]. What
focused on the expectation value of the energy-momenturwe have done here is to point to a possibility, although a
tensor(T,,) and this approach has yielded limits on thefaint one, of constructing fully nonsingular models. Such
violation of the weak energy condition. In particular, Ford models, if they indeed exist, would be geodesically past
and Romarj 35,36 have investigated quantum states of freecomplete.
scalar and electromagnetic fields in a flat spacetime for It must be noted that there is a class of inflationary models
which (Ty0)<<0 in some region of spacetime. They haveto which our previous theorems do continue to apply. These
shown that although such states can be constructed, the magre models of “open-universe” inflatiofd1-44 where the
nitude of the negative energy density and the time intervaliniverse consists of post-inflationary “bubbles” embedded
during which it occurs are limited by inequalities that havein a metastable false vacuum state. Quantum diffusion of the
the appearance of uncertainty principle inequalities. Pfenningnflation field does not occur here, and in the false vacuum
and Ford have obtained extensions of these “quantum inthe Ricci tensor is proportional to the metric. In this case the
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null convergence condition is satisfied pointwise, and thd47] have discussed the violation of the weak energy condi-

models must possess initial singularities. tion in a specific model in which the Hubble parameter os-
In other models of inflation, we have shown here thatcillates in time.

there is a possibility for nonsingular models to exist, based

on the violation of the weak energy condition that occurs in

these models. Whether realistic models of this type can be ACKNOWLEDGMENTS

constructed, however, remains open. The discussion of Sec.

IV suggests that the construction of such models may be The authors thank Larry Ford, Andrei Linde, and Slava

difficult, if not impossible. Mukhanov for discussions. One of the authdfsV.) ac-
Note addedAfter we submitted this paper for publication knowledges partial support from the National Science Foun-

we learned of other work that also discusses the weak energiation. The other authdA.B.) thanks the Institute of Cos-

condition in cosmology. Kaf45] and Kar and Sahde6]  mology at Tufts University and the High Energy Theory

have looked at wormholes in a cosmological background an&roup at Brookhaven National Laboratory for their contin-

have discussed the weak energy condition using a relationed hospitality and support, and the Research Awards Com-

equivalent to Eq(11) of the present paper. Fukuyaredal.  mittee of Southampton College for partial financial support.

[1] For reviews of inflation see, for example, S. K. Blau and A. H. [18] A. Borde and A. Vilenkin, Int. J. Mod. Phy$to be publisheg
Guth, in300 Years of Gravitationedited by S. W. Hawking [19] A. Borde, report 199unpublished
and W. Israel(Cambridge University Press, Cambridge, En- [20] A. Borde, Phys. Rev. [30, 3392(1994.
gland, 1987; A. D. Linde, Particle Physics and Inflationary [21] This requires that there exist certain pairs of points such that

Cosmology(Harwood Academic, Chur, Switzerland, 1998. the spacetime volume of the difference of their pasts is finite, a
W. Kolb and M. S. Turner,The Early Universe(Addison- condition necessary for inflation to persist in the future time
Wesley, New York, 1990 direction. Sed 15,164 for details.

[2] A. Vilenkin, Phys. Rev. D27, 2848(1983. [22] E. Farhi and A. H. Guth, Phys. Lett. B33 149(1987).

[3] A. D. Linde, Phys. Lett. BL75 395(1986. [23] E. Farhi, A. H. Guth, and J. Guven, Nucl. Phy&339 417

[4] M. Aryal and A. Vilenkin, Phys. Lett. BL99, 351(1987. (1990.

[5] A. S. Goncharov, A. D. Linde, and V. F. Mukhanov, Int. J. [24] L. Fischler, D. Morgan, and J. Polchinski, Phys. Rev4l
Mod. Phys. A2, 561(1987. 2638(1990.

[6] K. Nakao, Y. Nambu, and M. Sasaki, Prog. Theor. PI8@. [25] A. Linde, Nucl. PhysB372, 421(1992.
1041(1988. [26] F. J. Tipler, Phys. Rev. 07, 2521(1978.

[7] A. Linde, D. Linde, and A. Mezhlumian, Phys. Rev. 49, [27] G. Galloway, Manuscr. Matt85, 209 (1981).
1783(1994. [28] T. Roman, Phys. Rev. B3, 3526(1986); 37, 546 (1988.

[8] The quantum fluctuations makk go up and down the poten- [29] A. Borde, Class. Quantum Gra%, 343 (1987).
tial. This means that different parts of the Universe thermalizeg/30] G. Veneziano, inString Gravity and Physics at the Planck
at different times. Further, at any given time, there is anonzero  Energy Scalgedited by N. Sanchez and A. Zichictiluwer

probability for some regions of the Universe to still be inflat- Academic, Dordrecht, 1996

ing. [31] M. Gasperini, inString Gravity and Physics at the Planck
[9] In fact, the “horizon size” itself will be subject to fluctuations, Energy Scalg¢30].

but is a meaningful concept when averaged over this larg¢32] There are violations of the weak energy condition in such cos-

scale. mologies as pointed out by S. Kar, Report No.
[10] See, for example, some of the discussiondlie Very Early hep-th/9611122, 199@inpublished

Universe edited by G. W. Gibbons and S. W. Hawkif@am-  [33] S. W. Hawking and G. F. R. EllisThe Large Scale Structure

bridge University Press, Cambridge, England, 1983 of SpacetimgCambridge University Press, Cambridge, En-
[11] A. D. Linde, in The Very Early Universg10]. gland, 1973
[12] P. J. Steinhardt, iThe Very Early Universgl0]. [34] E. Flanagan and R. M. Wald, Phys. Rev.58, 6233(1996.
[13] A. Vilenkin, Phys. Rev. D46, 2355(1992. [35] L. H. Ford, Proc. R. Soc. LondoA364, 227 (1978; Phys.
[14] A spacetime igast-geodesically completkall timelike and Rev. D43, 3972(199)).

null geodesics can be extended in the past direction to infinit¢36] L. H. Ford and T. A. Roman, Phys. Rev. 41, 3662(1990;

values of their affine parameters. 44, 1328(1992; 51, 4277(1995; 53, 1988(1996; 53, 5496
[15] A. Borde and A. Vilenkin, Phys. Rev. Letf2, 3305(1994. (1996.

[16] A. Borde and A. Vilenkin, inRelativistic Astrophysics: The [37] M. Pfenning and L. H. Ford Phys. Rev. &5, 4813(1997).
Proceedings of the Eighth Yukawa Symposiedited by M.  [38] M. Pfenning and L. H. Fordto be published
Sasaki(Universal Academy Press, Japan, 1995 [39] See, for example, Ref§3,5,7].

[17] This is the requirement that spacetime has a simple caus&lO] A short discussion of this question also appears in Ri].
structure. In particular, it excludes complicated topological in-[41] J. R. Gott, NaturéLondon 295 304 (1982.
terconnections between different regions of spacetime. Sep42] M. Bucher, A. S. Goldhaber, and N. Turok, Phys. Revb®)
[15,16 for a precise discussion and a diagram. 3314(1995.



56 VIOLATION OF THE WEAK ENERGY CONDITION IN ... 723
[43] K. Yamamoto, M. Sasaki, and T. Tanaka, Astrophys455, [46] S. Kar and D. Sahdev, Phys. Rev.93, 722(1996.

412 (1995. [47] T. Fukuyama, M. Hatakeyama, M. Miyoshi, M. Morikawa,
[44] A. D. Linde, Phys. Lett. B351, 99 (1995. and A. Nakamichi, Report No. astro-ph/9608097, 1906-
[45] S. Kar, Phys. Rev. 219, 862 (1994). published.



